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Abstract

This paper investigates the asymptotic properties of the Gaussian quasi-maximum-likelihood

estimators (QMLE’s) of the GARCH model augmented by including an additional explanatory

variable - the so-called GARCH-X model. The additional covariate is allowed to exhibit any

degree of persistence as captured by its long-memory parameter dx; in particular, we allow for

both stationary and non-stationary covariates. We show that the QMLE’s of the parameters

entering the volatility equation are consistent and mixed-normally distributed in large samples.

The convergence rates and limiting distributions of the QMLE’s depend on whether the regressor

is stationary or not. However, standard inferential tools for the parameters are robust to the

level of persistence of the regressor with t-statistics following standard Normal distributions in

large sample irrespective of whether the regressor is stationary or not.

1 Introduction

To better model and forecast the volatility of economic and financial time series, empirical re-

searchers and practitioners often include exogenous regressors in the specification of volatility dy-

namics. One particularly popular model within this setting is the so-called GARCH-X model where

the basic GARCH specification of Bollerslev (1986) is augmented by adding exogenous regressors

to the volatility equation:

yt = σt (ϑ) εt, (1)
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where εt is the error process while σ2
t (ϑ) is the volatility process given by

σ2
t (ϑ) = ω + αy2

t−1 + βσ2
t−1 + πx2

t−1, (2)

for some observed covariate xt which is squared to ensure that σ2
t (ϑ) > 0, and where ϑ =

(
ω, θ′

)′,
θ = (α, β, π)′, is the vector of parameters. The inclusion of the additional regressor xt often helps

explaining the volatilities of stock return series, exchange rate returns series or interest rate se-

ries and tend to lead to better in-sample fit and out-of sample forecasting performance. Choices

of covariates found in empirical studies using the GARCH-X model span a wide range of vari-

ous economic or financial indicators. Examples include interest rate levels (Brenner et al., 1996;

Glosten et al, 1993; Gray, 1996), bid-ask spreads (Bollerslev and Melvin, 1994), interest rate spreads

(Dominguez, 1998; Hagiwara & Herce, 1999), forward-spot spreads (Hodrick, 1989), futures open in-

terest (Girma and Mougoue, 2002), information flow (Gallo and Pacini, 2000), and trading volumes

(Fleming et al, 2008; Lamoureux and Lastrapes, 1990; Marsh and Wagner, 2005). More recently,

various realized volatility measures constructed from high frequency data have been adopted covari-

ates in the GARCH-type models with the rapid development seen in the field of realized volatility;

see Barndorff-Nielsen and Shephard (2007), Engle (2002), Engle and Gallo (2006), Hansen et al.

(2010), Hwang and Satchell (2005), and Shephard and Sheppard (2010).

While the GARCH-X model and its associated quasi-maximum likelihood estimator (QMLE)

have found widespread empirical use, the theoretical properties of the estimator are not fully

understood. In particular, given the wide range of different choices of covariates, it is of interest

to analyze how the persistence of the chosen covariate influences the QMLE. As shown in Table

1 in Appendix C, the degree of persistence varies a lot across some popular covariates used in

GARCH-X specifications. The table reports log-periodogram estimates of memory parameter, dx,

and estimates of the first-order autocorrelation, ρ1, for some time series used as covariates in

the literature. For example, interest rate levels and bond yield spreads are highly persistent with

estimates of dx being mostly larger than 0.8 and ρ1 estimates close to unity, thereby suggesting unit

root type behaviour. Meanwhile, realized volatility measures (realized variance) of various stock

index and exchange rate return series are less persistent with estimates of dx ranging between 0.3

and 0.6 while the estimates of ρ1 are relatively small and taking values between 0.64 to 0.88; formal

unit root tests clearly reject unit root hypotheses for these time series. A natural concern would

be that different degrees of persistence of the chosen covariates would lead to different behaviour

of the QMLE and associated inferential tools.

We provide a unified asymptotic theory for the QMLE of the parameters allowing for both

stationary and non-stationary regressors. In the case of non-stationary regressors, we model xt as

an I (dx) process with 1/2 < dx < 3/2. This allows for a wide-range of persistence as captured

by the long-memory parameter dx, including unit root processes (dx = 1) but also processes with

either weaker (dx < 1) or stronger dependence (dx > 1).

Our main results show that to a large extent applied researchers can employ the same techniques

when drawing inference regarding model parameters regardless of the degree of persistence of the
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regressors. We first show that QMLE consistently estimates ϑ0 whether xt is stationary or not,

but that its limiting distribution is non-standard in the non-stationary case. At the same time,

we also demonstrate that the large sample distributions of t-statistics are invariant to the degree

of persistence and always follow N (0, 1) distributions. As consequence, standard inference tools

are applicable whether the regressors are stationary or not, and so researchers do not have to

conduct any preliminary analysis of a given covariate before carrying out inference. A simulation

study confirms our theoretical findings, with the distribution of standard t-statistics showing little

sensitivity to the degree of persistence of the included covariate.

Our theoretical results have important antecedents in the literature. Our theoretical results for

the non-stationary case rely on results developed in Han (2011) who analyzes the time series prop-

erties of GARCH-X models with long-memory regressors. He shows how the GARCH-X process

explains stylized facts of financial time series such as the long memory property in volatility, lep-

tokurtosis and IGARCH. Kristensen and Rahbek (2005) provided theoretical results for the QMLE

in the linear ARCH-X models in the case of stationary regressors. We extend their theoretical

results to allow for lagged values of the volatility in the specification and non-stationary regressors.

Jensen and Rahbek (2004) and Francq and Zakoïan (2012) analyzed the QMLE in the pure GARCH

model (i.e., no covariates included, π = 0) and showed that the QMLE of (α, β) remained consis-

tent and
√
n-asymptotically normally distributed even when σ2

t (ϑ) was explosive. On the other

hand, they found that ω is not identified when the volatility process is non-stationary. Our results

for the QMLE of θ are similar: It remains consistent and
√
n-asymptotically normally distributed

independently of whether x2
t , and thereby σ

2
t (ϑ), is explosive or not. However, in contrast to the

pure GARCH model, it is possible to identify and consistently estimate ω in the GARCH-X model

even when xt is non-stationary. The contrasting results are due to the fact that the dynamics of

a non-stationary pure GARCH process are very different from those of a GARCH-X process with

non-stationarity being induced through xt.

Finally, Han and Park (2012), henceforth HP2012, established the asymptotic theory of the

QMLE for a GARCH-X model where a nonlinear transformation of a unit root process was in-

cluded as exogenous regressor. Our work complements HP2012 in that we allow for a wider range

of dependence in the regressor, but on the other hand do not consider general nonlinear trans-

formations of the variable. In the special case with dx = 1, our results for the estimation of θ

coincide with those of HP2012 with their transformation chosen as the quadratic function. At a

technical level, we provide a more detailed analysis of the QMLE compared to HP2012. While

HP2012 conjectured that ω was not identified and so kept the parameter fixed at its true value in

their analysis, we here show that in fact ω can be consistently estimated from data and derive the

large-sample distribution of its QMLE. This important result is derived by extending some novel

limit results for non-stationary regression models developed in Wang and Phillips (2009a,b).

The rest of the paper is organized as follows. Section 2 introduces the model and the QMLE.

Section 3 derives the asymptotic theory of the QMLE for the stationary and non-stationary case,

while Section 4 analyzes the large sample distributions of the corresponding t-statistics. The results

of a simulation study is presented in Section 5. Section 6 concludes. All proofs have been relegated
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to Appendix A. Tables and figures have been collected in Appendix B. Before we proceed, a word

on notation: Standard terminologies and notations employed in probability and measure theory

are used throughout the paper. Notations for various convergences such as →a.s., →p and →d

frequently appear, where all limits are taken as n→∞ except where otherwise indicated.

2 Model and Estimator

The GARCH-X model is given by eqs. (1)-(2) where the parameters are collected in ϑ = (ω, θ) where

θ = (α, β, π) ∈ Θ ⊆ R3 and ω ∈ W ⊆ [0,∞). The chosen decomposition of the full parameter vector

into θ and the intercept ω is due to the special role played by the latter in the non-stationary case.

The true, data-generating parameter is denoted ϑ0 =
(
ω0, θ

′
0

)′, where θ0 = (α0, β0, π0)′ and the

associated volatility process σ2
t = σ2

t (ϑ0). We will throughout assume that E
[
log
(
α0ε

2
t + β0

)]
< 0

so that non-stationarity can only be induced by xt. In particular, if xt is stationary then σ2
t and yt

are stationary; see Section 3.1 for details. In the stationary case, we impose no restrictions on its

time series dynamics. On the other hand, in the non-stationary case, we focus on the case where

x2
t is explosive and model it as a long-memory processes of the form

xt = xt−1 + ξt, (3)

where, for a sequence {vt} which is i.i.d. (0, σ2
v),

(1− L)d ξt = vt, − 1/2 < d < 1/2. (4)

Hence, xt is an I (dx) process with dx = d+ 1 ∈ (1/2, 3/2) . Note that {εt} and {vt} are allowed to
be dependent. Hence, the model can accommodate leverage effects catered for by the GJR-GARCH

model if {εt} and {vt} are negatively correlated. See Han (2011) for more details on the model and
its time series properties.

Whether xt is stationary or not, we will require it to be exogeneous in the sense that E [εt|xt−1] =

0 and E
[
ε2
t |xt−1

]
= 1. This restricts the choices of xt; for example, in most situations, the

exogeneity assumption will be violated if yt is a stock return, say, r1,t and xt−1 = r2,t is another

return series since these will in general be contemporaneously correlated. This in turn will generate

simultaneity biases in the estimation of the GARCH-X model similar to OLS in simultaneous

equations models. If instead xt−1 = r2,t−1, the GARCH-X model can be thought of as a restricted

version of a bivariate GARCH model where lags of r1,t do not affect the volatility of r2,t and only

the first lag of r2,t affects the volatility of r1,t. This restriction may in some cases be implausible.

On the other hand, GARCH-X models is a lot simpler to estimate compared to a bivariate GARCH

model: The former only contains four parameters while a bivariate BEKK-GARCH(1, 1) contains

twelve parameters.

Dittmann and Granger (2002) analyzed the properties of x2
t given xt is fractionally integrated

and showed that, when xt is a Gaussian fractionally integrated process of order dx, then x2
t is

asymptotically also a long memory process of order dx2 = dx. Hence, for 1/2 < dx < 3/2, the
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covariate x2
t is non-stationary long memory, including the case of unit root-type behaviour. Con-

sidering that the range of memory parameter for real data used as covariates in the literature

seldom exceeds unity, the range of dx we consider is wide enough to cover all covariates used in the

empirical literature.

Our model is related to the one considered in HP2012 given by σ2
t (ϑ) = αy2

t−1 + βσ2
t−1 (ϑ) +

f(xt−1, γ), where xt is integrated or near-integrated, and f(xt−1, γ) is a positive, asymptotically

homogeneous function as introduced by Park and Phillips (1999).1 If we let dx = 1 in our model, xt
is integrated and our model belongs to the model considered by HP2012 with f(xt−1, γ) = ω+πx2

t−1.

While their model allows for more general nonlinear function of xt, our analysis includes more

general dependence structure of xt: It is either stationarity or it is fractionally integrated process

with 1/2 < dx < 3/2. As shown in Table 1 (Appendix C), these are empirically relevant types of

dynamic behaviour.

Let (yt, xt−1) for t = 0, ..., n, be n + 1 ≥ 2 observations from (1)-(2). We collect the unknown

data-generating parameter values in ϑ0 = (ω0, θ0) ∈ W×Θ which we wish to estimate. We propose

to do so through the Gaussian log-likelihood with εt ∼i.i.d. N (0, 1):

Ln (ϑ) =
n∑
t=1

`t (ϑ) , `t (ϑ) = − log σ2
t (ϑ)− y2

t

σ2
t (ϑ)

,

where σ2
t (ϑ) = ω+αy2

t−1+βσ2
t−1+πx2

t−1 is the volatility process induced by a given parameter value

ϑ. It is assumed to be initialized at some fixed parameter independent value σ̄2
0 > 0, σ2

0 (ϑ) = σ̄2
0.

We will not restrict εt to be normally distributed and hence Ln (ϑ) is a quasi-log likelihood. The

QMLE of ϑ0 is then defined as:

ϑ̂ = (ω̂, θ̂) = arg max
(ω,θ)∈W×Θ

Ln (ω, θ) . (5)

The intercept ω0 plays a special role since ω̂ will have radically different behaviour depending

on whether xt is stationary or not. In fact, HP2012 conjectured that, in the case where xt is non-

stationary, ω could not be identified. This conjecture is supported by the analysis of the QMLE

in pure GARCH models (π = 0) by Jensen and Rahbek (2004) and Francq and Zakoïan (2012).

They found that when the volatility process is nonstationary, ω0 is not identified. Jensen and

Rahbek (2004) and HP2012 resolved this issue by fixing ω at its true value and only estimating

the remaining parameters, θ. However, as we shall see, when non-stationarity is generated by an

exogeneous regressos, ω0 in the GARCH-X model can be consistently estimated by the QMLE.

However, the rate of convergence of the QMLE of ω is slower in the non-stationary case, while θ̂

converges with
√
n-rate independently of the level of persistence of xt.

1Note a notational difference in HP2012: Instead of f(xt−1, γ), HP2012 use f(xt, γ) where xt is adapted to Ft−1.
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3 Asymptotic Theory

The main arguments used to establish the asymptotic distribution of the QMLE are identical for

the two cases - stationary or non-stationary regressors. The technical details used to establish

the main arguments differ in the two cases though, and so we provide separate proofs for them.

But first, we outline the proof strategy for consistency and asymptotic normality of the QMLE to

emphasise similarities and differences in the analysis of the two different cases.

To present the arguments in a streamlined fashion, it proves useful to redefine `t (ϑ) as a

normalized version of the log-likelihood function by subtracting the log-likelihood evaluated at ϑ0,

`t (ϑ) :=

{
− log σ2

t (ϑ)− y2
t

σ2
t (ϑ)

}
−
{
− log σ2

t −
y2
t

σ2
t

}
= − log (rt (ϑ))−

{
1

rt (ϑ)
− 1

}
ε2
t

where σ2
t denotes the true data-generating volatility process,

σ2
t = ω0 + α0y

2
t−1 + β0σ

2
t−1 + π0x

2
t−1, (6)

and rt (ϑ) is a variance-ratio process defined as

rt (ϑ) :=
σ2
t (ϑ)

σ2
t

. (7)

This normalization does not affect the QMLE since − log σ2
t − y2

t /σ
2
t is parameter independent.

Note that the process rt (ϑ) is in general not stationary since σ2
t (ϑ) has been initialized at some

fixed value and xt may be non-stationary. For consistency, the main argument involves showing

that the normalized version of the log-likelihood satisfies

sup
ϑ∈W×Θ

1

n
‖Ln (ϑ)− L∗n (ϑ)‖ →P 0, (8)

where L∗n (ϑ) is given by

L∗n (ϑ) =

n∑
t=1

`∗t (ϑ) , `∗t (ϑ) = − log (r∗t (ϑ))−
{

1

r∗t (ϑ)
− 1

}
ε2
t , (9)

and r∗t (ϑ) is a stationary sequence which is asymptotically equivalent to rt (ϑ). We can now appeal

to a uniform LLN for stationary and ergodic sequences to obtain that L∗n (ϑ) /n →p L
∗ (ϑ) :=

E [`∗t (ϑ)] uniformly in ϑ. The precise definition of r∗t (ϑ), and thereby L∗ (ϑ), depends on whether

xt is stationary or not. In particular, in the stationary case ϑ0 = arg maxϑ L
∗ (ϑ) is uniquely

identified and so ϑ̂ →p ϑ0 globally, while in the nonstationary case L∗ (ϑ) = L∗ (θ) is constant

w.r.t. ω and so we can only conclude that θ̂ →p θ0. This would seem to indicate that in the

non-stationary case ω̂ is inconsistent which would be similar to the explosive pure GARCH model

as analyzed by Jensen and Rahbek (2004) and Francq and Zakoïan (2012). However, in our case,

this conclusion is not correct and is an artifact of normalizing Ln (ϑ) by 1/n. By analyzing the
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local behaviour of Ln (ϑ) in a shrinking neighbourhood of ϑ0, we find that in the non-stationary

case ω̂ remains consistent but converges at a slower rate compared to θ̂.

To derive the asymptotic distribution of ϑ̂, we proceed to analyze the score and hessian of

the quasi-log likelihood. We denote the score vector by Sn(ϑ) = (Sn,ω(ϑ), Sn,θ(ϑ)′)′ ∈ R4, where

Sn,ω(ϑ) = ∂Ln (ϑ) /(∂ω) ∈ R and Sn,θ(ϑ) = ∂Ln (ϑ) /(∂θ) ∈ R3 and the Hessian matrix by

Hn(ϑ) =

[
Hn,ωω(ϑ) Hn,ωθ(ϑ)

Hn,θω(ϑ) Hn,θθ(ϑ)

]
∈ R4×4, (10)

where Hn,θω(ϑ) = ∂2Ln (ϑ) /(∂θ∂ω) ∈ R3 and the other components are defined similarly. A

standard first order Taylor expansion of the score vector yields 0 = Sn(ϑ̂) = Sn(ϑ0)+Hn(ϑ̄)(ϑ̂−ϑ0),

where ϑ̄ lies on the line segment connecting ϑ̂ and ϑ0. Assuming that ϑ0 lies in the interior of the

parameter space, ϑ̂ must be an interior solution with probability approaching one (w.p.a.1). That

is, Sn(ϑ̂) = 0 w.p.a.1. What remains is to derive the limiting distribution of Sn(ϑ0) and Hn(ϑ̄).

In the stationary case, we can appeal to LLN and CLT for stationary and ergodic sequences

and show that

Sn(ϑ0)/
√
n→d N(0,Σst), −Hn(ϑ̄)/n→p H

st > 0, (11)

where Σst ∈ R4×4 are Hst ∈ R4×4 are constant. This implies that

√
n(ϑ̂− ϑ0)→d N(0,Ωst), Ωst = (Hst)−1Σst(Hst)−1. (12)

In the non-stationary case, the score and hessian, and thereby the QMLE’s, have different

asymptotic behaviour. First and foremost, ω̂ and θ̂ converge at different rates which we collect in

the matrix Vn,

Vn :=

[
n1/4−d/2 O1×3

O3×1 n1/2I3

]
∈ R4×4, (13)

where Ok×m ∈ Rk×m denotes the matrix of zeros. We show that

V −1
n Sn(ϑ0)→d MN(0,Σnst), − V −1

n Hn(ϑ̄)V −1
n →d H

nst > 0, (14)

where MN(0,Σnst) denotes a mixed-normal distribution with (random) covariance matrix Σnst ∈
R4×4, and Hnst ∈ R4×4 is also random. The proof of eq. (14) employs generalized versions of limit

results for fractionally integrated processes developed in Wang and Phillips (2009a) that we have

collected in Lemma 6 below. Having established (14), it follows by standard arguments that

Vn(ϑ̂− ϑ0)→d MN(0,Ωnst), Ωnst = (Hnst)−1Σnst(Hnst)−1. (15)

In particular, θ̂ is
√
n-asymptotically normally distributed while ω̂ converges with a slower rate of

n1/4−d/2 and follows a mixed-normal distribution. So, in comparison to pure explosive GARCH

models where ω0 is not identified, we can still conduct inference about ω0 when the explosiveness

is induced by a non-stationary regressor.
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In conclusion, the asymptotic distribution of ϑ̂ depends on whether xt is stationary or not.

Fortunately, the distribution is in both cases mixed-normal and so standard test statistics prove to

be robust to the degree of persistence of xt. In particular, we show that standard t-statistics follow

N (0, 1) distributions irrespective of the regressor’s level of persistence.

Since the assumptions and techniques used to establish the above results differ depending on

whether xt is stationary or not, we consider the two cases in turn: The following subsection covers

the stationary case, while the subsequent one focuses on the non-stationary case.

3.1 Stationary Case

We first show that the QMLE is globally consistent under the following conditions with Ft denoting
the natural filtration:

Assumption 1

(i) {(εt, xt)} is stationary and ergodic with E [εt|Ft−1] = 0 and E
[
ε2
t |Ft−1

]
= 1.

(ii) E
[
log
(
α0ε

2
t + β0

)]
< 0 and E[x2q

t ] <∞ for some 0 < q <∞.

(iii) Θ =
{
ϑ : ω ≤ ω ≤ ω̄, 0 ≤ α ≤ ᾱ, 0 ≤ β ≤ β̄, 0 ≤ π ≤ π̄

}
, where 0 < ω ≤ ω̄ < ∞, ᾱ < ∞,

β̄ < 1 and π̄ <∞. The true value ϑ0 ∈ Θ with (α0, π0) 6= (0, 0).

(iv) For any (a, b) 6= (0, 0): aε2
t + bx2

t |Ft−1 has a nondegenerate distribution.

Assumption 1(i) is a generalization of the conditions found in Escanciano (2009) who derives the

asymptotic properties of QMLE for pure GARCH processes (that is, no exogenous covariates are

included) with martingale difference errors. The assumption is weaker than the i.i.d. assumption

imposed in Kristensen and Rahbek (2005). The moment conditions in Assumption 1(ii) implies that

a stationary solution to eqs. (1)-(2) at the true parameter value ϑ0 exists and has a finite polynomial

moment, c.f. Lemma 1 below. We here allow for integrated GARCH processes (α + β = 1), and

impose very weak moment restrictions on the regressor. We do however rule out explosive volatility

when xt is stationary; we expect that the arguments of Jensen and Rahbek (2004) can be extended

to GARCH-X models with E
[
log
(
α0ε

2
t−1 + β0

)]
> 0, thereby showing that θ̂ is consistent while ω̂

is inconsistent. The compactness condition in Assumption 1(iii) should be possible to weaken by

following the arguments of Kristensen and Rahbek (2005); this will lead to more complicated proofs

though and so we maintain the compactness assumption here for simplicity. The requirement that

(α0, π0) 6= (0, 0) is needed to ensure identification of β0 since in the case where (α0, π0) = (0, 0),

σ2
t = σ2

t (ϑ0)→a.s. ω0/ (1− β0) and so we would not be able to jointly identify ω0 and β0. The non-

degeneracy condition in Assumption 1(iv) is also needed for identification. It rules out (dynamic)

collinearity between y2
t−1 and x

2
t . It is similar to the no-collinearity restriction imposed in Kristensen

and Rahbek (2005).

To derive the asymptotic properties of ϑ̂, we establish some preliminary results. The first lemma

states that a stationary solution to the model at the true parameter values exists:
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Lemma 1 Under Assumption 1: There exists a stationary and ergodic solution to eqs. (1)-(2) at
ϑ0 satisfying E

[
σ2s
t

]
<∞ and E

[
y2s
t

]
<∞ for some 0 < s < 1.

We will in the following work under the implicit assumption that we have observed the stationary

solution. Next, we show that for any value of ϑ in the parameter space, the volatility-ratio process

rt (ϑ) is well-approximated by a stationary version:

Lemma 2 Under Assumption 1: With s > 0 given in Lemma 1, there exists some Ks < ∞ such

that

E
[

sup
ϑ∈W×Θ

|rt (ϑ)− r∗t (ϑ)|s
]
≤ Ksβ

st,

where

r∗t (ϑ) :=
σ2

0,t (ϑ)

σ2
t

, σ2
0,t (ϑ) :=

∞∑
i=1

βi−1
(
ω + αy2

t−i + πx2
t−i
)
. (16)

The process σ2
0,t (ϑ) is stationary and ergodic with E

[
supϑ∈W×Θ σ

2s
0,t (ϑ)

]
<∞.

Note that, in particular, σ2
t = σ2

0,t (ϑ0). This in turn implies that eq. (8) holds with r∗t (ϑ)

defined in the previous lemma. With these results in hand, we are now ready to show the first main

result of this section:

Theorem 3 Under Assumption 1, the QMLE ϑ̂ is consistent.

Having shown that the QMLE is consistent, we proceed to verify eq. (11) under the following

additional assumption:

Assumption 2

(i) κ4 = E[
(
ε2
t − 1

)2 |Ft−1] <∞ is constant.

(ii) ϑ0 is in the interior of Θ.

Assumption 2(i) is used to show that the variance of the score exists. It could be weakened to

allow for E[
(
ε2
t − 1

)2 |Ft−1] to be time-varying as in Escanciano (2009), but for simplicity and to

allow for easier comparison with the results in the non-stationary case, we maintain Assumption

2(i). Assumption 2(ii) is needed in order to ensure that Sn(ϑ̂) = 0 w.p.a.1.

As a first step towards eq. (11), the following lemma proves useful. It basically shows that the

derivatives of the volatility-ratio process r∗t (ϑ) are stationary with suitable moments:

Lemma 4 Under Assumptions 1-2: ∂r∗t (ϑ) / (∂ϑ) and ∂2r∗t (ϑ) /
(
∂ϑ∂ϑ′

)
are stationary and er-

godic for all ϑ ∈ W × Θ. Moreover, there exists stationary and ergodic sequences Bk,t ∈ Ft−1,

k = 0, 1, 2, which are independent of ϑ such that

1

r∗t (ϑ)
≤ B0,t,

‖∂r∗t (ϑ) / (∂ϑ)‖
r∗t (ϑ)

≤ B1,t,

∥∥∂2r∗t (ϑ) /
(
∂ϑ∂ϑ′

)∥∥
r∗t (ϑ)

≤ B2,t,

for all ϑ in a neighbourhood of ϑ0, where E
[
B1,t +B2

2,t

]
<∞ and E

[
B0,t

{
B1,t +B2

2,t

}]
<∞.

9



This lemma is used to construct suitable bounds for the score and hessian that allow us to

appeal to CLT and LLN for stationary and ergodic sequences, and thereby establishing eq. (11):

Theorem 5 Under Assumptions 1-2, the QMLE ϑ̂ satisfies eq. (12) where, with κ4 given in

Assumption 2 and r∗t (ϑ) in eq. (16), Σst = κ4H
st and Hst = E

[
∂r∗t (ϑ0)
∂ϑ

∂r∗t (ϑ0)

∂ϑ′

]
.

3.2 Non-stationary Case

For consistency, we follow a similar strategy to develop the asymptotic properties of the QMLE

when x2
t is explosive, except a different variance-ratio approximation has to be used. To develop

this variance-ratio approximation, we utilize some results derived in Han (2011). We impose the

following conditions on the model which are slightly stronger than the ones imposed in the stationary

case, but on the other hand allow for non-stationary regressors:

Assumption 3

(i) {εt} and {vt} are i.i.d., mutually independent, and satisfies E [εt] = E [vt] = 0, E
[
ε2
t

]
= 1,

and E [|vt|p] <∞ for some p ≥ 2.

(ii) Θ =
{
θ ∈ R3 : α ≤ α ≤ ᾱ, β ≤ β ≤ β̄, π ≤ π ≤ π̄

}
and W = [ω, ω̄] where 0 < α < ᾱ < ∞,

0 < β < β̄ < 1, 0 < π < π̄ <∞ and 0 < ω < ω̄ <∞.

(iii) {xt} solves eqs. (3)-(4) with d ∈ (−1/2, 1/2).

(iv) E [|εt|q] <∞ and E[
(
β0 + α0ε

2
t

)q/2
] < 1 for some q > 4.

(v) 1/p+ 2/q < 1/2 + d.

Assumption 3(i) requires the errors driving the model to be i.i.d. which is stronger than As-

sumption 1(i). We expect that it could be weakened to allow for some dependence, but this would

greatly complicate the analysis. Similarly, the mutual independence of {εt} and {vt} is a technical
assumption and only used to establish the LLN and CLT in Lemma 6. Since Lemma 6 is only used

in the analysis of ω̂, the proof of consistency and asymptotic normality of θ̂ is valid without the

independence assumption. We conjecture that Lemma 6, and thereby the asymptotic properties of

ω̂ as stated below, holds under weaker assumptions than independence, but this requires a different

proof technique; see Wang (2013). Assumption 3(ii) restricts the parameters to be strictly positive;

this is used when showing that rt (ϑ) is well-approximated by a stationary version uniformly over

ϑ. A similar restriction is found in Francq and Zakoïan (2012). Assumption 3(iii) precisely defines

the covariate {xt} as an I (dx) process with 1/2 < dx < 3/2. This restriction on dx is imposed in

order to employ the results of Han (2011) and the limit results in Lemma 6 below.

Assumptions 3(iv)-(v) correspond to Assumptions 2(b)-(c) in HP2012. Assumption 3(iv) in-

troduces some moments conditions for the innovation sequences {vt} and {εt}. It is stronger than
E
[
log
(
β + αε2

t

)]
< 0 as imposed in Assumption 1(ii). In particular, while α + β = 1 is allowed

for the stationary case in the previous section, (iv) rules this out in the nonstationary case. We

10



do not find this restrictive though since, when xt is an I(1) process and α + β = 1, y2
t has I(2)

type behaviour which is not very likely for most economic and financial time series. Moreover, in

most applications, when additional regressors are included, it is usually found that α + β < 1 so

this restriction does not appear restrictive from an empirical point of view. Together Assumptions

3(iv)-(v) can lead to quite strong moment restrictions. For example, if d is close to −1/2, then p

and q have to be chosen very large for the inequality in Assumption 3(v) to hold. These are used

when developing the stationary approximation of the volatility ratio process rt (ϑ) which relies on

the existence of certain moments. We conjecture that our theory would go through under weaker

moment restrictions, but unfortunately we have not been able to demonstrate this here.

For the proof of the non-stationary case, we first present some additional notation and useful

results. Let D [0, 1] be the space of cadlag functions on [0, 1] equipped with the uniform metric, and

⇒ denote weak convergence on D [0, 1]. Also, let LWd
(t, x) denote the local time of a fractionally

integrated Brownian motion and K > 0 a normalizing constant (see Wang and Phillips, 2009a for

precise definitions). Then the following lemma proves fundamental in establishing the necessary

limit results for the score and hessian:

Lemma 6 Let {xt} satisfy Assumption 3(iii) and f (x) be an integrable function.

(i) Suppose {wt} is stationary, independent of {xt}, and satisfies
∑∞

t=1 |Cov (w0, wt)| < ∞.
Then,

1

n1/2−d

[ns]∑
t=1

f(xt−1)wt ⇒ LWd
(s, 0)×KE [wt]

∫ ∞
−∞

f(x)dx on D [0, 1] .

(ii) Suppose in addition that ut is a martingale difference sequence w.r.t. a filtration Ft that
(xt−1, wt) is adapted to; {xt} and {ut} are independent, E

[
u2
t |Ft−1

]
= σ2

u > 0 and supt≥1 E [|utwt|qu ] <

∞ a.s. for some qu > 2;
∑∞

t=1

∣∣Cov (w2
0, w

2
t

)∣∣ <∞. Then,
1

n1/4−d/2

[ns]∑
t=1

f(xt−1)wtut ⇒
√
LWd

(s, 0)G (s) ,

where G (s) is a Gaussian process which is independent of LWd
(s, 0) and with covariance

kernel (s1 ∧ s2)KE
[
w2
t

]
σ2
u

∫∞
−∞ f

2(x)dx.

Remark 7 A suffi cient condition for the assumptions on {wt} in (i) and (ii) to hold is that it is
stationary and β-mixing such that, for some δ > 0, E[ |wt|2(1+δ)] < ∞ and its mixing coeffi cients

satisfy
∑∞

t=1 β
δ/(1+δ)
t <∞; see, for example, Yoshihara (1976, Lemma 1).

The above lemma is a generalization of the LLN and CLT established in Wang and Phillips

(2009a) to allow for inclusion of a stationary component, wt. It is the fundamental tool in our

analysis of the score and hessian w.r.t. ω since the first and second derivative of rt (ϑ) w.r.t. ω

can be written on the form f(xt−1)wt for a suitable choice of f and wt. Employing results in Han

(2011), we also develop a stationary approximation of the variance ratio rt (ϑ) = σ2
t (ϑ) /σ2

t that is

used in the asymptotic analysis of the score and hessian w.r.t. θ.
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Lemma 8 Under Assumption 3,

sup
ϑ∈W×Θ

max
1≤t≤n

|rt (ϑ)− r∗t (θ)| = op (1) , (17)

where, with zt = zt (θ0),

r∗t (θ) :=
zt (θ)

zt
, zt (θ) = α

∞∑
i=1

βi−1zt−iε
2
t−i +

π

π0

1

1− β . (18)

The sequence r∗t (θ) is stationary and ergodic with E
[
supθ r

∗
t (θ)−k

]
<∞ for any k ∈ R. Moreover,

supϑ
{
σ2
t (ϑ0)σ−2

t (ϑ)
}
≤Wt, where Wt is stationary and ergodic with E

[
W k
t

]
<∞ for any k > 0.

Lemma 8 is used establish eq. (8). It is important to note that r∗t (θ) does not depend on the

regressor xt (and so is stationary), but still contains information about its regression coeffi cient, π.

On the other hand, r∗t (θ), and thereby L∗n (ϑ) = L∗n (θ), is independent of ω and so asymptotically

the log-likelihood contains no information about this parameter in large samples. We are therefore

only able to show global consistency of θ̂. However, a local analysis of Ln (ϑ), where Lemma 6 is

used to verify the high-level conditions in Kristensen and Rahbek (2010, Lemma 11), shows that ω̂

is locally consistent but converges at a slower than standard rate:

Theorem 9 Under Assumption 3, θ̂ →p θ0. Moreover, with probability tending to one as n→∞,
there exists a unique maximum point ϑ̂ = (ω̂, θ̂) of Ln(ϑ) in

{
ϑ : |ω − ω0| ≤ ε, n1/4+d/2 ‖θ − θ0‖ ≤ ε

}
,

for some ε > 0, that satisfies ω̂ = ω0 + op (1) and θ̂ = θ0 + op
(
1/n1/4+d/2

)
.

To avoid additional notation, we here use θ̂ to denote both the global and local estimator. In

finite samples, these two could differ if there exists a local maximum in a neighbourhood of θ0.

Moreover, the stated rate result only holds for the local estimator. Ideally, we would have carried

out a global analysis of ω̂ as well. However, to our knowledge, there exists no results for global

consistency for estimators in non-standard settings where components of the estimator converge at

different rates; see e.g. Kristensen and Rahbek (2010).

Next, we analyze the asymptotic distribution of ϑ where we apply the general result of Kristensen

and Rahbek (2010, Lemma 12) to our specific estimator:

Theorem 10 Let Assumption 3 hold. Then eq. (15) holds with Σnst = κ4H
nst and

Hnst =

[
Hnst
ωω O1×3

O3×1 Hnst
θθ

]
∈ R4×4.

where

Hnst
ωω = K

E
[
1/z2

t

]
(1− β0)2

∫ ∞
−∞

(
1

ω0 + π0s2

)2

ds× LWd
(1, 0),

Hnst
θθ = E

[
∂r∗t (θ0)

∂θ

∂r∗t (θ0)

∂θ′

]
∈ R3×3.
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4 Robust Inference

Comparing Theorems 5 and 10, we see that the large-sample distribution of the QMLE changes

quite substantially when we move from the stationary case to the non-stationary one. One could

therefore fear that, for a chosen regressor, inference would be dependent on whether xt is stationary

or not. However, in both cases, the limiting distribution of the QMLE is mixed normal with the

(possibly random) covariance matrix being the product of limits of the (appropriately scaled) score

and hessian. Whether xt is stationary or not, a natural estimator of the covariance matrix is

Ω̂ = H−1
n (ϑ̂)Σn(ϑ̂)H−1

n (ϑ̂), where Σn(ϑ) =

n∑
t=1

∂`t (ϑ)

∂ϑ

∂`t (ϑ)

∂ϑ′
, (19)

and Hn (ϑ) is defined in eq. (10). As we shall see, Ω̂ automatically adjust to the level of persistence

and converges to the correct asymptotic limit in both cases. As a consequence, for example,

standard t-statistic will be normally distributed in large samples whether xt is stationary or non-

stationary. That is, standard inferential procedures regarding ϑ0 are robust to the persistence of

xt. We conjecture that similar results hold for other statistics such as the likelihood-ratio statistic.

Theorem 11 Under either Assumptions 1-2 or Assumption 3, with Ω̂ defined in eq. (19),

t = Ω̂−1/2{ϑ̂− ϑ0} →d N (0, I4) ,

5 Simulation Study

To investigate the relevance and usefulness of our asymptotic results, we conduct a simulation

study to see whether standard t-statistics are sensitive towards the level of persistence, dx, in finite

samples. Our simulation design is based on the GARCH-X model with the exogenous regressor xt
being generated by xt = (1− L)−dx vt. The data-generating GARCH parameter values are set to

be ω0 = 0.01, α0 = 0.05, β0 = 0.6 and π0 = 0.1. These parameter values are similar to the estimates

reported in Shephard and Sheppard (2010) where x2
t is a realized volatility measure. The innovation

processes {εt} and {vt} are chosen to be i.i.d. standard normal and mutually independent.2 The
initial values are set x0 = 0 and σ2

0 = 0.01.We consider the following four data generating processes

depending on dx in xt.

stationary cases nonstationary cases

DGP 1 dx = 0.0 DGP 3 dx = 0.7

DGP 2 dx = 0.3 DGP 4 dx = 1.0

The null distributions of each of the t-statistics associated with ω, α, β and π are simulated

for n = 500 and 5, 000 with 10, 000 iterations. The simulation results are reported in Figures 1

and 2 in Appendix C. Figure 1 reports the results for the stationary cases and show that the large

2We also tried the case for vt = −εt and the results are still similar.
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sample N (0, 1) distribution of the t-statistics is a very good finite-sample approximation. For the

non-stationary cases as reported in Figure 2, the asymptotic N (0, 1) approximation is also precise,

albeit less so compared to the stationary case.

Our simulation results show that the empirical distributions of the t-statistics are close to normal

for moderate sample sizes and become more so as the sample size increases. This is true regardless of

the value of the memory parameter dx in xt. In conclusion, the individual t-statistics of (ω, α, β, π)

are robust towards the dependence structure of xt in the GARCH-X model. Researchers do not

need to determine whether xt is stationary or not before they implement the QMLE and associated

inferential tools for the GARCH-X model.

6 Conclusion

We have here developed asymptotic theory of QMLE’s in GARCH models with additional persistent

covariates in the variance specification. It is shown that the asymptotic behaviour of the QMLE’s

depend on whether the regressor is stationary or not. At the same time, standard inferential tools,

such as t-statistics, for the parameters are robust towards the level of persistence. In particular, in

contrast to the explosive case in pure GARCH models, one can draw inference about the intercept

parameter ω.

A number of extensions of the theory would be of interest: For example, to show global consis-

tency of ω̂ and to analyze the properties of the QMLE in alternative GARCH specifications with

persistent regressors.
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A Proofs of Section 3.1

Proof of Lemma 1. With ρt := α0ε
2
t−1 +β0 ≥ 0, and bt := ω0 +π0x

2
t ≥ 0, rewrite eq. (6) as σ2

t =

ρtσ
2
t−1 + bt.This is a stochastic recursion where {(at, bt)} is a stationary and ergodic sequence. The

first part of the result now follows from Brandt (1986) since Assumption 1(ii) implies that the Lya-

punov coeffi cient associated with the above stochastic recursion is negative and that E
[
log+ (bt)

]
<

∞. The stationary solution can be written as σ2
t = bt +

∑∞
i=0 ρt · · · ρt−ibt−i−1. Following Berkes

et al (2003, p. 207-208), the negative Lyapunov coeffi cient implies that E[(ρ0 · · · ρm)2s] < 1 for

some s > 0 and m ≥ 1; thus, E[
(
ρt · · · ρt−i

)2s
] ≤ cρ̄i for some c < ∞ and ρ̄ < 1. Without loss of

generality, we choose s < q/2 with q given in Assumption 1(ii) such that E
[
b2st
]
<∞. Thus,

E
[
σ2s
t

]
≤ E [bst ] +

∞∑
i=0

E
[(
ρt · · · ρt−i

)s
bst
]
≤ E [bst ] +

√
E
[
b2st
] ∞∑
i=0

√
E
[(
ρt · · · ρt−i

)2s]
= E [bst ] + c

√
E
[
b2st
]

(1− ρ̄)−1 <∞.

That E
[
y2s
t

]
<∞ follows from eq. (1) together with Assumption 1(ii).

Proof of Lemma 2. Eq. (2) can be rewritten as σ2
t (ϑ) := βσ2

t−1 (ϑ) + wt (ϑ) which is an

AR(1) model with stationary errors wt (ϑ). The first part of the result now follows by Berkes

et al (2003, Lemma 2.2). From Lemma 1 together with Assumption 1(ii), E [supϑ∈Θw
s
t (ϑ)] ≤

ω̄s + ᾱsE
[
y2s
t−1

]
+ π̄sE

[
x2s
t−1

]
<∞. Thus,

E
[

sup
ϑ∈Θ

σ2s
0,t (ϑ)

]
≤
∞∑
i=0

β̄
isE
[

sup
ϑ∈Θ

wst (ϑ)

]
<∞.

Next, observe that σ2
t (ϑ)−σ2

0,t (ϑ) = βt
{
σ̄2

0 − σ2
0,0 (ϑ)

}
, where σ̄2

0 > 0 is the fixed, initial value. The

result now follows with Ks = E[supϑ∈D
∣∣σ̄2

0 − σ2
0,0 (ϑ)

∣∣s] which is finite since E [supϑ∈Θ σ
2s
0,0 (ϑ)

]
<

∞.

Proof of Theorem 3. Define ϑ̂
∗

= arg maxϑ∈Θ L
∗
n (ϑ) where L∗n (ϑ) is defined in eq. (9) with

rt (ϑ) given in eq. (16). We first show consistency of ϑ̂
∗
by verifying the conditions in Kristensen

and Rahbek (2005, Proposition 2):

(i) The parameter space Θ is a compact Euclidean space with ϑ0 ∈ Θ.

(ii) ϑ 7→ `∗t (ϑ) is continuous almost surely.

(iii) L∗n (ϑ) /n→p L
∗ (ϑ) := E [`∗t (ϑ)] where the limit exists, ∀ϑ ∈ Θ.

(iv) L∗ (ϑ0) > L∗ (ϑ), ∀ϑ 6= ϑ0.

(v) E [supϑ∈D `
∗
t (ϑ)] < +∞ for any compact set D ⊂ Θ with θ0 /∈ D.

Condition (i) holds by assumption, while (ii) follows by the continuity of ϑ 7→ r2
t (ϑ) as given

in eq. (16). Condition (iii) follows by the LLN for stationary and ergodic sequences if the limit

L∗ (ϑ) exists; the limit is indeed well-defined since `∗t (ϑ) ≤ − log (ω/ω0) such that E
[
`∗t (ϑ)+] <

∞. To prove condition (iv), first observe that r∗t (ϑ0) = 1 which in turn implies that L (ϑ0) =

15



0. Moreover, ω0 ≤ log
(
σ2

0,t (ϑ0)
)
such that E[

(
log σ2

0,t (ϑ0)
)−

] < ∞, while E[
(
log σ2

0,t (ϑ0)
)+

] ≤(
logE

[
σ2s

0,t (ϑ0)
])+

/s < ∞ by Jensen’s inequality and Lemma 2. Thus, E [|`∗t (ϑ0) |] < ∞ is well-

defined, while either (a) L (ϑ) = −∞ or (b) L (ϑ) ∈ (−∞,∞). Now, let ϑ 6= ϑ0 be given: Then, if

(a) holds, L∗ (ϑ0) > −∞ = L∗ (ϑ). If (b) holds, the following calculations are allowed:

L∗ (ϑ) = −E
[
log (r∗t (ϑ)) +

{
1

r∗t (ϑ)
− 1

}
ε2
t

]
= −E

[
log (r∗t (ϑ)) +

{
1

r∗t (ϑ)
− 1

}]
,

where we have used that E
[
ε2
t |Ft−1

]
= 1. L∗ (ϑ) ≤ 0 = L∗ (ϑ0) with equality if and only if

r2
t (ϑ) = 1 a.s. Suppose that r2

t (ϑ) = 1 a.s. ⇔ σ2
0,t (ϑ) = σ2

0,t (ϑ0) a.s. or, equivalently,

ω0 +
∞∑
i=1

ci (ϑ0)Zt−i = ω +
∞∑
i=1

ci (ϑ)Zt−i, (20)

where ci (ϑ) =
(
αβi−1, πβi−1

)′
and Zt−1 =

(
y2
t−1, x

2
t−1

)′. We then claim that ω0 = ω and ci (ϑ0) =

ci (ϑ) for all i ≥ 1; this in turn implies ϑ = ϑ0. We show this by contradiction: Let m > 0 be the

smallest integer for which ci (ϑ0) 6= ci (ϑ) (if ci (ϑ0) = ci (ϑ) for all i ≥ 1, then ω0 = ω). Thus,

a0y
2
t−m + b0x

2
t−m = ω − ω0 +

∞∑
i=1

aiy
2
t−m−i +

∞∑
i=1

bix
2
t−m−i,

where ai := α0β
i−1
0 −αβi−1 and bi := π0β

i−1
0 −πβi−1. The right hand side belongs to Ft−m−1. Thus,

a0y
2
t−m + b0x

2
t−m|Ft−m−1 is constant. This is ruled out by Assumption 1(iv). Finally, condition (v)

follows from supϑ∈D `
∗
t (ϑ) ≤ − supϑ∈D log (ω) ≤ − log (ω) < +∞.

Now, return to the actual, feasible QMLE, ϑ̂. Using Lemma 2,

sup
ϑ∈W×Θ

|L∗n (ϑ)− Ln (ϑ)| ≤
n∑
t=1

sup
ϑ∈Θ

{∣∣∣∣∣σ2
t (ϑ)− σ2

0,t (ϑ)

σ2
t (ϑ)σ2

0,t (ϑ)

∣∣∣∣∣ y2
t−1 +

∣∣∣∣∣log

(
1 +

σ2
t (ϑ)− σ2

0,t (ϑ)

σ2
t (ϑ)

)∣∣∣∣∣
}

≤ K

ω2

n∑
t=1

β̄
t
y2
t−1 +

K

ω2

n∑
t=1

β̄
t
,

where limn→∞
∑n

t=1 β̄
t

=
(
1− β̄

)−1
< ∞ while limn→∞

∑n
t=1 β̄

t
y2
t−1 < ∞ by Berkes et al (2003,

Lemma 2.2) in conjunction with Lemma 1. Thus, supϑ∈Θ |L∗n (ϑ)− Ln (ϑ)| /n = op (1/n). Com-

bining this with the above analysis of L∗n (ϑ), it then follows from Kristensen and Shin (2012,

Proposition 1) that ||ϑ̂∗ − ϑ̂|| = op (1/n). In particular, ϑ̂ is consistent.

Proof of Lemma 4. Observe that

∂σ2
0,t (ϑ)

∂ω
=

∞∑
i=0

βi =
1

1− β ,
∂σ2

0,t (ϑ)

∂α
=
∞∑
i=0

βiy2
t−i−1,

∂σ2
0,t (ϑ)

∂π
=

∞∑
i=0

βix2
t−i−1,

∂σ2
0,t (ϑ)

∂β
=
∞∑
i=0

βiσ2
0,t−i−1 (ϑ) .

16



By the same arguments as in the proof of Lemma 2, these processes are stationary.

The proof for the second-order partial derivatives w.r.t. ω, α and β proceeds along the lines

of Francq and Zakoïan (2004, p. 619) since these do not involve xt. Regarding the second-order

derivatives involving π, using the above expressions of the first-order derivatives:

∂2σ2
0,t (ϑ)

∂ω∂π
=
∂σ2

0,t (ϑ)

∂α∂π
=
∂σ2

0,t (ϑ)

∂π2
= 0,

∂σ2
0,t (ϑ)

∂β∂π
=

t∑
i=0

βi
∂σ2

0,t−i−1 (ϑ)

∂π
.

Again, these are clearly stationary.

Moreover, by the same arguments as in Francq and Zakoïan, 2004, p. 622), there exists constants

c <∞ and 0 < ρ < 1 such that for all ϑ in a neighbourhood of ϑ0 and all 0 < r ≤ s,

1

r∗t (ϑ)
=

σ2
t

σ2
0,t (ϑ)

≤ c
∞∑
i=0

ρriw̄rt−i =: B0,t,

where w̄t := ω̄ + ᾱy2
t−1 + π̄x2

t−1 is stationary and ergodic with E [w̄rt ] < ∞. This in turn implies
that B0,t is stationary and ergodic with first moment. Given the representations of σ2

0,t (ϑ0) and

∂σ2
0,t (ϑ0) / (∂ϑ), it is easily shown that for some constant c <∞ the following inequalities hold for

all ϑ in a neighbourhood of ϑ0 (see Francq and Zakoïan, 2004, p. 619):

1

σ2
0,t (ϑ0)

∂σ2
0,t (ϑ0)

∂ω
≤ 1

ω0
,

1

σ2
0,t (ϑ)

∂σ2
0,t (ϑ)

∂α
≤ 1

α0
,

1

σ2
0,t (ϑ)

∂σ2
0,t (ϑ)

∂π
≤ 1

π0
,

1

σ2
0,t (ϑ)

∂σ2
0,t (ϑ)

∂β
≤ c

∞∑
i=0

β̄
ri
w̄rt .

Choosing B1,t as the Euclidean norm of the above individual bounds, ‖∂r∗t (ϑ) / (∂ϑ)‖ /r∗t (ϑ) =∥∥∂σ2
0,t (ϑ) / (∂ϑ)

∥∥ /σ2
0,t (ϑ0) ≤ B1,t. By the same arguments as in Francq and Zakoian (2004, p.

620), similar bounds can be established for the second order derivatives. For example, we have∥∥∂2σ2
0,t (ϑ) / (∂β∂π)

∥∥ /σ2
0,t (ϑ0) ≤ c

∑∞
i=0 β̄

ri
w̄rt , and we define B2,t accordingly. By inspection of

the definitions of B0,t, B1,t and B2,t, one finds that stated moment exists by choosing r > 0

suffi ciently small.

Proof of Theorem 5. As shown in the proof of Theorem 3, ||ϑ̂∗ − ϑ̂|| = op (1/
√
n); thus, it

suffi ces to analyze ϑ̂
∗
. The score and hessian are given by

S∗n (ϑ) =
∂L∗n (ϑ)

∂ϑ
=

n∑
t=1

1

σ2
0,t (ϑ)

∂σ2
0,t (ϑ)

∂ϑ

{
y2
t

σ2
0,t (ϑ)

− 1

}
,

H∗n (ϑ) =
∂2L∗n (ϑ)

∂ϑ∂ϑ′
=

n∑
t=1

h∗t (ϑ) ,
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where derivatives w.r.t. σ2
0,t (ϑ) can be found in the proof of Lemma 4, and

h∗t (ϑ) =

{
1

σ2
0,t (ϑ)

∂2σ2
0,t (ϑ)

∂ϑ∂ϑ′
− 1

σ4
0,t (ϑ)

∂σ2
0,t (ϑ)

∂ϑ

∂σ2
0,t (ϑ)

∂ϑ′

}{
y2
t

σ2
0,t (ϑ)

− 1

}

−
∂σ2

0,t (ϑ)

∂ϑ

∂σ2
0,t (ϑ)

∂ϑ′
y2
t

σ6
0,t (ϑ)

.

We now verify the the two convergence results stated in eq. (11): First, we employ the CLT for

Martingale differences in Brown (1971, Theorem 2) to show that

1√
n
S∗n (ϑ0) =

1√
n

n∑
t=1

∂r∗t (ϑ0)

∂ϑ

{
ε2
t − 1

}
→d N(0, V statϑϑ (ϑ0)). (21)

By Assumption 1(i), Xt :=
∂r∗t (ϑ0)
∂ϑ

{
ε2
t − 1

}
is a Martingale difference and S∗n (ϑ0) /

√
n has quadratic

variation

〈
S∗n (ϑ0) /

√
n
〉

= κ4
1

n

n∑
t=1

∂r∗t (ϑ0)

∂ϑ

∂r∗t (ϑ0)

∂ϑ′
→p κ4E

[
∂r∗t (ϑ0)

∂ϑ

∂r∗t (ϑ0)

∂ϑ′

]
<∞,

where we have used Assumption 2(i) and Lemma 4. This shows that eq. (1) in Brown (1971) holds.

Eq. (2) of Brown (1971) holds since, by stationarity and E[‖Xt‖2] <∞,

1

n

n∑
t=1

E
[
‖Xt‖2 I

{
‖Xt‖ > c

√
n
}]

= E
[
‖Xt‖2 I

{
‖Xt‖ > c

√
n
}]
→ 0.

For the hessian, ||h∗t (ϑ) || ≤
{
B2,t +B2

1,t

}{
1 +B0,tε

2
t

}
+B2

1,tB0,tε
2
t for all ϑ in some neighbour-

hood of ϑ0, where the right-hand side has finite first moment, c.f. Lemma 4. It now follows by

standard uniform convergence results for averages of stationary sequences (see e.g. Kristensen and

Rahbek (2005, Proposition 1) that sup‖ϑ−ϑ0‖<δ ||H∗n(ϑ) − Hst(ϑ)|| →p 0, for some δ > 0, where

Hstat(ϑ) = E
[
h∗ϑϑ,t (ϑ)

]
. Moreover, ϑ 7→ Hst (ϑ) is continuous. Since ϑ̂

∗ →p ϑ0, ϑ̄ →p ϑ0 and so

lies in any arbitrarily small neighbourhood w.p.a.1. To complete the proof, we verify that Hst
ϑϑ (ϑ0)

is non-singular: The process Ψt := ∂σ2
0,t (ϑ0) / (∂ϑ) ∈ R4 can be written as Ψt = βΨt−1 + Wt,

where Wt :=
[
1, yt−1, xt−1, σ

2
0,t−1 (ϑ0)

]′. Suppose that there exists λ ∈ R4\ {0} and t ≥ 1 such

that λ′Ψt = 0 a.s. Since Ψt is stationary, this must hold for all t. This implies that λ′Wt = 0

a.s. for all t ≥ 1. However, this is ruled out by Assumption 1(iv). It must therefore hold that

λ′Ψt/σ
2
0,t (ϑ0) = 0 if and only if λ = 0; thus, Hst (ϑ0) = E

[
ΨtΨ

′
t/σ

4
0,t (ϑ0)

]
is non-singular.

B Proofs of Section 3.2

Proof of Lemma 6. To prove (i), define ψ′n(s) = n−(1/2−d)
∑[ns]

t=1 f(xt−1)wt and ψ′′n(s) =

n−(1/2−d)
∑[ns]

t=1 f(xt−1)E [wt] which both belong to D [0, 1]. First, by Theorem 2.1 in Wang and

Phillips (2009a), henceforth WP2009a, and Lemma 1 in Kasparis et. al. (2012), ψ′′n(s) ⇒
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LWd
(s, 0)×KE [wt]

∫∞
−∞ f(x)dx onD [0, 1]. We show the following two claims: (i.a)

∣∣ψ′n(s)− ψ′′n(s)
∣∣ =

op (1) and (i.b) ψ′n(s) is tight; (i.a) implies that ψ′n(s) and ψ′′n(s) have the same finite dimensional

limit distributions which together with (i.b) imply weak convergence of ψ′n(s) towards the limit of

ψ′′n(s). To show (i.a), use independence between wt and xt to write with Xn = (x1, ..., xn),

E
[∣∣ψ′n(s)− ψ′′n(s)

∣∣2 |Xn] =
Var (wt)

n2(1/2−d)

n∑
t=1

f2(xt−1) +
1

n2(1/2−d)

∑
t6=u

f(xt−1)f(xu−1)Cov (wt, wu) .

Using the covariance condition together with f (x) ≤ C for some C <∞, we obtain∣∣∣∣∣∣
∑
t6=u

f(xt−1)f(xu−1)Cov (wt, wu)

∣∣∣∣∣∣ ≤
∑
t6=u
|f(xt−1)| |f(xu−1)| |Cov (wt, wu)|

≤ C

n∑
t=1

|f(xt−1)|
∞∑
u=1

|Cov (wt, wu)|

= C

n∑
t=1

|f(xt−1)| ×
∞∑
u=1

|Cov (w0, wu)|

By WP2009a, n−1/2+d
∑n

t=1 |f(xt−1)|q = Op(1), q = 1, 2, and so E
[∣∣ψ′n(s)− ψ′′n(s)

∣∣2 |Xn] = op (1).

By Markov’s inequality, this implies that P
(∣∣ψ′n(s)− ψ′′n(s)

∣∣2 > δ|Xn
)

= op (1) for any δ > 0.

Thus, P
(∣∣ψ′n(s)− ψ′′n(s)

∣∣2 > δ
)

= E
[
P
(∣∣ψ′n(s)− ψ′′n(s)

∣∣2 > δ|Xn
)]
→ 0. To show (i.b), we apply

Theorem 5 in Billingsley (1974) and wish to show that there exists a sequence of αn (ε, δ) satisfying

limδ→0 lim supn→∞ αn (ε, δ) = 0 for each ε > 0 such that, for 0 ≤ s1 ≤ s2 ≤ · · · ≤ sm ≤ s ≤ 1,

s− sm ≤ δ, we have

P
(∣∣ψ′n(s)− ψ′n(sm)

∣∣ ≥ ε|ψ′n(s1), ψ′n(s2), · · · , ψ′n(sm)
)
≤ αn (ε, δ) , a.s. (22)

A suffi cient conditions for eq. (22) is

sup
|s1−s2|≤δ

P

∣∣∣∣∣∣
[ns2]∑

t=[ns1]+1

f(xt−1)wt

∣∣∣∣∣∣ ≥ εn1/2−d|ψ′n(s1), ψ′n(s2), · · · , ψ′n(sm)

 ≤ αn (ε, δ) .

As before, we first establish a conditional version: Define αn (Xn, ε, δ) as

αn (Xn, ε, δ) := ε−2n−2(1/2−d) sup
0≤s≤δ

E


[ns]∑
t=1

f(xt−1)wt


2∣∣∣∣∣∣Xn

 .
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Similar to the proof of (i.a), we have that, for large enough n,

αn (Xn, ε, δ) ≤ ε−2n−2(1/2−d)
n∑
t=1

f2(xt−1)E
[
w2
t

]
+ ε−2n−2(1/2−d)

∑
t1 6=t2

f(xt1−1)f(xt2−1) |E [wt1wt2 ]|

≤ ε−2n−(1/2−d)Op(1).

This shows that eq. (22) holds in probability conditional on Xn which in turn implies that it also
holds unconditionally of Xn.

To show (ii), write nd/2−1/4
∑[ns]

t=1 f(xt−1)wtut =
∑[ns]

t=1 Zn,twtut where Zn,t := n−(1/4−d/2)f(xt−1).

The sequence {Zn,twtut} is a martingale difference w.r.t. Ft with quadratic variation, σ2
u

∑[ns]
t=1 Z

2
n,tw

2
t .

By the same arguments as in the proof of part (i) of this lemma, σ2
u

∑[ns]
t=1 Z

2
n,tw

2
t = Λn (s) + op (1)

where

Λn (s) = σ2
uE
[
w2
t

]
× n−(1/2−d)

[ns]∑
t=1

f2(xt−1)⇒ Kσ2
uE
[
w2
t

] ∫ ∞
−∞

f2(x)dx× LWd
(s, 0).

As in Proof of Theorem 3.1 inWP2009a, under a suitable probability space there exists an equivalent

process x∗t of xt such that the corresponding quadratic variation Λ∗n (s)→p Kσ
2
uE
[
w2
t

] ∫∞
−∞ f

2(x)dx×
LWd

(s, 0). Without loss of generality we assume that xt satisfies this. We now wish to show that

Vn (s) := Λ−1
n (s)

∑[ns]
t=1 Zn,twtut ⇒ G (s) on D [0, 1], where G (s) is a Gaussian process with covari-

ance kernel (s1 ∧ s2) along the lines of the proof of eq. 5.21 in WP2009a: First, observe that since

{xt}, and therefore Λ2
n (s), is independent of {wt, ut}, Vn (s) is a martingale conditional on Xn.

It then follows from Hall and Heyde (1981, Theorem 3.9) that supv |P (Vn (s) ≤ v|Xn)− Φ(v)| ≤
A (qu)L1/(1+qu)

n a.s., for any s ∈ [0, 1], where A (qu) is a constant depending only on qu and

Ln =
supt≥1 E [|utwt|qu ]

Λqun
n−(1/4−d/2)qu

n∑
t=1

|f(xt−1)|qu

+
σquu
Λqun

n−(1/2−d)quE

∣∣∣∣∣
n∑
t=1

f2(xt−1)
{
w2
t − E

[
w2
t

]}∣∣∣∣∣
qu/2

∣∣∣∣∣∣Xn
 .

By part (i), n−(1/4−d/2)qu
∑n

t=1 |f(xt−1)|qu = op (1) and so the first term is op (1). As before,

assuming without loss of generality qu ≤ 4,

E

∣∣∣∣∣
n∑
k=1

f2(xt−1)
{
w2
t − E

[
w2
t

]}∣∣∣∣∣
2
∣∣∣∣∣∣Xn

 ≤ C n∑
t=1

f2(xt−1)×
∞∑
u=1

∣∣Cov (w2
t , w

2
u

)∣∣ ,
and so the second term of Ln is also op (1). We conclude that

sup
v
|P (Vn (s) ≤ v)− Φ(v)| ≤ E

[
sup
v
|P (Vn (s) ≤ v|Xn)− Φ(v)|

]
→ 0.
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Finally, tightness of Vn (s) follows by the same arguments as in the proof of (i).

Proof of Lemma 8. Define σ2
0,t := πx2

t−1zt with zt given in the lemma. We then claim that, for

all n large enough and for all i ≥ 1:

w−2
nξ max

1≤t≤n

∣∣σ2
t − σ2

0,t

∣∣ = op(1), βi−1w−2
nξ max

1≤t≤n
|x2
t−1zt−i − x2

t−izt−i| = op(1), (23)

where w−2
nξ := E[(

∑n
t=1 ξt)

2] = O
(
n1+2d

)
. If w−2

nξ max1≤t≤n |ωzt| = op(1), the first of the above two

claims follows from Han (2011, Lemma 5). It is shown in the proof of Lemma B in HP2012 that

max1≤t≤n |zt| = Op
(
τnn

2/q
)

+ op (1) where τn = nr with 0 < r < 1/4 + d/2 − 1/2p − 1/q. Note

in particular that τn → ∞ and τ2
nn
−1/2−d+1/p+2/q = n2r−1/2−d+1/p+2/q → 0. Therefore, due to

w2
nξ = Op

(
n1+2d

)
,

w−2
nξ max

1≤t≤n
|ωzt| = |ω|w−2

nξ max
1≤t≤n

|zt| ≤ |ω|Op
(
τnn

−1−2d+2/q
)

+ |ω| op
(
n−1−2d

)
= op(1).

The second claim follows from Lemma 6 in Han (2011).

Now, by definition of σ2
t (ϑ),

σ2
t (ϑ) = βtσ̄2

0 + ω

t∑
i=1

βi−1 + α

t∑
i=1

βi−1y2
t−i + π

t∑
i=1

βi−1x2
t−i.

Thus

rt (ϑ) =
σ2
t (ϑ)

σ2
t

=
βtσ̄2

0 + ω
∑t

i=1 β
i−1

σ2
t

+ α
t∑
i=1

βi−1 y
2
t−i
σ2
t

+ π
t∑
i=1

βi−1x
2
t−i
σ2
t

.

The first term is negligible since 1/σ2
[rn] ≤ 1/

(
ω0 + π0x

2
[rn]

)
= Op

(
w−2
nξ

)
uniformly over r ∈ (0, 1).

Next, note that, using eq. (23), w−2
nξ σ

2
t = w−2

nξ σ
2
0,t + op(1) uniformly over 1 ≤ t ≤ n. Thus,

y2
t−i
σ2
t

=
σ2
t−i
σ2
t

ε2
t−i =

w−2
nξ σ

2
t−i

w−2
nξ σ

2
t

ε2
t−i =

w−2
nξ σ

2
0,t−i

w−2
nξ σ

2
0,t

ε2
t−i + op (1)

=
π0x

2
t−1−izt−i

π0x2
t−1zt

ε2
t−i + oP (1) =

zt−i
zt

ε2
t−i + op (1) ,

and, similarly, x2
t−i/σ

2
t = x2

t−i/σ
2
0,t + op (1) = 1/ (π0zt) + op (1). In total, with r∗t (θ) defined in the

lemma,

rt (ϑ) =

{
α

t∑
i=1

βi−1zt−iε
2
t−i +

π

π0

t∑
i=1

βi−1

}
× 1

zt
+ oP (1) = r∗t (θ) + op (1) .

This equation holds uniformly in ϑ and 1 ≤ t ≤ n.
Next, observe that, by definition, zt solves zt = ρtzt−1+1, ρt := α0ε

2
t−1+β0. Since E [log ρt] < 0,

zt is stationary and ergodic implying that zt (θ) and thereby r∗t (θ) is also stationary and ergodic.
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We recognize zt (θ) as the volatility process of a pure, stationary GARCH model (i.e., no regressors

included) with intercept parameterized as π/π0. We can therefore employ results for pure (station-

ary) GARCH models to bound r−1
t (θ). Using the same arguments as in, for example, Francq and

Zakoïan (2004, p. 622), we obtain that for any k, there exists some ρ ∈ (0, 1) and any s ∈ (0, 1) and

δ > 0, r∗t (θ)−k ≤ c
[
1 +

∑∞
i=0 (1 + δ)i ρsiȳ2ks

t−1−i

]
uniformly over θ ∈ Θ. The left hand is stationary

and ergodic with first moment for s chosen small enough relative to k.

Finally,

σ2
t

σ2
t (ϑ)

=
ω0 + α0ε

2
t−1σ

2
t−1 + β0σ

2
t−1 + π0x

2
t−1

ω + αε2
t−1σ

2
t−1 + βσ2

t−1 (ϑ) + πx2
t−1

≤ ω0

ω
+
α0

α
+

β0

αε2
+
π0

π
,

for ε2
t−1 > ε2, where ω > 0, α > 0, β > 0 and π > 0 are given in Assumption 3. We then use the

same arguments as in Francq and Zakoïan (2012, p. 843-844) to show that σ2
t /σ

2
t (ϑ) ≤ Wt with

E
[
W k
t

]
<∞ for any k > 0.

Proof of Theorem 9. We first show that θ̂
∗

:= arg maxθ∈Θ L
∗
n (θ) satisfies θ̂

∗ →P θ0. This

is shown by verifying conditions (i)-(v) as stated in the proof of Theorem 3. Condition (i) holds

by assumption, while (ii) follows by the continuity of θ 7→ r∗t (θ) as given in eq. (18). Condition

(iii) follows by the LLN for stationary and ergodic sequences if the limit L∗ (ϑ) exists; the limit is

indeed well-defined since, by Lemma 8, E[r∗t (θ)−k] <∞ for any k > 0. To prove condition (iv), we

see that, by the same arguments as in the proof of Theorem 5, L∗ (θ0) ≥ L∗ (θ) with equality if and

only if r∗t (θ) = 1 a.s. Suppose that indeed r∗t (θ) = 1 a.s. for some θ ∈ Θ. By definition of rt (θ),

this is equivalent to zt (θ0) = zt a.s.,where zt (θ) is defined in eq. (18). Observe that with ỹt = ztεt,

we have that the two processes satisfy zt = 1+α0ỹ
2
t−1+β0zt−1 and zt (θ) = π/π0+αỹ2

t−1+βzt−1 (θ).

Thus, the processes correspond to the true and model-implied volatility in a pure GARCH model

with intercept ω̃ = π/π0. We can then employ the same arguments as in the proof of Theorem 3

and obtain that zt (θ0) = zt a.s. ⇔ θ = θ0. Finally, condition (v) follows from

|`∗t (θ)| ≤ |log r∗t (θ)|+ ε2
t

{
1

rt (θ)
+ 1

}
≤ sup

θ∈Θ
r∗t (θ)s + sup

θ∈Θ
r∗t (θ)−1 + ε2

t

{
sup
θ∈Θ

r∗t (θ)−1 + 1

}
=: ¯̀∗

t ,

where E
[
¯̀∗
t

]
<∞ by Lemma 8.

Now, return to the original estimator, ϑ̂. Write the log-likelihood as Ln (ϑ) = L∗n (θ) + Rn (ϑ),

where

Rn (ϑ) =
1

n

n∑
t=1

[
ε2
t

{
1

r∗t (θ)
− 1

rt (ϑ)

}
+ log

(
r∗t (θ)

rt (ϑ)

)]
.

Using the same arguments as in Francq and Zakoian (2012, p. 844) together with Lemma 8, we

obtain that Rn (ϑ) = op (1) uniformly in ϑ. Thus, by the same arguments as in the proof of Theorem

3, ||ϑ̂− ϑ̂∗|| = op (1) where ϑ̂
∗

= arg maxθ∈Θ L̃
∗
n (ϑ) and L̃∗n (ω, θ) = L∗n (θ) for any (ω, θ) ∈ W ×Θ.

Local consistency of ω̂ and the local rate result for θ̂ follow as part of the results shown in the

proof of Theorem 10.
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Proof of Theorem 10. We first establish some approximations: It follows from eq. (23) that

βi−1w−2
nξ σ

2
t−i = βi−1

(
w−2
nξ π0x

2
t−i

)
zt−i + op(1) = βi−1

(
w−2
nξ π0x

2
t−1

)
zt−i + op(1)

for all i ≥ 1 and t = 1, . . . , n, and note that

max
1≤t≤n

∣∣∣∣∣ 1

σ2
t

− 1

σ2
0,t

∣∣∣∣∣ ≤ max
1≤t≤n

ω0(
π0x2

t−1

)2 = Op(w
−4
nξ ). (24)

Thus, by the same arguments as in the proof of Lemma 8,

1

σ2
t

∂σ2
t (ϑ)

∂ω
=

1

σ2
t

t∑
i=1

βi−1 =
1

σ2
0,t

1

1− β +Op(w
−4
nξ ), (25)

1

σ2
t

∂σ2
t (ϑ)

∂α
=

t∑
i=1

βi−1 y
2
t−i
σ2

0,t

+ op(1) =
∂r∗t (θ)

∂α
+ op(1), (26)

1

σ2
t

∂σ2
t (ϑ0)

∂β
=

t∑
i=1

βi−1σ
2
t−i (ϑ)

σ2
0,t

+ op(1) =
∂r∗t (θ)

∂β
+ op(1), (27)

1

σ2
t

∂σ2
t (ϑ)

∂π
=

t∑
i=1

βi−1x
2
t−i
σ2

0,t

+ op(1) =
∂r∗t (θ)

∂π
+ op(1), (28)

uniformly in t = 1, . . . , n and ϑ, where r∗t (θ) is defined in eq. (18). In total,

∂rt (ϑ)

∂θ
=

1

σ2
t

∂σ2
t (ϑ)

∂θ
=
∂r∗t (θ)

∂θ
+ op (1) . (29)

It is easily seen that E[supθ∈Θ ‖∂r∗t (θ) / (∂θ)‖2+δ] < ∞ for some δ > 0 by the same arguments as

in Lemma 8. Similarly, it is easily shown that

1

σ2
t

∂σ2
t (ϑ)

∂ω∂β
= − 1

σ2
0,t

1

(1− β)2 + op (1) ,

while ∂σ2
t (ϑ) / (∂ω∂ϑk) = 0, k = 1, 2, 3, and

∂2rt (ϑ)

∂θ∂θ′
=

1

σ2
t

∂2σ2
t (ϑ)

∂θ∂θ′
=
∂2r∗t (θ)

∂θ∂θ′
+ op (1) ,

where E
[
supθ∈Θ

∥∥∂2r∗t (θ) /
(
∂θ∂θ′

)∥∥] <∞.
We now verify the conditions in Lemmas 11-12 of Kristensen and Rahbek (2010) which in

turn imply local consistency and the claimed asymptotic distribution, respectively. To write our

estimation problem in their notation, define vω,n = n1/4−d/2 and vθ,n = n1/2, so that Vn defined in

eq. (13) can be written as Vn =diag{vω,n, vθ,nI3}. Next, we let Qn (ϑ) = Ln (ϑ) /v2
ω,n denote the

normalized log-likelihood and let Un = Vn/vω,n =diag
{

1, n1/4+d/2I3

}
be the associated rate matrix.
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We then claim that

(i) vω,nU−1
n

∂Qn (ϑ0)

∂ϑ
→d MN(0,Σnst), (ii) − U−1

n

∂2Qn (ϑ0)

∂ϑ∂ϑ′
U−1
n →p H

nst > 0, (30)

and, with Bn(ϑ0, ε) = {ϑ : ||Un (ϑ− ϑ0) || < ε} for some small ε > 0,

sup
ϑ∈Bn(ϑ0,ε)

∥∥∥∥U−1
n

{
∂2Qn (ϑ)

∂ϑ∂ϑ
− ∂2Qn (ϑ0)

∂ϑ∂ϑ

}
U−1
n

∥∥∥∥ = Op(ε). (31)

Note that (i) of eq. (30) implies that U−1
n ∂Qn (ϑ0) / (∂ϑ) = op (1).

We first show (ii) of eq. (30): Note that

U−1
n

∂2Qn (ϑ0)

∂ϑ∂ϑ′
U−1
n = {vω,nUn}−1Hn (ϑ0) {vω,nUn}−1 =

[
nd−1/2Hn,ωω nd/2−3/4Hn,ωθ

nd/2−3/4Hn,θω n−1Hn,θθ

]
.

We analyze the four elements ofHn(ϑ0) separately. First, using the above approximations, hθθ,t (ϑ) =

h∗θθ,t (θ) + op (1) where

h∗θθ,t (θ) :=

{
∂2r∗t (θ)

∂θ∂θ′
− ∂r∗t (θ)

∂θ

∂r∗t (θ)

∂θ′

}{
ε2
t

r∗t (θ)
− 1

}
− ∂r∗t (θ)

∂θ

∂r∗t (θ)

∂θ′
ε2
t

r∗t (θ)
.

The process h∗θθ,t (θ) is stationary and ergodic with E[supθ∈Θ ||h∗θθ,t (θ) ||] <∞. It therefore follows
from the uniform Law of Large Numbers that supϑ ||Hn,θθ(ϑ)/n−Hnst

θθ (θ) || →p 0 where Hnst
θθ (θ) =

E
[
h∗θθ,t (θ)

]
. Next, using eq. (25),

−nd−1/2Hn,ωω(ϑ0) =
1

(1− β0)2 ×
1

n1/2−d

n∑
t=1

2ε2
t − 1

σ4
t

+ op (1)

=
1

(1− β0)2 ×
1

n1/2−d

n∑
t=1

2ε2
t − 1(

ω0 + π0x2
t−1

)2
z2
t

+ op (1)

=
1

(1− β0)2 ×
1

n1/2−d

n∑
t=1

wt(
ω0 + π0x2

t−1

)2 + op (1)

where wt :=
(
2ε2
t − 1

)
/z2
t is stationary and geometrically β-mixing, c.f. Carrasco and Chen (2002).

Since wt and xt are independent and f (x) = 1/
(
ω0 + π0x

2
)2 is integrable, we can employ Lemma

6(i) to obtain −nd−1/2Hn,ωω(ϑ0)→d H
nst
ωω . Similarly,

−nd−1/2Hn,ωα(ϑ0) =
1

n1/2−d

n∑
t=1

1

σ4
t

∂σ2
t

∂ω

∂σ2
t

∂α

{
2ε2
t − 1

}
=

1

1− β ×
1

n1/2−d

n∑
t=1

2ε2
t − 1(

ω0 + π0x2
t−1

)
zt

∂r∗t (θ)

∂α
+ op (1)

→ dK × LWd
(1, 0)

∫ ∞
−∞

1

ω0 + π0s2
ds

1

1− β0

E
[
∂r∗t (θ)

∂α
z−1
t

]
.
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In particular, nd/2−3/4Hn,ωα(ϑ0) = n−1/4−d/2 ×
{
nd−1/2Hn,ωα(ϑ0)

}
= op (1) since −1/2 < d < 1/2.

The other cross-terms involving ω are shown to be op (1) in the same manner.

Next, we show (i) of eq. (30): Observe that V −1
n Sn (ϑ0) =

[
nd/2−1/4Sn,ω (ϑ0) , n−1/2Sn,θ (ϑ0)

]′
.

It follows from Lemma 6(ii) that nd/2−1/4Sn,ω (ϑ0) →d MN(0,Σnstωω) while, employing the same

arguments as in the proof of Theorem 5 together with the stationary approximation results derived

above, n−1/2Sn,θ (ϑ0)→d N(0,Σnstθθ ). The convergence is joint since the martingale difference, ε2
t−1,

is common to the two components of the score, and it is easily checked, by the same arguments as

for the hessian, that Σnstωθ = O1×3.

Finally, we verify eq. (31): We have already proved that this holds for Hn,θθ (ϑ). What

remains is to show that it also holds for the components involving ω. We only show the result for

∂2Qn (ϑ) /
(
∂ω2

)
since the proof for the other partial derivatives follows along the same lines. For

ϑ ∈ Bn(ϑ0, ε), ‖θ − θ0‖ ≤ n−1/4−d/2ε and ‖ω − ω0‖ ≤ ε. Thus, by the mean-value theorem, for

some ϑ̄ on the line segment connecting ϑ and ϑ0,∥∥∥∥∂2Qn (ϑ)

∂ω2
− ∂2Qn (ϑ0)

∂ω2

∥∥∥∥ = n−1/2+d ‖Hn,ωω(ϑ)−Hn,ωω(ϑ0)‖

≤
∥∥∥∥n−1/2+d∂Hn,ωω(ϑ̄)

∂θ

∥∥∥∥ ‖θ − θ0‖+

∥∥∥∥n−1/2+d∂Hn,ωω(ϑ̄)

∂ω

∥∥∥∥ ‖ω − ω0‖

≤
∥∥∥∥n−3/4+d/2∂Hn,ωω(ϑ̄)

∂θ

∥∥∥∥ ε+

∥∥∥∥n−1/2+d∂Hn,ωω(ϑ̄)

∂ω

∥∥∥∥ ε.
We then wish to show that n−3/4+d/2∂Hn,ωω(ϑ̄)/ (∂θ) = Op (1) and n−1/2+d∂Hn,ωω(ϑ̄)/ (∂ω) =

Op (1). The third-order derivative is ∂Hn,ωω(ϑ)/ (∂ϑ) =
∑n

t=1 ∂hωω,t (ϑ) / (∂ϑ) where, using that

∂2σ2
t (ϑ) /

(
∂ω2

)
= ∂3σ2

t (ϑ) /
(
∂ω2∂ϑ

)
= 0,

hωω,t (ϑ)

∂ϑk
=

2

σ6
t (ϑ)

(
∂σ2

t (ϑ)

∂ω

)2
∂σ2

t (ϑ)

∂ϑk

{
σ2
t ε

2
t

σ2
t (ϑ)

− 1

}
+2

(
∂σ2

t (ϑ)

∂ω

)2
σ2
t ε

2
t

σ8
t (ϑ)

∂σ2
t (ϑ)

∂ϑk
.

As shown in the proof of Theorem 9, σ2
t /σ

2
t (ϑ) ≤Wt with E

[
W k
t

]
<∞ for any k > 0, and so∣∣∣∣hωω,t (ϑ)

∂ϑk

∣∣∣∣ ≤ 2

σ6
t (ϑ)

1

(1− β)2

∥∥∥∥∂σ2
t (ϑ)

∂ϑk

∥∥∥∥{Wtε
2
t + 1

}
+2

1

(1− β)2

1

σ6
t (ϑ)

∥∥∥∥∂σ2
t (ϑ)

∂ϑk

∥∥∥∥Wtε
2
t

≤ C
1

σ6
t (ϑ)

∥∥∥∥∂σ2
t (ϑ)

∂ϑk

∥∥∥∥{Wtε
2
t + 1

}
.

Employing the same arguments as in the analysis of the hessian, we obtain the desired result.

Proof of Theorem 11. For both the stationary and non-stationary case, we have already shown

as part of the proofs of Theorems 5 and 10 that sup‖Un(ϑ−ϑ0)‖<δ ||V −1
n Hn(ϑ)V −1

n − H(ϑ)|| →p 0.
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In the nonstationary case, Vn is defined in eq. (13), Un = Vn/vω,n and H (ϑ) = Hnst (ϑ); in the

stationary case, Vn =
√
nI4, Un = I4 and H (ϑ) = Hst (ϑ). We now analyze Σ̂ = Σn(ϑ̂) where

Σn(ϑ) =
∑n

t=1 st(ϑ)st(ϑ)′ and st(ϑ) = ∂`t (ϑ) / (∂ϑ). First consider the stationary case: As part of

the proof of Theorem 5, it was also shown that st(ϑ) = 1
σ20,t(ϑ)

∂σ20,t(ϑ)

∂ϑ

{
y2t

σ20,t(ϑ)
− 1

}
+ op (1). The

first term on the right hand side is continuous w.r.t. ϑ and, by Lemma 4, is uniformly bounded

by a stationary sequence with second moment. It therefore follows by the uniform LLN, that

sup‖ϑ−ϑ0‖<δ ||Σn (ϑ) /n−Σst(ϑ)|| →p 0 where ϑ 7→ Σst(ϑ) is continuous; in particular, Σn(ϑ̂)/n→p

Σst. In conclusion, nΩ̂→p Ωst and so Ω̂−1/2{ϑ̂− ϑ0} = (Ω̂/n)−1/2√n{ϑ̂− ϑ0} →d N (0, I4).

For the non-stationary case, we proceed as in the analysis of the hessian: First, write

Σn(ϑ) =

[
Σn,ωω(ϑ) Σn,ωθ(ϑ)

Σn,θω(ϑ) Σn,θθ(ϑ)

]
=

n∑
t=1

[
s2
t,ω(ϑ) st,ω(ϑ)st,θ(ϑ)′

st,ω(ϑ)st,θ(ϑ) st,θ(ϑ)st,θ(ϑ)′

]
,

where st,ω(ϑ) and st,θ(ϑ) denote the partial derivatives of `t (ϑ) w.r.t. ω and θ, respectively. Observe

that st,θ(ϑ) has a stationary approximation, and so, similar to the stationary case, we can appeal

to a uniform LLN for stationary and ergodic sequences to obtain Σn,θθ(ϑ̂)/n→p Σnst. Next,

nd−1/2
n∑
t=1

s2
t,ω(ϑ0) =

1

(1− β0)2 × n
d−1/2

n∑
t=1

1(
ω0 + π0x2

t−1

)2
z2
t

{
ε2
t − 1

}2
+ op (1)→d Σnstωω ,

and, similar to the proof of eq. (31), sup‖Un(ϑ−ϑ0)‖<δ
∥∥nd−1/2

∑n
t=1

{
s2
t,ω(ϑ)− s2

t,ω(ϑ0)
}∥∥ = op (1).

Similarly, we can show that nd/2−3/4
∑n

t=1 st,ω(ϑ)st,θ(ϑ)′ = op (1). In conclusion, V −1
n Ω̂V −1

n →p Ωst

and so Ω̂−1/2{ϑ̂− ϑ0} = (V −1
n Ω̂V −1

n )−1/2Vn{ϑ̂− ϑ0} →d N (0, I4).
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C Tables and Figures

Table 1. Estimates of memory parameter dx and AR(1) coeffi cient for various time series

time series d̂x AR coeffi cient sample period T

3M treasury bill rate level 0.94 1.00 1996/01/02− 2009/02/27 3434

Bond yield spread (AAA-BAA) 0.88 0.99 1987/11/02− 2003/06/30 3938

RV of Dow Jones Industrials 0.46 0.66 1996/01/03− 2009/02/27 3261

RV of CAC 40 0.44 0.66 1996/01/03− 2009/02/27 3301

RV of FTSE 100 0.42 0.64 1996/01/03− 2009/02/27 2844

RV of German DAX 0.42 0.66 1996/01/03− 2009/02/27 3296

RV of British Pound 0.56 0.88 1999/01/04− 2009/03/01 2576

RV of Euro 0.34 0.67 1999/01/04− 2009/03/01 2592

RV of Swiss Franc 0.43 0.69 1999/01/04− 2009/03/01 2571

RV of Japanese Yen 0.47 0.70 1999/01/04− 2009/03/01 2590

Notes: d̂x is the log periodogram estimate of the memory parameter dx and T is the number of observations.

RV represents the realized variance of return series. All realized variance series are from ‘Oxford-Man

Institute’s realised library’, produced by Heber et al. (2009).3 All time series are at the daily frequency.

3See http://realized.oxford-man.ox.ac.uk/.
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Figure 1. The simulated densities of t-statistics for the stationary cases
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Figure 2. The simulated densities of t-statistics for the nonstationary cases

­4 ­3 ­2 ­1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

DGP 3: dx=0.7, n = 500
normal pdf
tstat for α
tstat for β
tstat for π
tstat for ω

­4 ­3 ­2 ­1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

DGP 3: dx=0.7, n = 5000
normal pdf
tstat for α
tstat for β
tstat for π
tstat for ω

­4 ­3 ­2 ­1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

DGP 4: dx=1.0, n = 500
normal pdf
tstat for α
tstat for β
tstat for π
tstat for ω

­4 ­3 ­2 ­1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

DGP 4: dx=1.0, n = 5000
normal pdf
tstat for α
tstat for β
tstat for π
tstat for ω

28



References

Barndorff-Nielsen, O.E. and N. Shephard (2007) Variation, jumps and high frequency data in

financial econometrics. in R. Blundell, T. Persson and W.K. Newey, (Eds.), Advances in Eco-

nomics and Econometrics. Theory and Applications, Ninth World Congress, Econometric So-

ciety Monographs, 328-372. Cambridge University Press.

Berkes, I., L. Horváth and P. Kokoszka (2003) GARCH processes: Structure and estimation.

Bernoulli 9(2), 201—227.

Billingsley, P. (1974) Conditional distributions and tightness. Annals of Probability 2, 480-485.

Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics 31, 307—327.

Bollerslev, T. and M. Melvin (1994) Bid-Ask spreads and the volatility in the foreign exchange

market: An empirical analysis. Journal of International Economics 36, 355-372.

Brandt, A. (1986) The stochastic equation Yn+1 = AnYn+Bn with stationary coeffi cients. Advances

in Applied Probability 18, 211-220.

Brenner, R.J., R.H. Harjes and K.F. Kroner (1996) Another look at models of the short-term

interest rate. Journal of Financial and Quantitative Analysis 31, 85-107.

Brown, B. (1971) Martingale central limit theorems. Annals of Mathematical Statistics 42, 59-66.

Carrasco, M. and X. Chen (2002) Mixing and moment properties of various GARCH and stochastic

volatility models. Econometric Theory 18, 17-39.

Dittmann, I. and C.W.J. Granger (2002) Properties of nonlinear transformations of fractionally

integrated processes. Journal of Econometrics 110, 113-133.

Dominguez, K. (1998) Central bank intervention and exchange rate volatility. Journal of Interna-

tional Money and Finance 17, 161—190.

Engle, R.F. (2002) New frontiers for ARCH models. Journal of Applied Econometrics, 17, 425-446.

Engle, R.F. and G.M. Gallo (2006) A multiple indicators model for volatility using intra-daily data.

Journal of Econometrics, 131, 3-27.

Escanciano, J.M. (2009) Quasi-maximum likelihood estimation of semi-strong GARCH models.

Econometric Theory 25, 561-570.

Fleming, J., C. Kirby and B. Ostdiek (2008) The specification of GARCH models with stochastic

covariates. Journal of Futures Markets, 28, 911-934.

Franq, C. and J.-M. Zakoïan (2004) Maximum likelihood estimation of pure GARCH and ARMA-

GARCH processes. Bernoulli 10, 605—637.

29



Franq, C. and J.-M. Zakoïan (2012) Strict stationarity testing and estimation of explosive and

stationary generalized autoregressive conditional heteroskedasticity models. Econometrica 80,

821—861.

Gallo, G., and B. Pacini (2000). The effects of trading activity on market volatility. European

Journal of Finance 6, 163—175.

Girma, P., and M. Mougoue (2002) An empirical examination of the relation between futures

spreads volatility, volume, and open interest. Journal of Futures Markets 22, 1083—1102.

Hagiwara, M., and M. Herce (1999) Endogenous exchange rate volatility, trading volume and

interest rate differentials in a model of portfolio selection. Review of International Economics

7, 202—218.

Hall, P. and C.C. Heyde (1980) Martingale Limit Theory and Its Application. New York: Academic

Press.

Han, H. (2011) Asymptotic properties of GARCH-X processes. Manuscript, National University of

Singapore.

Han, H. and J.Y. Park (2012) ARCH/GARCH with persistent covariates: Asymptotic theory of

MLE. Journal of Econometrics 167, 95—112.

Hansen, P.R., Z. Huang and H.H. Shek (2010) Realized GARCH: A complete model of returns and

realized measures of volatility. Manuscript, Department of Economics, Stanford University.

Hodrick, R. (1989). Risk, uncertainty, and exchange rates. Journal of Monetary Economics, 23,

433—459.

Hwang, S. and S.E. Satchell (2005) GARCH Model with cross-sectional volatility: GARCHX mod-

els. Applied Financial Economics 15, 203-216.

Heber, G., A. Lunde, N. Shephard and K. Sheppard (2009) OMI’s realised library. Version 0.1,

Oxford-Man Institute, University of Oxford.

Jensen, S.T. and A. Rahbek (2004) Asymptotic inference for nonstationary GARCH. Econometric

Theory, 20, 1203-1226.

Kasparis, I., E. Andreou and P.C.B. Phillips (2012) Nonparametric predictive regression. Manu-

script, University of Cyprus.

Kristensen, D. and A. Rahbek (2005) Asymptotics of the QMLE for a class of ARCH(q) models.

Econometric Theory 21, 946-961.

Kristensen, D. and A. Rahbek (2010) Likelihood-Based Inference for Cointegration with Nonlinear

Error-Correction. Journal of Econometrics 158, 78—94.

30



Kristensen, D. and Y. Shin (2012) Estimation of dynamic models with nonparametric simulated

maximum likelihood. Journal of Econometrics 167, 76—94.

Lamoureux, C. G. and W. D. Lastrapes (1990) Heteroskedasticity in stock return data: Volume

versus GARCH effects. Journal of Finance 45, 221—229.

Marsh, T. A., and N. Wagner (2005) Surprise volume and heteroskedasticity in equity market

returns. Quantitative Finance, 5, 153—168.

Park, J.Y. and P.C.B. Phillips (1999) Asymptotics for nonlinear transformations of integrated time

series. Econometric Theory, 15, 269-298.

Park, J.Y. and P.C.B. Phillips (2001) Nonlinear regressions with integrated time series. Economet-

rica, 69, 117-161.

Shephard, N. and K. Sheppard (2010) Realising the future: forecasting with high frequency based

volatility (HEAVY) models. Journal of Applied Econometrics 25, 197-231.

Wang, Q. (2013) Martingale limit theorem revisited and nonlinear cointegrating regression. Forth-

coming in Econometric Theory.

Wang, Q. and P.C.B. Phillips (2009a) Asymptotic theory for local time density estimation and

nonparametric cointegrating regression. Econometric Theory 25, 710-738.

Wang, Q. and P.C.B. Phillips (2009b) Structural nonparametric cointegrating regression. Econo-

metrica 77, 1901-1948.

Yoshihara K. (1976) Limiting behaviour of U-statistics for stationary, absolutely regular processes.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 35, 237-252.

31


