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Abstract. Applied researchers often need to estimate confidence intervals

for functions of parameters, such as the effects of counterfactual policy changes. If

the function is continuously differentiable and has non-zero and bounded derivatives,

then they can use the delta method. However, if the function is nondifferentiable

(as in the case of simulating functions with zero-one outcomes), has zero derivatives,

or unbounded derivatives, then researchers usually use the nonparametric bootstrap

or sample from the asymptotic distribution of the estimated parameter vector. Re-

searchers also use these bootstrap approaches when the function is well-behaved but

complicated. Indeed, these approaches are advocated by two very influential pub-

lished articles. We first show that both of these bootstrap procedures can produce

confidence intervals whose asymptotic coverage is less than advertised, i.e. confi-

dence intervals that are too small. We then propose two procedures that provide

correct coverage. In applications, we find that the bootstrap approaches mentioned

above produce confidence intervals that are significantly smaller than their consistent

counterparts, suggesting that previous empirical work is likely to have been overly

optimistic in terms of the precision of estimated counterfactual effects.
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1. Introduction

We propose procedures to calculate confidence intervals for functions of pa-

rameters without restricting the derivatives of the functions and without requiring the

functions to be continuous. These are the first procedures for these cases that have consis-

tency proofs. The need for such procedures follows from applied work. Applied researchers

often estimate confidence intervals for functions of estimated parameters, e.g. to carry

out counterfactual policy analysis. If the function is differentiable and has non-zero and

bounded derivatives, then researchers can use the delta method,1 although researchers are

often reluctant to use it for complex, nonlinear functions whose derivatives satisfy these

properties.

However, if the function has zero or unbounded derivatives, or is discontinuous, as

in the case of simulating functions with zero-one outcomes, then the delta method is in-

appropriate. Krinsky and Robb (1986) propose the following approach as an alternative

to the delta method to obtain a (1 − α) confidence interval for a function evaluated at

the parameter estimates: i) take a large number of draws from the asymptotic (normal)

distribution of the parameter estimates; ii) calculate the function value for each draw; and

iii) trim (α/2) from each tail of the resulting distribution of the function values. Their

approach has been widely used in empirical work to obtain confidence intervals for com-

plex, nonlinear, differentiable functions of the estimated parameters, such as consumer

demand elasticities, the expected duration of unemployment and impulse functions,2 as

well as for nondifferentiable functions of the estimated parameters.3 Finally, two promi-

nent textbooks4 also recommend this approach, and the ‘wtp’and ‘wtpcikr’commands

in Stata (the leading software package used by applied economists) are based on Krinsky

and Robb (1986). Although this procedure of sampling from the asymptotic distribution

1See, e.g., Weisberg (2005) for a description of the delta method.
2See Krinsky and Robb (1986) and Fitzenberger, Osikominu and Paul (2010) for applications to

demand elasticities and unemployment duration respectively. Further see Inoue and Kilian (2011) for
a recent overview of the impulse response function literature. A simple Google search lists forty-four
published papers that refer to Krinsky and Robb (1986).

3A few (of many possible) examples are Gaure, Røed and Westlie (2010), Ham, Mountain and Chan
(1997), Hitsch, Hortacsu and Ariely (2010), Merlo and Wolpin (2009) and Røed and Westlie (2011). Its
use is advocated, but not implemented, by Eberwein, Ham and LaLonde (2002). A review of the literature
indicates that many studies either i) do not give a confidence interval for the simulated results or ii) give
a confidence interval for the simulated results but do not state how they construct it.

4See Greene (2012, page 610 ) and Wooldridge (2010, page 441).
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is sometimes called the parametric bootstrap, this term has more than one meaning in

the literature, so instead we will refer to it as the Asymptotic Distribution bootstrap or

AD-bootstrap.

Runkle (1987) recommends the following alternative to the Krinsky-Robb procedure to

obtain a (1− α) confidence interval for a function evaluated at the parameter estimates:

i) draw a bootstrap sample of the data, reestimate the model, and use the resulting

parameter estimates to calculate the function; ii) repeat i) many times and trim (α/2)

from each tail of the resulting distribution of function values. Runkle’s article also has

been very influential; in fact, it was included in the issue that commemorated the twentieth

anniversary of the Journal of Business and Economics Statistics as one of the ten most

influential papers in the history of the journal (Ghysels and Hall 2002, page 1). Moreover,

Runkle’s approach is endorsed by three prominent graduate econometrics textbooks.5 We

refer to this approach as the ADR-bootstrap. It is first order equivalent to the AD-

bootstrap for cases where the version of the bootstrap that is used in Runkle’s (1987)

procedure estimates the asymptotic distribution of the parameters consistently.

We first give four important examples in which the widely used AD-bootstrap and

ADR-bootstrap fail, including one that mimics how researchers construct confidence in-

tervals for counterfactual policy analysis via simulation of structural or nonlinear models.

We then provide a method of obtaining confidence intervals that works in all of these

situations under relatively mild conditions (that are likely to be satisfied in empirical

work). We also provide a modification of our approach that offers potential effi ciency

gains in principle and in practice; this second method is asymptotically equivalent to

the delta method when the latter is valid. Thus, our proposed procedure is valid under

weaker conditions than the delta method but involves no effi ciency loss. Therefore, our

approach should be very useful in all of the cases where researchers have previously used

the AD-bootstrap or the ADR-bootstrap, as well as in the case of differentiable functions

where it is unclear whether the (generally numerical) derivatives actually are nonzero and

5Hamilton (1994, page 337), Cameron and Trivedi (2005, page 363) and Wooldridge (2010, page 439);
see also Cameron and Trivedi (2010, page 434). Examples of the use of the Runkle (1987) method in
applied work are Chaudhuri, Goldberg, and Jia (2006) and Ryan (2012), who use it to obtain confidence
intervals for the effects of counterfactual policy changes, and Hoderlein and Mihaleva (2008), who use it
to estimate confidence intervals for price elasticities.
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bounded.6

To implement our first procedure, the researcher obtains a (1− α) confidence interval

for the function of interest by: i) sampling from the asymptotic distribution of the pa-

rameter estimator using the bootstrap or using a normal approximation; ii) keeping the

draw only if it is in the (1−α) confidence interval for the estimated parameters; iii) calcu-

lating the function value for each draw; and iv) using all function values to construct the

confidence interval for the function. This procedure differs from the AD-bootstrap and

ADR-bootstrap in that they trim the extreme values of the function that come from both

‘reasonable’values and ‘unreasonable’(extreme) values of the parameter vector, while our

approach deletes only function values that arise from ‘unreasonable’values of the para-

meters.7 We refer to our procedure as the confidence interval bootstrap or CI-bootstrap.

We also provide a modification that offers potential effi ciency gains over the CI-bootstrap,

and refer to it as the weighted confidence interval bootstrap or the WCI-bootstrap. The

substantial conditions that are necessary to apply our approach are: i) that one can sam-

ple from the asymptotic distribution of the estimators of the parameters and ii) that the

set of points at which the function is discontinuous is small. For example, if the function is

a scalar, then the second requirement is that the number of discontinuity points is finite.

We also apply our method to an estimator considered by Andrews (2000). Andrews

showed that no version of the bootstrap can consistently estimate the distribution of his

maximum likelihood estimator. An example involving a function of a parameter yields

the same maximum likelihood estimator as in Andrews (2000). Our proposed procedures

also work for this example, suggesting that it might be more fruitful to focus on the

construction of confidence intervals, rather than on the distributions of various versions

of the bootstrap.

We use the empirical work from two papers to obtain evidence demonstrating the dif-

ference between the procedures in practice. First, we consider work from Ham, Li and

Shore-Sheppard (2011, hereafter HLSS), who construct both relatively simple differen-

6Hall (1995) provides a bootstrap procedure for calculating standard errors of functions of estimated
parameters. However, like the delta method, it does not apply to discontinuous or non-differentiable
functions bootstrap, but requires stronger assumptions than those necessary for the delta method. Hence
we view Hall’s procedure as dominated by the Delta method and do consider it further in our paper.

7We formalize this notion of ‘reasonable’values in Lemma 1.
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tiable functions, and relatively complicated nondifferentiable functions, of their parame-

ter estimates describing the labor market dynamics of disadvantaged women in the U.S.

Second, we consider confidence intervals for complex differentiable functions of estimated

parameters from a rich model of dating and marriage that Lee and Ham (2012, here-

after LH) use to evaluate the effi cacy of different matching mechanisms for online dating.

We find first for HLSS’simple differentiable functions, the AD-bootstrap produces some-

what smaller confidence intervals than the (appropriate) delta method. Second, we find

that the AD-bootstrap produces much smaller confidence intervals than those from the

(appropriate) CI-bootstrap for LH’s complicated differentiable functions and HLSS’non-

differentiable functions. Additionally, we find that the WCI-bootstrap offers substantial

effi ciency gains over the CI-bootstrap in the case of relatively simple differentiable func-

tions. The upshot is that the size of many estimated confidence intervals in the literature

may be substantially biased downwards.

We proceed as follows. In section 2 we show that in several important examples, the

AD-bootstrap and ADR-bootstrap fail to provide a confidence interval with the correct

coverage. In section 3 we show that the CI-bootstrap and the WCI-bootstrap provide

consistent confidence intervals for both nondifferentiable and discontinuous functions. In

section 4 we provide evidence on the difference between the CI, WCI and AD-bootstraps

in practice, and we conclude in section 5.

2. Failures of the Delta Method and the AD-bootstrap when
Calculating Confidence Intervals for Functions of Parameters

We examine the performance of the delta method, the AD-bootstrap, and the ADR-

bootstrap in four important examples in this section. However, since the AD-bootstrap

and ADR-bootstrap are equivalent asymptotically, for expositional ease in what follows

we simply refer to the AD-bootstrap with the understanding that the ADR-bootstrap

will behave in exactly the same way as the AD-bootstrap. In Example 1, both the delta

method and the AD-bootstrap fail. In Example 2, the AD-bootstrap fails. In Example 3,

the delta method is infeasible and no version of the bootstrap consistently estimates the

asymptotic distribution of the function of the estimator; however, we show below that the
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CI-bootstrap can be used to construct a valid confidence interval. Example 4 will be of

most interest to applied researchers, since it mimics how researchers construct confidence

intervals for counterfactual policy analysis where outcomes are discrete and policy effects

are obtained via simulation of structural or nonlinear models. However, it is also our most

complicated example, and our first three examples, while somewhat more theoretical in

nature, should prove useful to even the most applied researchers. The outcomes here are

discontinuous functions of the data, and researchers have turned to the AD bootstrap

because the delta method is not applicable. However we show that the AD bootstrap

again fails in this very important application.

Example 1: The Delta Method and the AD-bootstrap Fail

Suppose we observe a random sample, X1, ..., XN , from a normal distribution with mean µ

and variance 1, and let µ̂ = X̄N = 1
N

∑
i

Xi. Let E(X) = µ0 = 0 and consider h(µ) =
√
|µ|.

The delta method yields the following symmetric 95% confidence interval with probability

one, [√
|X̄N | −

1.96

2
√
N
√
|X̄N |

,
√
|X̄N |+

1.96

2
√
N
√
|X̄N |

]
.

The probability that the true value is inside this confidence interval is about 0.67 (in

repeated samples) for any N . Fortunately, our method gives a confidence interval with

the correct coverage probability of 95%.

In Example 1, the delta method fails because the derivative does not exist at one

point. The failure is easy to spot here. However, such problems may be much harder to

spot in more realistic applications such as the two empirical applications that we consider

below, both of which involve estimating more than one hundred parameters. In example

1, the AD-bootstrap also fails. In particular, it yields a confidence interval with a coverage

probability of 0% for any N . The reason for this is that the true value, h(µ = 0) = 0, is the

minimum of the function. Let G(.) denote the distribution function of h(µ̂). Applying the

AD-bootstrap and using the interval between the 2.5 and 97.5 percentiles of the function

values, [G(0.025), G(0.975)], yields a confidence interval that does not cover the true value,

so the coverage probability is 0%.
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Example 2: A Probit Model

Suppose that one is interested in the function h(β, γ) = 1
2Φ(β) + 1

2Φ
(
−2γ −

√
2 ln(2)

)
where the true values of the parameters are zero, i.e. β0 = γ0 = 0. Let the estimator

(β̂, γ̂) have a normal distribution with mean zero and a known variance-covariance matrix[
1 ρ
ρ 1

]
. The delta method cannot be used since the function has a zero derivative at

the true value of the parameters if ρ = 1. The AD-bootstrap samples from the normal

distribution with mean (β̂, γ̂) and covariance matrix
[

1 ρ
ρ 1

]
in order to construct the

distribution of h(β̂, γ̂). Let G(.) denote this distribution function of h(β̂, γ̂). Applying the

AD-bootstrap and using the interval between the 2.5 and 97.5 percentiles of the function

values, [G(0.025), G(0.975)], does not yield a confidence interval with 95% coverage for

many values of ρ. For example, the coverage is 0% for the AD-bootstrap if ρ = 1, 90%

for ρ = 0.5, and 93% for ρ = 0.8 Thus, the AD-bootstrap does not produce a confidence

interval with the correct coverage.9 We also note that the AD-bootstrap confidence in-

terval coincides with the Bayesian credible interval (with flat priors) in this case, so the

Bayesian procedure also fails here. Note that the extreme failure of the AD-bootstrap for

ρ = 1 occurs because h(β0 = 0, γ0 = 0) = 0 is the minimum value of the function.10 Just

as in example 1, this is the case even if the variance of the estimators would be arbitrarily

small. We observe that the continuity of the coverage as a function of the true values of

the parameters also causes the AD-bootstrap to fail for ρ close to one. Finally, we note

that using the AD-bootstrap to calculate standard errors for average partial effects can

also fail in this type of situation.

Example 3: Andrews (2000), Inconsistency of the Bootstrap

Suppose we observe a random sample, X1, ..., XN , from a normal distribution with mean

µ and variance 1 (denoted as N(µ, 1)) and suppose that µ is restricted to be nonnega-

tive. Andrews (2000) considers the maximum likelihood estimator µ̂ = max(X̄N , 0) where

X̄N = 1
N

∑
i

Xi. He shows that the nonparametric bootstrap fails to consistently estimate

8See the Appendix for details.
9Correct coverage of a confidence interval means that the coverage probability converges to a proba-

bility no smaller than its nominal probability, see Andrews and Cheng (2012a and 2012b).
10Thus, sampling from the asymptotic distribution yields values of the function that are larger than

the minimum (and true value) with probability one, ensuring failure of the AD-bootstrap.
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the distribution of µ̂ if µ = 0, and that it is impossible to consistently estimate the dis-

tribution of µ̂ using any bootstrap method if µ = c√
N
for any c > 0. A related problem is

deriving a confidence interval for the function h(γ) = max(γ, 0) where γ = E(X) and we

observe a random sample, X1, ..., XN , from a normal distribution with mean γ and vari-

ance 1. Note that γ can be negative and let γ̂ = X̄N . The estimator h(γ̂) = max(X̄N , , 0)

is the identical to Andrews’(2000) estimator and it follows from the reasoning of Andrews

(2000) that no version of the bootstrap can estimate the distribution of h(γ̂) if γ = c√
N

for any c > 0. We show that in this case the CI-bootstrap can consistently estimate the

confidence interval for h(γ).

The last example considers an example that uses simulations to estimate the function

of interest.

Example 4: An Ordered Probit Model

Suppose that a firm offers three products, A, B, and C, where product B is more

luxurious than product A, but less luxurious than product C. Let consumer i make the

following choice

Ai = 1 if − 2 ≤ Xiβ + εi < 0 and Ai = 0 otherwise,

Bi = 1 if 0 ≤ Xiβ + εi ≤ 2 and Bi = 0 otherwise, and

Ci = 1 if Xiβ + εi > 2 and Ci = 0 otherwise,

where Xi equals one if the consumer lives in a market where the firm is advertising

and εi|Xi has a standard normal distribution. Note that consumer i does not make a

purchase if Xiβ + εi < −2. Suppose that the firm conducted an advertising campaign

in one market to encourage customers to buy a more luxurious product and that the

firm estimated β. Next, an econometrician’s objective is to predict how the demand for

product B responds to such advertising in another market, including a confidence interval

for this response. Suppose that the true value of β equals one and that the estimator

for β is normally distributed with mean 1 and variance σ2β = 1. In such a case, it is

natural to estimate the change in the demand for product B using simulations. This

is a case where the AD-bootstrap fails. In particular, we used simulated data on 1000
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individuals and simulated 100 draws from the distribution of ε for each individual.11 We

then drew 1, 000 times from the distribution of the estimator and calculated the change

in the probability of buying good B. The resulting AD-bootstrap 95% confidence interval

only covered the true value of this change, 0.2054, in 36% of the cases.12 Simulating data

to form confidence intervals often yields non-differentiable functions, as in this example.

Therefore, the delta method cannot be used while the AD-bootstrap may yield inconsistent

results. Our applied section presents more complicated examples that use simulations. Of

course, there are examples where the AD-bootstrap will have correct asymptotic coverage,

but it is diffi cult to ascertain in general when this will be the case.13

3. Main result

In this section we provide a method of obtaining confidence intervals that is valid under

reasonable assumptions that are likely to be satisfied in empirical work. We begin by

discussing the CI-bootstrap and then consider the WCI-bootstrap. The latter has the

advantage that it is asymptotically equivalent to the delta method when the delta method

is valid. For both of these approaches, we consider using the asymptotic distribution and

the bootstrap approximation.

Let the dimension of θ be equal to K and let h(θ) have dimension H. Note that

allowing for H > 1 is important, since it allows one to obtain a joint confidence set for

multiple counterfactual outcomes. For example, in a structural model with human capital

accumulation (Eckstein and Wolpin 1999, Keane and Wolpin 2000) one can look at the

effect of a policy change on both completed schooling and work experience (at any point

in the life cycle). Alternatively, in a model of labor market dynamics (Eberwein, Ham

and LaLonde 1997), it would be helpful to have a joint confidence set for the effect of

participating in a training program on the expected duration of employment and the

11Some readers may question the need to use the AD bootstrap, since with a very large number of
simulations the outcome may approach a continuously differentiable function and researchers should be
able to use the delta method. However, our example is a toy model, and using a very large number of
simulations in a function evaluation is not feasible for the structural models used for counterfactual policy
analysis.
12Also, the coverage probability remained well below 95%, even for much smaller values of σ2β .
13For example, it is straightforward to show that if θ and h(θ) are scalars, then a suffi cient condition

for the AD-bootstrap to work is for h(θ) to be monotonic. However, Example 2 shows that this does not
generalize to the case where the parameter is of dimension two and the function is monotonic in its first
and second argument.
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expected duration of unemployment.

Suppose that the estimator for θ, denoted by θ̂, is asymptotically normally distributed

and consider the following confidence interval for the parameter θ.

CIθ1−α = {θ ∈ Θ|N · (θ̂ − θ)′(Ω̂)−1(θ̂ − θ) ≤ χ21−α(K)}, (1)

where Ω̂ is the asymptotic variance-covariance matrix for θ̂ and χ21−α(K) is the (1 − α)

percentile of the χ2 distribution with K degrees of freedom. Next, let CIh(θ)1−α denote the

set of values that we obtain if we apply the function h(θ) to every element of CIθ1−α. More

precisely,

CI
h(θ)
1−α = {τ ∈ RH |τ = h(θ) for some θ ∈ CIθ1−α}. (2)

Suppose that the researcher draws M∗ times from the asymptotic distribution of θ̂.

Let θ̃1, ..., θ̃M∗ denote these draws. The researcher then keeps the draws that satisfy

θ̃m ∈ CIθ1−α, m = 1, ...,M∗.. Let θ̃1, ..., θ̃M denote retained these draws. We now estimate

the confidence set for the function of the parameters, CIh(θ)1−α, by applying the function

h(.) to the draws θ̃1, ..., θ̃M . In particular, let ĈI
h(θ)
1−α be the set of all points in the im-

age of h(θ), θ ∈ Θ, that are no farther than the Euclidian distance η > 0 away from

h(θ̃1), ..., h(θ̃M−1), or h(θ̃M ).14 The confidence set ĈIh(θ)1−α is what arises from using what

we described heuristically above as the CI-bootstrap.

We briefly note why the AD-bootstrap can fail for the case where h(θ) is a scalar.

The AD-bootstrap samples from the entire asymptotic distribution of θ̂ and forms the

confidence interval of h(θ) by trimming the extreme (1 − α)/2 values from the upper

and lower tails of the resulting distribution for h(θ). Note that the extreme values of

h(θ) that the AD-bootstrap trims can arise from i) an extreme draw from the asymptotic

distribution of θ or ii) a ‘reasonable’draw for θ that results in an extreme value of h(θ).15

The CI-bootstrap instead samples from the (1− α) confidence interval of θ and includes

all of the resulting values of h(θ) in its (1−α) confidence interval, and thus does not trim

h(θ) for a ‘reasonable’draw of θ. Moreover, note that constructing a confidence interval

using the CI-bootstrap is no more diffi cult than constructing one using the AD-bootstrap.
14Let Θh be the image of h(θ), θ ∈ Θ. If θ̃s ∈ CIθ1−α is sampled, then any h ∈ Θh for which

||h(θ̃s)− h||2 ≤ η is included in the (1− α) confidence interval for h(θ).
15 In the lemma that follows, we formalize the notion that values that are closer to θ̂ are likely to be

closer to the true value θ0 as well (compared to values that are further away from θ̂).
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A similar procedure can be used if the researcher draws J bootstrap samples to obtain

the distribution of θ̂. Let θ̃1, ..., θ̃J denote the bootstrap sample estimates and Ω̂ the

variance-covariance matrix of the bootstrap samples. For each estimate, we calculate

Bj = (θ̂− θ̃j)′Ω̂−1(θ̂− θ̃j), j = 1, ..., J. We then select the (1− α) · J bootstrap estimates

that have the smallest values of Bj , and call this set B. Let θ̃1, ..., θ̃M denote these draws.

As before, we estimate the confidence set by applying the function h(.) to the draws

θ̃1, ..., θ̃M . That is, ĈI
h(θ)
1−α is the set of all points in the image of h(θ), θ ∈ Θ, that are no

farther than the Euclidian distance η > 0 away from h(θ̃1), ..., h(θ̃M−1), or h(θ̃M ).

We next consider the case where the asymptotic distribution of θ̂ is unknown but a one

can construct a confidence interval for it. For example CIθ1−α is derived using bounds.
16

Note that one cannot calculate h(θ) for every θ ∈ CIθ1−α. Therefore, we use a grid that

has M points to approximate CIθ1−α. We then calculate h(θ) for each of these M grid

points.17 Next, let the confidence set ĈIh(θ)1−α be the set of all points in the image of h(θ),

θ ∈ Θ, that are no farther than the Euclidian distance η > 0 away from h(θ̃1), ..., h(θ̃M−1),

or h(θ̃M ).

We state our first assumption in terms of properties of CIθ1−α. Later on, when we

discuss the weighted CI-bootstrap, we use properties of the asymptotic distribution as

primitives in the assumptions, since the weighting may depend on this asymptotic distri-

bution. Let N denote the sample size. Also, let P be the data generating process and

let P be a space of probability distributions. Our first assumption requires the true value

of the parameter, θ0(P ), to be an element of CIθ1−α with probability of at least (1 − α),

uniformly over P.

Assumption 1

Let (i) θ0(P ) ∈ Θ, which is compact; and (ii)

lim
N→∞

inf
P∈P

Pr{θ0(P ) ∈ CIθ1−α} ≥ 1− α

where α ∈ (0, 1).

16E.g. the confidence interval is derived using the techniques proposed by Imbens and Manski (2004),
Chernozhukov, Hong, and Tamer (2007), or Stoye (2009).
17One can use equally spaced grids, Halton sequences, Halton (1964), or Sobol sequences, Sobol (1967).

All these grids are dense in CIθ1−α as M increases.
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While the true parameter, θ0(P ), is of course a function of the data generating process,

for expositional ease we often write it as θ0. Note that Assumption 1 simply says that

the confidence set for the parameter contains the true parameter value with probability

(1 − α) in the limit, uniformly over P. This will certainly hold for any estimator that

is uniformly asymptotically normally distributed, as well as for the subsampling and

bootstrap confidence intervals for θ under appropriate regularity conditions (see Romano

and Shaikh 2010, and Andrews and Guggenberger 2010).

Assumption 2

Let h(θ) be bounded for all θ ∈ Θ. Let there exist a partitioning of the parameter space

such that Θ1 ∪Θ2...∪ΘR = Θ, where R <∞; let Θ1,Θ2, ...,ΘR−1 and ΘR have nonzero

Lebesgue measure; and let h(θ) be uniformly continuous18 for all θ ∈ Θr, r = 1, ..., R.

The second assumption allows h(θ) to be discontinuous. For example, if θ is a scalar,

then Assumption 2 requires that the number of discontinuities is finite. In general, the

parameter space is partitioned into R subsets, and h(θ) is assumed to be uniformly con-

tinuous on each of these sets. The restriction is that R is finite. This condition is weaker

than the conditions needed for the delta method.

Next, we propose a modified version of our procedure. This modified procedure uses

weights and usually yields a smaller confidence interval than the CI-bootstrap. The idea

is to use a weighted average of the elements of the parameter vector θ. These weights

are comparable to the weights that are used in the general method of moments (GMM)

procedure, in the sense that the reason to use them is to reduce variation or spread.

For example, consider the function h(θ) = Φ(θ1 + 2θ2); then the researcher could use a

confidence interval for θ1 + 2θ2 rather than the confidence interval for (θ1, θ2). That is,

the researcher could use a confidence interval for a weighted average. In general, let θ̂

be asymptotically normally distributed and let Ω̂ denote a consistent estimator for its

asymptotic variance-covariance matrix. Define the vector w = (w1, w2, ..., wK)′, where

w1, w2, ..., wK are scalars if h(θ) is a scalar and column vectors with length H otherwise.

18The vector-function h(θ) is uniformly continuous on Θj if for any η > 0 there is an ε > 0 such that
||h(θ1)− h(θ2)|| < η for all θ1, θ2 ∈ Θj with ||θ1 − θ2|| < ε where ||.|| is the Euclidean norm.
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Consider the following confidence interval for w′θ,

WCIθ1−α = {θ ∈ Θ|N · (θ̂ − θ)′w(w′Ω̂w)−1w′(θ̂ − θ) ≤ χ21−α(H)}. (3)

If h(θ) is a scalar, as in the applications reviewed in the introduction, then H = 1. Let

WCI
h(θ)
1−α denote the set of values that we obtain if we apply the function h(θ) to every

element of WCIθ1−α. That is,

WCI
h(θ)
1−α = {τ ∈ RH |τ = h(θ) for some θ ∈WCIθ1−α}. (4)

We estimate WCI
h(θ)
1−α by drawing M

∗ times from the asymptotic distribution of θ̂, and

keeping the draws that are elements of WCIθ1−α (i.e. draws that satisfy. N · (θ̂ −

θ)′w(w′Ω̂w)−1w′(θ̂ − θ) ≤ χ21−α(H)). Let θ̃1, ..., θ̃M denote these retained draws. We

now estimate this confidence set by applying the function h(.) to the draws θ̃1, ..., θ̃M . In

particular, let ŴCI
h(θ)
1−α be the set of all points in the image of h(θ), θ ∈ Θ, that are no

farther than the Euclidian distance η > 0 away from h(θ̃1), ..., h(θ̃M−1), or h(θ̃M ).

A similar procedure can be used if the researcher uses the bootstrap for the distribution

of θ̂. Again, let θ̃1, ..., θ̃J denote the bootstrap sample estimates and Ω̂ the variance-

covariance matrix of the bootstrap samples. For each estimate, we calculate B̃j = (θ̂ −

θ̃j)
′w(w′Ω̂w)−1w′(θ̂ − θ̃j), j = 1, ..., J. We then select the (1− α) · J bootstrap estimates

that have the smallest values of B̃j and call this set B̃. Let θ̃1, ..., θ̃M denote these draws.

As before, we estimate the confidence set by applying the function h(.) to the draws

θ̃1, ..., θ̃M . That is, ŴCI
h(θ)
1−α is the set of all points in the image of h(θ), θ ∈ Θ, that are

no farther than the Euclidian distance η > 0 away from h(θ̃1), ..., h(θ̃M−1), or h(θ̃M ).

In applications, the weights w will often be estimated. One may estimate w by using

numerical derivatives of h(θ) around the estimate θ̂. The numerical derivatives provide

simple estimates for the weights, ŵ, and then one replaces w by ŵ in forming ŴCIθ1−α and

B̃ to obtain confidence intervals for h(θ). Furthermore, we suggest to limit the ratio of the

weights so that mink(|ŵk|})/maxk(|ŵk|) ≥ 1/100. The WCI-bootstrap yields confidence

intervals with the correct coverage for h(θ), even if some of the partial derivatives of h(θ)

are infinite (as in Example 1) or zero, while of course this is not true for the delta method.

Since the WCI-bootstrap is asymptotically equivalent to the delta method when the latter
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is valid (see the Appendix), the WCI-bootstrap is safer to use than the delta method but

involves no loss of effi ciency.

A somewhat more complicated procedure that avoids numerical differentiation is the

following. First, consider the case where the researcher samples from the asymptotic

distribution. In that case, we propose to let the initial confidence set be all values of

θ ∈ Θ for which N · (θ̂ − θ)′Ω̂−1(θ̂ − θ) ≤ χ21−α(K). We then use the values of this initial

confidence interval to estimate a linear approximation to the function h(θ). In particular,

we use the asymptotic distribution to draw M values of the parameter that satisfy

N · (θ̂ − θ)′Ω̂−1(θ̂ − θ) ≤ χ21−α(K). Let θ̃1, ..., θ̃M denote these points. We then calcu-

late h(θ̃1), ..., h(θ̃M ) and regress {h(θ̃1), ..., h(θ̃M )} on {θ̃1, ..., θ̃M}. Let ŵ denote the least

squares estimator and use the elements of ŵ as weights. Note that ŵ′θ is just the best

linear predictor and that again h(θ) is not required to be continuous. Next, construct a

confidence set for h(θ) by again replacing w with ŵ.

A similar procedure can be used to estimate weights if the researcher uses the boot-

strap. Once again, let θ̃1, ..., θ̃J denote the bootstrap sample estimates and Ω̂ the variance-

covariance matrix of the bootstrap samples. As in the case of the CI-bootstrap, we cal-

culate Ãj = (θ̂ − θ̃j)′Ω̂−1(θ̂ − θ̃j), j = 1, ..., J. We then select the (1 − α) · J bootstrap

estimates that have the smallest values of Ãj and call this set Ã. Next, we regress h(θ̃j)

on θ̃j using all j ∈ Ã. This yields the weights ŵ. Next, construct a confidence set for h(θ)

by again replacing w with ŵ.

Besides Assumption 2, we also need Assumption 3 for the WCI-bootstrap when we

construct ŴCI
h(θ)
1−α (i.e. sample from the asymptotic distribution of θ̂).

Assumption 3

Let (i) θ ∈ Θ, which is compact; (ii) for all k, wk 6= 0, ŵk 6= 0, sup
P∈P
|ŵk − wk| = op(1);

(iii)
√
N(θ̂ − θ0)

d→ N(0,Ω) uniformly in P ∈ P, and the estimator Ω̂ converges to Ω

uniformly in P ∈ P, where Ω has full rank; (iv) α ∈ (0, 1).

If the researcher uses the bootstrap to obtain the confidence set for θ, then we need an

additional assumption for ŴCI
h(θ)
1−α. In particular, we require that the weighted average,

ŵ′θ0, is in the confidence set WCIθ1−α with a probability that is equal or larger than
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(1−α), uniformly in P ∈ P. Romano and Shaikh (2010) give uniform convergence results

for the bootstrap (and subsampling).

Assumption 4

If a version of the bootstrap is used, then

lim
N→∞

inf
P∈P

Pr(ŵ′θ0 ∈WCIθ1−α) ≥ 1− α.

Before stating our theorem, intuition for our result can be obtained by continuing our

consideration of Example 3.

Example 3 (Continuation):

Consider h(γ) = max(γ, 0) where γ = E(X) and γ̂ = X̄N . It follows from Andrews that

the nonparametric bootstrap fails to consistently estimate the distribution of µ̂ if µ = 0.

Further, he demonstrates that it is impossible to consistently estimate (using any version

of the bootstrap) the distribution of γ̂ if γ = c√
N
for any c > 0. However, the CI-bootstrap

can be used to calculate a 95% confidence interval (or a (1 − α) confidence interval) for

h(γ) in spite of the absence of a consistent estimator of the asymptotic distribution.

In particular, let δ = h(γ) = max(γ, 0). The symmetric 95% confidence interval for

δ is
[
max

(
0, X̄N − 1.96√

N

)
,max

(
0, X̄N + 1.96√

N

)]
, which contains δ with probability 0.95,

including the case where δ = c√
N
for any c > 0.19

We now state our theorem.

Theorem

Let Assumptions 1-2 hold. Then the CI-bootstrap yields

lim
M→∞

lim
N→∞

inf
P∈P

Pr

(
h(θ0) ∈ ĈIh(θ)1−α

)
≥ 1− α.

Let Assumptions 2-3 hold. Then sampling from the asymptotic distribution and using the

WCI-bootstrap yields

lim
M→∞

lim
N→∞

inf
P∈P

Pr

(
h(θ0) ∈ ŴCI

h(θ)
1−α

)
≥ 1− α.

19This example also illustrates that one should perhaps not focus exclusively on the distribution of the
bootstrap when the goal is to derive a confidence interval. Also, Hirano and Porter (2012) derive more
impossibility results.
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Let Assumptions 2-4 hold. Then using a bootstrap procedure for θ̂ and the WCI-bootstrap

yields

lim
M→∞

lim
N→∞

inf
P∈P

Pr

(
h(θ0) ∈ ŴCI

h(θ)
1−α

)
≥ 1− α.

Proof: See appendix.

If one relaxes the uniformity requirements20 in Assumption 1, 3, or 4, then the theorem

holds without the uniformity property. Specifically, if we replace Assumption 1 by (i)

θ0 ∈ Θ, which is compact; and (ii)

lim
N→∞

Pr(θ0 ∈ CIθ1−α) ≥ 1− α,

then the theorem holds without the uniformity result, i.e.

lim
M→∞

lim
N→∞

Pr

(
h(θ0) ∈ ĈIh(θ)1−α

)
≥ 1− α.

Also, Assumption 3 puts only mild restrictions on the weights. In particular, one could use

other estimators for the weights. For example, if the function h(θ) has a single index, then

one also could calculate the weights using semiparametric least squares, as in Ichimura

(1993), or one of the single index estimators reviewed by Horowitz (1998). In general,

our weighting is analogous to the use of a weighting matrix when applying the method of

moments estimator. In particular, using a weighting matrix that does not converge to the

effi cient weighting matrix does not, in general, cause the method of moments estimator

to be inconsistent, see Hansen (1982) and Newey and McFadden (1994). The same is

true here for the choice of weights, ŵk, k = 1, ...,K. Choosing an effi cient weighting

matrix is, in general, a good idea and here we suggest using the WCI-bootstrap with

nonzero weights rather than the CI-bootstrap. Using nonzero weights is analogous to the

approach of Newey and West (1987) and Andrews (1991), who advocate using estimates

of the variance-covariance matrix that are positive semi-definite.

The main difference between the CI and WCI-bootstrap on the one hand, and the

AD-bootstrap on the other hand, is that the CI and WCI-bootstrap use values of θ that

are close to θ̂, while the AD-bootstrap does not have this property. In particular, the AD-

bootstrap trims extreme values of h(θ) rather than extreme values of θ. This explains why

20Andrews (1987) emphasizes the importance of uniform convergence.
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the AD-bootstrap yields an inconsistent confidence interval in Example 2. We formalize

the notion that values of θ that are closer to θ̂ also are likely to be closer to the true value

θ0 in the following lemma.

Lemma

Let θ, v, and w be scalars. Let (θ̂ − θ0) ∼ N(0, σ2), σ2 > 0, and v2 < w2. Then

P (|θ̂ + v − θ0| ≤ ε) > P (|θ̂ + w − θ0| ≤ ε) for any ε > 0.

Proof: See appendix.

Note that most of the discussion of confidence intervals in the literature is about

the coverage probability and about the length of the confidence interval. This lemma

and our examples add another consideration to the discussion on confidence intervals in

general. We now turn to investigating the differences between the AD-bootstrap and the

CI-bootstrap within the context of two empirical studies.

4. A Comparison of the Confidence Intervals Produced by the
AD-bootstrap and the CI-bootstrap in Two Empirical Studies

In this section we use the parameter estimates and data from two empirical studies to

compare the length of the confidence intervals produced by the different methods discussed

above. We first use results and data from Ham, Li and Shore-Sheppard (2011, hereafter

HLSS). They estimate a model of the employment dynamics of disadvantaged mothers (i.e.

single mothers with a high school degree or less) for the U.S. Specifically, they estimate

hazard functions for these women for i) nonemployment spells in progress at the start

of the sample, i.e. left censored nonemployment spells; ii) employment spells in progress

at the start of the sample, i.e. left censored employment spells; iii) nonemployment

spells that begin after the start of the sample, i.e. fresh nonemployment spells and iv)

employment spells that begin after the start of the sample, i.e. fresh employment spells.21

HLSS first consider the effect of a change in an independent variable on the expected

duration of each type of spell. Since the expected duration is a relatively simple differ-

entiable function of the estimated parameters, they use the delta method to calculate

21They also estimate the joint distribution of the (correlated) unobserved heterogeneity components in
each hazard function.
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confidence intervals. In Table 1, we compare the confidence intervals produced by the

delta method, the AD-bootstrap, the CI-bootstrap and the WCI-bootstrap for these ex-

pected durations; only the AD-bootstrap will produce incorrect confidence intervals. The

first panel presents (for each type of spell) the confidence intervals for the sample average

of the individual expected durations for each spell type. The remaining panels show the

analogous confidence intervals (produced by each method for each type of spell) of the

effect on the expected durations of i) having more schooling; ii) being African-American

versus being white; iii) being Hispanic versus. being white and iv) having a child under

6 years versus. not having a child under 6 years. For ease of viewing, in each panel we

also report the ratio of the confidence interval lengths produced by: i) the AD-bootstrap

relative to the delta method; ii) the CI-bootstrap relative to the delta method; and iii)

the WCI-bootstrap relative to the delta method. From Table 1 we conclude that: i) the

inconsistent AD-bootstrap produces somewhat shorter confidence intervals than the delta

method; ii) the CI-bootstrap produces substantially larger confidence intervals than the

delta method; and iii) the WCI-bootstrap produces, on average, confidence intervals that

are somewhat larger than those produced using the delta method but considerably smaller

than those produced by the CI-bootstrap.

HLSS also consider the effect of the change in an independent variable on the estimated

fraction of time a woman will spend in employment 3 years, 6 years, and 10 years after the

change, which depends on the parameters from all the hazard functions. This function

is nondifferentiable so the delta method is no longer applicable and the CI-bootstrap or

WCI-bootstrap should be used for estimating confidence intervals.22 The first panel of

Table 2 shows confidence intervals for the baseline fraction of time spent in employment

at 3 years, 6 years, and 10 years after the start of the sample. In the remaining panels,

we show the respective confidence intervals for the effects of changes in the demographic

22For example, if a woman starts the sample in nonemployment, they calculate her hazard function for
month 1 of a left censored nonemployment spell, and draw a uniform random number from [0,1]. Suppose
the random number is less than the hazard. Then, she moves to employment and a 1 is registered for
this month of her simulated employment history. In the next month, we calculate her hazard for month
1 of a fresh employment spell, and again draw a random number. If this random number is less than the
hazard, a 0 is registered for the second month of her simulated employment history as she moves back
to unemployment; otherwise a 1 is registered for this month of her employment history as she stays in
employment. This simulation is comparable to those used in structural modelling to estimate the effect
of counterfactual policy changes.
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variables considered above on the fraction of time employed 3, 6, and 10 years after the

change. In each case we also show the ratio of the confidence interval lengths produced

by i) the AD-bootstrap relative to the CI-bootstrap and ii) the AD-bootstrap relative to

the WCI-bootstrap. Table 2 shows that the CI and WCI-bootstrap confidence intervals

are basically identical, while the AD-bootstrap produces substantially smaller confidence

intervals than the consistent WCI-bootstrap and CI-bootstrap.

Finally, Lee and Ham (2012, here after LH) use data from an online dating service

that proposes (opposite gender) matches to its individual members. The data indicate

whether the man and woman agree to the date proposed by the company, and if not,

whether the man, the woman, or both turned down the date. The data set also contains

information on whether, conditional on a first date, the couple goes on a second date,

and, if not, whether the man, the woman, or both turned down the second date. Finally,

the data also indicate whether the couple marries. Denote the outcome that individual i

of gender j (j = M,F ) accepts (refuses) date d (d = 1, 2) as Y jd=1 (Y
j
d=0), and let the

outcome where the couple marries (does not marry) be denoted by Y 3=1 (Y 3=0). LH

estimate a fairly rich model of marriage and dating, and then simulate their estimated

model to measure the relative effi ciency of different possible matching algorithms that the

dating company could use. Here we focus on the baseline probabilities of acceptance for

the algorithm that the company actually uses. These probabilities are complicated differ-

entiable functions of the estimated parameters so it is sensible to use the CI-bootstrap to

calculate confidence intervals the baseline probabilities. In Table 3, we contrast these con-

fidence intervals with those produced by the AD-bootstrap. We find that the confidence

intervals produced by the AD-bootstrap are about half of the length of those produced

by the CI-bootstrap, but that the CI-bootstrap still produces quite narrow confidence

intervals for the baseline probabilities.

Thus our results suggest that previous work is likely to have substantially overstated

the precision of their counterfactual policy effects, and that there may well be a significant

effi ciency gain from moving from the CI-bootstrap to the WCI-bootstrap.
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5. Conclusion

Applied researchers often need to estimate confidence intervals for functions of estimated

parameters that are nondifferentiable, or have unbounded or zero derivatives. Currently,

they use the (nonparametric) bootstrap or sample from the asymptotic distribution of

the estimated parameters, since the delta method is not appropriate in these settings.

Researchers also frequently use these procedures to obtain confidence intervals for well-

behaved, but complicated, functions. Indeed, two heavily cited articles and four prominent

graduate econometrics textbooks recommend one or both of these approaches. Further,

one of these approaches can be implemented using pre-programmed commands in the

widely used Stata software package.

We first show that both of these procedures produce confidence intervals that can

be incorrect in the sense that the asymptotic coverage is less than intended, i.e. they

produce confidence intervals that are too small. We then propose two procedures that

have correct coverage under relatively weak conditions. In particular, our procedures are

the first to give confidence intervals for functions of parameters without restricting the

derivatives of the functions and without requiring the functions to be continuous. We

use data and parameter estimates from two empirical studies to compare our approach

to the traditional one, and find that the procedures currently used produce substantially

downward biased confidence intervals.

Further, Andrews (2000) gives an example in which all versions of the bootstrap fail to

consistently estimate the distribution of the maximum likelihood estimator. An example

involving a function of a parameter yields the same maximum likelihood estimator as in

Andrews (2000). Our proposed procedures also work for this example, suggesting that it

might be more fruitful to focus on the construction of confidence intervals, rather than

on the distributions of various versions of the bootstrap.

Finally, one of our procedures (the WCI-bootstrap) produces asymptotically the same

confidence interval as the delta method if the linear approximation holds, so in principle

there is no effi ciency loss in using the WCI-bootstrap in any application. Moreover, we

find that in practice this procedure produces similar confidence intervals to the delta
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method in a situation where the latter is likely to be used.
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6. Appendix

Example 1:

Note that the true value of µ is zero. Consider

P

(
0 ∈

[√
|X̄N | −

1.96

2
√
|X̄N |

1√
N
,
√
|X̄N |+

1.96

2
√
|X̄N |

1√
N

])

= P

(√
|X̄N | −

1.96

2
√
|X̄N |

1√
N
≤ 0 ≤

√
|X̄N |+

1.96

2
√
|X̄N |

1√
N

)

= P

(
− 1.96

2
√
|X̄N |

1√
N
≤ −

√
|X̄N | ≤

1.96

2
√
|X̄N |

1√
N

)

= P

(
−1.96

2

1√
N
≤ −|X̄N | ≤

1.96

2

1√
N

)
= P

(
−1.96

2

1√
N
≤ X̄N ≤

1.96

2

1√
N

)
= Φ

(
1.96

2

)
− Φ

(
−1.96

2

)
≈ 0.67.

Example 2

Consider ρ = 1. In that case β̂ = γ̂, so that h(β̂, γ̂) = h(β̂, β̂). Therefore, we can define a

new function that has just one scalar as its argument. In particular, define

h(β) =
1

2
Φ(β) +

1

2
Φ
(
−2β −

√
2 ln(2)

)
, and its derivative,

h′(β) =
1

2
φ(β)− φ

(
−2β −

√
2 ln(2)

)
.

Note that

h′(β = 0) =
1

2
φ(0)− φ

(
−
√

2 ln(2)
)

=
1

2

1√
2π
− 1√

2π
exp

[
−1

2

{
−
√

2 ln(2)
}2]

=
1

2

1√
2π
− 1√

2π
exp{− ln(2)} = 0.

Checking the second order conditions and the limits yields that h(0) is the minimum.

Thus, h(β) > h(0) for any β 6= 0. Therefore, the true value h(0) = 1
4 + 1

2Φ
(
−
√

2 ln(2)
)

is outside any two-sided AD-confidence interval of h(β). Thus, the coverage probability is

zero in this case. Hence, the coverage probability is also zero for the function h(β, γ) =

1
2Φ(β) + 1

2Φ
(
−2γ −

√
2 ln(2)

)
if ρ = 1. Note that the coverage probability is continuous

in ρ so that the coverage probability is also too low for some ρ < 1. In the simulations,

based on 100,000 repetitions, the coverage probability was still too low for ρ = 0.5.



Calculating Confidence Intervals for Continuous and Discontinuous Functions of Parameters 27

Example 3:

Note that

P

(
µ ∈

[
max

(
0, X̄N −

1.96√
N

)
,max

(
0, X̄N +

1.96√
N

)])
= P

(
max

(
0, X̄N −

1.96√
N

)
≤ µ ≤ max

(
0, X̄N +

1.96√
N

))
≥ P

(
max

(
0, X̄N −

1.96√
N

)
≤ µ ≤ X̄N +

1.96√
N

)
= 1− P

(
max

(
0, X̄N −

1.96√
N

)
> µ

)
− P

(
X̄N +

1.96√
N

< µ

)
= 1− P

(
max

(
−X̄N ,−

1.96√
N

)
> µ− X̄N

)
− P

(
1.96√
N

< µ− X̄N

)
.

Notice that P
(
−X̄N > µ− X̄N

)
= 0 since µ ≥ 0. Thus

P

(
µ ∈

[
max

(
0, X̄N −

1.96√
N

)
,max

(
0, X̄N +

1.96√
N

)])

≥ 1− P
(
−1.96√

N
> µ− X̄N

)
− P

(
1.96√
N

< µ− X̄N

)
= P

(
−1.96 ≤

√
N(X̄N − µ) ≤ 1.96

)
= 0.95

since
√
N(X̄N−µ) has a standard normal distribution. This holds for any µ ≥ 0, including

µ = c√
N
.

Proof of Theorem:

Consider a uniformly continuous function f(θ) and let f([0, 1]) denote the set of values of

f(θ) where θ ∈ [0, 1], i.e.

f([0, 1]) = {τ ∈ R|τ = f(θ) for some θ ∈ [0, 1]}.

Next, consider approximating this function on the interval θ ∈ [0, 1] by evaluating the

function at all the values of the M grid points, GM = { 1M , ..., M−1M , MM }, and including all

values that are no farther than η > 0 from f( 1
M ), ..., f(M−1M ), or f(MM ). The next lemma

proves that this approximation contains the set f([0, 1]).
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Lemma A1:

Let f : R→ R be uniformly continuous. Let θ ∈ [0, 1], and η > 0. Then

f([0, 1]) ⊂ lim
M→∞

∪Mi=1[f(i/M)− η, f(i/M) + η].

Proof: By construction, since η is fixed and h(θ) is uniformly continuous, there exists an

r > 0 such that y ∈ Br(i/M) implies that |f(y) − f(i/M)| < η where Br denotes a ball

with radius r. Thus, f(Br(i/M)) ⊂ [f(i/M) − η, [f(i/M) + η]. Next, let M > 1
r so that

∪Mi=1Br(i/M) = [0, 1]. Finally, f([0, 1]) ⊂ ∪Mi=1f(Br(i/M)) ⊂ ∪Mi=1[f(i/M)− η, [f(i/M) +

η].

Note that this lemma can easily be generalized to θ ∈ [0, 1]2 as well as θ ∈ [0, 1]K or θ ∈ Θ,

which is compact. Using this lemma, we now turn to the assumptions of the theorem.

We first consider the case where Assumptions 1-2 hold and we use the CI-bootstrap. The

vector-function h(θ) is uniformly continuous on Θr, r = 1, ..., R, so that for any η > 0 there

is an ε > 0 such that ||h(θ1)−h(θ2)|| < η for all θ1, θ2 ∈ Θr with ||θ1− θ2|| < ε where ||.||

is the Euclidean norm. Therefore we can partition the confidence interval CIθ1−α into Q

sets, CIθ1−α(1), CIθ1−α(2), ..., CIθ1−α(Q) such that (i) if θa ∈ CIθ1−α(q) and θb ∈ CIθ1−α(q)

for some q, then ||h(θa)−h(θb)|| < η; and (ii) CIθ1−α(1)∪CIθ1−α(2)...∪CIθ1−α(Q) = CIθ1−α

where Q <∞. Note that such a partition is possible since Θ is compact. Also note that,

without loss of generality, CIθ1−α(1), CIθ1−α(2), ..., CIθ1−α(Q) have a nonzero Lebesgue

measure. Thus, for any M ≥ M0, where M0 < ∞, we have that every set CIθ1−α(1),

CIθ1−α(2), ..., CIθ1−α(Q) has one or more of the grid point as its elements since the grid is

dense in CIθ1−α. Thus, calculating h(θ1), ..., h(θM ) and including every point in the image

of h(θ), θ ∈ Θ, that are no farther than η > 0 away from h(θ1), ..., h(θM−1), or h(θM )

gives CIh(θ)1−α ⊂ ĈI
h(θ)
1−α for any M ≥M0. Note that M0 does not depend on N. Therefore,

the requirement in Assumption 1,

lim
N→∞

inf
P∈P

Pr(θ0 ∈ CIθ1−α) ≥ 1− α,

yields

lim
M→∞

lim
N→∞

inf
P∈P

Pr(h(θ) ∈ ĈIh(θ)1−α) ≥ 1− α.
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Next, consider the case where Assumptions 2-3 hold and the researcher uses the WCI-

bootstrap and samples from the asymptotic distribution of θ̂. Note that by Assumption

3 wk 6= 0, ŵk 6= 0, sup
P∈P
|ŵk − wk| = op(1). Also note that

WCIθ1−α = {θ ∈ Θ|N · (θ̂ − θ)′ŵ(ŵ′Ω̂ŵ)−1ŵ′(θ̂ − θ) ≤ χ21−α(H)}.

Just as we could partition CIθ1−α, we can also partition WCIθ1−α (since Θ is compact).

Thus, we partition the confidence interval WCIθ1−α in Q sets,

WCIθ1−α(1), WCIθ1−α(2), ...,WCIθ1−α(Q) such that (i) if θa ∈ WCIθ1−α(q) and θb ∈

WCIθ1−α(q) for some q, then ||h(θa)− h(θb)|| < η; and (ii) WCIθ1−α(1)∪WCIθ1−α(2)...∪

WCIθ1−α(Q) = WCIθ1−α where Q < ∞. Also note that, without loss of generality,

WCIθ1−α(1), WCIθ1−α(2), ...,WCIθ1−α(Q) have a nonzero Lebesgue measure. Next, note

that
√
N(θ̂ − θ0)

d→ N(0,Ω) uniformly in P ∈ P so that a value of each of the Q sub-

sets is sampled with probability approaching one as M → ∞. Therefore, calculating

h(θ̃1), ..., h(θ̃M ) and including every point in the image of h(θ), θ ∈ Θ, that are no far-

ther than η > 0 away from h(θ̃1), ..., h(θ̃M−1), or h(θ̃M ) gives WCI
h(θ)
1−α ⊂ ŴCI

h(θ)
1−α with

probability approaching one as M → ∞. This yields the result for sampling from the

asymptotic distribution.

Finally, consider the case where Assumptions 2-4 hold. In this case, one can use any

version of the bootstrap as long as Assumption 4 is satisfied, i.e.

lim
N→∞

inf
P∈P

Pr(ŵ′θ0 ∈WCIθ1−α) ≥ 1− α.

Using the same reasoning as for sampling from the asymptotic distribution concludes the

proof of the theorem.

Proof of Lemma:

Note that v is a constant. Thus, if θ, v, and w are scalars, then

P (|θ̂ + v − θ0| ≤ ε) = P (|Zσ + v| ≤ ε),

where Z is a realization from a standard normal distribution. Note that this probability

remains the same if v is replaced by (−v). Similarly, P (|θ̂+w−θ0| ≤ ε) remains the same
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if w is replaced by (−w). Thus, without loss of generality, we assume that 0 ≤ v < w.

This gives

P (|θ̂ + v − θ0| ≤ ε) = P (−ε ≤ Zσ + v ≤ ε)

= P (−ε+ v

σ
≤ Z ≤ ε− v

σ
) =

∫ (ε−v)/σ

(−ε−v)/σ
φ(z)dz.

Similarly,

P (|θ̂ + w − θ0| ≤ ε) =

∫ (ε−w)/σ

(−ε−w)/σ
φ(z)dz.

This gives

P (|θ̂ + v − θ0| ≤ ε)− P (|θ̂ + w − θ0| ≤ ε) =

∫ (ε−v)/σ

(−ε−v)/σ
φ(z)dz −

∫ (ε−w)/σ

(−ε−w)/σ
φ(z)dz

=

∫ (ε−v)/σ

(ε−w)/σ
φ(z)dz −

∫ (−ε−v)/σ

(−ε−w)/σ
φ(z)dz

using 0 ≤ v < w. Note that the last equation holds, even if ε− w < −ε− v. Thus

P (|θ̂ + v − θ0| ≤ ε)− P (|θ̂ + w − θ0| ≤ ε) =

∫ −v/σ
−w/σ

φ(z + ε)dz −
∫ −v/σ
−w/σ

φ(z − ε)dz

=

∫ −v/σ
−w/σ

{φ(z + ε)− φ(z − ε)}dz.

Note that 0 ≤ v < w so that z ∈ [−w/σ,−v/σ) is negative. Also note that ε > 0 so that

φ(z + ε)− φ(z − ε) > 0 for any z ∈ [−w/σ,−v/σ]. Therefore,

P (|θ̂ + v − θ0| ≤ ε)− P (|θ̂ + w − θ0| ≤ ε) > 0. This completes the proof.

WCI-bootstrap and the delta method

Here we show that the WCI-bootstrap and the delta method are asymptotically equivalent

under the standard assumptions of the delta method. The standard assumptions23 of the

delta method are (i)
√
N(θ̂− θ0)

d→ N(0,Ω), (ii) Ω̂ = Ω + op(1), (iii) h(θ) is continuously

differentiable in a neighborhood of θ0; let hDer(θ) denote this derivative and let hDer =

hDer(θ0). Let all elements of hDer be nonzero. Let

CIDelta1−α = {h ∈ RH |h = h(θ) for some θ for which

N · {h(θ̂)− h}′{hDer(θ̂)′Ω̂hDer(θ̂)}−1{h(θ̂)− h} ≤ χ21−α(H)}.
23See, for example, Greene (2012, page 1084).
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The coverage of this confidence interval converges to (1−α) under the assumptions stated

above. We now show that the WCI-bootstrap yields the same confidence interval asymp-

totically. Consider the confidence interval for the WCI-bootstrap as M →∞,

ŴCI
h(θ)
1−α = {h ∈ RH |h = h(θ) for some θ for which N ·(θ̂−θ)′ŵ(ŵ′Ω̂ŵ)−1ŵ′(θ̂−θ) ≤ χ21−α(H)}.

First, consider the case that h(θ) is a linear function of the parameters so that h(θ̂)−h(θ) =

w′(θ̂ − θ), and ŵ = hDer(θ̂) = w. This gives

CIDelta1−α = {h ∈ RH |h = w′θ for some θ for which N ·(θ̂−θ)′w(w′Ω̂w)−1w′(θ̂−θ) ≤ χ21−α(H)},

which is the same set as ŴCI
h(θ)
1−α.

Next, if h(θ) is continuously differentiable (and not necessarily linear), then

h(θ̂) − h(θ) = hDer(θ̄)
′(θ̂ − θ) where θ̄ is an intermediate value, θ̄ ∈ (θ̂, θ). Note that

hDer(θ̂), hDer(θ̄), and ŵ (calculated using numerical differentiation or least squares) all

converge in probability to w = hDer = hDer(θ0). This gives

CIDelta1−α = {h ∈ RH |h = w′θ for some θ for which N ·(θ̂−θ)′w(w′Ω̂w)−1w′(θ̂−θ) ≤ χ21−α(H)+op(1)},

so that the confidence intervals of the delta method and WCI-bootstrap are first order

equivalent.



Table 1: 95% Confidence Intervals for the Effects of Changes in the Demographic Variables (Separately) on the Expected  
Durations of Employment and Non-employment Spells  

    

Left-censored 
non-employment 

spells 

Left-censored 
employment 

spells 
  

Fresh non-
employment 

spells 

Fresh 
employment 

spells 
Estimate 39.305 42.248  11.821 11.929 

Delta Method [37.872,40.738] [41.055,43.441]  [10.811,12.832] [10.969,12.900] 
AD-bootstrap [38.009,40.491] [40.957,43,327]  [10.897,12.884] [11.031,12.965] 
CI-bootstrap [36.623,41.566] [39.956,44.252]  [10.207,14.037] [10.366,14.163] 

Estimated Expected 
Duration (in months) 

WCI-bootstrap [37.431,41.089] [40.571,43.567]   [10.864,12.943] [10.960,13.037] 
AD/Delta  0.866 0.993  0.983 1.002 
CI/Delta 1.725 1.801  0.528 1.966 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.276 1.256   0.972 1.076 

       
Effect on Expected Duration From Changes With Respect to: 

Estimated Effect 7.471 5.095   -0.070 1.027 
Delta Method [5.376,9.566] [3.142,7.048]  [-1.113,0.972] [0.184,1.870] 
AD-bootstrap [5.399,9.429] [3.209,7.057]  [-1.094,0.919] [0.206,1.825] 
CI-bootstrap [3.550,10.945] [1.312,9.066]  [-2.527,2.066] [-0.723,2.655] 

Age:                             
(age=35) - (age=25) 

WCI-bootstrap [5.167,9.623] [2.992,7.397]   [-1.315,1.095] [0.024,2.037] 
AD/Delta  0.962 0.985  0.965 0.960 
CI/Delta 1.765 1.985  2.203 2.004 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.063 1.128   1.156 1.194 

  
Estimated Effect -5.293 7.013  -1.940 2.970 

Delta Method [-7.352,-3.234] [4.775,9.251]  [-3.106,-0.773] [1.983,3.958] 
AD-bootstrap [-7.230,-3.237] [4.795,9.211]  [-3.120,-0.766] [2.013,3.940] 
CI-bootstrap [-9.432,-1.204] [2.372,11.364]  [-4.116,0.313] [1.099,5.011] 

 Schooling:                    
(s = 12) - (s < 12) 

WCI-bootstrap [-7.868,-2.615] [4.462,9.735]  [-3.227,-0.600] [1.823,4.057] 
AD/Delta  0.970 1.072   1.009 0.976 
CI/Delta 1.998 2.184  1.898 1.981 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.276 1.280   1.126 1.131 

!



!
Table 1 (Continued) 

    
Left-censored 

non-employment 
spells 

Left-censored 
employment 

spells 
  

Fresh non-
employment 

spells 

Fresh 
employment 

spells 
Effect on Expected Duration From Changes With Respect to: 

Estimated Effect 2.524 -1.074  1.842 -0.440 
Delta Method [-0.022,5.069] [-3.390,1.242]  [0.434,3.249] [-1.595,0.716] 
AD-bootstrap [0.100,5.265] [-3.420,1.235]  [0.424,3.150] [-1.550,0.695] 
CI-bootstrap [-1.702,7.678] [-5.662,3.440]  [-0.752,4.612] [-2.663,1.701] 

Race:                                   
Black - White 

WCI-bootstrap [-0.355,5.674] [-3.908,1.648]   [0.329,3.331] [-1.775,1.005] 
AD/Delta  1.015 0.910  0.968 0.971 
CI/Delta 1.842 1.788  1.665 1.888 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.184 1.091   1.066 1.203 

       
Estimated Effect 2.708 -2.616   0.435 0.090 

Delta Method [-0.051,5.467] [-5.623,0.391]  [-1.076,1.947] [-1.330,1.511] 
AD-bootstrap [-0.0422,5.728] [-5.216,0.093]  [-0.968,1.889] [-1.234,1.477] 
CI-bootstrap [-2.921,9.055] [-7.613,2.476]  [-2.225,3.490] [-2.702,3.003] 

Race:                                   
Hispanic - White 

WCI-bootstrap [-0.522,6.455] [-6.314,1.289]   [-1.105,2.103] [-1.522,1.998] 
AD/Delta  1.046 0.883  0.945 0.954 
CI/Delta 2.170 1.678  1.891 1.887 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.264 1.264   1.061 1.164 

              
Estimated Effect 4.225 -1.965   1.151 0.165 

Delta Method [2.450,6.000] [-3.982,0.053]  [0.011,2.290] [-0.721,1.051] 
AD-bootstrap [2.335,6.042] [-3.853,-0.080]  [0.012,2.295] [-0.715,1.027] 
CI-bootstrap [0.558,7.912] [-5.525,1.700]  [-1.205,3.250] [-1.903,1.653] 

Number of children 
less than 6 years old                  
(one - zero) 

WCI-bootstrap [1.894,6.451] [-4.359,0.653]  [-0.158,2.439] [-0.875,1.164] 
AD/Delta  1.044 0.935  1.002 0.983 
CI/Delta 2.072 1.722  1.955 2.007 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.284 1.242   1.140 1.151 

!



!
!
!
!
!

Table 2: 95% Confidence Intervals For the Effect of Changing Demographic Variables on the Expected Fraction  
of Time Spent in Employment for Different Time Horizons 

    3-year Period 6-year Period 10-year Period 
Estimate 0.431 0.439 0.449 

AD-bootstrap [0.414,0.449] [0.421,0.459] [0.431,0.470] 
CI-bootstrap [0.396,0.469] [0.401,0.480] [0.409,0.491] 

Estimated Expected Fraction of 
Time in Employment 

WCI-bootstrap  [0.396,0.469] [0.401,0.480] [0.409,0.489] 
AD/CI 0.479 0.481 0.476 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.479 0.481 0.488 
     
Change on the Expected Fraction of Time Spent in Employment With Respect to:  

Estimated Effect 0.09 0.097 0.100 
AD-bootstrap [0.072,0.107] [0.078,0.115] [0.081,0.119] 
CI-bootstrap [0.053,0.125] [0.058,0.134] [0.061,0.137] 

Schooling: (s = 12) - (s < 12) 

WCI-bootstrap [0.053,0.126] [0.058,0.136] [0.061,0.140] 
AD/CI 0.486 0.487 0.500 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.479 0.474 0.481 
 

Estimated Effect -0.031 -0.034 -0.037 
AD-bootstrap [-0.050,-0.009] [-0.055,-0.011] [-0.058,-0.012] 
CI-bootstrap [-0.073,0.019] [-0.080,0.019] [-0.083,0.019] 

Race: Black - White 

WCI-bootstrap [-0.073,0.019] [-0.079,0.019] [-0.083,0.019] 
AD/CI 0.446 0.444 0.451 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.446 0.449 0.451 
!
!
!
!
!



!
!
!
!
!
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Table 2 (Continued)  
    3-year Period 6-year Period 10-year Period 
Change on the Expected Fraction of Time Spent in Employment With Respect to: 

Estimated Effect -0.026 -0.028 -0.029 
AD-bootstrap [-0.046,-0.001] [-0.050,-0.002] [-0.052,-0.001] 
CI-bootstrap [-0.068,0.023] [-0.073,0.024] [-0.077,0.026] 

Race: Hispanic - White 

WCI-bootstrap [-0.070,0.025] [-0.074,0.027] [-0.077,0.029] 
AD/CI 0.495 0.495 0.495 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.474 0.475 0.481 
     

Estimated Effect -0.030 -0.033 -0.035 
AD-bootstrap [-0.047,-0.014] [-0.052,-0.016] [-0.054,-0.017] 
CI-bootstrap [-0.067,0.004] [-0.072,0.003] [-0.075,0.003] 

Number of kids less than 6 
years old: one - zero 

WCI-bootstrap [-0.067,0.004] [-0.072,0.003] [-0.075,0.003] 
AD/CI 0.465 0.480 0.474 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.465 0.480 0.474 
!
!
!
!
!
!
!
!
!



  
  
  

Table 3: Estimated Probabilities of Different Dating Outcomes under the Company's Matching Algorithm 

  
 

Prediction CI-bootstrap AD-bootstrap (2)length 
/(3)length  

   (1) (2) (3) (4) 
Panel A           
Outcomes           

1 0 0 . . .  57.425 [56.576,57.841] [56.793,57.579] 1.609 
2 0 1 . . .  10.758 [10.422,11.210] [10.545,10.966] 1.872 
3 1 0 . . .  16.111 [15.481,16.869] [15.878,16.488] 2.275 
4 1 1 0 0 .  4.354 [4.198,4.672] [4.301,4.494] 2.456 
5 1 1 0 1 .  2.393 [2.304,2.539] [2.329,2.450] 1.942 
6 1 1 1 0 .  3.181 [3.083,3.396] [3.133,3.300] 1.874 
7 1 1 1 1 0  5.524 [5.144,5.970] [5.295,5.809] 1.607 
8 1 1 1 1 1   0.255 [0.231,0.300] [0.238,0.289] 1.353 
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