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Abstract

We investigate a model in which we connect slowly time varying unconditional

long-run volatility with short-run conditional volatility whose representation is

given as a semi-strong GARCH (1,1) process with heavy tailed errors. We focus

on robust estimation of both long-run and short-run volatilities. Our estimation

is semiparametric since the long-run volatility is totally unspecified whereas the

short-run conditional volatility is a parametric semi-strong GARCH (1,1) process.

We propose different robust estimation methods for nonstationary and strictly

stationary GARCH parameters with nonparametric long run volatility function.

Our estimation is based on a two-step LAD procedure. We establish the relevant

asymptotic theory of the proposed estimators. Numerical results lend support to

our theoretical results.
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1 Introduction

There is a lot of empirical evidence that is consistent with time varying dependent

and heavy-tailed innovations in economic and financial time series. To some extent

the autoregressive conditional heteroskedastic (ARCH) or generalized ARCH (GARCH)

type of models address these features. However, there remain some issues. For instance,

one salient empirical feature often found in financial time series data is that return

volatility is higher during recessions. See Black (1976), Schwert (1989), and Bollerslev

et al. (1992). This is not compatible with many widely used models whose assumption is

based on constant unconditional return volatility. In addition, the estimation methods of

many of those models are based on assumptions (such as i.i.d. innovations and moment

conditions) that are violated often in financial time series data, which renders their

estimators unreliable.

This paper proposes robust estimation of a GARCH type model that incorporates

time varying aspects of long-run volatility as in Engle and Rangel (2008) and heavy-

tailed innovation processes as in Jensen and Rahbek (2004a, 2004b) and Linton, Pan and

Wang (2010). We investigate a model in which we connect slowly time varying long-

run volatility with short-run volatility whose representation is given as a semi-strong

GARCH (1,1) model with heavy tailed errors. Our model accommodates the idea that

there are two different types of volatilities embedded in volatility processes we observed

in financial markets. One is the short-run volatility that reflects market risks. The

other one is long-run volatility that reflects the risks of real economic activity and is

slowly time varying. We focus on robust estimation of both volatilities given that our

approach does not require moment conditions of innovations usually required in the

other ARCH/GARCH type literature.

Our model can be considered as generalisation of Engle and Rangel (2008). However,

while Engle and Rangel’s model captures both time varying characteristics of the state

of the economy and many stylised facts of financial volatility, their approach neglects

the possibility that even short-run dynamics might not be a weakly stationary stochastic

process. In truth, high kurtosis and persistence of financial volatility are often found in

many datasets and this is incompatible with weakly stationary ARCH/GARCH models.

Moreover, their model is confined to the case of normal i.i.d. errors or at least errors

that have a large number of moments. One of the salient features in financial data is

fat-tailed distributions. When errors are leptokurtic, the existence of certain moments

of errors is not guaranteed. Therefore, weak stationarity assumption is unlikely to hold

in many cases. This paper incorporates heavy tailed errors in innovation process and
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possible nonstationarity in short-run dynamics into their model.

Our relaxation of these conditions is important since it is well documented that

the residuals after GARCH filtering are heavy-tailed and far from normal. (Mittnik

and Rachev (2000), Rachev (2003)). Even after spline-GARCH filtering, heavy tailed

innovations of financial time series data remain. In Figure 1, we show a time series

of daily log returns of the Russian RTS index (RTS) along with the corresponding

conditional variance. It can be seen that there is time trending in the time series of

log returns of RTS. Figure 2 shows QQ-plot of log returns of RTS in the left panel

and QQ-plot of residuals after AR(2)-GARCH(1,1) filtering. This shows that even after

AR(2)-GARCH(1,1) filtering, the residuals are far from normal. Heavy-tailed errors

and nonstationarity poses a significant challenge to both estimation of parameters of

ARCH/GARCH type models and the asymptotic theories of their proposed estimators.

Heavy-tailed innovations are too important to neglect!

***FIGURE 1,2 ABOUT HERE***

Consequently, both nonstationarity and heavy tailed innovations should be allowed

for. This necessitates the development of robust estimation methods for such models.

We investigate a model under which the essential structure of Engle and Rangel (2008)

is generalized to allow for both these features and we develop estimation technology to

handle this case.

Whereas Engle and Rangel (2008) estimated the long-run volatility by a spline

methodology, we employ a kernel estimation methodology to make our asymptotic analy-

sis tractable. Moreover, our focus is on robust estimation of both the long-run and short-

run volatilities, which can be particularly useful for risk management such as Value at

Risk and expected shortfalls.

Our estimation approach is based on the least absolute deviation estimation (LADE)

in Hall, Peng and Yao (2002) and Peng and Yao (2003). The LADE is known to

have several advantages compared with least squares. Among those, robustness and

milder moment conditions are worth mentioning. The robustness feature becomes more

important for seemingly nonstationary financial data we consider in this paper. We

approach a strictly stationary and a nonstationary semi-strong GARCH (1,1) processes

separately since an assumption of stationarity makes our estimation procedure different.

We propose different robust estimation methods for nonstationary and strictly stationary

GARCH parameters with nonparametric long run volatility function. We establish the

relevant asymptotic theory of the proposed estimators.
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The remainder of this paper is organized as follows. Section 2 briefly reviews rele-

vant literature. Section 3 introduces the model and the related framework. Section 4

suggests our estimation procedure for the unknown parameter function which captures

the long-run volatility and unknown parameters which capture the short-run dynamics.

Section 5 develops distribution theories in relation to our proposed estimators. Simula-

tion studies of our estimation procedure are explored in Section 6. Section 7 concludes.

The mathematical proofs are provided in the Appendix.

The following notations are used. The integral
∫
is taken over (−∞,∞) unless

specified otherwise. || · || denotes any norm over the relevant space. Let g be any

function from Rd → R. ||g||∞ = sup
x∈Rd
|g(x)|, ||g||q = (

∫
|g(x)|qdx)1/q, ||g||pq = (||g||q)p

and g(m) (u) denotes the mth derivative with respect to u. C2 (b) denotes the space

of twice continuously differentiable real valued functions with first and second partial

derivatives of all of their arguments bounded by b and ||g||∞ < b. Kh (·) denotes K (·/h)

with
∫
K (u) du = 1 and the corresponding bandwidth h (T )→ 0 as T →∞. Subscript

0 implies true values or function of unknown parameters or function. Et−1 is conditional
expectation on an information set Ft−1 including past information up to t − 1. 1(A) is

the indicator function for the set A. C is a generic constant which may be different at

different places.

2 Literature Review

The long-run economic environment is known to be closely related to short-run move-

ments of financial markets. In addition, this long-run economic environment changes

over time, which will manifest itself in time varying long-run volatility. Nevertheless,

financial practitioners often rely on models whose concern focuses on only short-run

volatility by neglecting the time varying characteristic of this long-run volatility. In

fact, whereas there is plethora of literature whose unconditional volatility is assumed

to be constant, there has not been much literature which attempts to capture this time

varying characteristic of unconditional volatility with time varying conditional short-run

volatility under an unified framework. However, quite often, this apparently unclear re-

lationship between the long-run volatility and short-run volatility embedded in financial

data is too informative to neglect given that financial risk and ever changing environ-

ment of financial markets play a crucial role in the contemporary economics and finance

literature.

Quite recently, however, there have been a few attempts which incorporate changing
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unconditional long-run volatility. Veronesi (1999), Engle and Rangel (2008) and Bikbov

and Chernov (2010). For example, Engle and Rangel (2008) proposed a model which

related high frequency financial risks to the low frequency macroeconomic risks based on

the assumption that the long-run volatility captures the macroeconomic environment.

They adopted semiparametric approach to capture both short- and long-run volatility.

Their model is designed to separate out the long run patterns of volatility detected in

the financial data. The estimated long run volatility is then used to empirically investi-

gate its causes. Later, Hafner and Linton (2010) extended their univariate multiplicative

volatility model to a multivariate one and provide the asymptotic properties of their pro-

posed estimators. In addition, Van Bellegem (2011) provided comparison study among

many locally stationary time series including a multiplicative model.

The long-run volatility in this paper is time varying. This time varying character-

istic of stochastic processes have gained a momentum. In particular, locally stationary

processes have lain at the centre of active investigation. See, for example, Dahlhaus

(1997), Giurcanu and Spokoiny (2004), and Koo and Linton (2012). However, quantile

regression analysis for time varying processes has emerged quite recently. See Zhou and

Wu (2010).

The short-run volatility in this paper is represented by a semi-strong GARCH (1,1)

process. This semi-strong GARCH process is not unknown elsewhere in the financial

econometrics literature. Drost and Nijman (1993) and Lee and Hansen (1994) inves-

tigated this process. Quite recently, Linton, Pan, and Wang (2010) extended their

results. Linton et al. (2010) studied the estimation of a semi-strong GARCH (1,1) with

Eε4t =∞. They proposed that the semi-strong GARCH (1,1) process be estimated con-
sistently by least absolute deviations estimator (LADE) and quasi-maximum-likelihood

estimator (QMLE) under suitable regularity conditions. Moreover, asymptotic prop-

erties of both estimators for the semi-strong GARCH (1,1) process are also provided.

Specifically, in their paper, LADE is preferred to QMLE since the former is shown to

be asymptotically normal if E|εt|2+δ < ∞ and the conditional densities of log ε2t given

Ft(= σ (..., εi−1, εi)) satisfy some regularity conditions where Ft denotes an informa-
tion set including the history of returns up to time t. Also, our semi-strong GARCH

(1,1) process could be nonstationary. Jensen and Rahbek (2004a, 2004b) developed the

distribution theory of the QMLE for a nonstationary GARCH (1,1) model with the as-

sumption of E log (α0ε
2
t + β0) ≥ 0 and Eε4t < ∞. Jensen and Rahbek (2004a, 2004b)

explored Nonstationary GARCH models. In addition, there are an array of robust es-

timation methods regarding ARCH/GARCH type models. For example, Hall and Yao

(2003) and Peng and Yao (2003). After Hall and Yao (2003) pointed out that for heavy
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tailed errors whose fourth moment is infinite, the asymptotic distribution of QMLE be

nonnormal and be diffi cult to obtain directly from standard methods, Peng and Yao

(2003) suggested the LADE estimation method. Huang, Wang and Yao (2008) proposed

that the tail heaviness of the innovation distribution plays an important role in deter-

mining the relative performance of those two estimation methods. Most recently, Linton

et al. (2010) used the LADE to estimate the more general nonstationary GARCH (1,1)

model under the condition that the fourth moment of errors is infinite.

3 The Model

Suppose that we observe a time series {yt,T} for t = 1, . . . , T, T = 1, 2, . . .. The process

{yt,T}Tt=1 is assumed to follow the multiplicative volatility model given by

yt,T =
√
τ t,Tht,T =

√
τ t,Tgt,T εt, (1)

where τ t,T (= τ(t/T )) is a positive deterministic time-varying long-run component of

volatility, gt,T is a short-run dynamic process, which represents high frequency short-run

volatility, and εt is a strictly stationary and ergodic sequence of random variables such

that the (conditional) median of log ε2t is zero.

There are some notable features of our model. To begin with, {yt,T} defines a tri-
angular array of observations. By its nature, {yt,T} is dependent and heterogeneous.
The process {yt,T} is assumed to consist of a long-run component, which we interpret as
unconditional "volatility", and a short-run component which has temporal dependence

and which we interpret to be conditional "volatility". The long-run volatility is repre-

sented by a slowly time varying deterministic function.1 See Rodriguez-Poo and Linton

(2001) and Hafner and Linton (2010). In particular, we shall suppose that the long-run

volatility process τ t,T is a totally unspecified smooth function of time.2

To justify the asymptotic theory for our estimators, we use the following rescaling

method. Let τ(.) be a function on [0, 1] and let

τ t,T = τ (t/T ) , t = 1, . . . , T.

1Unlike Engle and Rangel (2008), we let the long-run volatility be a totally unspecified function
of time without specifying factors that could contribute to this long-run volatility. This is because
our paper focuses on the separate estmation of those two distinct volatilities instead of finding the
underlying factors for changing long-run volatility.

2The function τ(.) can be either smooth or have a finite number of structural breaks in time. Even
though we focus on everywhere-continuous τ(.) in this paper, τ(.) that allows for a finite number of
breaks in time can be considered via some extension of Delgado and Hidalgo (2000) and Koo (2012).
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Note that τ t,T depends on the sample size T and the domain of τ (.) becomes more dense

in t/T as T tends to infinity; this renders many asymptotic results available. See Härdle

and Tuan (1986), Robinson (1989), and Dahlhaus (1997). We drop the subscript T for

simplicity in the following wherever possible.

For the dynamics of short-run volatility, we model gt,T parametrically by considering

the first order semi-strong GARCH model given as

ht =
√
gtεt, gt (φ) = ω + αh2t−1 + βgt−1 (φ) , (2)

where φ = (η, ω, α, β)>, with η = g0(φ), ω > 0, α ≥ 0, β ≥ 0 are unknown parameters,

and {εt} is strictly stationary and ergodic. For nonstationary gt, we need to consider η
as one of unknown parameters since the analysis is conditional on the initial observed

value, but for strict stationary gt, we can drop the parameter η from φ.

We do not assume that {εt} is an i.i.d. sequence of random variables. Instead,

we assume that {εt} is stationary and ergodic, which makes gt follow a semi-strong

GARCH model. The process gt does not necessarily have a weakly stationary solution

since we do not require α0 + β0 < 1. Instead, we investigate gt according to whether

E log (α0ε
2
t + β0) < 0 or E log (α0ε

2
t + β0) ≥ 0. It is worth noting that Theorem 1 in

Linton et al. (2010) states that (2) defines a unique, strictly stationary and ergodic

solution if and only if E log (α0ε
2
t + β0) < 0 (under some regularity conditions). In

addition, we do not assume that Eε4t <∞ (the QMLE is well-behaved when Eε4t <∞,
see Hall and Yao (2003)). In sum, we focus on two distinct cases in which (2) is either

strictly stationary but not weakly stationary or nonstationary. However, this non-weak

stationarity feature of gt in this paper incurs an undesirable consequence in our set-

up, since the weak stationarity condition can not be imposed on the coeffi cients of

gt any longer.3 Due to a multiplicative relationship between unobservable long and

short run volatility components, without a further restriction, we cannot identify those

two different volatilities separately. Therefore, a serious identification problem arises

naturally. To avoid this diffi culty, we impose a restriction on the long-run component

rather than on the GARCH coeffi cients. Also, instead of imposing moment restrictions

3E log
(
α0ε

2
t + β0

)
< 0 is implied by α0 + β0 < 1 when εt is i.i.d. with Eε

2
t = 1 since

E
[
log
(
α0ε

2
t + β0

)]
< lnE

[
α0ε

2
t + β0

]
= ln (α0 + β0)

from Jensen’s inequality. This implies that the condition for strict stationarity is weaker than that of
weak stationarity. However, when Eε2t =∞ as in our case, it is much more complex.
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on {εt} , a median restriction is imposed on {εt} . Specifically, we assume that∫ 1

0

τ (u) du = 1, (3)

med(log ε2t |Ft−1) = 0, (4)

where med (X|Ft) denotes the median of X conditional on Ft.
Note that a median restriction (4) is equivalent to med(ε2t |Ft−1) = 1. Due to one

of the quantile characteristics, say the quantile does not change under any monotonic

transformation, logarithm and median operators can be switched. Therefore, it can be

said that the standard mean restriction, E (ε2t |Ft−1) = 1 is simply replaced by (4) in

our model. Furthermore, this condition implies that the unconditional median takes the

same values, i.e., med(ε2t ) = 1 and med(log ε2t ) = 0.4

Volatility here is not associated with moments such as the variance. Instead, it is a

more general "scale" measure that is defined in the absence of such moments and which

would be equal to a constant times variance if the required moments were to exist.

As we will see shortly, the estimation procedures are different according to the as-

sumption on the {gt} process. We will investigate this in more detail in the following
section.

4 Estimation Procedure

In this section, procedures of estimation for (1) are proposed. Recall that we have

two components to estimate in order to obtain the multiplicative volatility. Since h2t is

equivalent to y2t /τ t, the equations we are to estimate can be given by (1) and

gt (φ) = ω + α
y2t−1
τ t−1

+ βgt−1 (φ) , (5)

subject to (3) and (4). The process (1) can be written as

log y2t = log τ t + log gt + log ε2t . (6)

4This follows because

E
[
1
(
log ε2t > 0

)]
= E

[
E
[
1
(
log ε2t > 0

)
|Ft−1

]]
=
1

2
.
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We consider two different cases. First, we assume that gt is a strictly stationary but

not necessarily a weakly stationary process. One salient example of this case is the

integrated GARCH model (IGARCH). The IGARCH model is strictly stationary even

though α+β = 1. Since we do not assume any moments for gt, the usual approach is not

feasible. Secondly, we allow gt to be neither weakly stationary nor strictly stationary.

This requires a different approach.

4.1 Strict stationary {gt}
4.1.1 Step 1 : Estimation of Long-run Volatility

Our estimation procedure consists of two main steps. The first step is to estimate τ (.)

nonparametrically based on the kernel estimation method. The second step involves the

estimation of parameters of a semi-strong GARCH (1,1) model based on the estimate

from the first step. When {gt} is strictly stationary but not weakly stationary, we cannot
apply various results based on the classical framework of second order characteristics.

However, the implications of strict stationarity can be used. For instance, when {gt}
and {εt} are stationary, the median of {gtε2t} is the same for all observations. Based on
this realisation, if we take the median of both sides of (6) with the restriction (4), we

have

med
(
log y2t

)
= log τ (t/T ) +med

(
log gtε

2
t

)
= log τ (t/T ) + C = log τ ∗(t/T ), (7)

where C = med (log gtε
2
t ) . Since we have assumed that

∫ 1
0
τ (u) du = 1, for τ ∗ specified

in (7), then

τ (u) =
τ ∗ (u)∫ 1

0
τ ∗ (u) du

, (8)

since, from (7)
τ ∗ (u)∫ 1

0
τ ∗ (u) du

=
τ (u) exp (C)

exp (C)
= τ (u) .

We estimate τ(.) nonparametrically by the LAD method. It is worth noting that

the LAD method requires less moment conditions than the QMLE or regression based

estimation does. That is why our estimation is robust to the presence of heavy-tailed

innovations. From (7), our kernel estimator for the long run volatility, τ̌ (u) can be
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obtained as

log τ̌ (u) = arg min
τ∈R+

T∑
t=1

∣∣log y2t − log τ ∗
∣∣Kh (u− t/T ) , (9)

where Kh (·) = K(·/h)/h with a kernel function K(·) and a bandwidth h > 0. Once we

obtain τ̌ (u) , due to (3) and (8), we renormalize τ̌ (u) by calculating

τ̂ (u) =
τ̌ (u)∫ 1

0
τ̌ (u) du

, (10)

which yields our estimator τ̂ (u) for τ (u) .

4.1.2 Step 2 : Estimation of Short-run Volatility

Since our focus is robust estimation and we do not assume Eε4t <∞, we restrict ourselves
to the LAD estimation method.5 The objective function we minimize is given by

ST (φ) =
T∑

t=v+1

∣∣∣log ĥ2t − log gt (φ)
∣∣∣ =

T∑
t=v+1

∣∣∣∣log
y2t
τ̂ t
− log gt (φ)

∣∣∣∣ ,
where φ = (ω, α, β)> and v = v (T ) is a non-negative integer. Therefore, the least

absolute deviations estimator for φ is as follows

φ̂LAD ≡ arg min
φ
ST (φ) . (12)

This can be motivated by the regression relationship

log
y2t
τ t

= log {gt (φ)}+ log ε2t ,

5If the data satisfy certain regularity conditions (i.e., moment conditions), we could use the following
QMLE method. Note that ht is unobservable and can be written as h2t = y2t /τ t. The log likelihood
takes the form given by

L (φ)= 1
T

T∑
t=1

lt (φ) where lt (φ) = −
(
log gt (φ) +

h̃2t
gt (φ)

)
(11)

where h̃2t = y2t /τ̃ t, τ̃ t is the estimator from the first step and gt is defined as (5). The initial QMLE is
the maximizer of (11) given by

φ̃ML ≡ argmin
φ

1

T

T∑
t=1

(
log gt (φ) +

y2t
τ̃ tgt (φ)

)
.
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where the (conditional) median of log (ε2t ) is zero under the restriction (4). The LAD es-

timator is known to be consistent and asymptotically normal under very mild conditions.

We extend this work to allow for estimated τ t.

4.2 Nonstationary {gt,T}
We now turn to the case where {gt,T} is not even strictly stationary. In this case, the
previous estimation method breaks down. Nevertheless, the following estimation method

can be used. Unlike the stationary case, we estimate parameters for the semi-strong

GARCH (1,1) process first. Then, based on the estimates for the GARCH parameters,

we estimate the long-run volatility.

4.2.1 Step 1 : Estimation of short-run Volatility

Recall that the parameter vector of the nonstationary {gt,T} is φ = (η, ω, α, β) with true

value φ0 = (η0, ω0, α0, β0). We have

log y2t = log τ t + log gt + log ε2t = log τ t + log(ω + αh2t−1 + βgt−1 (φ)) + log ε2t ,

where h2t−1 = y2t−1/τ t−1. In the neighbourhood of a time point u, τ(u) can be considered

as a constant, and therefore, in the vicinity of each time point u ∈ [0, 1], we have

log y2t = log
[
τ(u)(ω(u) + α(u)h2t−1 + β(u)gt−1 (φ))

]
+ log ε2t + o(1) (13)

= log[τ (u)ω(u) + α(u)y2t−1 + τ(u)β(u)gt−1(φ)] + log ε2t + o(1),

since τ t − τ t−1 = O(1/T ) under our smoothness assumptions below. As seen from (13),

we estimate the parameters of short-run volatility up to some constant scale. However,

(13) can be reparameterised as, for each sub-sample in the neighbourhood of each time

point u ∈ [0, 1],

yt =

√
g̃t(φ̃)εt (14)

g̃t(φ̃) = ω̃ + α̃y2t−1 + β̃g̃t−1(φ̃)

where ω̃(= τ(u)ω), α̃(= α), and β̃(= τ(u)β) with the initial g̃0. Note that (14) is

nothing but another nonstationary semi-strong GARCH process whose parameters are

φ̃ = (g̃0, ω̃, α̃, β̃)> for each time point. Therefore, for each time point u ∈ [0, 1], this

family of nonstationary semi-strong GARCH processes can be estimated consistently
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via the method of Linton et al. (2010) using the corresponding sub-sample to which

u corresponds. Following the method in Linton et al. (2010), we estimate φ̃ for each

time point u. More specifically, the local LADE is defined as a local minimiser of the

following objective function

ST

(
φ̃
)

=

T∑
t=v+1

∣∣∣log y2t − log g̃t(φ̃)
∣∣∣Kh (u− t/T ) ,

where v is a non-negative integer. That is, let

ˆ̃φLAD(u) ≡ arg min
φ̃
ST (φ̃). (15)

Integrate the estimator for φ̃ over u, we obtain an estimator for φ, since, with (3),

we have:
∫ 1
0
τ(u)ω(u)du = ω

∫ 1
0
τ(u)du = ω,

∫ 1
0
α(u)du = α, and

∫ 1
0
τ(u)β(u)du =

β
∫ 1
0
τ(u)du = β. Therefore, we let

φ̂ =

∫ 1

0

ˆ̃φLAD(u)du. (16)

Specifically, we obtain α̂ =
∫ 1
0

ˆ̃αLAD(u)du and β̂ =
∫ 1
0

ˆ̃βLAD(u)du. It is worth noting

that as explained in Theorem 2.(ii) and Remark 5 of Linton et al. (2010), it is known

that by taking any fixed value of (g̃0, ω̃), (α̃, β̃) can be consistently estimated and hence

we can estimate (α, β) consistently.

4.2.2 Step 2 : Estimation of long run Volatility

We then use the relationship β̃ = τ(u)β. We let

τ̂(u) =
ˆ̃β(u)

β̂
.

We could plug this long run volatility estimator back into the objective function to

estimate the short run volatility estimator for the GARCH parameters. We may iterate

between these two estimation problems, and the convergent values for τ t and φ are

conjectured to be more effi cient. However, since this is beyond the scope of this paper,

we do not pursue this.
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5 Asymptotics

5.1 Distribution theory for multiplicative model with strict
stationary {gt}

To begin with we derive the asymptotic properties of the proposed estimators following

the procedure under the assumption of strict stationary {gt}. For the presentation of the
asymptotic analysis, the following notation is introduced. When {yt} would be strictly
stationary if it were not for time index τ = t/T , then we can define a measurable function

Φ : [0, 1]× R∞ 7→ R such that
yt,T = Φ (t/T,Zt) (17)

where Zt = (· · · , εt−2, εt−1, εt) with {εt}t∈Z a stationary ergodic process. This represen-
tation is possible for the following reasons. In (17), {yt,T} depends on the time index
and all the past history of stationary ergodic process {εt}t∈Z. From (1) and (2), the

underlying data generating process {yt,T} is a measurable function of all the past his-
tory of {εt} and time index. Moreover, {yt,T} changes so smoothly over time that local
stationarity of {yt,T} can be ensured for each time index. See also Zhou and Wu (2009).
Let ξt (u) be a measurable random variable for all u ∈ [0, 1] such that ξt (u) :=

Φ (u,Zt) with a cumulative distribution function F (u, x,Zt)(= Pr(ξt (u) ≤ x)) for x ∈ R
and u ∈ [0, 1] and a continuous density function f (u, x,Zt). Note that this implies that
ξt (u) is the local version of yt,T . For fixed time index u, {ξt (u)} is a stationary process.
We drop Zt for f(u, x,Zt) in the following.

Assumption 1 (a) yt,T is β-mixing with exponentially decaying mixing coeffi cients and
supT E|yt,T |δ <∞ for some δ ≥ 1. (b) f (u, x) is uniformly away from zero and uniformly

continuous. (c) There exists C and ε > 0 such that ‖ξt (u1)− ξt (u2)‖ε ≤ C |u1 − u2|
holds for all u1, u2 ∈ [0, 1].

Assumption 2 (a) εt is strictly stationary and ergodic, ε2t is non-degenerate and for
some % > 0, there exists a G < ∞ such that E (|εt|2+%|Ft−1) ≤ G a.s. (b) Conditional

on Ft−1, log (ε2t ) has zero median and a differentiable density function Et (x) satisfying

Et (0) ≡ E (0) > 0, and supx∈R,t≥1 |E ′t (x) | < C <∞.

Assumption 3 (a) τ (u) is uniformly positive and twice continuously differentiable on

[0, 1]; (b) τ (u) is Lipschitz continuous, i.e. |τ (u1)− τ (u2) | ≤ C |u1 − u2| for ∀u1, u2 ∈
[0, 1]; (c)

∫ 1
0
τ (u) du = 1.

12



Assumption 4 (i) For φ = (ω, α, β)> ∈ Θ in strictly stationary {gt}, the parameter
space Θ is compact and φ ∈ int (Θ) where int (·) denotes an interior point of the space of
interest; (ii) For φ = (η, ω, α, β)> ∈ Θ in nonstationary {gt,T}, the parameter space Θ is

compact and φ ∈ int (Θ) where int (·) denotes an interior point of the space of interest.

Assumption 5 v →∞ and v/T → 0, as T →∞.

Assumption 6 The kernel K(·) is a bounded symmetric around zero function such
that: (i) it is continuously differentiable up to order r on R with 2 ≤ r; (ii) it belongs

to L2,
∫
|K(x)|dx < ∞ ,

∫
K(x)dx = 1, ||K||22 =

∫
K2(x)dx < ∞ and the support

of K is contained in [−1, 1]; (iii) µi(K) =

∫
xiK(x)dx = 0, i = 1, . . . , r − 1, and:∫

xrK(x)dx 6= 0,
∫
|x|r|K(x)|dx < ∞, lim

||u||→∞
||u||K (u) = 0; (iv) K(·) is Lipschitz

continuous, i.e. |K(u)−K(u′)| ≤ C|u− u′| for all u, u′ ∈ R2.

Assumption 7 As T →∞, h→ 0, Th4 → 0, Th/ log T →∞ and lim infT→∞ Th
1+2δ >

0 for δ defined in Assumption 1.(a).

Assumption 1.(a) is required to apply the invariance principle in Doukhan, Massart

and Rio (1995) for our semiparametric estimation and to obtain the Bahadur repre-

sentation for the limit distribution of our long-run volatility estimator as well as our

semiparametric estimation. For the Bahadur representation, we only need α-mixing in

order for the central limit theorem to hold. See Doukhan, Massart and Rio (1994) for

more details. However, β-mixing implies α-mixing. Assumption 1.(b) is standard. In

particular, we require infu∈[0,1],x∈R f(u, x) > 0 for the uniform Bahadur representation.

Assumption 1.(c) implies that the process of interest changes smoothly over time, which

is consistent with stochastic Lipschitz continuity in Zhou and Wu (2009). This ensures

that the underlying data generating process changes smoothly in time. Also, this im-

plies that we do not consider the long memory dependence. Assumption 2 applies to

{εt}. This implies that our short-run volatility is represented by a semi-strong GARCH
model with heavy-tailed errors. Assumption 3 is required to ensure that our long-run

volatility is slowly time varying and ensures that our nonparametric LADE method and

asymptotic arguments based on local stationarity go through along with Assumption

1. Assumptions 4 and 5 are standard for the LADE of a semi-strong GARCH (1,1)

from Linton et al. (2010) and Peng and Yao (2003). Assumptions 6 and 7 are stan-

dard for nonparametric estimation except for lim infT→∞ Th
1+2δ > 0. The conditions

13



that lim infT→∞ Th
1+2δ > 0 and Th4 → 0 are required for Bahadur representation and

Theorem 3. See Hall, Peng and Yao (2002).

Assumption 1.(a) further merits our attention. If {εt} were a sequence of i.i.d. ran-
dom variables with Eεt = 0 and Eε2t = 1, the results in Carrasco and Chen (2002) could

be applied in order to verify Assumption 1.(a). Our model is much more complicated

and hence the results in the paper are not directly applicable. Nevertheless, if our focus

is restricted to a sequence of i.i.d random variables {εt} without any moment restriction,
we can provide some valid argument based on the results in Francq and Zakoïan (2006)

whose contribution is to show β-mixing with exponential decay only under strictly sta-

tionarity without any moment condition on a general class of GARCH(1,1) processes.

Note that our model can be cast into the following framework

ht =
√
gtεt

gt = A (εt−1) gt−1 +B(εt−1)

where ht = yt/
√
τ t, A (εt−1) = (αε2t + β) and B(εt−1) = ω. Suppose εt is i.i.d. without

any moment restriction. Due to Theorem 3 in Francq and Zakoïan (2006), {ht} in (1) is
shown to be β-mixing with exponential decay given E log(β+αε2t ) < 0 and Assumption

A in Francq and Zakoïan (2006), both of which are met under our setting. Since {yt}
is obtained by ht/

√
τ t where τ t is smoothly time varying, {yt} is also β-mixing with

exponential decay by the definition of mixing. Since our model assumes {εt} is strictly
stationary and ergodic instead of a sequence of i.i.d. {εt}, our situation is much more
complicated and more investigation is required. We leave this as a future research topic.

5.1.1 Long-run Volatility

Our asymptotic theory for the estimator τ̂(u) is based on Bahadur representation. It is

worth noting that asymptotic theories with respect to usual quantile regression involve

estimators whose representation are nonlinear, which makes usual asymptotic arguments

challenging. It is known that we could approximate these nonlinear quantile estimators

by linear forms via the Bahadur representation. See Koenker (2005) and references

therein for more details with respect to Bahadur representations. Also, since we obtain

τ̂(u) from (10), the usual ∆-method comes into play and the asymptotic distribution

changes accordingly.
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Let ξt(u) be as defined in the introduction of Section 5 and let:

bτ (u) =
µ2(K)Γ(u) [τ ∗(u)] [log τ ∗(u)](2)

2
; Vτ (u) =

||K||22 [Γ(u)]2 [τ ∗(u)]2

4f 2(u,med(log ξ2t (u))

Γ(u) =

∫ 1
0
τ ∗(u)du− τ ∗(u)

[
∫ 1
0
τ ∗(u)du]2

,

where [log τ ∗(u)](2) is the second derivative of log τ ∗(u) with respect to u and τ ∗(u) is

specified in (7).

Theorem 1 Suppose Assumptions 1 - 3, 6 and 7 hold. Then, for u ∈ (0, 1)

√
Th
(
τ̂(u)− τ (u)− h2bτ (u)

) d−→N (0, Vτ (u)) .

Theorem 1 shows that for u ∈ (0, 1) , our estimator for slowly time varying long-run

volatility is asymptotically normal. Γ(u) is the first derivative of the continuous function,

τ ∗(u)/
∫ 1
0
τ ∗(u)du and comes from the usual ∆-method. We next discuss how to conduct

inference about the functions of interest. Let Vτ denote the asymptotic variance for τ̂(u).

The consistent estimator of Vτ (u) can be constructed as

V̂τ (u) = ‖K‖22 Γ̂2(u) [τ̌(u)]2 /4f̂ 2(u, ζ̂(u)) (18)

where ζ = med(log ξ2t (u)) and with τ̌(u) is specified in (9):

ζ̂(u) =
1

Th

T∑
t=1

K

(
u− t/T

h

)
| log y2t |,

f̂(u, ζ̂(u)) =
1

Th1h2

T∑
t=1

K

(
u− t/T
h1

)
K

(
yt − ζ̂(u)

h2

)
,

Γ̂(u) =

∫ 1
0
τ̌(u)du− τ̌(u)[∫ 1
0
τ̌(u)du

]2 .

Remark. It would be of interest to test whether τ t is time varying or a constant.

Härdle and Mammen (1993) proposed test statistics based on the L2-distance between

a parametric estimate as a null and a nonparametric estimate as an alternative. This
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could be tested using the following approach.

H0 : τ(u) = 1 for ∀u ∈ (0, 1)

H1 : τ(u) 6= 1 for some u ∈ (0, 1)

The test statistic for this hypothesis test could be

T = Th

∫ 1

0

[τ̂ (u)− 1]2 π(u)du

where π(u) is some weight function. It can be shown that under H0, suitably scaled

T has a standard normal distribution. This test statistic is based on the weighted L2-

distance between a parametric estimate as a null and a nonparametric estimate as an

alternative.

5.1.2 Short-run Volatility

In the second step, we estimate the short-run volatility gt via using our estimate τ̂(u)

from the first step due to ĥ2t = y2t /τ̂ t. Therefore, it is indispensable to show that τ̂(u)

is so close to τ 0(u) that we can use the estimated τ̂(u) instead of the true functional

form of τ(u) for parametric estimation of short-run volatility. This is shown in the proof

of Theorem 2. Once we show this, the remainder of the relevant asymptotic theory is

analogous to that of Peng and Yao (2003).

Let us introduce the following notation. Let At = (A0t(φ),A1t(φ),A2t(φ))>, where

A0t(φ) =
∂g2t (φ)

∂ω

1

g2t (φ)
=

1

1− β
1

g2t (φ)

A1t(φ) =
∂g2t (φ)

∂α

1

g2t (φ)
=

t∑
j=1

βj−1
ĥ2t−j
g2t (φ)

A2t(φ) =
∂g2t (φ)

∂β

1

g2t (φ)
=

t∑
j=1

βj−1
g2t−j(φ)

g2t (φ)
.

Let E(·) be the density function of log ε2t , E(0) be the density function evaluated at the

median of log ε2t , and let Σ = E
(
AtA>t

)
.

Theorem 2 Suppose Assumptions 1 - 7 hold. Then, there exists a local minimizer
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φ̂ = (ω̂, α̂, β̂)> of ST (φ) as in (12) such that

√
T
(
φ̂− φ0

)
d−→N

(
0,

1

4E2 (0)
Σ−1

)
.

We can conduct inference about the functions of interest by obtaining the consistent

estimator of the asymptotic variance for φ̂(u). The consistent estimator of Vφ can be

constructed as

V̂φ =
1

4Ê2 (0)
Σ̂−1

where (with ε̂2t = y2t /τ̂(u)gt(φ̂)):

Ê (0) =
1

Th

T∑
t=1

K

(
log ε̂2t
h

)

Σ̂ =
1

T

T∑
t=1

[At(φ̂)A>t (φ̂)].

5.2 Distribution theory for multiplicative model with nonsta-
tionary {gt,T}

To begin with, we state assumptions for nonstationary {gt,T}. The following assumptions
replace any assumption related to strict stationary {gt}.

Assumption 8 Suppose we consider the model (1) and (2) with E log (α0ε
2
t + β0) ≥ 0

and Eε4t = ∞. Let S(φ, τ(u)) = E| log y2t − log τ(u) − log gt (φ) | < ∞ where φ =

(η, ω, α, β)>. Then, there exists a unique pair (φ0, τ 0(u)) which minimizes S(φ, τ(u))

uniquely.

Assumption 9 In the case of E log (α0ε
2
t + β0) = 0, ε2t is ϕ-mixing with

∑∞
j=1 ϕ

1/2
j <

∞ where

ϕj = sup
A∈F0−∞,B∈F∞j ,Pr(A)>0

|Pr(B)− Pr(B|A)|

with F ji = σ(εt, i ≤ t ≤ j).

Assumption 8 is a minimal high level assumption which ensures identification of both

the unknown parameter function of long-run volatility and the unknown parameters of

our nonstationary GARCH process. The primary reason behind this is that we are only
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able to estimate a local minimizer of (α, β) given the local value of (η, ω) due to non-

stationarity of our GARCH process. See Jensen and Rahbek (2004b) and Linton et al.

(2010). Assumption 8 ensures our estimation for (φ0, τ 0(u)) leads to the identification

of both long-run and short-run volatilities due to the uniqueness of the minimizer of

unknown parameters of the short-run GARCH process and the long run volatility func-

tion. Assumption 9 ensures that if and only if E log (α0ε
2
t + β0) < 0, the semi strong

GARCH (1,1) defines a unique, strictly stationary and ergodic solution, which implies

that {gt,T} in this section is a nonstationary semi-strong GARCH (1,1) process.

5.2.1 Short-run Volatility

To begin with, we divide φ̃ into θ̃ = (α̃, β̃)> and ψ̃ = (η̃, ω̃)>. Likewise, we set θ = (α, β)>

and ψ = (η, ω)>. This is because we are not able to obtain the asymptotic properties of

the estimated ψ due to nonstationarity. Rather, we can estimate θ = (α, β)> consistently

by taking any value of ψ. See Linton et al. (2010) for more details.

We analyse the asymptotics for the short-run volatility as follows. To begin with,

we derive the limiting distribution of our local estimator for the short-run volatility

parameter for each time point u ∈ [0, 1] along the line of Linton et al. (2010) and

Jensen and Rahbek (2004). Based on the limiting distribution of the local estimator, we

estimate the global estimator for the short-run dynamics.

The following notation is introduced for the local estimator for the short-run volatil-

ity parameter. Note that this is the local estimator and hence each parameter is the

function of u. However, unless any confusion is expected, we dispense with u for the

simplicity of notation, that is, φ̃ = φ̃(u). With respect to the model (14), define

Ãt(φ̃) = (Ã1t(φ̃), Ã2t(φ̃))> where

Ã1t(φ̃) =
∂g̃2t (φ̃)

∂α̃

1

g̃2t (φ̃)
=

t∑
j=1

βj−1
y2t−j

g̃2t (φ̃)

Ã2t(φ̃) =
∂g̃2t (φ̃)

∂β̃

1

g̃2t (φ̃)
=

t∑
j=1

βj−1
g̃2t−j(φ̃)

g̃2t (φ̃)
.

Also, define the following two corresponding stationary and ergodic processes, Dt(α̃, β̃) =
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(D1t(α̃, β̃),D2t(α̃, β̃)) where

D1t(α̃, β̃) =

∞∑
j=1

β̃
j−1
0 (u)ε2t−j

j∏
k=1

1

α̃0ε2t−k + β̃
,

D2t(α̃, β̃) =
∞∑
j=1

β̃
j−1
0 (u)

j∏
k=1

1

α̃0ε2t−k + β̃
.

Dealing with Ãt(φ̃) directly is tricky since it might be nonstationary. Therefore, we

approximate Ãt(φ̃) by tractable stationary ergodic processes, Dt(·) for our asymptotic
analysis. As is shown in Lemma 3 in Linton et al. (2010) and Lemmas 3 and 4 in Jensen

and Rahbek (2004b), Dit(·) approximates Ãit(φ) in Lp sense for i = 1, 2.

For U being a uniform random variable on [0, 1], let

Vθ̂ =

E
[[
Dt(θ̃(U))D>t (θ̃(U))

]−1]
4E2 (0)

.

Theorem 3 Suppose Assumptions 1 - 9 hold. Let ψ∗ be any fixed value of ψ. Then,
there exists a local minimizer θ̂ = (α̂, β̂)> such that

√
T
(
θ̂ − θ0

)
d−→N (0, Vθ̂) .

Note that θ̂ is derived from ˆ̃θ by integrating ˆ̃θ over u. In addition, according to

Remark 5 in Linton et al. (2010), (α, β̃) can be estimated by taking any value of (g̃0, ω̃).

One may estimate (g̃0, ω̄), but the asymptotic properties of the estimated (g̃0, ω̄) have

not been obtained. In addition, it is worth mentioning that as is shown in the proof

of Theorem 3, the rate of convergence is Op(T
−1/2) instead of Op((Th)−1/2) when the

bandwidth h is properly chosen due to integrating the nonparametric kernel estimator

out over u. Moreover, the bias term does not come into play either. These are along the

lines of Zhang, Fan and Sun (2009). While they are concerned with local least squares

estimation method, we are concerned with local absolute deviation approach with the

Bahadur representation.
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5.2.2 Long-run Volatility

Since we estimate τ(u) by using

τ̂(u) = ˆ̃β(u)/β̂,

the limit distribution of τ̂(u) follows the limit distribution of ˆ̃β(u) very closely.

With E (0) as defined in Theorem 2, let:

b∗τ (u) =
µ2(K)∂

2ED2t(θ̃(u))
∂u2

2β
; V ∗τ (u) =

||K||22
4E2 (0) β2

Ω−122,1,

Ω−122,1 = Ω22 − Ω21Ω
−1
11 Ω12

EDt(θ̃(u))D>t (θ̃(u)) = Ω =

[
Ω1 Ω2

Ω>2 Ω3

]
.

Corollary 4 Suppose that the Assumptions in Theorem 3 hold. Then,

√
Th(τ̂(u)− τ(u)− h2b∗τ (u))

d−→N(0, V ∗τ (u)).

6 Simulation Studies

This section provides our simulation results to examine the finite-sample performance of

our estimators for long-run and short-run volatilities. The data are generated from the

model (1) with our GARCH (1,1) specification (2). To check robustness of our method,

we use two different parameter values for GARCH (1,1) and two different distributions

for the innovation. One is for the case where GARCH parameter implies non-weakly

stationarity but strong stationarity. The other one is for the case where {εt} has a very
thick tail. More specifically, for the first simulation study, we use the specification of

IGARCH (1,1) with student-t distribution with the degrees of freedom 5. That is, the

parameter vector for financial volatility is (ω, η, α, β)> = (0.0001, 0.0001, 0.1, 0.9)> and

{εt} ∼ t(5). For the second simulation study, we use the specification of GARCH (1,1)

whose parameter vector is (ω, η, α, β)> = (0.0001, 0.0001, 0.1, 0.7)> along with student-t

distribution with the degrees of freedom 2, i.e. {εt} ∼ t(2).6 These are consistent with

6When the IGARCH parameter values as in the first simulation, (i.e. (ω, η, α, β)> =
(0.0001, 0.0001, 0.1, 0.9)>) are combined with student-t distribution with the degrees of freedom 2, the
condition E log(α0ε2t + β0) < 0 is not met and hence gt is nonstationary. Note that we do not pursue
a simulation study for nonstationary gt since limit variances of limiting distribution for τ̂ and θ̂ are
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our model. Since we want τ(u) to display expansions and contractions of a business

cycle, we set τ t as

τ(u) = 0.001(0.5 sin (4πu)) + 0.004.

We consider two different number of data to provide an asymptotic validity of our

approach. We create 600 and 2000 observations with 1000 iterations respectively. We

employ an Epanechnikov Kernel for the estimation of long-run volatility. Our bandwidth

is given by Silverman’s rule of thumb, i.e. h = std(u)T−1/5. All the results are found in

Appendix B.

For each simulation study, our estimates for parameters of the short-run GARCH(1,1)

models are provided in Table 1. Table 1 confirms that our estimates for GARCH pa-

rameters come closer to their corresponding true values as the number of observations

gets larger, which confirms that our estimates for GARCH parameters are consistent.

Table 1 also provides the mean squared error associated with each estimate for both

simulations and with 2000 observations, the estimates are close to the true parameter

value.

On the other hand, our estimates for long run volatilities of both simulation studies

are plotted in Figures 3 and 4 respectively. We truncate boundaries due to boundary

issues associated with the local constant nonparametric estimation. This boundary

issue is less problematic when you have more data as can be confirmed by Figures 3

and 4. Moreover, this issue can be well addressed when the local linear nonparametric

estimation method is adopted. These figures lend clear credence to our estimation

procedure. Figures 3 and 4 show that our estimates for the long run volatility functions

in our simulation studies are consistent because the estimates get closer as the number

of observations gets larger.

In sum, we conduct two simulation studies whereby two different specifications are

considered. The results from these simulation studies confirm that our proposed method

is quite robust to the change of parameter and distributional specifications.

7 Conclusion

This paper studies the robust semiparametric estimation of a multiplicative model which

combines the long-run volatility and the short-run volatility under a unified framework.

We allow for heavy tailed errors and time varying unconditional long-run volatility.

In addition, this has practical significance. Risk management such as Value at Risk

diffi cult to estimate due to several nuisance parameters in those quantities.
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and expected shortfall should be different between the recession and boom. Moreover,

robustness is essential for risk management.

Our estimation strategy primarily involves the separation of the long-run and short-

run volatilities. The proposed estimator for the long-run and short-run volatilities are

based on well-established nonparametric quantile regression and GARCH estimation.

Therefore, consistency results follow directly from those well-established estimation

methods given our estimation strategy.

It could be useful to derive the effi ciency bound for our semiparametric model and

see whether our proposed estimator achieves this bound. However, it is non-trivial

given that our model contains a complicated data structure. The existing literature on

semiparametric effi ciency bounds used a different approach in order to obtain effi ciency

bounds for different models, i.e. a case-by-case basis. To the best of our knowledge,

there is no known semiparametric effi ciency bound for trending dependent data without

strict moment restrictions. Although our model is too complicated to be covered by the

most recent literature, for instance, Ai and Chen (2012). Thus, we leave this intriguing

question as a future research topic.

Appendix A
Proof of Theorem 1. Let ST (u) be defined as

ST (u) =
T∑
t=1

{| log y2t − log τ ∗(u)− (Th)−1/2φ(u)|}Kh(u− t/T )

where φ̂(u) =
√
Th(log τ̌(u)− log τ ∗(u)) such that

φ̂(u) = argmin
φ

1

T
ST (u). (19)

Then, it can be verified that (19) is equivalent to (9) with the relationship φ̂(u) =

(Th)1/2[log τ̌ − log τ ∗]. For simplicity of exposition, we introduce the following notation.

log y2t = Yt, log τ ∗(u) = m(u), Ỹt = log y2t − log τ ∗(u) = Yt −m(u). By construction, the

conditional median of Ỹt is zero since, for t/T = u,

med[Ỹt(u)] = med[Yt(u)−m(u)] = 0
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To begin with, ST (u) can be rewritten as

ST (u) =
T∑
t=1

{|Ỹt − (Th)−1/2φ(u)|}Kh(u− t/T ). (20)

For the asymptotic distribution of φ̂(u) , we need to find a linear approximation, say

Bahadur representation. In this end, we consider the sign function, sgn(x) = 1−2·1(x ≤
0). Note that sgn(x) is the left derivative of |x|. It is worth mentioning that the left
derivative of a check function in the quantile regression is used for the asymptotic analysis

of the quantile estimator. As is the case in the quantile regression, we define the following

sequence,

WT (φ) =
T∑
t=1

Wt(φ)

where Wt(φ) = {|Ỹt − (Th)−1/2φ(u)| − |Ỹt| + (Th)−1/2φ(u)sgn(Ỹt)}Kh(u− t/T ). It can

be verified that

φ̂ = argmin
φ

ST (u) = argmin
φ

[WT (φ)−
T∑
t=1

φ(u)√
Th

sgn(Ỹt)Kh(u− t/T )]. (21)

Since sgn(x) = 1(y > 0)− 1(y < 0), |x| = x · sgn(x), and |x− y| − |x| = −y · sgn(x) +

2(y − x)(1(0 < x < y)− 1(y < x < 0)),

TE[
1

T
WT (φ)]

= 2TE[((Th)−1/2φ(u)− Ỹt)(1(a)− 1(b))Kh(u− t/T )]

where a :=0 < Ỹt < (Th)−1/2φ(u) and b :=(Th)−1/2φ(u) < Ỹt < 0 respectively.

E[((Th)−1/2φ(u)− Ỹt)(1(a)− 1(b))Kh(u− t/T )]

=

∫ 1

0

Kh(u− v)

∫
R
(
φ(u)√
Th
− ỹ)(1

(0<ỹ<
φ(u)√
Th
)
− 1

(
φ(u)√
Th
<ỹ<0)

)f (u, ỹ +m(u)) dỹdv

=

∫ 1

0

Kh(u− v)

∫
R
(
φ(u)√
Th
− ỹ)1

(0<ỹ<
φ(u)√
Th
)
f (u, ỹ +m(u)) dỹ︸ ︷︷ ︸

A

dv

−
∫ 1

0

Kh(u− v)

∫
R
(
φ(u)√
Th
− ỹ)1

(
φ(u)√
Th
<ỹ<0)

f (u, ỹ +m(u)) dỹ︸ ︷︷ ︸
B

dv
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We can focus on A since the part B is analogous. Define ε = φ(u)√
Th
and then ε → 0 as

T →∞.

A =

∫
R
(
φ(u)√
Th
− ỹ)1

(0<ỹ<
φ(u)√
Th
)
f (u, ỹ +m(u)) dỹ

=

∫
R
(ε− ỹ)1(0<ỹ<ε)f (u, ỹ +m(u)) dỹ

=

∫ ε

0

(ε− ỹ)f (u, ỹ +m(u)) dỹ

=

∫ ε+m(u)

m(u)

(ε− y +m(u))f(u, y)dy

=

∫ ε+m(u)

m(u)

(ε+m(u))f(u, y)dy −
∫ ε+m(u)

m(u)

yf(u, y)dy

Following usual standard kernel estimation method and the mean value theorem, the

first term of the above quantity becomes

(ε+m(u))[F (u, ε+m(u))− F (u,m(u))]

= (ε+m(u))[εf(u,m(u)) +
1

2
ε2f (1)(u,m(u)) + o(ε2)].

The same argument applies to the second term and we can get

A =
1

2
ε2[f(u,m(u))] + o(δ2)

where ε2 = φ(u)2

Th
. Therefore,

TE[
1

T
WT (φ)]

= 2T

∫ 1

0

Kh(u− v)(
1

2
ε2[f(u,m(u))] + op(ε

2))dv

= Th

∫ 1

0

[K(x)
φ(x+ hu)2

Th
[f(x+ hu,m(x+ hu)]]dx+ op(1)

= f(u,m(u))µ2(u) + op(1)

= f(u,med(log ξ2t (u)))φ2(x) + op(1) (22)

From (22),

ERT (φ) = op(1) (23)
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where RT (φ) =WT (φ)−f(u,med(log ξ2t (u)))φ2(u). Moreover, using the similar method

in the proof of Theorem 1 of Hall, Peng and Yao (2002),

Pr(|
T∑
t=1

Wt(φ)− EWt(φ)| > ε) ≤ 1

ε2
var(

T∑
t=1

Wt(φ)) (24)

≤ 1

ε2
[
T∑
t=1

E(W 2
t (φ)) + 2

T∑
t=1

(T − t)Cov(W1,Wt+1)]

= op((Th)−1/2)

since the first term of the second inequality is op((Th)−1/2) using the standard nonpara-

metric method and the second term of the second inequality is also op((Th)−1/2) due to

covariance inequality in Doukhan (1994). This is expected since strong mixing ensures

the asymptotic independence. This implies RT (µ)
Lp−→0 with (23). Combining (22) and

(24),

WT (φ)
p−→f(u,med(log ξ2t (u)))φ2(x).

This implies that from (21),

φ̂(u) = argmin
φ

[f(u,med(log ξ2t (u)))φ2(x)−
T∑
t=1

φ(u)√
Th

sgn(Ỹt)Kh(u− t/T )] + op(1)

Let BT be defined as

BT (u) =
1

Th

T∑
t=1

sgn(Ỹt)Kh(u− t/T ). (25)

Then, by the usual first order condition,

2f(u,med(log ξ2t (u)))φ̂(u) = (
√
Th)−1BT (u) + op(1). (26)

This convergence is actually uniform on compact sets Θ for each fixed u due to convexity

Lemma in Pollard (1991, p187).

Recall that our aim is to obtain the asymptotic distribution of φ̂(u)(=
√
Th(log τ̌(u)−

log τ ∗(u))). This can be achieved by deriving the limit distribution of the right hand

side of (26). From Theorem 1 of Doukhan et al. (1994), the central limit theorem can be

applied to the right hand side of (26) due to the assumptions of Theorem 1. Moreover,
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using the standard nonparametric estimation method,

EBT (u) =
1

h

∫
sgn(Yt −m(u))K(

u− v
h

)dv

=

∫
K(x)sgn(Yt −m(x+ hu))f(u+ hx)dx

= (h2µ2(K)m(2)(u))/2.

In addition,

E[sgn(Ỹt)Kh(u− t/T )]2 = EKh(u− t/T )2 = ||K||22

Hence the following result holds.

(Th)1/2[BT (u)− h2µ2(K)m(2)(u)

2
]
d−→N(0, ||K||22).

where m(2)(u) is the second derivative of log τ ∗(u) with respect to u. Since φ̂(u) =
(
√
Th)−1BT (u)

2f(u,med(log ξ2t (u)))
+ op(1), we can conclude

√
Th

(
log τ̌ − log τ ∗ − h2µ2(K)[log τ ∗(u)](2)

2

)
d−→N

(
0,

||K||22
4f 2(u,med(log ξ2t (u))

)
,

where [log τ ∗(u)](2) is the second derivative of log τ ∗(u) with respect to u. Since τ ∗ =

exp(log τ ∗) and ∂ exp(log τ∗)
∂ log τ∗ = τ ∗, due to ∆-method,

√
Th

(
τ̌(u)− τ ∗(u)− h2µ2(K) [τ ∗(u)] [log τ ∗(u)](2)

2

)
d−→N

(
0,

||K||22 [τ ∗(u)]2

4f 2(u,med(log ξ2t (u))

)

Due to (8) and another ∆-method,

√
Th

(
τ̂ (u)− τ (u)− h2µ2(K)Γ(u) [τ ∗(u)] [log τ ∗(u)](2)

2

)
d−→N

(
0,

||K||22 [τ ∗(u)]2 Γ2

4f 2(u,med(log ξ2t (u))

)
,

where

Γ(u) =

∫ 1
0
τ ∗(u)du− τ ∗(u)

[
∫ 1
0
τ ∗(u)du]2

.

This completes the proof.

Proof of Theorem 2. It is worth noting that our two step estimation of long-

run volatility and short-run dynamics is based on the usual semiparametric estimation.
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Notice that the objective function of LAD estimation, (12) takes a form of M(φ, τ(·))
whereM(·)Rd×T 7→R is a nonrandom measurable function such thatM(φ0, τ 0(·)) = 0 with

φ0 ∈ Θ ⊂ Rd and τ(·) ∈ T . That is, an estimator of a finite-dimensional parameter
φ is obtained by using an estimator of an infinite-dimensional nuisance parameter τ .

In order for the infinite-dimensional estimator τ̂ to suffi ce instead of using the true

functional form τ 0 (·), there are two issues to show. These are the uniform Bahadur

representation and functional invariance principle for stochastic equicontinuity.

Let us start with the former. To begin with, let Bh(u) = [bT , 1− bT ] where bT → 0.

Under the assumptions of Theorem 1, then from straightforward extension of Kong et

al. (2009) and Zhou and Wu (2009), the following holds.

sup
u∈Bh

∣∣f(u,med(log ξ2t (u)))(m̂(u)−m(u))−BT (u)
∣∣ = Op

(
log T

Th

)
(27)

where BT (u) is defined as in (25) and m(u) = log τ ∗(u). (27) implies that the true

function and its associated estimator are uniformly close.

For the latter, unlike Andrews (1994), and Chen, Linton and Van Keilegom (2003)

whose focus is this type of estimation with i.i.d. data, the theory involved in our setting

uses characteristics of β-mixing with the exponentially decaying mixing coeffi cients due

to Douhkan, Massart, and Rio (1995). For this, define a random process εt. Let ε̂t = Yt
m̂(u)

and U = [u−h, u+h]. Then, it suffi ces to show that under the assumptions of Theorem

2,

sup
x
| 1
T

T∑
t=1

1(ε̂t ≤ x)1(u ∈ U)− 1

T

T∑
t=1

1(εt ≤ x)1(u ∈ U) (28)

−{Pr(ε̂ ≤ x) Pr(u ∈ U)− Pr(ε ≤ x) Pr(u ∈ U)}| = op(T
−1/2)

where Pr(ε̂ ≤ x) is the distribution of ε̂t = Yt
m̂(u)

in the neighborhood of a time point u.

Let R be defined such that

R = 1(ε̂ ≤ x)1(u ∈ U)− 1(ε ≤ x)1(u ∈ U)

−Pr(ε̂ ≤ x) Pr(u ∈ U) + Pr(ε ≤ x) Pr(u ∈ U).

Then, R can be rewritten as

R =1(ε ≤ x+δx)1(u ∈ U)−1(ε ≤ x)1(u ∈ U)−Pr(ε ≤ x+δx) Pr(u ∈ U)+Pr(ε ≤ x) Pr(u ∈ U)},
(29)
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where δ = m̂(u)−m(u)
m(u)

. (28) is concerned with stochastic equicontinuity. To show (28), we

need the functional invariance principle in the sense of Donsker for β-mixing processes.

Due to Theorem 1 and eq. (2.11) in Doukhan et al. (1995) with the assumption 1

and the boundedness of the indicator function, this can be proven if the entropy with

bracketing with respect to R satisfies the following integrability condition,

J[ ](R, Lκ,2(P )) =

∫ 1

0

√
logN[ ](u,R, Lκ,2(P ))du <∞ (30)

where N[ ](·) is the covering number, Lκ,2(P ) denotes functional space equipped with the

usual Orlicz norm associated with the function x → κ(x2) and J[ ](·) is the bracketing
integral. It is known that if κ(x) = xr, Lκ,2(P ) = L2r(P ), the Orlicz norm is the usual

norm such that ||g||2r = [
∫
|g(x)|2rdP (x)]1/2r for any function g : X → R ∈ L2r(P ).

See Doukhan et al. (1995, pp 401-404) for more details. Let me begin with 1(ε ≤
x + δx)1(u ∈ U) in (29). In order to show that (30) holds for 1(ε ≤ x + δx)1(u ∈ U),

it suffi ces to show that 1(ε ≤ x + δx)1(u ∈ U) is locally uniformly L2r(P ) continuous

with respect to x and k. For k1 and k2 such that |k1 − k2| < δ and x1 and x2 such that

|x1 − x2| < δ, the following holds

1(εt ≤ x1 + k1x1)1(u ∈ U)− 1(εt ≤ x2 + k2x2)1(u ∈ U)

≤ 1(|εt − x1 − k1x1| ≤ |x1 − x2 + k1x1 − k2x2|)1(u ∈ U)

≤ 1(|εt − x1 − k1x1| ≤ sup
|k1−k2|<δ,
|x1−x2|<δ

|x1 − x2 + k1x1 − k2x2|)1(u ∈ U)

≤ 1(|εt − x1 − k1x1| ≤ |δ + k1δ + δx2|) (31)

Using (31), the following holds. For r > 1,

E[ sup
|k1−k2|<δ,|x1−x2|<δ

[[1(εt ≤ x1 + k1x1)− 1(εt ≤ x2 + k2x2)]1(u ∈ U)]2r]

≤ Pr(|εt − x1 − k1x1| < |δ + k1δ + δx2|)
≤ F (ε < x1 + k1x1 + δ + k1δ + δx2)

−F (ε < x1 + k1x1 − (δ + k1δ + δx2)) ≤ Cδ → 0

The first equality comes from (31) and the second equality comes from the definition

of the CDF. Therefore, the Donsker theorem holds for 1(ε ≤ x + δx)1(u ∈ U), which

yields the desired result. For the other terms of (29), the similar argument applies due

to the straightforward extension of the result in Theorem 6 of Andrews (1994). Then,
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(28) follows. From (27) and (28), we can proceed to estimate the parameters of financial

volatility as if we knew the true functional form, τ(u). That is, we can use ĥt instead

of ht. Then, the problem can be dealt with as if it were a parametric situation just like

Theorem 1 in Peng and Yao (2003). As a result, the remainder is analogous to the proof

of Theorem 1 in Peng and Yao (2003).

Proof of Theorem 3. This proof is the local version of Theorem 2 in Linton et al.

(2010) along the lines of kernel nonparametric estimation. Just as Peng and Yao (2003)

and Linton et al. (2010), we define Zt(φ̃) = log y2t − log g̃t(φ̃) and Zt(θ̃) = Zt(φ̃)
∣∣∣
φ=(θ̃

>
,ψ̃∗)

where θ̃ = θ̃0 + 1√
Th
ν, ν = (ν1, ν2)

> ∈ R2. From the usual nonparametric estimation, it

can be shown that ˆ̃θ(u) = θ̃0 + 1√
Th
ν̂ where ν̂ is the minimizer of

T (ν) =

T∑
t=v+1

(
|Zt(θ̃0 + (Th)−1/2ν)| −

∣∣∣Zt(θ̃0)∣∣∣)Kh(u− t/T ) (32)

As is shown in Peng and Yao (2003) and Linton et al. (2010), since (32) has the same

limit distribution as

T +(ν) =
T∑

t=v+1

(
|Zt(θ̃0)− (Th)−1/2ν>Ãt| −

∣∣∣Zt(θ̃0)∣∣∣) ,
where Ãt = (Ã1t, Ã2t)> with Ãit defined in section 5.2.1, we focus on T +(ν). In the

following, we use t = 1 instead of t = v + 1 since the results are identical under the

assumption 5 due to Theorem 2 of Peng and Yao (2003). Since

|x− y| − |x| = −y · sgn(x) + 2(y − x)(1(0 < x < y)− 1(y < x < 0)),

T +(ν) = −(Th)−1/2
T∑
t=1

ν>Ãtsgn(log ε2t )Kh(u− t/T ) + 2
T∑
t=1

[
(Th)−1/2ν>Ãt − log ε2t

]
×
[
1(0 < log εt < (Th)−1/2ν>Ãt)− 1((Th)−1/2ν>Ãt < log ε2t < 0)

]
Kh(u− t/T )

= J1T + J2T

where

J1T = −(Th)−1/2
T∑
t=1

ν>Ãtsgn(log ε2t )Kh(u− t/T )

and J2T is the remainder. For J1T , note that {ν>Ãtsgn(log ε2t )} is a martingale difference
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sequence with respect to Ft−1 under the Assumption 2. Therefore, from the usual

nonparametric estimation and Lemmas 3, 4 and 5 in Linton et al. (2010),

EJ1T = ν>
1

h

∫ 1

0

Ãtsgn(log ε2t )K(
u− x
h

)dx

= ν>

∫ 1

0

E [Ãtsgn(log ε2t )
]

+
h2v2

2

∂2E
[
Ãt(θ̃(u))

]
∂u2

K(v)dv


= ν>

h2µ2(K)
∂2E[Ãt(θ̃(u))]

∂u2

2

p−→ν>
h2µ2(K)∂

2EDt(θ̃(u))
∂u2

2
,

where the stationary and ergodic process Dt(θ̃) approximates Ãt(θ̃) in Lp sense. More-
over,

E [J1T ]2 = ν>ϕΩν

Therefore,

(Th)1/2

[
WT (u)− ν>

h2µ2(K)∂
2EDt(θ̃(u))

∂u2

2

]
d−→N(0, ||K||22ν>Ων) (33)

where

WT (u) = (Th)−1
T∑
t=1

ν>Ãtsgn(log ε2t )Kh(u− t/T ), (34)

Ω = E(DtD>t ) with Dit defined in section 5.2.1. For J2T , define

J (1)2T =
[
(Th)−1/2ν>Ãt − log ε2t

]
1(0 < log εt < (Th)−1/2ν>Ãt)Kh(u− t/T ),

J (2)2T =
[
(Th)−1/2ν>Ãt − log ε2t

]
1((Th)−1/2ν>Ãt < log ε2t < 0)Kh(u− t/T ).

Note that it can be shown that from (A.6) in Linton et al. (2010),

T∑
t=1

E[(J (1)2T − J
(2)
2T )|Ft−1] = A1 + A2 +B1 +B2

= A1 +B1 + op(1),
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where

A1 =

T∑
t=1

1(ν>Ãt > 0)

∫ 1

0

∫ ν>Ãt√
Th

0

[
(Th)−1/2ν>Ãt − z

]
E (0)Kh(u− x)dzdx,

A2 =
T∑
t=1

1(ν>Ãt > 0)

∫ 1

0

∫ ν>Ãt√
Th

0

[
(Th)−1/2ν>Ãt − z

]
[Et (z)− E (0)]Kh(u− x)dzdx,

B1 =

T∑
t=1

1(ν>Ãt ≤ 0)

∫ 1

0

∫ 0

ν>Ãt√
Th

[
(Th)−1/2ν>Ãt − z

]
E (0)Kh(u− x)dzdx,

B2 =
T∑
t=1

1(ν>Ãt ≤ 0)

∫ 1

0

∫ 0

ν>Ãt√
Th

[
(Th)−1/2ν>Ãt − z

]
[Et (z)− E (0)]Kh(u− x)dzdx.

A1 +B1 =
E (0)

2

1

Th

T∑
t=1

∫ 1

0

[
ν>ÃtÃ>t ν

]
Kh(u− x)dx

p−→E (0)

2
E(ν>DtD>t ν) + op(1).

As a result,

T∑
t=v+1

E[(J (1)2T − J
(2)
2T )|Ft−1]

p−→E (0)

2
E(ν>DtD>t ν) + op(1), (35)

Define µ̂(u) =
√
Th(ˆ̃θ(u)− θ̃(u)). From (33) and (35),

2E (0)E(DtD>t )µ̂(u) = (
√
Th)−1BT (u) + op(1).

where BT (u) = (Th)−1
∑T

t=1 Ãtsgn(log ε2t )Kh(u− t/T ), which is the Bahadur represen-

tation of µ̂(u). Note that WT (u) from (34) has the relationship with BT (u) such that

WT (u) = ν>BT (u). For the remainder, the similar argument as in Linton et al. (2010)

applies for each time point u by construction along with the proof of Theorem 1 in this

paper. This means that convexity is ensured for T +(ν) and T (ν). Following

√
Th

(
ˆ̃θ(u)− θ̃(u)−

h2µ2(K)∂
2EDt(θ̃(u))

∂u2

2

)
d−→N

(
0,
||K||22
4E2 (0)

Ω−1
)

(36)

where E (·) is defined in Theorem 2, and Ω = E
(
Dt(θ̃(u))D>t (θ̃(u))

)
.
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From (36) and (16), we can derive the limit distribution of θ̂ in a similar way to the

proof of Theorem 5 in Zhang et al. (2009) due to asymptotic independence of kernel

estimator shown in Lemma 7.1 of Robinson (1983) under our β-mixing assumption 1.

Proof of Corollary 4. Recall that

τ̂(u) = ˆ̃β(u)/β̂.

Note that

√
Th(τ̂(u)− τ 0(u)) =

√
Th

(
ˆ̃β(u)

β̂
− β̃(u)

β

)

=
√
Th

(
ˆ̃β(u)

β̂
−

ˆ̃β(u)

β
+

ˆ̃β(u)

β
− β̃(u)

β

)

=
√
Thˆ̃β(u)

(
1

β̂
− 1

β

)
+

√
Th

β
(ˆ̃β(u)− β̃(u))

=

√
Th

β
(ˆ̃β(u)− β̃(u)) + op(1)

where β̂ = β0 +Op(T
−1/2). Then, due to Theorem 3, the result follows.
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Appendix B: Tables and Figures
Table 1. Estimates for the short run GARCH parameter (ω, α, β)

Simulation I T=600 T=2000

ω α β ω α β

estimate 0.0008 0.088 0.889 0.0009 0.097 0.896

Bias 0.0002 0.012 0.011 6.4e-5 0.003 0.004

MSE 0.0001 0.009 0.012 2.2e-5 0.003 0.005

Simulation II T=600 T=2000

estimate 0.0007 0.081 0.677 0.0009 0.092 0.689

Bias 0.0003 0.019 0.023 0.0001 0.008 0.011

MSE 0.0003 0.018 0.056 0.0001 0.008 0.021
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Figure 1: 1) Daily Log returns of Russian RTS index (Sep. 1975 - Jul. 2012) (upper panel); (2)
Conditional Variance based on the AR(2)-GARCH(1,1) model (lower panel)
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Figure 2: 1) QQ-plot of log return of daily RTS index (Sep. 1995 - Jul. 2012) (left panel); 2) QQ-plot
of standardized residuals after the AR(2)-GARCH(1,1) filtering based on the same data as in the left

panel. (right panel)
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Figure 3:

(a) Simulation I: (ω, η, α, β)> = (0.0001, 0.0001, 0.1, 0.9)>, {εt} ∼ t(5).
(b) Truncation occurs at u = 0.1 and u = 0.9 to avoid usual boundary issue of nonparametric estimation.

(c) For the left and right panels, the number of generated data is 600 and 2000 respectively.
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Figure 4:

(a) Simulation II: (ω, η, α, β)> = (0.0001, 0.0001, 0.1, 0.7)>, {εt} ∼ t(2).
(b) Truncation occurs at u = 0.1 and u = 0.9 to avoid usual boundary issue of nonparametric estimation.

(c) For the left and right panels, the number of generated data is 600 and 2000 respectively.
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