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Abstract

This paper develops and compares specification tests for parametric duration models esti-

mated with censored data. The tests are based on generalized residuals (the integrated hazard),

which is exponentially distributed if the model is correctly specified. I present several condi-

tional moment tests based on the generalized residuals: a raw moments test, a test based on

Laguerre polynomials, and a Lagrange multiplier (LM) test. The LM test extends Lancaster’s

(1985) test by allowing an arbitrarily precise approximation of the likelihood under the alter-

native. The raw moments test implemented via an auxiliary regression is examined using both

asymptotic and bootstrap critical values. Monte Carlo evidence indicates that no one test dom-

inates the others in all situations in terms of size, power, and ease of use. When the data are

not censored, the Laguerre test appears to be the best choice. When there is censoring in the

data, the Laguerre test is still at least as powerful as the other tests, but the raw moment test

may be more convenient to perform. For the convenience of the practitioner the explicit forms

of the tests for exponential and Weibull duration models are presented.
∗This paper is based on chapter 3 of my dissertation (Prieger, 1999). I thank seminar participants at UC Davis,

and especially Colin Cameron, for helpful comments. Earlier versions of the paper benefitted from comments from
Alan Marco, Enrico Moretti, Roger Studley, and seminar participants at UC Berkeley. The inevitably remaining
mistakes are inevitably mine. PRELIMINARY: PLEASE DO NOT CITE WITHOUT PERMISSION.
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1 Introduction

In the linear regression model, correct specification of the distribution of the error term is not

necessary for consistent maximum likelihood estimation of regression coefficients as long as the

conditional mean is correctly specified as x0iβ. This robustness to distributional misspecification,

however, does not extend to most duration models, especially those involving censoring. Spec-

ification testing is therefore important in censored duration models. The leading examples of

misspecification in duration models are neglected heterogeneity and duration dependence. One

response to the non-robustness of duration models to misspecification has been to develop semi-

parametric regression methods. The commonly-used Cox (1972) proportional hazards model makes

no assumptions about duration dependence, but assumes there is no heterogeneity not captured

by observed covariates.1 An alternative response to the problem of misspecification is to use para-

metric models, but to subject them to specification tests.2 This paper develops and compares

specification tests for parametric duration models estimated with right-censored data.

Many specification tests for duration models have sprung up (Lancaster, 1985; Horowitz and

Neumann, 1989; Jaggia, 1991; Sharma, 1992; Jaggia, 1997). A natural building block for specifica-

tion testing in duration models is the estimated integrated hazard, which can be viewed as a gener-

alized residual. The integrated hazard is unit exponentially distributed if the likelihood is correctly

specified, no matter what the duration distribution is. Departures from the assumed duration dis-

tribution show up as departures of the generalized residual from the exponential distribution, which

is the basis for graphical (Jaggia and Thosar, 1995) and statistical (Lancaster, 1985; Sharma, 1992)
1See Horowitz (1999) and the citations therein for estimation methods for the proportional hazards model with

unobserved heterogeneity.
2Methods such as “semi-nonparametric” series expansion (Gallant and Nychka, 1987) blur the distinction be-

tween parametric and semiparametric estimation and lend an arbitrary amount of flexibility to maximum likelihood
estimation.
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tests based on generalized residuals.3 There are few applications of such tests for censored data,

however, a gap this paper attempts to fill.

Testing based on residuals often fits into the framework of the conditional moment test of

Newey (1985) and Tauchen (1985). Conditional moment tests have been studied and performed

mostly for complete (i.e., uncensored) observations. When some observations are censored in the

data, as they often are, the tests must use censored moments (and their expectations) for those

observations. Pagan and Vella (1989) provide such a way to incorporate censored observations into

conditional moment tests in the context of tobit models.4 I present three conditional moment tests

modified for censored duration data in the spirit of Pagan and Vella (1989): a raw moments test, a

test based on Laguerre polynomials, and a Lagrange multiplier test. The contribution of the paper

is to expand the arsenal of available tests for censored duration data, to examine the finite-sample

performance of the tests, and to discuss implementation issues for the practitioner.

The conditional moment test is appealing to practitioners for two reasons. First, one need

estimate only the single model one wishes to test. Unlike Wald or likelihood ratio tests, one does not

need to estimate a more general model that nests the model of interest. Even Lagrange multiplier

(LM) tests must be constructed with reference to an alternative hypothesis that requires a more

general model, and the derivation of the variance of the statistic can be quite involved. Conditional

moment tests require only that one generate some form of residuals from the estimated model and

combine them into various statistics for the test. Second, conditional moment tests are appealing

because they can be quickly implemented via an auxiliary regression that obviates calculation of

the variance matrix for the test statistic.5 I show that the auxiliary regression method leads to

highly inaccurate inference in small samples, however, which the bootstrap does not remedy when

the null hypothesis is false. In particular, although the bootstrap corrects the size problem of the
3Given that generalized residuals can be constructed for any parametric model, not just duration models, the

tests presented here can be used for any parametric model. I concentrate on the application to duration models.
4 In the same paper, Pagan and Vella (1989) discuss tests for duration data, but only for uncensored observations.
5As appealing as the conditional moment test is, it is not an omnibus test. There will be some alternatives against

which the test has no power (Newey, 1985).
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auxiliary regression test, the power curve exhibits severe bias. I develop the Laguerre test as a

more accurate and powerful alternative that is not difficult to implement.

The results of the paper indicates that the performance of the Laguerre test at least weakly

dominates the others in terms of finite-sample accuracy and power. When the data are not censored,

the Laguerre test is as powerful as the LM test that is optimal against the alternative considered,

and the Laguerre test as easy or easier to implement as any of the tests. When there is censoring

in the data, the Laguerre test is still at least as powerful as the other tests, but the raw moment

test may be more convenient to perform. Adding higher moment conditions to the tests does not

improve power against heterogeneity when the baseline hazard rate is correctly specified but does

improve power against duration dependence in the baseline hazard.

I proceed in the next section by introducing the notation and framework for conditional moment

testing of duration models, following Pagan and Vella (1989). In section 3, I present a test based on

raw moments of the generalized residuals, which illustrates how the moment conditions are modified

for censored data. Jaggia (1991) discusses similar moment-based tests, but only for uncensored

data. In section 4, I develop a test based on Laguerre polynomials similar to that of Sharma (1992),

but extended for censored data. The Laguerre polynomial test has the computationally convenient

property that for some distributions it is asymptotically orthogonal.

Section 5 extends Lancaster’s (1985) LM test for unobserved heterogeneity. Jaggia (1997)

extends Lancaster’s (1985) LM test to include censored data; I further extend it to allow an

arbitrarily precise approximation of the likelihood under the alternative of heterogeneity. Higher-

order approximation of the likelihood in the LM test turns out to be analogous to adding higher-

order moments in moment-based tests. In section 5, I also discuss the kinship between the three

tests. The Monte Carlo results in section 6 show that the Laguerre and LM tests generally fare

well against the raw moment/auxiliary regression tests. For the convenience of the practitioner, an

appendix provides the explicit forms of the tests for exponential and Weibull duration models.

4



2 The Conditional Moment Approach to Testing

2.1 The Moment Conditions

Let the hazard function of the duration random variable Y > 0 be

h (y, x, θ0) ≡ lim
∆y→0

Pr (y ≤ Y < y +∆y|Y ≥ y, θ0, x)
∆y

, (1)

the probability of a spell of length y ending the next instant, conditional on lasting at least as long

as y, on parameter vector θ0, and on vector of ` explanatory variables x. The parameter vector θ0,

with dim(θ0) = k < ∞, may comprise ` coefficients β0 and additional k − ` nuisance parameters
(such as the Weibull shape parameter). Define

ε (y, x, θ0) ≡
Z y

0
h (t, x, θ0)dt, (2)

the integrated hazard, to be the generalized error in the sense of Cox and Snell (1968).6 The PDF

and CDF of the duration process can be stated in terms of the hazard function:

f (y|x, θ0) = h (y, x, θ0) exp (−ε (y, x, θ0)) (3)

F (y|x, θ0) = 1− exp (−ε (y, x, θ0)) (4)

(see, e.g., Lancaster, 1985). If h is continuous in y, then h may be replaced with ∂ε/∂y in (3) and

the PDF may be expressed entirely in terms of ε.

Consider an independent latent sample {y∗i } from Y , i = 1, . . . ,N . Let the observed sample

{yi} be censored, with fixed right censoring points {ci} and censoring indicators {di} such that
yi = min{y∗i , ci} and di = 1{yi = ci}, where 1{·} is the indicator function.7 For the rest of

the paper, asterisks will denote latent, uncensored quantities, so that ε∗i ≡ ε (y∗i , xi, θ0) and εi ≡
ε (yi, xi, θ0). Then the contribution to the likelihood of a censored observation yi is Pr(Y >

6Note that ε does not have mean zero; for that reason some authors (Pagan and Vella, 1989) prefer to define the
generalized error as ε − E(ε). I do not follow this convention here. See Gourieroux, Monfort, Renault and Trognon
(1987) for another definition of generalized errors.

7The tests in this paper also apply if the censoring point C is random but independent of Y (conditional on x).
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yi|xi, θ0) = 1− F (yi|xi, θ0), and the log likelihood of the observed sample is

l (θ) =
NX
i=1

(1− di) log h (yi, xi, θ)− ε (yi, xi, θ) . (5)

The conditional moment approach to specification testing exploits the fact that if the model is

correctly specified, the sample average moments (evaluated at the estimated parameters and the ob-

served explanatory variables) should be close to the population moment expectations. In a Gaussian

model, for example, one might examine the residual vector ei ≡ yi − E(yi) for heteroskedasticity
and non-normal kurtosis by looking at the quantities N−1Pxi

¡
e2i − bσ2¢ and N−1P¡

e4i − 3bσ4¢,
respectively.

Although one could develop tests for duration models based on residuals {ei}, it is convenient
to specify moment conditions in terms of ε∗, because ε∗ is exponentially distributed for any hazard

function (Crowley and Hu, 1977). Therefore moment conditions based on ε∗ will be the same no

matter what the duration distribution is, implying that the conditional moment tests will have

general applicability. I assume the moment conditions of interest can be written in terms of ε∗i or

εi. Let m∗: R++ → Rq be a vector of conditional moments. Denote m0∗i ≡ m∗ (ε∗i ) and construct
m∗ so that

E
¡
m0∗i |xi

¢
= 0, i = 1, . . . ,N. (6)

If the uncensored sample {y∗i } were observed, one could base a specification test on the sample
analog of (6). Let θ̂ be the maximum likelihood (ML) estimate of θ0, and define ε̂∗i ≡ ε

³
y∗i , xi, θ̂

´
,

and m̂∗i ≡ m∗ (ε̂∗i ).8 Then the q dimensional vector

τ̂∗ ≡ 1

N

NX
i=1

m̂∗i (7)

will be close to zero in the latent sample if the moment restrictions are true in the population.
8See Pagan and Vella (1989) for conditional moment testing in the GMM framework.
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Censoring complicates matters slightly. Pagan and Vella (1989), in the context of the tobit

model, suggest taking the expectation of (6) conditional on the censoring. Letting wi = (xi, ci, di)

and m0i ≡ m0 (εi, wi) ≡ E [m∗ (ε∗i ) |εi, wi], by the law of iterated expectations and (6) we have:

E
©
m0i |xi, ci

ª
= 0, i = 1, . . . ,N. (8)

In (8), expectation is taken over (εi, di). Thus specification tests for censored samples may be

based on the sample analog of (8). Letting ε̂i ≡ ε
³
yi, xi, θ̂

´
and m̂i ≡ m (ε̂i, wi), the statistic

τ̂ ≡ 1

N

NX
i=1

m̂i (9)

will be close to zero in the censored sample if the moment restrictions are true in the population.

The rest of this section presents two asymptotically equivalent test statistics based on (9). The

trade-off between the two, as we will see, is one of convenience versus power.

2.2 The Test Statistic

To find the asymptotic distribution of τ̂ under the null hypothesis that the model is correctly

specified and that (6) holds, assume that the following probability limits exist:

M0
q×k

≡ plimN−1X ∇θ0m (ε (yi, xi, θ) , wi)|θ=θ0

J0
k×k

≡ −plim 1

N
∇θθ0 l(θ)|θ=θ0

N− 1
2

X·
m00i g00i

¸
d→ N ( 0

(q+k)
, V0
(q+k)×(q+k)

) (10)

where the subscripts denote the dimensions of the matrices, summations run from 1 to N , and g0i ≡
g (yi, wi, θ0) is the (k × 1) derivative of the ith contribution to the log likelihood l: g0i = ∇θli|θ=θ0 .
It will be useful below to partition the variance matrix as:

V0 =

 Vmm0 Vmg0

Vgm0 Vgg0

 (11)
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Then it is straightforward to show (Pagan and Vella, 1989) that when θ̂ is the ML estimator we

have
√
N τ̂

d→ N (0,Σ0) , (12)

where

Σ0 = Vmm0 +M0J −10 Vgm0 + Vmg0J−10 M 0
0 +M0J−10 Vgg0J −10 M 0

0. (13)

By the information equality, for an independent sample J0 = Vgg0 . Furthermore, by the generalized
information equality (Tauchen, 1985), E(∇θ0m0i ) = −E(m0i g00i ), and it follows that M0 = −Vmg0 .
These results combine to simplify the expression for the variance to two equivalent forms:

Σ0 = Vmm0 − Vmg0V −1gg0 Vgm0 (14)

= Vmm0 −M0J −10 M 0
0 (15)

A convenient form for the test is

N τ̂ 0Σ−10 τ̂
d→ χ2 (q) , (16)

which requires an estimate of Σ0 to be feasible.

Under independent sampling, the terms on the right-hand side of (14) will be the following

expectations:

V0 ≡ E
µ
E

½·
m00i g00i

¸0 ·
m00i g00i

¸¯̄̄̄
xi

¾¶
. (17)

Therefore V0 can be consistently estimated with V̂ , the usual sample average analog of (17) evalu-

ated at the estimated parameter vector θ̂. Define Σ̂ to be the estimate of Σ0 based on V̂ and (14).

The test statistic (16) using Σ̂ may be written as

N2τ̂ 0
n
S0
h
I −G ¡G0G¢−1G0iSo−1 τ̂ d→ χ2 (q) , (18)

where G is the N × k matrix with ĝ0i = g(yi, wi, θ̂) as the ith row, and S is the N × q matrix with
m̂0i as the ith row. To interpret (18), note that the term in the middle has the form of the “residual
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maker” for a linear regression. That is, the expression in braces is composed of the squared, summed

residuals from regressing m̂i on ĝi. Tauchen (1985) shows that one can therefore implement the

test via an auxiliary regression: regress m̂i on ĝi and a constant (this will be a seemingly unrelated

regression [SUR] if q > 1) and test the constant(s) for significance. The resulting test statistic is

N2τ̂ 0
n
S0
h
I −G (G0G)−1G0

i
S − τ̂ τ̂ 0

o−1
τ̂ , which differs from (18) only by the presence of τ̂ τ̂ 0 in

the braced expression, which converges in probability to 0 under the null hypothesis. Thus testing

via the auxiliary regression is asymptotically equivalent to testing based (16) using Σ̂, and the two

are nearly equivalent in finite samples. The auxiliary regression method is convenient, in that it

can be implemented with any regression software.

While the auxiliary regression method is asymptotically equivalent to (16) and is easy to imple-

ment, it has notorious slow convergence to its limiting distribution (Pagan and Vella, 1989). In the

simulations performed in Section 6, I find that the actual small sample size of the raw moment test

may be over six times its nominal level. As an alternative to the auxiliary regression, when Y fol-

lows the exponential distribution one can easily calculate the inner expectation in (17) analytically,

and then average over the xi in the sample to approximate the outer expectation. This analytical

estimate generally converges to its probability limit faster than V̂ in practice, and performs better

than V̂ in Monte Carlo power studies (Jaggia, 1997). The analytical estimate is

V̌ = N−1X E

½·
m00i g00i

¸0 ·
m00i g00i

¸¯̄̄̄
xi

¾¯̄̄̄
θ=θ̂

(19)

and is used in the Monte Carlo exercise below for the Laguerre and LM tests. Define Σ̌ to be the

estimate of Σ0 based on V̌ . Although V̌mm0 , the upper left partition of (19), can be calculated for

any distribution for the moment tests considered in this paper, V̌mg0 and V̌gg0 may not be available

for models other than the exponential.

A final possible estimate of V0 can be based on the sample average analogs of Vmm0 ,M0, and J0
in (15) when V̌mg0 and V̌gg0 are not available. This estimate, Σ̃, replaces the appropriate elements

of (15) with V̂mm0 ≡ N−1P m̂im̂
0
i, M̂ ≡ N−1P∇θ0m̂i, and Ĵ ≡ N−1P∇θ0 ĝi. Given the poor
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performance of the auxiliary regression method, testing based on (16) using Σ̃ may be preferred

for models for which Σ̌ cannot be easily calculated (e.g., the Weibull model).

Section A.1 in the appendix contains the explicit form of Σ̌ for the exponential model and of

Σ̃ for the Weibull model when the second through fourth moment conditions are used in the three

versions of the test presented in the next three sections. Section A.1 also presents the gradient for

these models needed to implement the auxiliary regression.

3 Tests Based on Raw Moments

Which moments should one use for testing? Given a fully specified distribution under the alternative

hypothesis, an LM test defines the optimal set of conditional moments (Newey, 1985). In practice,

one often chooses a test based not only on its asymptotic power but on its ease of implementation.9

The practitioner may choose among the infinite number of moments satisfying (6). In this section

and the next two, I explore three alternative sets of moments based on the generalized residuals.

Most tests using generalized residuals in the literature are based on raw moments. Here I present

the raw moment conditions for censored samples. Because ε∗ is distributed unit exponential, the q

population raw moment conditions corresponding to (6) are:

m0∗i
q×1

=


ε∗2i − 2!
...

ε∗q+1i − (q + 1)!

 . (20)

If there is no censoring in the sample, test statistics can be based directly on the sample analogs

of the theoretical moments. Let the element of τ̂∗ in (7) corresponding to the pth power of ε̂∗i be:

r∗p =
1

N

NX
i=1

¡
ε̂∗pi − p!

¢
. (21)

9 It has been humorously noted that the actual power of a test is the theoretical power multiplied by the probability
that the test is actually used.
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In the censored sample, instead of (20) one calculates m0i , the expectation of m
0∗
i conditional on

the censoring. To do this, note that when the error is not censored, we have

E
¡
ε∗pi |εi, di = 0

¢
= εpi , (22)

and that when the error is censored, we have

E
¡
ε∗pi |εi, di = 1

¢
=

pX
j=0

p!

j!
εji ; (23)

see section A.2.2 from the appendix.

From (22) and (23), we find the appropriate element of τ̂ in (9) (the counterpart to r∗p for

censored samples) to be:

rp =
1

N

NX
i=1

ε̂pi − p! + di p−1X
j=0

p!

j!
ε̂ji

 (24)

Note that rp reduces to the usual raw moment conditions for uncensored observations when di = 0

for all i. Typically one takes τ̂ = (r2, . . . , rq+1)0; one cannot test r1 (refer to discussion of equation

(49) below). Of particular interest are the first few moments:

r2 = N
−1X ε̂2i − 2 + 2di(ε̂i + 1) (25)

r3 = N
−1X ε̂3i − 6 + 3di

¡
ε̂2i + 2ε̂i + 2

¢
(26)

r4 = N
−1X ε̂4i − 24 + 4di

¡
ε̂3i + 3ε̂

2
i + 6ε̂i + 6

¢
(27)

where all summations are over 1 to N . Many practitioners use raw moments and the auxiliary

regression form of the test to avoid the matrix calculation of the variance matrix.

4 Tests Based on Laguerre Polynomials

This section develops an alternative to raw moment tests, in which the moments are chosen to be

orthonormal polynomials in the generalized residual. Such tests, under certain circumstances, are

particularly easy to implement, requiring no matrix computation of V̂ . Furthermore, the Monte
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Carlo exercises in section 6 show that the Laguerre tests avoid the slow asymptotic convergence of

the auxiliary regression method.

Let f(Z|x, θ) denote the conditional density of a random variable Z. Assume that the moments
ωp = E(Z

p|x, θ) exist and are finite for all p ∈ N. A family of polynomials {Pp(Z, x, θ)}∞p=0, where
p is the order of the polynomial, is said to be orthonormal with respect to density f if

E (Pn(Z, x, θ)Pp(Z,x, θ)|x, θ) = 1{n = p}. (28)

When the even moments dominate the others, orthonormal polynomial families always exist and

are unique.10 The orthonormal polynomial family for the (uncensored) exponential distribution is

the family of Laguerre polynomials. The pth Laguerre polynomial in Z is

Lp(Z) =

pX
j=0

(−1)j p!

(j!)2 (p− j)!Z
j , (29)

where the usual convention 0! = 1 holds.11 Because L0 is 1, it follows from (28) that E(Lp) = 0.

Note that because the generalized error is exponentially distributed for any duration distribution,

the Laguerre polynomials in ε are orthonormal for any data generating process.

Sample moments for censored observations based on Laguerre polynomials take the form

λp =
1

N

NX
i=1

(1− di)Lp(ε̂i) + diL̃p(ε̂i) (30)

for the appropriate element of τ̂ in (9), where Lp is as in (29), and

L̃p(y) =

pX
j=0

(−1)j
µ
p

j

¶ jX
m=0

ym

m!

is the expectation of the Laguerre polynomial when the duration is censored. The first few moment
10 In particular, let Ω be the matrix with ij element ωi+j−2. Then if Ω is positive definite, there exists a unique

orthonormal polynomial family with respect to f (Cramér, 1946). The converse also holds.
11One can show by direct calculation that (29) satisfies the recurrence relation defining the Laguerre polynomials:

(p+ 1)Lp+1(Z) = (2p+ 1− Z)Lp(Z)− pLp−1(Z) (Abramowitz and Stegun, 1964, p.782).
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conditions from Laguerre polynomials are

λ2 = N−1X 1

2

£
ε̂2i − 4ε̂i + 2+ 2di (ε̂i − 1)

¤
(31)

λ3 = N−1X 1

6

£−ε̂3i + 9ε̂2i − 18ε̂i + 6 + 3di ¡−ε̂2i + 4ε̂i − 2¢¤ (32)

λ4 = N−1X 1

24

£
ε̂4i − 16ε̂3i + 72ε̂2i − 96ε̂i + 24 + 4di

¡
ε̂3i − 9ε̂2i + 18ε̂i − 6

¢¤
(33)

When there is no censoring, di = 0 for all i and λp reduces to λ∗p = N−1PLp(ε̂
∗
i ).

Sharma (1992), building on work by Kiefer (1985), showed (for uncensored data) that condi-

tional moment tests based on λp may be derived as an LM test for unexplained duration dependence.

In that case the nesting model is an expansion of (3) by means of Laguerre polynomials in εi, and

the restricted model with no unexplained duration dependence is (3).

Although the Laguerre polynomials (29) are orthonormal with respect to the uncensored ex-

ponential distribution, the modified Laguerre polynomials (30) are not orthonormal–or even

orthogonal–with respect to the censored exponential distribution. Although one can construct

orthonormal polynomials for the censored exponential distribution by the Gram-Schmidt method,

the coefficients of the resulting polynomials are tedious to compute. Given that the advantage of

the orthonormal polynomials–their ease of computation (explained below)–is lost in the censored

case, I do not present the orthonormal polynomials for the censored distribution.

In some cases orthonormal polynomials lead to test statistics that are particularly easy to

compute. The test statistic τ̂ is asymptotically orthogonal if the asymptotic variance matrix of τ̂

is diagonal. Asymptotically orthogonal tests are desirable because the variance matrix is easy to

compute, sequential tests are invariant to the order in which they are performed, and joint test

statistics are the sum of individual test statistics. For an example of the latter, the test statistic

for the joint test that (λ2,λ3,λ4) = 0 would be the sum of the test statistics for each individual

test of λi = 0, i = 2, 3, 4.

Laguerre-based tests are orthogonal only under certain conditions. Tests using (30) are not or-

thogonal when some data are censored, because then {λp} is not an orthogonal set of polynomials.
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Even for uncensored data, orthonormal polynomials do not necessarily lead to orthogonal tests.

Orthonormality of the moments ensures that Vmm0 is diagonal, but the second term in (15) may not

be diagonal. The variance matrix Σ0 is diagonal, and hence the test is asymptotically orthogonal,

if M0 ≡ plimN−1P∇θ0m0i = 0. The Laguerre polynomial moments have this property for the

exponential model, but they do not for many other commonly used duration models. Although

Sharma (1992) conjectures that asymptotic orthogonality is unlikely to extend out of the exponen-

tial case, the following proposition (proved in the appendix) shows that asymptotic orthogonality

can be extended to some other distributions.

Proposition 1 For any uncensored duration random variable yi with generalized error of the form

εi = καi Λ(yi), with κi = exp(−β0xi), α 6= 0 a known constant, and Λ a known function, under

independent sampling we have M0 = plimN
−1P∇θ0m0i = 0, where m0i are the Laguerre moment

conditions.

For such processes with no censoring, then, (14) implies that the asymptotic variance is merely

Vmm0 . The orthonormality of the Laguerre polynomials furthermore means that Vmm0 = I; i.e.

the Laguerre tests are asymptotically orthogonal. Thus calculating the joint test statistic in the

uncensored case requires no variance computations or matrix inversions, and in the censored case

only Vmm0 need be calculated and inverted. The class of processes with εi = καi Λ(yi) is a subset of

the proportional hazards class; the baseline hazard Λ must be known and contain no elements of θ.

The most important member of this class is the exponential duration model. For the exponential

model, Λ(yi) = yi. The class also includes the Rayleigh distribution, commonly used in life testing

of electronic components. The class does not contain the lognormal or log-logistic models, and

includes the Weibull model only if the shape parameter is known. Table 1 characterizes these

models.

(Table 1 about here)
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5 An LM Test for Unobserved Heterogeneity

A third set of moments may be derived from an LM test for unobserved heterogeneity. This section

extends Lancaster’s (1985) LM test for neglected heterogeneity in the hazard rate in two directions.

Lancaster’s (1985) test is for uncensored samples, and is a true LM test only up to a second order

approximation of the likelihood. I first modify the test to include censored data, as did Jaggia

(1997). I then use higher-order approximations of the likelihood function in the construction of the

test statistic, which leads to a test with higher power.

Let the hazard function of the duration process, (1), take the form h(y|v, x, θ0) = vb (y, x, θ0),
v > 0. Here v is a multiplicative heterogeneity term satisfying E (v) = 1, and b is a baseline hazard

rate. A leading example of such a hazard function has b (y, x, θ0) = e−x0β0 and heterogeneity

parameterized as v = exp (−u), so that the hazard is h(y) = exp (− [x0β0 + u]). This is the form
used in the Monte Carlo exercises, but results here will be developed for the general form here.

Define εb to be the integrated hazard from (2) when v = 1. In terms of εb the conditional

survival function S (y)–the fraction of durations lasting longer than y–is

S (y|v, x, θ0) ≡ 1− F (y|v, x, θ0) = exp(−vεb), (34)

where the dependence of εb on (y, x, θ0) is suppressed in the notation. Equation (34) follows directly

from (4). The unconditional (on v) survival function is

S (y|x, θ0) ≡ 1− F (y|x, θ0) = Ev [exp(−vεb)] . (35)

Finally, let E(v − 1)p = µp , the pth central moment. Recall µ1 = 0; fixing the mean allows

identification of the intercept in β0 when b = e
−x0β0 .
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5.1 Approximating the Unrestricted Likelihood

To explore heterogeneity in the duration model, approximate (34) with S̃q+1, an expansion of order

q + 1 (q ≥ 1) of S as a function of v about v = 1:

S̃q+1 (y|v, x, θ0) = S (y|v = 1, x, θ0) +
q+1X
p=1

dp

dvp
S (y|v, x, θ0)

¯̄̄̄
v=1

(v − 1)p
p!

(36)

= e−εb

1+ q+1X
p=1

ap (εb) (v − 1)p
 , (37)

where (37) follows from (34) and ap (ε) ≡ (−ε)p /p!. Taking expectations with respect to v, we
find:

S̃q+1 (y|x, θ0) = S (y|v = 1, x, θ0)
1+ q+1X

p=2

ap (εb)µp

 . (38)

Given that the PDF f equals −S0, it follows that f may be approximated by −S̃0q+1:

f̃q+1 (y|x, θ0) = f (y|v = 1, x, θ0)
1+

q+1X
p=2

[ap (εb) + ap−1 (εb)]µp

 (39)

Equation (39) follows from (38) and the fact that ε0b (y) ≡ b (y) . Therefore f is approximated by
(39) when µ2 and the higher moments (i.e., the heterogeneity) are small.

Now the approximate likelihood of a sample including censored and uncensored observations

follows directly. As before, let the indicator variable di be 1 if duration yi is censored and 0

otherwise. Then (5), (38), and (39) lead to l
¡
θ, µ2, . . . , µq+1

¢
, an approximation of the true log

likelihood of the sample:

l
¡
θ, µ2, . . . , µq+1

¢
=

NX
i=1

(1− di)
log bi − εbi + log

1+ q+1X
p=2

[ap (εbi) + ap−1 (εbi)]µp


+di

log
1+ q+1X

p=2

ap (εbi)µp

− εbi
 , (40)

where bi ≡ b (yi, xi, θ) and εbi ≡ εb (yi, xi, θ).
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5.2 The LM Test Statistic

Recall the idea of the LM test is that the score (expected first derivatives of the log likelihood

function) of the unrestricted model will be close to zero when evaluated at the restricted estimates,

if indeed the restrictions are true. A general form of the test is

h
∇θ0 logLU (θ̂R)

i h
IU (θ̂R)

i−1 h∇θ logLU (θ̂R)i d−→ χ2 (q) , (41)

where LU is the likelihood of the unrestricted model, IU is the information matrix from the unre-

stricted likelihood, θ̂R is the vector of estimates from the restricted model, and q is the number of

restrictions. In the present context, our parameter vector of interest is
¡
θ, µ2, . . . , µq+1

¢ ≡ (θ, µ).
The restriction we wish to test is µ = 0.

The average gradient of (40) may be found from

N−1∇θl (θ, µ) = N−1
NX
i=1

(1− di)µ∇θbi
bi

−∇θεbi
¶
+ di (−∇θεbi) +

q+1X
p=2

o
¡
µp
¢ (42)

N−1∇µpl (θ, µ) = N−1
NX
i=1

(1− di)∇µp log
1+

q+1X
j=2

[aj (εbi) + aj−1 (εbi)]µj

 (43)

+di∇µp log
1+

q+1X
j=2

aj (εbi)µj


 (44)

for p = 2, . . . , q + 1. Because the restricted estimation will be the same as the ML performed in

section 2, we can denote θ̂R by θ̂ without ambiguity. Now, notice that because θ̂ maximizes the

restricted likelihood, (42) will be zero when evaluated at (θ̂, 0). Thus, in the statistic (41), all the

elements of the outer vectors are zero except for the derivative with respect to µ. The gradient

with respect to µ, evaluated at the restricted parameter estimates, are

sp

³
θ̂, x
´
= ∇µp l

³
θ̂, 0
´
=

NX
i=1

[ap (ε̂i)− (1− di)ap−1 (ε̂i)] . (45)
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Of particular interest are the first few sp:

s2 = N−1X 1

2

£
ε̂2i − 2ε̂i + 2diε̂i

¤
(46)

s3 = N−1X−1
6

£
ε̂3i − 3ε̂2i + 3diε̂2i

¤
(47)

s4 = N−1X 1

24

£
ε̂4i − 4ε̂3i + 4diε̂3i

¤
. (48)

Rather than calculating the variance matrix from (41) directly, we instead note that sp is a

conditional moment and that the test may be implemented by the methods in sections ?? and ??.

5.3 The Kinship Between the Tests

The moment conditions from the raw moments (rp), Laguerre polynomials (λp), and LM test for

heterogeneity (sp) are closely related. Since the LM test uses the theoretically optimal weighting

of the moments against the alternative hypothesis of multiplicative heterogeneity,12 other moment-

based tests can be viewed as sub-optimal weightings of the moments.

When the coefficients β0 enter the hazard through exp(−x0iβ0) (the usual parameterization)
and x contains a constant, then λp and sp are linear combinations of (r1, . . . , rp) for all p, where

r1 = N
−1X ε̂i − 1+ di. (49)

Under these conditions, equation r1 is numerically set to zero when evaluated at the ML estimate;

it is the first-order condition for the constant from the maximization of the likelihood. In these

cases the relationships among the moment conditions are

λp =

pX
j=1

ξpjrj (50)

sp =
1

p!
(−1)p (rp − prp−1) (51)

where ξpj is the coefficient on Z
j in Lp (Z); see (29). For p = 2, all three conditional moments

are numerically equal when evaluated at the ML estimate of θ. For the uncensored case, the
12An LM test is an asymptotically locally most powerful invariant test of the null hypothesis vs. the alternative

against which it is constructed. Furthermore, in finite samples the LM test is a locally most powerful invariant test
if the correct critical value in used (Engle, 1984).
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equivalence between s2 and λ2 was noted by Sharma (1992) and the equivalence between r2 and s2

was noted by Pagan and Vella (1989).13 The result here extends this equivalence to the censored

case and shows that the higher moment conditions (p > 2) are not equivalent. Therefore, in

general the performance of the tests will differ in finite samples when moments higher then the

second are included.

An interesting equivalence between the LM and Laguerre tests holds for p even larger than two

when the distribution of the data are exponential and Σ̌ based on (19) is used to form the test

statistics. In that case the LM and Laguerre test statistics are numerically equivalent, even though

the moment conditions differ. This equivalence holds whether the data are censored or not, but it

is unknown if it would extend to distributions other than the exponential.14 The equivalence does

not hold if Σ0 is estimated with Σ̂ or Σ̃.

Recall that the Laguerre tests may be derived as an LM test for unexplained duration depen-

dence. The equivalence of the Laguerre moments to the LM moments for unobserved hetero-

geneity when p = 2 follows from the kinship between duration dependence and heterogeneity. For

example, it is well known that neglected heterogeneity induces apparent duration dependence into

the sample and that duration dependence causes over- or under-dispersion (see, e.g., Barlow and

Proschan, 1965). The kinship between duration dependence and heterogeneity is also a warn-

ing against attaching a structural interpretation to one or the other in any particular application;

structural duration dependence will appear in the data as heterogeneity, and vice versa.

6 Monte Carlo Results

In this section I examine the small sample performance of four versions of the above tests applied to

an exponential regression model: 1) the raw moments test performed via the auxiliary regression
13Prieger (1999) shows that a test based on centered moments matches the LM test even for higher moments.
14When the second and third moments are used and there is no censoring, the difference between the test statistics

can be shown to be proportional to r1, and therefore zero when evaluated at the ML estimate. For other cases, I
have verified the equivalence numerically for tests including up to fourth moments.
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method with asymptotic critical values, 2) the raw moments test performed via the auxiliary

regression method with bootstrap critical values, 3) the Laguerre polynomial test using Σ̌ [based

on (19)], and 4) the LM test using Σ̌. It is worth emphasizing the the auxiliary regression method

could be used with any conditional moment test, including the Laguerre and LM tests, and that

a Σ̌ version could also be calculated for the raw moment test. I choose these four test versions for

the following reasons. Version 1 appears to be the most commonly advocated test. For example,

it is the specification test and method presented for duration data in Greene (2000), a standard

graduate-level econometrics text. Given the known performance problems of version 1 and the

increasing popularity of the bootstrap in econometrics, version 2 is a plausible next step after

version 1. Version 3 is convenient to calculate in many cases, as explained in section 4. Version 4 is

the optimal test for the alternative hypotheses in the Monte Carlo design, and so is the benchmark

for the other tests.

The Monte Carlo exercises had the following design:

• The duration model is exponential, with PDF given by (52) in the appendix. The explicit
moment conditions, gradient, and variance estimates are in section A.1 of the appendix.

• x is composed of a constant and a standard normal random variable. The regressors and

β00 = (1, 2) are fixed throughout all simulations.

• Heterogeneity takes the form v = e−u, where v is as in (34) and u ∼ N
³
σ2

2 ,σ
2
´
, implying

that v has a lognormal distribution with E (v) = 1.15 This is a special case of multiplicative

heterogeneity, the alternative hypothesis against which the LM test is optimal.

• The data are right-censored, with fixed censoring point c chosen to achieve a desired percent-
age of censoring in the data.

Consider first the performance of the tests when only the second moments are used. As is well-
15A separate set of simulations with Pareto heterogeneity led to qualitatively similar results.

20



known in the literature (e.g., Chesher and Spady, 1991), test statistics from auxiliary regressions

converge very slowly to their asymptotic distribution. The asymptotics rely on the outer product

of the gradient of the log likelihood to estimate the variance, which is known to have bad small-

sample properties. The problem is exacerbated because the statistics rely on sample averages of

high powers of ε, which can be poor estimates of the true expectations. Table 2 presents the actual

size of the tests based on second moments, for various sample sizes and levels of censoring. The

first column shows that the size of the raw moments test is far from the nominal 5% level when the

asymptotic critical value is used, unless the sample sizes are large. The actual test size is about

11% when the sample size is 250 and about 7.5% when the sample size is 1,000. Censoring does not

appear to make the distortion worse. When sample sizes increase to 10,000, the size drops to near

the correct level, although the bias is still significant for the no-censoring case. Thus although the

auxiliary regression method is convenient, it may lead to incorrect inference unless sample sizes are

large. The use of the bootstrap (column two) clears up the size distortion quite well for all levels

of censoring and sample sizes. None of the bootstrap sizes shows significant bias.

(Table 2 about here)

The sizes of the Laguerre and LM tests are in the final column of Table 2 (recall that the

test statistics are identical for the exponential null hypothesis). The sizes of the Laguerre and

LM tests tend to be on the low side, more so for smaller sample sizes, although the distortion is

small compared with the auxiliary regression method. At the cost of additional computation, the

bootstrap could be used to improve the sizes of these tests.

When the second and third moments are used together, the size distortion of the auxiliary

regression method is greater than when the second moment alone is used (see Table 3). The levels

with the second and third moments are about three times the levels with only the second moment

when the sample size is 1,000 or smaller. The test statistic including the third moment contains

higher powers of ε than the second-moment-only version, and the standard error of the sample
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moments of ε rises with the order. The additional randomness apparently adversely affects the size

of the test. Once again, the bootstrap (second column) removes most of the size distortion of the

auxiliary regression tests. The sizes of the Laguerre and LM tests are again on the low side for

smaller sample sizes.

(Table 3 about here)

The power of the tests against the alternative of multiplicative heterogeneity as in (34) is

depicted in figures 1, 2 and 3 for various levels of censoring (none, 25%, and 50% of the sample).

In these figures the second and third moment conditions are used and the sample size is 250.16

When there is no additional variance from heterogeneity (i.e. σ2 = 0), the null hypothesis is true,

and the plotted point is the size of the test. The amount of heterogeneity increases along the

horizontal axis, which is scaled in the graphs to be the percentage increase in the variance of the

latent duration variable due to the heterogeneity.

(figure 1 about here)

(figure 2 about here)

(figure 3 about here)

The power curves reveal the following points. First, the size distortion of the auxiliary regression

raw moments test with asymptotic critical values contrasts markedly with the relatively accurate

bootstrap, LM, and Laguerre tests. Second, as one would expect, the power of the tests decreases as

the amount of censoring in the sample increases. As the censoring becomes more severe, there is less

information in the sample.17 Third, both auxiliary regression tests (raw moments with asymptotic

and bootstrap critical values) are biased: for small amounts of heterogeneity there is a smaller
16The bootstrap sample size is 99 and 100,000 iterations are performed. The power is evaluated at 8 to 16 points

and curves are smoothed for plotting.
17Horowitz and Neumann (1989) and Jaggia (1997) report a similar result.
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chance of rejecting the null hypothesis when false than when true.18 The bias persists over a large

range of alternatives in the bootstrapped test.19 The bootstrap test is consistent20 because the

auxiliary regression with the true critical value is consistent in this case (Horowitz, 1997, sec. 4.6),

so the bias is purely a small sample phenomenon. These results are unfortunate, however, given the

convenience of auxiliary regression tests. Fourth, the Laguerre and LM tests have identical power

curves (figure 1). The exponential durations, along with use of (19) to estimate the variance,

ensures that the LM and Laguerre tests are numerically indistinguishable, as explained in the

previous section. In such cases the Laguerre test should be used because it is easier to calculate.

Finally, to the right of the region of bias the asymptotic version of the raw moments test has lower

power than the Laguerre and LM tests.

Figure 4 shows the power curves with a larger sample size of 1,000 observations. The power

of all the tests is higher, and the range of bias of the bootstrap test is smaller. By the time the

sample size increases to 10,000 observations (Figure 5), the range and magnitude of the bootstrap

bias is quite small, although the test is still less powerful than the Laguerre and LM tests.

(figure 4 about here)

(figure 5 about here)

A final question concerns the number of moments to use in the tests. Theoretically, the more

moments used the higher the power of the test. This is most easily seen for the LM test: the

more moments, the more accurate is the approximation of the likelihood in (39). Practically,

however, the advantage of using higher moments is mitigated by the difficulties stemming from

included higher powers of ε. As noted above, higher powers of ε take ever longer to converge to

their theoretical averages, and may degrade the performance of the test. The trade-off appears
18This odd finding of bootstrap bias has been found in at least one other setting. In one of the bootstrapped

information matrix tests for the tobit model Horowitz (1994) examines, the power against the examined alternative
is less than the size.
19The power curve of the bootstrapped test does eventually approaches 100% (off the scale of the graph in figures1—

3).
20A test is consistent against an alternative hypothesis if its power goes to one asymptotically.
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to go against adding higher moments for the alternative hypotheses of correct baseline model

specification but neglected heterogeneity, as in the Monte Carlo design above. Figure 6 shows the

power of the LM and Laguerre tests (for N=250 and 25% censoring) as higher moments are added.

The power of the test generally falls a bit when the third moment is added to the test compared to

the second moment only, and falls further when the fourth moment is added to the test. Adding

higher moments is likely to be of most use when the baseline duration model is incorrectly specified

(Jaggia, 1991). To explore this, I run the LM and Laguerre tests when the true data generating

process is lognormal and there is no heterogeneity. The lognormal distribution exhibits duration

dependence, while the exponential distribution does not, so this example considers power against

omitted duration dependence. The results are in Table 4. Adding higher moments did increase the

power of the test: a 40% rejection rate with the second moment, a 49% rejection rate with second

and third moments, and a 63% rejection rate with second, third, and fourth moments.

(Figure 6 about here)

(Table 4 about here)

The comparison among the tests is summarized informally in figures 7 and 8. In these graphs,

the “ease of use” of the tests is plotted against their “accuracy”. “Ease of use” refers generally to the

amount of effort required to perform the test. The auxiliary regression test without bootstrapping

places the fewest demands on the econometrician and on computer time, and thus is easiest to use.

When there is no censoring, the Laguerre test is about as easy to implement because no variance

or matrix calculations are required. The other tests are “less easy” because they require more

computer time (e.g. bootstrapping) or more effort manipulating matrices. The “accuracy” of the

test is an informal amalgamation of size and power. The auxiliary regression tests score low in

this dimension due to bad size (the asymptotic version) or bias in the power curve (the bootstrap

version). When the data are not censored, figure 7 shows that the Laguerre test is highest in both

dimensions, making it the logical choice. When there is censoring, the bootstrap test is dominated
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but which of the other tests is chosen depends on the taste of the econometrician.21 Note that all

these comparisons are based on the exponential simulations, to which proposition 1 applies. If the

duration distribution does not satisfy the conditions of proposition 1, then the comparison among

the tests would look like figure 8 for both censored and uncensored data.

(figure 7 about here)

(figure 8 about here)

7 Conclusion

The raw moment specification test performed via auxiliary regression is probably the most com-

monly used specification test for duration data. Despite the size problems with the test, Pagan and

Vella (1989, p.S34) “suspect that the fact that the procedure is so easy to compute will make it

attractive to many investigators....” As the bootstrap becomes more commonly used, it is natural

to expect its application for these tests to clear up the size distortion. The simulations in this paper

show that although the bootstrap does correct the size of the auxiliary regression test, it does so

at the cost of bias and low power in general, so that this procedure cannot be recommended. I

propose the Laguerre test as an alternative that is just as easy to perform as an auxiliary regres-

sion when the data are not censored and the model is exponential (or another model satisfying the

conditions of proposition 1). Furthermore, the Laguerre test has higher power than either form of

the raw moment test for most alternatives studied, and the same power as the optimal LM test.

Adding higher moment conditions to the tests does not improve power vs. heterogeneity when the

baseline hazard rate is correctly specified but does improve power when the baseline hazard itself

is misspecified due to omitted duration dependence. The Laguerre and LM tests are useful new

tools to assess the specification of models for censored duration data.
21The reader can place his indifference curves on figure 8 to find his preferred test.
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A Appendix

A.1 Application to the Exponential and Weibull Models

This section presents the specific form of the three tests for the exponential and Weibull duration

models for the convenience of the practitioner. The tests work for any distribution; see section 2

for the general form of the test for other applications.

A.1.1 Exponential Model

For the exponential duration model with mean κ−1i = exp (x0iβ0), the PDF is

f (yi|xi,β0) = κi exp (−κiyi) = exp
³
−x0iβ0 − yie−x

0
iβ0
´
. (52)
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There are no nuisance parameters (k = `). The moment conditions for the various tests are found

by substituting

ε̂i = yi exp(−x0iβ̂) (53)

in (25)—(27), (31)—(33), and in (46)—(48).

Raw moments test The raw moments test from section 3 is typically implemented via the

auxiliary regression method (see section 2.2). The `-vector of scores for the auxiliary regression

are

ĝi = [ε̂i − (1− di)]xi (54)

for the ith observation for the exponential case. The moment conditions (25)—(27) are regressed

via SUR on the scores and a constant and the constants are tested for significance.

Laguerre moments test For the Laguerre test from section 4, when Y is exponential and there

is no censoring, proposition 1 applies and the asymptotic variance Σ0 of the test statistic (12) is I.

When there is censoring, Σ0 may be estimated by Σ̌ based on (14) and (19). The elements of V̌mm0

as defined in (19) resulting from the second through fourth moment conditions, (31)—(33), are:

v̌11 = 1−N−1X¡
ε̂2ci + 1

¢
exp (−ε̂ci) (55)

v̌12 = N−1Xµ
1

2
ε̂3ci − ε̂2ci + ε̂ci

¶
exp (−ε̂ci) (56)

v̌22 = 1−N−1Xµ
1

4
ε̂4ci − ε̂3ci + 2ε̂2ci + 1

¶
exp (−ε̂ci) (57)

v̌31 = N−1Xµ
−1
6
ε̂4ci + ε̂

3
ci −

3

2
ε̂2ci + ε̂ci

¶
exp (−ε̂ci) (58)

v̌32 = N−1Xµ
1

12
ε̂5ci −

2

3
ε̂4ci + 2ε̂

3
ci − 2ε̂2ci + ε̂ci

¶
exp (−ε̂ci) (59)

v̌33 = 1−N−1Xµ
1

36
ε̂6ci −

1

3
ε̂5ci +

19

12
ε̂4ci − 3ε̂3ci + 3ε̂2ci + 1

¶
exp (−ε̂ci) (60)
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where v̌ij refers to the (i, j) element of the submatrix V̌mm0 , ε̂ci = ε(ci, xi, θ̂), ci is the right censoring

point, and all summations run from 1 to N . The other elements of (14) for the censored case are

V̌mg0 =


−N−1P ε̂ci exp(−ε̂ci)x0i

N−1P 1
2

¡
ε̂2ci − 2ε̂ci

¢
exp(−ε̂ci)x0i

−N−1P 1
6

¡
ε̂3ci − 6ε̂2ci + 6ε̂ci

¢
exp(−ε̂ci)x0i

 (61)

V̌gg0 = N
−1X [1− exp(−ε̂ci)]xix0i (62)

Note that when there is no censoring, ci (and therefore εci) may be taken to be infinite, so that

(55)—(60) simplifies to I and (61) is zero as claimed.

LM test for heterogeneity For the LM test from section 5, Σ0 may be estimated by Σ̌ based

on (14) and (19). The elements of Σ̌ for the test statistic based on (46)—(48) are the following:

v̌11 = N−1Xh
2− ¡ε̂2ci + 2ε̂ci + 2¢ e−ε̂cii (63)

v̌21 = −N−1Xµ
3− 1

2

¡
ε̂3ci + 3ε̂

2
ci + 6ε̂ci + 6

¢
e−ε̂ci

¶
(64)

v̌31 = N−1Xµ
4− 1

6

¡
ε̂4ci + 4ε̂

3
ci + 12ε̂

2
ci + 24ε̂ci + 24

¢
e−ε̂ci

¶
(65)

v̌22 = N−1Xµ
6− 1

4

¡
ε̂4ci + 4ε̂

3
ci + 12ε̂

2
ci + 24ε̂ci + 24

¢
e−ε̂ci

¶
(66)

v̌32 = −N−1Xµ
10− 1

12

¡
ε̂5ci + 5ε̂

4
ci + 20ε̂

3
ci + 60ε̂

2
ci + 120ε̂ci + 120

¢
e−ε̂ci

¶
(67)

v̌33 = N−1Xµ
20− 1

36

¡
ε̂6ci + 6ε̂

5
ci + 30ε̂

4
ci + 120ε̂

3
ci + 360ε̂

2
ci + 720ε̂ci + 720

¢
e−ε̂ci

¶
(68)

V̌mg0 = N
−1X


1− (ε̂ci + 1) e−ε̂ci

−1+ ¡12 ε̂2ci + ε̂ci + 1¢ e−ε̂ci
1− ¡16 ε̂3ci + 1

2 ε̂
2
ci + ε̂ci + 1

¢
e−ε̂ci

x0i (69)

V̌gg0 is as in (62).

30



A.1.2 Weibull Model

For the Weibull duration model (Weibull I from table 1), we have θ0 =
¡
β00,σ0

¢0; σ0 is a scalar
shape parameter controlling duration dependence (dim(θ0) = ` + 1). The PDF and generalized

residual are

f (yi|xi, θ0) = (σ0yi)−1
³
yie

−x0iβ0
´1/σ0

exp

·
−
³
yie

−x0iβ0
´1/σ0¸

(70)

and

ε̂i =
h
yi exp(−x0iβ̂)

i1/σ̂
. (71)

Raw moments test The (`+ 1)-vector of scores for the auxiliary regression (section 2.2) are

ĝi =
1

σ̂

 [ε̂i − (1− di)]xi
ε̂i log ε̂i − (1− di) (1+ log ε̂i)

 (72)

for the ith observation for the Weibull case.22 The moment conditions (25)—(27) are regressed via

SUR on the scores and a constant and the constants are tested for significance.

Laguerre moments test Since the Weibull model with unknown shape parameter is not in the

class of distributions for which M0 = 0 for the Laguerre tests (section 4), the asymptotic variance

of the Laguerre test does not simplify to I even when there is no censoring. For uncensored

observations, Σ̌ may be calculated as for the exponential model above. V̌mm0 = I when there is

no censoring (this is true for any distribution). The other elements needed for Σ̌ for the Weibull

model and moments (31)—(33) are:

V̌gg0 =
1

σ̂2N

X xix
0
i (1− γ)xi

(1− γ)x0i 1
6π
2 + (1− γ)2

 = 1

σ̂2N

X xix
0
i 0.422 78xi

0.422 78x0i 1.823 68

 (73)

V̌gβm0 = 0 (74)

V̌gσm0 = σ̂−1
·
1 1/2 1/3

¸
(75)

22 If a parameterization of σ such as ς = log(σ)is chosen for the ML routine, the final row of (72) needs to be
adjusted accordingly.
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where γ = 0.577 21566 is Euler’s constant.

Estimates (73)—(75) do not apply when the data are censored. The analytical estimate Σ̌ in

this case contains partial gamma, digamma, and trigamma functions, making it computationally

unattractive. Therefore a simpler estimate of Σ0 is obtained from Σ̃, the estimate of Σ0 based on

plugging V̂mm0 , M̂ , and Ĵ into (15) (see section 2.2). V̂mm0 ≡ N−1Pmim
0
i is found by using the

summands of (31)—(33) for mi. The other pieces of Σ̃ are:

M̂β0 =
1

σ̂N

X
εi


−εi + 2− di

1
2ε
2
i − 3εi + 3+ di (εi − 2)

−16ε3i + 2ε2i − 6εi + 4− di
¡
1
2ε
2
i − 3εi + 3

¢

x0i (76)

M̂σ =
1

σ̂N

X
εi log(εi)


−εi + 2− di

1
2ε
2
i − 3εi + 3+ di (εi − 2)

−16ε3i + 2ε2i − 6εi + 4− di
¡
1
2ε
2
i − 3εi + 3

¢

 (77)

Ĵββ0 =
¡
σ̂2N

¢−1X
εixix

0
i (78)

Ĵσβ0 =
¡
σ̂2N

¢−1X
[(log εi + 1) εi − (1− di)]x0i (79)

Ĵσσ =
¡
σ̂2N

¢−1X
[(log εi + 2) εi log εi − (1− d) (2 log εi + 1)] (80)

where M̂β0 contains the first ` columns (those pertaining to β0) of M̂ , M̂σ is the final column of

M̂ , and Ĵββ0 , Ĵσβ0 , and Ĵσσ are the obvious partitions of Ĵ .

LM test for heterogeneity For the LM test (section 5) with uncensored observations, Σ̌ may

be calculated as for the exponential model above. V̌mm0 = I, V̌gg0 is as in (73), and the other

elements needed for Σ̌ for the Weibull model and moments (46)—(48) are:

V̌gβm0 = (σ̂N)−1
X

xi

·
1 −1 1

¸
(81)
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V̌gσm0 = σ̂−1


2− γ
γ − 5

2

17
6 − γ


0

= σ̂−1


1. 422 8

−1. 922 8
2. 256 1


0

(82)

When the data are censored, Σ̃ should be used instead. V̂mm0 ≡ N−1Pmim
0
i is found by using

the summands of (46)—(48) for mi. Ĵ is as in (78)—(80). The other pieces of Σ̃ are:

M̂β =
1

σ̂N

X
εi


−εi + (1− di)
1
2ε
2
i − (1− di) εi

−16ε3i + 1
2 (1− di) ε2i

x0i (83)

M̂σ =
1

σ̂N

X
εi log(εi)


−εi + (1− di)
1
2ε
2
i − (1− di) εi

−1
6ε
3
i +

1
2 (1− di) ε2i

 (84)

where the definitions are as above.

A.2 Miscellaneous Results

A.2.1 Proof of Proposition 1

Consider ∇βλp, the pth element of m. We have ∇βλp = 1
N

P
L0p(εi)∇βεi = − 1

Nα
P
εiL

0
p(εi)xi,

so it suffices to show that E
¡
εiL

0
p(εi)

¢
= 0. For Laguerre polynomials, the recursion εiL0p(εi) =

p [Lp(εi)− Lp−1(εi)] (Abramowitz and Stegun, 1964, p.783) and orthogonality property (28) imply
that E

¡
εiL

0
p(εi)

¢
is indeed zero for all p.

A.2.2 Expectations of the censored generalized residual

The expectation ε∗i when the observed variable εi is censored is:

E (ε∗i |εi, d = 1) =
Z ∞

ci

ε (t, xi, θ0)
f (t|xi, θ0)

1− F (ci|xi, θ0)dt
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Using the identity ε = − log(1− F ) and change of variables u = S(t) yields

E (ε∗i |εi, d = 1) = [1− F (ci)]−1
Z 0

1−F (ci)
(− log u)(−du) = εi + 1.

Similar calculation for higher powers ε∗i of leads to (23).

A.3 Monte Carlo Exercise Details

A particular simulation includes these steps:

1. Load the initially generated and fixed x matrix, and form λ = e−x0β, an N × 1 vector. This
vector is held fixed through all iterations.

2. Monte Carlo loop, to be performed R times for each particular σ2:

(a) Generate heterogeneity term v, an N × 1 vector, if σ2 > 0.

(b) Generate N exponential random deviates of rate vλ.

(c) Censor the duration variable, if greater than the right-censoring point c.23

(d) Compute the ML estimate β̂ for β0.

(e) Form the generalized residuals and the moment conditions (and the score vector for the

auxiliary regression tests).

(f) Form the test statistics using the desired moments:

i. Raw moments test statistic using (25) alone or both (25) and (26), generated via the

auxiliary regression method described in sections 2.2 and A.1.1: regress the moment

conditions on the scores and constants (a SUR if both (25) and (26) are used); form

the joint test statistic for the significance of the constants. This statistic is referred

to the asymptotic critical value for a χ2(1) or χ2(2) random variable as appropriate.
23The censoring point is determined by a subroutine that performs steps (a) and (b) and picks the quantile of

the resulting pseudo-data that leads to the desired level of censoring. These pseudo-data are then discarded. After
getting two such quantiles, c is set to their average.
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ii. Same as previous, but the statistic is referred to a bootstrap critical value. The

size of the bootstrap sample is 999 for the size calculations and 99 for the power

curves.24

iii. Laguerre polynomial test statistic using (31) alone or both (31) and (32) and the

asymptotic variance as calculated in section A.1.1. This statistic is referred to the

asymptotic critical value.

iv. LM test statistic using (46) alone or both (46) and (47) and the asymptotic variance

as calculated in section A.1.1. This statistic is referred to the asymptotic critical

value.

(g) Test the statistics using the relevant critical value, and record acceptance or rejection.

3. Report the percentage of rejections as the power of the tests for the chosen σ2.

24The method is the parametric bootstrap (Horowitz, 1997); the paired (natural) bootstrap yielded qualitatively
similar results (including the persistance of the bootstrap bias).
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Integrated Hazard
ε =

£
exp(−β0x)¤αΛ(y) Asymptotically

Model Λ(y) α Orthogonal
exponential y 1 Yes
Rayleigh y1/2 0.5 Yes
proportional hazards Λ0(yi) 1 Yes∗

Weibull 1† y1/σ 1/σ No‡

Weibull 2† y1/σ 1 No‡

∗The baseline hazard Λ0 is taken to be known. If not, its estimation adds to the variance of the estimated generalized

residual (Tsiatis, 1981) and the results of this paper do not apply.

†There are two forms of the Weibull model in the literature.

‡If the Weibull shape parameter σ is known, then Yes.

Table 1: Integrated Hazard and Asymptotic Orthogonality of the Laguerre Test for Various

Distributions

36



Raw Moment Test Laguerre
Asymptotic Bootstrap and LM

Test Critical Values Critical Values Tests
N = 250

No censoring 0.116∗ 0.050 0.041∗

25% censoring 0.107∗ 0.050 0.041∗

50% censoring 0.110∗ 0.050 0.040∗
N = 1, 000

No censoring 0.075∗ 0.050 0.048
25% censoring 0.073∗ 0.050 0.048∗

50% censoring 0.074∗ 0.048 0.046∗

N = 10, 000
No censoring 0.056∗ 0.048 0.051
25% censoring 0.055 0.050 0.050
50% censoring 0.052 0.047 0.051

Table notes: Nominal size is 5%; * indicates significant (1% level) bias in the empirical size. N is sample size. Raw

moment tests are performed via the auxiliary regression method (see section 2.2). Censoring is accomplished with a fixed

right censoring point common to all observations. Bootstrap sample size = 999. For raw moment tests, number of Monte

Carlo trials is 100,000 for N=250, 25,000 for N=1,000, and 10,000 for N=10,000. For Laguerre and LM tests, number of

Monte Carlo trials is 100,000 for all sample sizes. The Laguerre and LM tests are numerically indistinguishable; the final

column is the results from either test.

Table 2: Empirical Levels of the Tests with Second Moments
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Raw Moment Test Laguerre
Asymptotic Bootstrap and LM

Test Critical Values Critical Values Tests
N = 250

No censoring 0.313∗ 0.050 0.040∗

25% censoring 0.296∗ 0.052∗ 0.038∗

50% censoring 0.311∗ 0.050 0.033∗

N = 1, 000
No censoring 0.192∗ 0.050 0.047∗
25% censoring 0.190∗ 0.051 0.047∗

50% censoring 0.212∗ 0.052 0.044∗

N = 10, 000
No censoring 0.087∗ 0.049 0.050
25% censoring 0.092∗ 0.050 0.049
50% censoring 0.104∗ 0.049 0.051

Table notes: Nominal size is 5%; * indicates significant (1% level) bias in the empirical size. N is sample size. Raw

moment tests are performed via the auxiliary regression method (see section 2.2). Censoring is accomplished with a fixed

right censoring point common to all observations. Bootstrap sample size = 999. For raw moment tests, number of Monte

Carlo trials is 100,000 for N=250, 25,000 for N=1,000, and 10,000 for N=10,000. For Laguerre and LM tests, number of

Monte Carlo trials is 100,000 for all sample sizes. The Laguerre and LM tests are numerically indistinguishable; the final

column is the results from either test.

Table 3: Empirical Levels of the Tests with Second and Third Moments

Laguerre LM
Moments Test Test
Second 0.3951 0.3953
Second and Third 0.4901 0.4899
Second, Third, and Fourth 0.6357 0.6353

Table notes: N = 250. The true data generating process is lognormal with no heterogeneity; the (false) null hypothesis

is an exponential model. Censoring is accomplished with a fixed right censoring point common to all observations so that

25% of the sample is censored. Number of Monte Carlo trials is 100,000.

Table 4: Power of the Laguerre and LM Tests vs. Incorrect Baseline Model as the Number of

Moments Increases
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Figure 1: Power curves for the tests vs. lognormal multiplicative heterogeneity (no censoring, 2nd

and 3rd moments, N=250)
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Figure 2: Power curves for the tests vs. lognormal multiplicative heterogeneity (25% censoring,

2nd and 3rd moments, N=250)
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Figure 3: Power curves for the tests vs. lognormal multiplicative heterogeneity (50% censoring,

2nd and 3rd moments, N=250)
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Figure 4: Power curves for the tests vs. lognormal multiplicative heterogeneity (25% censoring,

2nd and 3rd moments, N=1,000)
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Figure 5: Power curves for the tests vs. lognormal multiplicative heterogeneity (no censoring, 2nd

and 3rd moments, N=10,000)
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Figure 6: Power curves for the LM and Laguerre tests (25% censoring, N=250)
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Figure 7: Comparison of the Tests when the Data are Uncensored
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Figure 8: Comparison of the Tests when the Data are Censored
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