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Noncentral Student distributed LS and IV Estimators.

Leon L. Wegge1

The distribution of the least squares and the instrumental variable estimators of
the coefficients in a linear relation is noncentral student when the data are
normally distributed around possibly non-constant means. This is the claim of the
paper and we show for what definition of a noncentral student density this claim
to compact summary of the vast literature is justified. Unfortunately, the definition
of the noncentral student density is as complicated as its parent, the noncentral
Wishart density. Both are defined in terms of infinite series of zonal polynomials
of all orders. We have developed however a recursive online method that
generates these polynomials sequentially ad infinitum for bivariate and trivariate
densities. The time is here that the practicality of the theory can be widened
considerably.

0. Introduction.

The practitioner of statistical and econometric methods often deals with data that are truly
random in the sense that the researcher has no control over their generation, there being no
design of any kind. Yet, to evaluate the evidence, all we have are either theorems that pertain to
designed data or are large sample probability statements. The latter are expressions of what
would be if we had a sample of infinite size. There is no basis to their relevance.

An assessment of the relevance of the large sample properties of estimators in finite
samples is possible if their finite sampling distribution is known. This paper is a summary of the
literature on the distribution of the least squares and instrumental variable estimators of linear
equation coefficients and sketches a view towards unification and practical implementation of the
results.

This work started with James [3], [4], with his definition of the noncentral Wishart density
and his derivation that the moment matrix of normally distributed data with shifting means is
noncentral Wishart distributed. Polynomials of all orders, called zonal polynomials, appear in that
definition and these appear to be difficult to compute. Parkhurst & James [8] calculated zonal
polynomials up to order 12. For practical purposes polynomials of much higher order are needed,
since the polynomials converge very slowly.

An important contribution to the theory of the noncentral Wishart density was made by
Constantine [1] by showing the reproductive property of zonal polynomials, i.e. the expectation of
a zonal polynomial under a central Wishart distribution is another zonal polynomial.

Student densities, both central and noncentral, have a much longer history. There are
many definitions. Traditionally these densities were constructed as multivariate generalizations of
standard univariate student t-ratios. In the context of the literature around the Wishart density
there is a natural way that leads to a multivariate student density concept. With normal data and
the moment matrix following a central Wishart density, what is the density of the least squares
estimator of one subset of the data on another subset?

Kshirsagar [7] asked this question and he showed that the least squares estimator follows
a multivariate central student density. Extensions to include some fixed data in the regression
model were published in [6] and [13].

In this paper we ask the same question, but in the context of the noncentral Wishart
density. When the moment matrix is noncentral Wishart distributed, what is the density of the
least squares estimator? At the end of the analysis, we can define the noncentral student density
in such a way that the noncentral Wishart and student densities are linked in the same way as
was discovered by Kshirsagar in the case of the central Wishart and student densities. This link is
recoverable through the derivation of the density of the least squares estimator in either case.
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As is well known the densities of the least squares estimator and the instrumental variable
estimator have many features in common [9]. It is not surprising to find that the noncentral student
density also characterizes the density of the instrumental variable estimator. The difference in the
degrees of freedom and the inequality between the coefficient in the linear relation and the
population regression coefficient create the difference in the density parameters.

When the transformations and the algebraic derivations between the noncentral Wishart
and noncentral student densities are done, the question of the implementation of the results
remains. Phillips [9] concluded with the summary statement that the joint densities satisfy a
functional differential equation. Here the joint densities are characterized as noncentral student
densities that depend on analytically intractable hypergeometric functions that are series of zonal
polynomials of all orders.

There is progress however in the online calculation of the zonal polynomials that appear
in bivariate and trivariate densities. We provide the details in an appendix. We stand on the view
that the results are not only satisfying from the theory perspective, but also practical in these lower
dimensional distributions.

The paper is divided in 4 sections. Section 1 defines the noncentral Wishart density and states the
fact that the moment matrix has this distribution if the data come from a normal population with changing
means. In Section 2 we define the central student density, the moment matrix is partitioned and the
transformation from the moment matrix to i) the least squares estimators (LSE), to ii) the moment matrix
of regressors and iii) to the residual variance is performed. In the noncentral situation, the latter two have
interdependent Wishart densities and this creates a main problem. The density of the LSE is found to be a
product of a central student density and is also linked to the Wishart densities through the hypergeometric
function. This function links all three statistics jointly. Section 3 studies the marginal joint density of the
LSE and interprets the noncentral student density as a weighted average of central student densities. We
show that the LSE of the coefficients in a linear stochastic relation between stochastic regressand and
regressors that have nonstationary means is distributed in a multivariate noncentral student distribution. In
Section 4 we show the comparison between the instrumental variable estimator (IVE) and the LSE. The
IVE is found to have a noncentral student density. This result also pertains to what is known in the
econometric literature as indirect least squares estimators. Section 5 concludes by raising the potential for
practical uses of the theory because progress in the computational methods has been made. The
Appendix provides details on a recursive method for calculating zonal polynomials.

1. The Non-central Wishart Density.

Suppose that the columns of the p × n matrix X are independently normally
distributed with covariance matrix Σ and expected value E(X) = M . The probability
density is

(2π )− pn / 2 Σ − n / 2
exp[−

1

2
tr(Σ−1(X − M)(X − M)' ] . (1)

The density of the p × p matrix S = XX' is given by James [4] as

fW (S p,Σ,n, M) =w( p,Σ,n, M) S
(n− p−1) / 2

exp[−
1

2
tr(Σ−1S)] 0F1(

n

2
;
1

4
Σ−1MM' Σ−1S). (2)

where
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w(p,Σ,n, M) = (Γp(
n

2
))−1 2Σ −n / 2

exp[−
1

2
tr(Σ−1MM' ] , (3)

Γp(
n

2
) = π p(p−1) / 4 Γ[

1

2i =1

p

∏ (n +1 − i)] and 0 F1(
n

2
; D) is the hypergeometric function. If

Zκ (D) is a up to length p James zonal polynomial of order k , Constantine [1]
renormalized the polynomials. He defined Cκ (D) = [χ[2κ ](1)2 k k!/(2k)!]Zκ (D) and then

0 F1(
n

2
; D) =

1

k!

Cκ (D)

(n / 2)κ

, with partitions κ = (k1, k2 ,.., kp), ki = k
i =1

p

∑ , (n / 2)κ = (
n

2i =1

p

∏
κ
∑

k= 0

∞

∑ −
1

2
(i − 1))k i

(x)k i
= x(x + 1)...(x + ki −1) and χ[κ ](1) = k! (ki − kj − i + j)

i < j

p

∏ / (ki + p − i)!
i =1

p

∏ .

The density (2) is called the non-central Wishart density on n degrees of freedom with matrix of non-

centrality parameters
1

2
MM' Σ−1

. Wishart [14] found (2) when M = 0.

2. The multivariate student density .

Folowing an outline introduced in [13], partition the p × p matrices

S =
S11 S11b

b' S11 S22.1 + b' S11b

 
 
  

 
, Σ =

Σ11 Σ12

Σ12' Σ22

 
 
  

 
, Σ−1 =

(Σ11)−1 + β(Σ22.1 )−1β' −β (Σ22.1)
−1

−(Σ22.1 )−1β' (Σ22.1)
−1

 
 
  

 
 ,

whereS11 and Σ11are p1 × p1 principal submatrices, β = (Σ11)−1 Σ12 , b = (S11)−1 S12 ,
S22.1 = S22 − S12 ' (S11)−1 S12 and Σ22.1 = Σ22 − Σ12 ' (Σ11)−1 Σ12 . With p2 = p − p1 , the p1 × p2 matrix
b is the least squares regression coefficient matrix, regressing the bottom p2 variables
on the top p1 variables. We seek the density of b . In terms of the partitioned matrices
and M' = (M1' M2' ), M1 having p1 rows, observe that

trΣ−1S = tr[ΘS11] + tr[(Σ22.1)
−1 S22.1], with Θ = (Σ11)−1 + (b − β )(Σ22.1)

−1(b − β)' , (4)

trM' Σ−1M = trM1' (Σ11)−1 M1 + tr(M2 − β' M1)' (Σ22.1 )−1(M2 − β' M1) (5)

M' Σ−1SΣ−1M = Ω1' S11Ω1 + Ω2' S22.1Ω2, with (6)
Ω1 = (Σ11)

−1M1 + (b − β)(Σ22.1 )−1(M2 − β' M1) , Ω2 = (Σ22.1)
−1 (M2 − β' M1 ) .

Consider the variables in the matrix S 0 =
S11 b

b' S22.1

 
 
  

 
. The Jacobian of the

transformation of the elements on and above the diagonal of S to S0 is equal to S11

p2 .
From the density (2) of S and the equations (4) and (5) we find that the density of S0

consists of three factors
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f (S 0 ) = fW (S11 p1,Θ
−1, n + p2 ,0) × fW(S22.1 p2 ,Σ22.1,n − p1,0) (7)

×
w( p,Σ,n, M)

w(p1,Θ
−1, n + p2 ,0) w( p2,Σ22.1,n − p1,0) 0F1(

n

2
;

1

4
(Ω1' S11Ω1 + Ω2' S22.1Ω2) ,

with

fW (S11 p1,Θ
−1,n + p2 ,0) =w(p1,Θ

−1,n + p2, 0) S11

(n+ p2 − p1 −1) / 2
exp[−

1

2
tr(ΘS11)] , (8a)

fW (S22.1 p2, Σ22.1,n − p1,0)=w(p2, Σ22.1,n − p1,0) S22.1

(n− p−1) / 2
exp{−

1

2
tr[(Σ22.1)

−1 S22.1 ]}. (8b)

The first two factors in (7) are central Wishart densities. The third factor is seen to equal

fS(b p1 × p2, Σ
11

, Σ22.1,n + p2, 0) × exp{−
1

2
tr[M1' (Σ11)−1 M1]}

× exp{−
1

2
tr[(M2 − β' M1 )' (Σ22.1 )−1(M2 − β' M1 )]} × 0F1(

n

2
;

1

4
(Ω1' S11Ω1 + Ω2' S22.1Ω2 )) , (9)

where

fS(b p1 × p2, Σ11, Σ22.1,n + p2, 0)

=
Γp2

(
n + p2

2
)

(π )p1 p2 / 2 Γp2
(
n + p2 − p1

2
)

Σ11

−n / 2
Σ22.1

− p1 / 2

(Σ11)−1 + (b − β)(Σ22.1 )−1(b − β )'
(n+ p2 ) / 2

(10a)

=
Σ11

p2 / 2 Σ22.1

(n+ p2 − p1 ) / 2 Γ[
1

2
(n + p2 +1 − i)]

i =1

p2

∏

(π )p1 p2 / 2 Γ[
1

2
(n + p2 − p1 + 1− i)] Σ22.1 + (b − β )' Σ11(b − β )

(n+ p2 ) / 2

i =1

p2

∏
(10b)

is the multivariate central student density with parameters (p1 × p2 ,Σ11,Σ22.1,n + p2 ,0) .
q -th order moments exist provided q ≤ n − p1 and then

E(b) = β , E(dd' ) =
1

n − p1 −1
(Σ22.1 ⊗ (Σ11)

−1), where d = vec(b − β ) . (11)

The second equality (10b) follows from (10a) and the determinental identity
Ip1

+ FG = Ip2
+ GF , for p1 × p2 F and G' .

The complete noncentral density fS(b p1 × p2, Σ11, Σ22.1,n + p2, M) of the least squares
estimator b depends on the first two factors and is obtained from (7) by integrating out
S11 andS22.1. This density is a product of densities in which the central student density
(10) is always a factor.
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Example 1. Stationary Normal Regressors.
When M=0, the density of b is given by (10) since the hypergeometric function 1)1;(10 =F and the

first two probability factors in (7) are independent of b integrating to one. This result was obtained by
Kshirsagar [7]. The first two moments are stated above. In particular b is an unbiased estimator of the
population regression coefficientsβ = (Σ11)−1 Σ12 . In the p2 × n regression model X2 = γ ' X1 +U ,

where U are unobserved (residual) random variables and the columns of
X1

U

 
 
  

 
are independently

normally distributed with means zero and covariance
Σ11 Σ1υ

Συ1 Συυ

 
 
  

 
, the data covariance

Σ =
Σ11 Σ11γ + Σ1υ

Σ12' Συυ.1 + Σ21(Σ11)
−1Σ12

 
 
  

 
, the population regression coefficients β = γ + (Σ11)

−1Σ1υ and b is

a biased estimator of γ except when Συ1 = 0 , i.e. the residual variables U and the regressor variables

X1 are independent.
The result extends to the model X2 = γ ' X1 +δ ' Z + U , where p3 × n Z are fixed variates [6], [13]

and the means of X1 are linear forms in the fixed variates Z .

3. LSE b is multivariate non-central Student . M2 = γ ' M1, γ = β..

In the general case with nonstationary means M , the p2 × n regression model X2 = γ ' X1 +U ,
where the columns of U are identically distributed independent normal unobserved residuals with mean
zero, constant variance and distributed also independently of the regressors X1 , implies the relation
M2 = γ ' M1 between means and Σ21 = γ ' Σ11 between the covariances, since the expectation of the
second moments E(X2 X1' ) = Σ21 + M2M1' must equal γ ' E(X1X1' ) = γ ' (Σ11 + M1M1' ). The model

implies β = (Σ11)−1 Σ12 = γ . Good regressors imply that property.
Substituting these equalities into (7), the variates S22.1 are not present in the hypergeometric function.

After integrating out S22.1, the joint density of b and S11 is given by

f (b,S11) = fW(S11 p1,Θ
−1,n + p2 ,0) × 0F1(

n

2
;

1

4
(M1' (Σ11)

−1S11(Σ11)
−1 M1))

× fS (b p1 × p2, Σ
11

,Σ22.1, n + p2 ) × exp{−
1

2
tr[M1' (Σ11)

−1 M1]} . (11)

Constantine [1] showed that the expectation in the central Wishart distribution of the hypergeometric
function is a hypergeometric function i.e.

exp[−
1

2
S11 > 0
∫ tr(ΘS11)]S11

(n+ p2 − p1 −1) / 2

0F1(
n

2
;
1

4
(Σ11)−1 M1M1' (Σ11)−1 S11)dS11

=
2 p1 (n + p2 ) / 2 Γp1

(
n + p2

2
)

Θ (n + p2 ) / 2 1F1(
n + p2

2
;
n

2
;
1

2
(Σ11)

−1 M1M1' (Σ11)−1Θ−1) , (12)

where 1 F1(a;b; D) =
(a)κ

(b)κκ
∑

k= 0

≈

∑ Cκ D)

k!
, κ = (k1,k2, ..,kp1

) .
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Substituting into (11), the density of the least squares estimator b is

fS(b p1 × p2, Σ11, Σ22.1,n + p2, M2 = β' M1) = exp[− 1

2
trM1M1' (Σ11)−1]

× 1F1(
n + p2

2
;

n

2
;

1

2
(Σ11)−1 M1M1' (Σ11)−1Θ−1 ) × fS (b p1 × p2,Σ11, Σ22.1,n + p2,0)

(13)

We will say that b is distributed in the noncentral student density with parameter set
(p1 × p2 ,Σ11,Σ22.1,n + p2 ,M2 = β' M1 ) .

Univariate Case.
The name noncentral student density is simply reflecting the fact that in the scalar simple regression case
with p1 = p2 = 1 , (13) is a weighted average of central student densities in the form

fS(b1×1, Σ11 ,Σ22.1, n +1, M2 = βM1 ) =

λk
k=0

≈

∑ fS(b1 ×1,Σ11,Σ22.1,n +1 + 2k,0), with λk =
1

k!
(

M1M1'

2Σ11

)k / exp[
M1M1'

2Σ11

].
(14)

The mean E(b) = β and var b = λk
k=0

≈

∑ Σ22.1

n + 2k − 2
(Σ11)−1

, which is smaller than that of the central

distribution.

Multivariate Case.

fS(b1×1, Σ11 ,Σ22.1, n +1, M2 = βM1 ) =

µ k (b)
k=0

≈

∑ fS(b1 ×1,Σ11,Σ22.1,n +1 + 2k,0), with µk (b) dependent on b.
(15)

Proof.

i). We prove (15) first for the single equation multiple regression case when p2 = 1 , p1 is arbitrary and

M1M1' (Σ11)−1 = Ip1
. Letting x = (Σ11)1 / 2 (b − β)(Σ22.1)

−1 / 2
, from (13) we have to evaluate

1 F1(
n +1

2
;
n

2
;
1

2
Φ−1) =

((n +1) / 2)κ

(n / 2)κκ
∑

k = 0

≈

∑ Cκ (Φ−1 / 2)

k!
with Φ = Ip1

+ xx' = (Σ11)1 / 2Θ(Σ11)1 / 2 . (16)

Constantine` s zonal polynomial Cκ (Φ−1 / 2) is a linear form Cκ (Φ−1 / 2) = Ξκ s(k ) in the vector of
monomials

s(k ) = ( s
k
, s

k −1
s1, s

k − 2
s2, .., s

k−2
s1s1, s

k−3
s2 s1, .., .., s2s2 (s1)

k −4 , (s1)
k )' with its elements (sl1

sl 2
..slk

)

corresponding to a partition λ = (l1,l2 , ..,lk ) of k, ordered by shortest length.

and where

s j = sum of the j − th powers of the roots of
1

2
Φ−1

.
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One root of Φ is equal to its determinant Σ11 Θ and p1 −1roots are equal to one. Since the roots of

Φ−1
are the reciprocals of those of Φ , the sum of powers s j =

1

2 j
( p1 −1+ ( Σ11 Θ )− j

) . Therefore the

vector s(k ) = (pλ (1/ Σ11 Θ )) , where pλ (1/ Σ11 Θ ) is a polynomial of degree k in 1/ Σ11 Θ and the
hypergeometric function

1 F1(
n +1

2
;
n

2
;
1

2
Φ−1) =

1

k!k = 0

≈

∑ ((n +1)/ 2)κ

(n / 2)κκ
∑ Ξκλ

λ
∑ pλ (1/ Σ11 Θ ) = ai

i =0

≈

∑ (
1

Σ11 Θ
)i

is a polynomial of infinite degree in 1/ Σ11 Θ . From (13) when p2 = 1 and M1M1' (Σ11)−1 = Ip1
we get

fS(b p1 ×1,Σ11 ,Σ22.1,n + 1,M2 = β' M1) = µi
i= 0

≈

∑ fS (b p1 × p2 ,Σ11,Σ22.1,n +1+ 2 i,0),

with µi = exp(− p1 / 2)
((n +1 − p1) / 2)i

((n +1) / 2)i

ai

(17)

ii). When p2 = 1 , p1 and the means M are arbitrary, but still satisfying M1 = β' M2 , from (13) the
hypergeometric function to be evaluated is

1 F1(
n +1

2
;
n

2
;
1

2
ΨΦ −1 ) =1 F1(

n +1

2
;
n

2
;
1

2
Q' ΨQΛ−1 ), with Ψ = (Σ11)−1 M1M1' , (18)

where Φ = Q' ΛQ, Q orthonormal and Λ the diagonal matrix of characteristic roots of Φ , these roots

being p1 −1 ones and the p1 − th root is equal to Σ11 Θ . Therefore the characteristic roots ρ of

Q' ΨQΛ−1
satisfy

0 = Q' ΨQΛ−1 − ρIp1
= ΨQΛ−1Q' −ρIp1

= Ψ(Ip1
+ (

1

Σ11Θ
−1)Qp1 (Q p1 )' ) − ρIp1

(19)

whereQ p1 is the p1 − th column of Q i.e. the p1 − th eigen vector of Φ
= Ip1

+ xx' , with x = (Σ11)1 / 2 (b − β )(Σ22.1)
−1 / 2

. Since the latter is the vector x / x ' x , the principal

minors of all orders

Ψ11 + (
1

Σ11Θ
−1)Ψ1

xx1'

x' x
= (1+ (

1

Σ11Θ
−1)

x1' (Ψ11)−1 Ψ1x

x' x
) Ψ11 , Φ =

Φ1

Φ2

 
 
  

 
=

Φ11 Φ12

Φ21 Φ22

 
 
  

 
, (20)

are linear in ( Σ11 Θ )−1. When (19) is written as a polynomial in ρ , all coefficients are also linear in

( Σ11 Θ )−1. Therefore, the sum of powers s j = (ρ1 ) j + (ρ2 ) j + .. + (ρ p1
) j

, the vector of monomials s(k )

and the hypergeometric function (18) are polynomials in ( Σ11 Θ )−1. If we write
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1 F1(
n +1

2
;
n

2
;
1

2
ΨΦ −1 ) = ai (b)(

1

Σ11 Θi = 0

≈

∑ )i then

fS(b p1 ×1,Σ11 ,Σ22.1,n + 1,M2 = β' M1) = µi
i= 0

≈

∑ (b) fS(b p1 ×1,Σ11,Σ22.1,n +1,0)

with µi(b) = exp[− 1

2
tr(M1M1' (Σ11)−1)]

((n + 1− p1)/ 2)i

((n + 1)/ 2)i

ai (b).

(21)

The density is again a weighted average of central student densities of higher degrees of freedom.
But there is a vast difference between (17) and (21). Here the weights are random dependent onb since
the principal minors in (20) depend on x = (Σ11)−1(b − β )(Σ22.1)

−1 / 2
. Whereas all marginal and

conditional densities are known for the density (17), the marginal and conditional densities of (21) are not
so simple and require evaluation of the expected value of ratios of quadratic forms that appear in (20).

4. The IVE bIV is Multivariate non-central student : M2 = γ ' M1, γ ≠ β.

If the regression model is X2 = γ ' X1 +U , with E(U ) = 0 , the density of the least squares estimator

when M = γ ' M , γ ≠ β. is obtained from the density f (S 0 )at (7) by integrating out S11 and S22.1. The

estimator is centered around β = γ + (Σ11)
−1Σ1υ and is thus biased and inconsistent whenever

(Σ11)−1Σ1υ ≠ 0.
In the econometric literature the theory holds that there is a q × n set of instrumental variables Z that are
either fixed or independent of X and such that the means M are linear forms M = ΠZ . Instead of the
least squares estimator consider the instrumental variable estimator which is the least squares estimator
after replacement of the variables by their expectations XZ' (ZZ' )−1 Z . The p × p moment

matrixS = XZ' (ZZ' )−1 ZX' has rank Min( p,q) , its density under the normality assumption is the

noncentral Wishart fW (S p,Σ, q, M) and q − p1 is the degree of overidentification.

Starting from the noncentral Wishart fW (S p,Σ, q, M) and the relation M2 = γ ' M1 , the distribution of the

instrumental variable estimator bIV
is derivable in exactly the same way as above, only the degrees of

freedom differ. Instead of (7) we have

f (S 0 ) = fW (S11 p1,Θ
−1, q + p2 ,0) fW (S22.1 p2 ,Σ22.1, q − p1,0)

× fS (bIV p1 × p2 ,Σ11 ,Σ22.1,q + p2,0) exp[−
1

2
tr(M1' H(γ ,γ )M1 )]

× 0F1(
q

2
;
1

4
M1'[(γ − β )(Σ22.1)

−1S22.1(Σ22.1)
−1(γ − β )' +H (γ ,bIV )S11H(bIV ,γ )]M1),

with H(z1,z2 ) = (Σ11)−1 + (z1 − β )(Σ22.1)
−1(z2 − β )' and Θ = H (bIV ,bIV ).

(22)

As an illustration, we consider the two Examples 2 and 3 that have been developed in the literature by a
different method.
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Example 2. The Exactly identifiable model, p2 = 1, q − p1 = 0.

When the number of instruments q is equal to the number p1 of regressors, the equation is said to be
exactly identifiable. In (22) the density of S22.1 is the degenerate density (spike) with all the weight at zero.
Consequently the hypergeometric function only depends on the second term in its argument. The
reproductive property of hypergeometric functons [1] implies that

exp[− 1

2
tr(ΘS11)] 0F1 (

S11 > 0∫
1

4
M1' H(γ ,bIV )S11H (bIV ,γ )M1) =

Γp1
(

p1 + 1

2
) Θ / 2 −( p1 +1) / 2

1F1(
p1 +1

2
;

p1

2
;
1

2
M1' H(γ ,bIV )Θ−1H(bIV ,γ )M1' )

. (23)

Substituting this into (22) we get in the exactly identified model with M2 = γ ' M1 that

fS(bIV p1 ×1,Σ11 ,Σ22.1, p1 +1, M2 = γ ' M1) = exp[− 1

2
tr(M1' H(γ ,γ )M1 )]

×1 F1(
p1 +1

2
;

p1

2
;
1

2
M1' H(γ ,bIV )Θ −1H(bIV ,γ )M1 ) fS (bIV p1 × 1, Σ11 ,Σ22.1, p1 +1,0)

. (24)

Sargan [12] stated the density (24) in a different but equivalent form.
In comparison to the density of the least squares estimator (13) when M2 = β' M1, (24) has the same

factorization and the same parameters except that instead ofn degrees of freedom there are
only p1, H(γ ,γ ) takes the place of (Σ11)−1

in the exponential and H(γ ,bIV )Θ−1H(bIV ,γ ) replaces

(Σ11)−1Θ −1(Σ11)−1
in the hypergeometric function.

In the univariate case with a single regressor the density of the instrumental variable estimator is

fS(bIV 1× 1, Σ11 ,Σ22.1,2, M2 = γM1 ) = λk
k = 0

≈

∑ (bIV ) fS (bIV 1 ×1,Σ11 ,Σ22.1,2 + 2k,0),

with λk (bIV ) =
(M1M1' Σ11H(γ ,bIV )H(bIV ,γ ))k

2k k!
/ exp[

1

2
M1M1' H (γ ,γ )]

. (25)

This is identical to the distribution (14) when γ = β. Whereas (25) again states the distribution as an
average of central student densities, the weights are random and depend on the instrumental variable
estimator bIV

.

Example 3. The single equation over-identified model, p2 = 1, q − p1 > 0.

Richardson [10] and Sawa [11] derived the distribution in this over-identified simple regression case using
somewhat different methods. From (22) the solution can be arrived at by expanding binomially the powers
of the sum of the two arguments in the hypergeometric function and collecting terms. Following our
interpretation the density so obtained can be stated as
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fS(bIV 1× 1, Σ11 ,Σ22.1,q + 1, M2 = γM1 ) = µk(bIV ) fS
k= 0

≈

∑ (bIV 1×1, Σ11 ,Σ22.1, q +1 + 2k,0),

with µk (bIV ) =
Γ((q −1 + 2k)/ 2)

Γ((q −1)/ 2)
λk(bIV )

Γ((q −1 + 2 j)/ 2)

Γ((q + 2 j + 2k)/ 2)j = 0

≈

∑
(M1M1' (Σ22.1 )−1(γ − β )2 ) j

2 j j!

with λk (bIV ) defined at (25).

For the multivariate cases, (22) is a polynomial and if the coefficients in the

hypergeometric function are given online, powers can be integrated term by term, these

being all expectations in central Wishart densities. It is feasible computer work, but the

computational amount is very large indeed since parameter values and roots are to be

changed continuously.

5. Concluding Remarks.

In 1964 James concluded his review paper [5] as follows: <For numerical evaluation

of the probability density functions the power series expansions of the hypergeometric

functions occurring in the distributions are of very limited value. If even one root is

significant, it will take a very large number of terms of the series to give values of the

likelihood function accurate enough to be of use. The importance of the preceding

theory lies in the mathematical characterization of the functions involved in the

distributions.>.

If this view is still valid today so are the multivariate densities (13), (22) and (25)

interesting theoretically, but of little practical use. Partly James was expressing his

frustration with the tedious calculations of the lower order zonal polynomials, in addition

to the huge amount of computational work involved in calculating a density that

depends continuously on many parameters.
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In the Appendix we show an online computation method for zonal polynomials

involved in bivariate and trivariate densities and there is absolutely no reason to share

the opinion expressed by James about forty years ago. The theory can be made useful

and it is important that it be practical because without it the claim that some

approximation method is performing well is without proof.
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On Line Zonal Polynomials: A Recursive Method

Below we show that the zonal polynomials of order k are linear combinations of
their top (or lowest) zonal polynomial and of polynomials that are products of zonal
polynomials of order lower than k . The linear relation is triangular and is obtainable
through the standard orthogonalization method.

Zonal Polynomials.
We write zonal polynomials as a vector of linear forms in a matrix format. Each row lists
the coefficients of one of the zonal polynomials. A partition

κ = (k1,k2 ,..,km), 0 ≤ km ≤ km −1 ≤ ... ≤ k2 ≤ k1, ki
i =1

m

∑ = k,

of the integer k , has length j if k j is the last positive integer in κ . To each partition
corresponds a polynomial and we order the polynomials (rows) by the shortest length
and lexicographically within the same length.
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Let s j = (λi(S) j

i =1

m

∑ be the sum of the jth powers of the latent roots λi(S) of a m × m

matrix S. Given a partition κ of length j, define the sum of powers monomial sk1
sk 2

..sk j
.

Ordering the monomials by shortest length and lexicographically within the length of the
corresponding partitions, define the vector of sum of powers monomials

s(k ) = (sk , sk −1s1, sk − 2s2, ..,sk −2 (s1 )2, sk − 3s2s1, ..., (s2 )2 (s1 )k − 4, s2 (s1)
k−2 , (s1)

k )'

If K is the number of partitions of k , the vector of James` zonal polynomials Z(k,S)
of order k is the K-component vector Z(k,S) = ∆(k)s(k) with K × K ∆(k) satisfying
orthogonality conditions with respect to the top row of ∆(k ) . Given a vector x = (xi ) , let
diag x be the diagonal matrix with xi as ith diagonal element. James [5] shows

∆(k ) (diag∆(k)1)
−1 ∆(k)' (1)

is a diagonal matrix, where ∆(k )1 is the top row of ∆(k ) defined as

∆(k )1 = (∆(k)1υ ), ∆(k)1υ = 2 k k!/υ1!υ 2!υ3!...2
υ1 4υ 2 6υ3 .., (2)

where, if ∆(k )1υ is the element in the jth column, υ = (υ1,υ2 ,..,υk ), υ1 + 2υ2 + 3υ3 + .. = k ,
if the j − th partition of k , as ordered above, consists of υ1 ones, υ2 twos, υ3 threes,..,
and υk the number k .

Example.

When k =6, the number of partitions K=11. With the vector of polynomials and sum of powers monomials

Z(6, .) = (Z6 , Z51, Z42 , Z33 , Z411, Z321, Z222, Z2211, Z21111, Z111111)'

s(6) = (s6 , s5s1, s4s1, s3s3, s4s1s1, s3s2 s1, s2s2s2 , (s2s1)
2 , s2 (s1 )4 , (s1)

6 )'

the vector of zonal polynomials Z(6,S) = ∆(6)s(6) , with
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∆(6) =

3840 2304 1440 640 720 960 120 160 180 30 1

−384 192 −144 −64 192 80 −12 72 48 19 1

−48 −144 108 −8 −18 24 30 16 27 12 1

−24 −48 −114 136 −78 120 −27 −8 33 9 1

96 −48 −24 16 12 −60 −12 22 −12 9 1

16 32 −4 −24 −18 0 −2 −8 3 4 1

0 24 −60 40 30 −60 30 −20 15 0 1

−48 24 12 16 −6 12 6 4 −21 0 1

−12 −24 24 4 24 0 −9 −8 3 −3 1

48 −24 −36 −16 −6 20 6 12 3 −8 1

−120 144 90 40 −90 −120 −15 40 45 −15 1

 

 

 
 
 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
 
 
  

James Calculation Method.
James [5] constructs an indirect calculation method, involving elementary symmetric functions a(k)

instead of the sum of powers monomials s(k). Since the orthogonal relations (1) are in the space of s(k),
conversion tables relating the functions a(k) to the monomials s(k) are needed. David and Kendall [2] have
published conversion tables for k=1,.,12. Correspondingly James tabulates zonal polynomials up to order
12 [8]. If a computer code is available relating a(k) to s(k), the need of tables would be eliminated. There
is however still the inconvenience that under James'` method, polynomials are built upwards from below,
beginning with the last row and constructing the next higher up row by the standard orthogonalization
method.

A recursive method.

In practice, only the polynomials corresponding to partitions up to length m will be
needed, since the polynomials of length more than m are identically zero. In the
alternative method introduced here there is no need to derive all polynomials of all
lengths. Using (2), we start with the top polynomial of length one and calculate the next
lower rows by orthogonalization of an auxiliary matrix Ψ(k ) of linearly independent
vectors that form a basis for ∆(k ) . This method is fully self-contained and direct in
deriving the zonal polynomals of higher rank and shorter length. The method proceeds
as follows:

1. With κ = (k1,k2 ,..,kk ) a partition of k , construct the row Ψκ such that

Ψκ s(k) = ∆{k1} s(k1) ∆{k2 ..k k } s(k − k1) (3)

The K × K matrix Ψ(k ) = )( κΨ with κ in the order established above.
Notice that ∆{k1} is the top row in ∆(k1 ) and ∆{k 2 ..k k } is one of the rows in ∆(k − k1) . Also
the product of an element of s(k1) with an element of s(k − k1) is an element in s(k ) . The
last column of Ψ(k ) is a column of ones.
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2. Diagonalize the matrix Φ(k) = Ψ(k ) (diag∆(k )1 )-1Ψ(k ) ', i.e. calculate the lower
triangular matrix B(k) , such that B(k) )(kΦ B(k) ' is diagonal and B(k) has unit row
sums.

Proposition.

The vector of zonal polynomials of order k is Z(k,S) = ∆(k ) s(k ) , with ∆(k )= B(k)
Ψ(k ) . If we are interested only in the polynomials up to length m, the process produces
the subset of zonal polynomials ZI (k,S) = ∆ I(k) s(k ) , with ∆ I (k) = BI (k) ΨI (k) , of length
m after M steps, where M is the number of partitions of k of length up to m.

Example. Verify that for polynomials corresponding to partitions of 6 up to length 4, we
have ∆ I (6) = BI (6)ΨI (6) with

BI (6)=
1

−1/ 10 11/10

−1/ 80 −24 / 80 105 / 80

−1/ 160 −14 /160 −175/ 160 350 /160

1/ 40 −11/ 40 0 0 50 / 40

1/ 240 14 / 240 −75/ 240 0 −100 / 240 400 / 240

0 1/16 −3 /16 0 10 /16 −40 /16 48 /16

−1/ 80 11/ 80 0 0 −50 / 80 0 0 120 / 80

−.1/ 32 −1.4 / 32 7.5 / 32 0 10 / 32 −40 / 32 0 −28 / 32 83/ 32

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

and

ΨI (6)=

3840 2304 1440 640 720 960 120 160 180 30 1

0 384 0 0 240 160 0 80 60 20 1

0 0 96 0 48 64 24 32 36 14 1

0 0 0 64 0 96 0 16 36 12 1

0 0 −48 0 48 −32 −12 32 0 11 1

0 0 0 −16 0 −4 0 6 6 7 1

0 0 −4 0 −2 −16 14 −8 11 4 1

0 0 0 16 0 −12 0 10 −18 3 1

0 0 8 0 4 −4 −4 −2 −4 1 1

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

The row sums of the B(k) matrices add up to one to satisfy the normalization that
the coefficient of (s1 )k is equal to one.



16

Computation Results.

We have programmed the recursive method described above in FORTRAN and run
it on a Power Macintosh 7100/80AV to calculate the zonal polynomials of orders up to
23 and lengths up to 3. The storage requirements are high since all polynomials of
lower order and length 2 are stored. Also when k=23, a 56–1255 BI (k) matrix is needed
and an array of 60929 entries to store the polynomials of length up to two.

We are encouraged however that the zonal polynomials of length 2 of all orders can
be produced online on a small PC, since then only the top polynomial coefficients ∆(k )1

have to be stored and in addition we have verified that the elements of the B(k) -
matrices have the simple elegant algebraic form

B(k) = (bk1k 2 ;l1l 2
) = (

k2!

(k2 − l2 )!l2!

(−1/ 2)k2 −l 2

(k1 − l2) k2 −l 2

(k1 − l2 + 3/ 2)l 2

(l1 − l2 + 1)l 2

), 0 ≤ l2 ≤ k2 ,

= 0, k2 < l2 .

We also obtained the formula for the zonal polynomials of three parts. As a
consequence online calculations in univariate, bivariate and trivariate applications are
resolved.


