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Abstract

For a simplified structural equation/IV regression model with one right-side endoge-
nous variable, we derive the exact conditional distribution function of Moreira’s (2003)
conditional likelihood ratio (CLR) test statistic. This is used to obtain the critical
value function needed to implement the CLR test, and reasonably comprehensive
graphical versions of this function are provided for practical use. The analogous
functions are also obtained for the case of testing more than one right-side endoge-
nous coefficient, but in this case for a similar test motivated by, but not generally
the same as, the likelihood ratio test. Next, the exact power functions of the CLR
test, the Anderson-Rubin test, and the Lagrange multiplier test suggested by Kleiber-
gen (2002) are derived and studied. The CLR test is shown to clearly conditionally
dominate the other two tests for virtually all parameter configurations, but no test
considered is either inadmissable or uniformly superior to the other two. The un-
conditional distribution function of the likelihood ratio test statistic is also derived
using the same argument. This shows that both exactly, and under Staiger/Stock
weak-instrument asymptotics, the test based on the usual asymptotic critical value
is always oversized, and can be very seriously so when the number of instruments is
large.

∗This is a revised version of an earlier paper that bore the title “Exact critical value and power
functions for the conditional likelihood ratio and related tests in the IV regression model with known
covariance”. I thank the editor, Peter Phillips, and two anonymous referees for useful comments
that helped improve on that version.
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1 Introduction

Interest in problems of inference in the IV regression/structural equation model has
seen a huge revival in the past few years, motivated by the realization that, in weakly
identified models of this type, standard first-order asymptotic theory can be an ex-
tremely misleading guide to successful inference. See Stock, Wright, and Yogo (2002),
and Andrews and Stock (2006), for surveys of much of this work, and Phillips (1989)
for an early pointer to the problems under discussion.

One strand of the recent literature that is particularly welcome is the revival of
interest in the problem of hypothesis testing in these models. In particular, because
the properties of the standard tests depend on nuisance parameters which, in a weak-
instrument context, may induce poor quality inference procedures, there has been
great interest in eliminating these effects by invoking similarity and/or invariance
arguments. Moreira (2003), Andrews, Moreira, and Stock (2006), Kleibergen (2002),
(2005), and Chamberlain (2005), are some of the main contributors. These authors
have shown that, at least when the error covariance matrix is known and the null
hypothesis involves all coefficients of the endogenous variables, similar tests exist, and
can be characterized. Moreover, the likelihood ratio (LR) test, which has emerged
as the test most likely to be near-optimal, can be rendered similar by conditioning
on a suitable statistic, and choosing the critical value so that the conditional size
of the test does not depend on the conditioning variate. This is referred to as the
conditional likelihood ratio (CLR) test.

One purpose of this paper is to provide the critical value functions that are needed
to implement this testing procedure. An explicit expression for the conditional distri-
bution function of the LR statistic - needed to define the critical value function - has
hitherto been unavailable. Thus, we first give an exact expression for the conditional
distribution of the LR statistic in the case of a single right-hand-side endogenous vari-
able, given the statistic upon which the test must be conditioned in order to ensure
similarity. The critical value function is then defined implicitly by the requirement
that the conditional size of the test is constant, say α. This function cannot be writ-
ten down explicitly, but is easily rendered graphically by the implicit-plot facility of
a symbolic computer-algebra package. Detailed graphics are included to enable the
practitioner to read off the critical value needed to produce an exact test.

We then extend these results, and again provide graphical critical value functions
based on the relevant distribution function, for the case where the test involves the
coefficients of several endogenous variables. In this case results for the true LR test,
which involves the smallest root of a (random) polynomial of degree at least three,
are much more difficult. Instead, we propose a test - a new similar test - that is
motivated by, but different from, the true LR test, but for which generalized versions
of the results obtained earlier can be used.

Our other main purpose is to provide analytical results on the power properties of
the CLR and two closely related tests. No such results have hitherto been available,
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and the literature mentioned above has studied power properties entirely by simula-
tion methods. The conditional power functions for the CLR test, the Anderson-Rubin
(AR) test, and the Lagrange multiplier (LM) test are derived and studied in Section
5.

Even in the very simplified model discussed here, there is no uniformly best test,
nor a uniformly best similar or invariant test. Thus, optimality results can only be
obtained by placing further restrictions on the class of tests considered, or modifying
the objective function to, say, average power, rather than actual. Andrews, Moreira,
and Stock (2006) present detailed results of this type for the same problem as is
discussed here. Some of the analytical results reported below are closely related
to the results in that paper. Here we concentrate on the conditional power of the
tests discussed, given a statistic that measures the sample Fisher information on
the interest-parameter. However, the argument for conditioning is now different: we
argue that the conditional power function is a more useful measure of test performance
than the unconditional power function, which averages over values of the information
measure that are not relevant. A related argument focusing on estimation in this
model is given in detail in Forchini and Hillier (2003).

We begin by describing the model and notation to be used. After making the
usual standardizing transformations, Section 2 gives the results dicussed above for
the case of testing a single endogenous coefficient. In Section 3 we briefly discuss
the properties of the unconditional LR test. We show that, when there are many
instruments and the Fisher information is small, the unconditional size of the test
(based on the usual asymptotically-justified critical value) can be very much larger
than its nominal size. This result is also shown to hold under the so-called “weak
instrument asymptotics” introduced by Staiger and Stock (1997), and is, of course,
the motivation for seeking similar tests. Section 4 gives results for the case of testing
several coefficients, and gives a new similar test for this case, a close relative of the
one-parameter test in Section 3. Section 5 contains the power function results, and
Section 6 provides some concluding remarks, including some comments on the case
where the covariance matrix is unknown.

Naturally, although these tests and their properties are motivated by, and analysed
under, Gaussian assumptions, we expect that their properties will be reasonably
robust to departures from those assumptions. This, of course, demands investigation;
there is Monte Carlo evidence in some of the literature cited above that it is so, but
it is not an issue to which this paper contributes directly.

Throughout the paper we make extensive use of the generalized hypergeometric
functions defined, for non-negative integers p, q (p ≤ q + 1), by:

pFq (a1, ..., ap; c1, ..., cq; z) =
∞

∑

j=0

zj

j!

Πp
i=1(ai)j

Πq
i=1(ci)j

,

where (a)j = a(a + 1)....(a + j − 1) is the forward factorial or Pocchammer symbol.
The series converges uniformly for p ≤ q, and on the interval |z| < 1 for p = q + 1,
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diverging in all other cases unless one of the ai is a negative integer, in which case
the series terminates.

1.1 Model and Assumptions

We consider the simple Gaussian structural-equation/IV-regression model:

y1 = Y2β + u, (1)

Y2 = ZΠ + V, (2)

where Z is n× k, Π is k ×m, and we assume always that m ≤ k. The corresponding
reduced form model is of the form

Y = (y1, Y2) ∼ N(ZΠ(β, Im), In ⊗ Ω), (3)

where Y = (y1, Y2) (n × (m + 1)) contains the observations on all the endogenous
variables. The case in which equation (1) also contains exogenous variables on the
right (that also appear in the reduced form (2)) is easily transformed into this simpler
case. In common with most of the current literature on the problem, we assume that
the reduced form covariance matrix Ω is known. Some consequences of relaxing this
assumption are discussed briefly in the concluding comments at the end of the paper.

The log-likelihood is, apart from constants,

l(Π, β; Ω) = −1

2
trace

{

Ω−1Y ′Y + ΣββΠ′Z ′ZΠ − 2(β, Im)Ω−1Y ′ZΠ
}

, (4)

where Σββ = (β, Im)Ω−1(β, Im)′. The null hypothesis of interest is

H0 : β = β0, (5)

and thus specifies the entire vector β. There is no loss of generality in taking β0 = 0,
and we do so from now on.

The MLE for Π for fixed β and Ω is

Π̂β = (Z ′Z)−1Z ′Y Ω−1

(

β′

I

)

Σ−1
ββ , (6)

and the concentrated log-likelihood is, apart from constants,

lc(β; Ω) = −1

2

(

1
−β

)′
Y ′PZY

(

1
−β

)

(

1
−β

)′
Ω

(

1
−β

)
= −1

2
r(β),

say, where PZ = Z(Z ′Z)−1Z ′. If H0 is true this is −1
2
r(0), and for variable β it has

a maximum equal to −1
2
f1, where f1 is the smallest root of |Y ′PZY − fΩ| = 0. The

likelihood ratio test therefore rejects H0 for large values of

T = r(0) − f1. (7)
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1.2 Standardization

It is clear from (4) that Z ′Y is a minimal sufficient statistic for the model, so all infer-
ential procedures may be based on this matrix without essential loss of information.
However, it is convenient to transform the sufficient statistic so that both its rows
and columns are independent. Thus, let

UΩ =

[

1/
√

ω11, −ω′
21Ω

− 1

2

22.1/ω11

0, Ω
− 1

2

22.1

]

, (8)

where Ω22.1 = Ω22 − ω21ω′

21

ω11
, so that U ′

ΩΩUΩ = Im+1. Postmultiplication of Z ′Y by
UΩ therefore produces an identity covariance matrix for the rows of the transformed
matrix (see Phillips (1983) for further discussion of this standardizing transform).

Multiplying on the left by (Z ′Z)−
1

2 to produce an identity covariance matrix for
the columns of P , we now define,

(p1, P2) = (Z ′Z)−
1

2 Z ′Y UΩ. (9)

It then follows that p1 and P2 are independent, and, under H0, p1 ∼ N(0, Ik), and

P2 ∼ N(M0, Ik), where M0 = (Z ′Z)
1

2 ΠΩ
− 1

2

22.1. Clearly, P2 is sufficient for M0 under
H0, so we have the following characterization of the class of similar tests for H0 (cf.
Hillier (1987b) for background, and Moreira (2003)):

Proposition 1 P2 is a complete sufficient statistic for Π (or M0) when H0 is true.
Hence, every similar test must have fixed size in the distribution of p1, i.e., fixed size
conditional on P2.

2 The CLR Test, m = 1

Assume now that m = 1, and replace the matrix P2 by the vector p2 (k × 1) (and Π
by π). If we put W = (p1, p2)

′(p1, p2), the components of the LR statistic T above
can be written explicitly in terms of the elements of W (or in terms of (p1, p2)) as
follows:

r(β0) = p′1p1,

and

f1 =
1

2

(

t −
√

t2 − 4d
)

, (10)

where t = trace[W ] = p′1p1 + p′2p2 and d = det[W ] = (p′1p1)(p
′
2p2) − (p′1p2)

2.
Now let

q1 = p′1Mp2
p1,

q2 = p′1Pp2
p1,

q = q1 + q2 = p′1p1,
b = q1/q, 0 < b < 1,















(11)
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where Pp2
= p2(p

′
2p2)

−1p′2 and Mp2
= Ik − Pp2

. Also set w = w22 = p′2p2, so that
t = q + w and d = q1w = bqw. Note that T depends on p2 only through w = p′2p2.

Remark 1 The statistic b = q1/q can be interpreted as a specification diagnostic for
the maintained hypothesis that E(p1) is a multiple of E(p2) : 1− b is the value of R2

in the regression of p1 on p2, so we expect b to be small if that maintained hypothesis
is valid in the data. Kleibergen (2002) has proposed the Lagrange Multiplier statistic
LM = q2 = (1− b)q as an alternative test statistic for H0. This statistic is discussed
further in Section 5 below.

The following distribution properties of (q, b, w) are easily deduced:

Proposition 2 (Null distributions) Under H0, and conditional on p2, q1 and q2 are
independent, q1|p2 ∼ χ2(k − 1), q2|p2 ∼ χ2(1). Hence, these properties also hold
unconditionally, so that q and b are unconditionally independent, q ∼ χ2(k), and
b ∼ Beta(k−1

2
, 1

2
), (the Beta distribution with parameters k−1

2
and 1

2
). Both q and b

are independent of w.

Remark 2 For the case where the covariance matrix is known the analogue of the
Anderson-Rubin (1949) (AR) test statistic is q, which is χ2(k) under H0, but noncen-

tral χ2(k) under H1 with noncentrality parameter c2
βπ′Z ′Zπ/ω22, where cβ =

√

ω22

ω11
β.

Clearly, this can vanish when H0 is false if π can be zero. That is, evidence that q
is central χ2(k) does not, by itself, suggest that H0 is true: evidence that π 6= 0 is
also needed. This observation is discussed more fully in Breusch (1985) and Hillier
(1987a).

From the above results it is clear that any test based on (q, b) alone will be similar.
The AR test based on q is one such test, and the LM test based on q2 = (1 − b)q
another. The properties of these tests will be examined further in Section 5 below.
However, as Moreira (2003) has essentially pointed out, Proposition 1 implies that
any test statistic that is a function of (q, b) and p2 - like the likelihood ratio test
statistic T - will be similar if and only if the critical value for the test is chosen in
such a way that the conditional size - Pr{T > z|p2; H0} = α - is not a function of
p2. In the case of T, which depends on p2 only through w, this requires that the
conditional size given w must not depend on w.

Remark 3 The (expected) partial Fisher information for β is:

in(β) = π′Z ′Zπ/ω2, (12)

where ω2 = ω11(1−ρ2), with ρ = ω12/
√

ω11ω22 the correlation between the endogenous
variables. Substituting the MLE for π when H0 is true into this expression shows that
the ‘empirical information’ at β0 is proportional to w. Thus, to condition on w is to
condition on the ‘empirical information’ under the null hypothesis.
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Now, in terms of the mutually independent variates (q, b, w),

T =
1

2

(

q − w +
√

(q + w)2 − 4wqb
)

. (13)

This is obviously quite a complicated function of (q, b, w), so a direct attempt to
deduce its density is difficult. However, it is easy to see that T is monotonic increasing
in q, so the inequality T < z is easily seen to be equivalent to the inequality

q < z(1 − a(z, w)b)−1, (14)

where a = a(z, w) = w/(w + z) (0 < a < 1). Thus, the conditional cdf of T , given b
and w, is trivially obtained as

Pr{T < z|b, w} = Gk(z(1 − ab)−1), (15)

where Gk(·) denotes the cdf of the central χ2(k) distribution. The conditional cdf ,
given either b or w, can obviously be obtained from this by averaging with respect to
the other variable.1 Our interest next will be in the average with respect to b, and in
the next section we also consider the average with respect to both b and w, i.e., the
unconditional density.

2.1 Conditional Distribution Function given w

In this Section we derive the conditional distribution function of T given w under H0,

Pk(z; w) = Pr{T < z|w,H0}, (16)

Having done that, we would like to use the cdf to obtain the critical value function,
zα(k; w) say, defined (implicitly) by the equation Pk(z; w) = 1 − α. That is, zα(k; w)
is the critical value needed to obtain a conditional size for the test, given w, that is
free of w. Before stating the main result we record a simple consequence of the fact
that the inequality T < z is equivalent to q < z(1 − ab)−1.

For fixed w the critical regions in (q, b)−space corresponding to the AR,LM, and
CLR tests are as follows:

CAR : {q, b : q > cα(k)}
CLM : {q, b : q(1 − b) > cα(1)},

CCLR : {q, b : q(1 − aαb) > zα(k; w)}, (17)

where aα = w/(w + zα(k; w)), and each region has size α. Since 1 − b < 1 − aαb < 1,
it is easy to see that these definitions imply that, for fixed α, and all k and w > 0,

cα(1) ≤ zα(k; w) ≤ cα(k). (18)
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We shall see later that, for w small, zα(k; w) is close to cα(k), while for w large it is
close to cα(1).

We now seek to evaluate Pk(z; w). Conditioning first on both b and w, the required
cdf is, as we have seen, Gk(z(1−ab)−1), and the unconditional cdf is the expectation
of this with respect to b. That is,

Pk(z; w) = Eb

[

Gk(z(1 − ab)−1)
]

, (19)

with b ∼ Beta(k−1
2

, 1
2
). Evaluating the expectation yields the main result of this

section:

Theorem 1 Let a = w/(w + z) and Pk(z; w) = Pr{T < z|w,H0}. Then

Pk(z; w) = (1 − a)
1

2

∞
∑

l=0

al(1
2
)l

l!
Gk+2l(w + z). (20)

All proofs are in the Appendix.

Remark 4 Although the result here expresses the cdf as an infinite series of chi-
square cdf ′s, because a < 1 the series converges very rapidly; the first ten or twenty
terms are usually sufficient to achieve sufficient accuracy to use the result to, for
instance, compute a conditional p−value. It is worth noting too that equation (19),
expressing Pk(z; w) as the mean of a function of a Beta variate, provides a very
efficient procedure for simulating conditional p−values. Given z and w, one can
simply average the values of Gk(z(1 − ab)−1) over repeated i.i.d. draws for b from
the Beta(k−1

2
, 1

2
) distribution. A relatively small number of repetitions (far less than

the 10,000 needed by Moreira’s (2003) simulation method) is sufficient to achieve
acceptable accuracy. This simulation approach can be extended to the case of testing
m parameters, as discussed in Hillier (2006b).

2.2 Properties of the Distribution Function

The conditional density function of T, given w, can also be obtained from the relation
Pk(z; w) = Eb [Gk(z(1 − ab)−1)] by first differentiating Gk(z(1 − ab)−1) with respect
to z, then evaluating the expectation with respect to b. Since the density is probably
of little interest, we omit this result and concentrate on the conditional cdf.

First note that, since it easy to see that the argument of Gk(·) in (15) is monotonic
increasing in b, an immediate implication of equation (19) is:

Gk(z) ≤ Pk(z; w) ≤ Gk(z + w). (21)

Thus, we have the intuitively sensible result that Pk(z; w) will be close to Gk(z) when
w is small.
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Next, it is clear that when w = 0, Pk(z; 0) = Gk(z). The following result - which
can be seen clearly in Figure 2 below - shows that the null distribution of T approaches
that of a χ2(1) random variable as w → ∞ (see Moreira (2003) for a different proof
of this result):

Proposition 3 For fixed z and k, Pk(z; w) < G1(z) for all w > 0, and

Pk(z; w) → G1(z) as w → ∞. (22)

The function G1(z) is, of course, the conventional (unconditional) reference dis-
tribution based on standard asymptotics for the LR test. The standard result arises
from the assumption that the information parameter in(β), upon which the (null)
distribution of w depends, goes to infinity as the sample size increases. Proposition 3
shows that this is also the correct conditional reference distribution for large empiri-
cal information w, but also shows that this choice will be incorrect for smaller values
of w : the actual conditional size will exceed the nominal size of the test for small
values of w (see also Section 3 below).

Finally, the following result, which gives a recursion for computing the functions
Pk(z; w), may be useful for computation. It is well-known that the cdf of the chi-
square distribution satisfies a recursive relation (Abramowitz and Stegun (1972), Sec-
tion 26.4.8). In view of Theorem 1, it is not surprising that Pk(z; w) satisfies a similar
recursion. This is given in:

Proposition 4 The conditional distribution function Pk(z; w) satisfies the recursion:

Pk+2(z; w) = Pk(z; w) − z
1

2 (w + z)
k−1

2

2
k
2 Γ(k

2
+ 1)

exp{−w + z

2
}1F1

(

1

2
,
k

2
+ 1;

w

2

)

. (23)

It follows that these functions can be generated recursively for all k from the cases
k = 1, 2. When k = 1 it is easy to see that T = q, so that P1(z; w) = G1(z), the χ2(1)
cdf, which is free of w. When k = 2, P2(z; w) is easily computed from the expression
given in Theorem 1 above, and the recursion can then be used for even values of k.

Examples of the conditional distribution function are shown in Figure 1 for several
values of w, and for various (odd) values of k. It is evident from the figures that when
w is small the distribution is extremely sensitive to the value of k, but it is less
sensitive to k when w is large. The observations made in Proposition 3 above are
clearly visible in Figure 1: the actual conditional cdf can be very different from the
reference χ2(1) cdf when w is small. Clearly, these properties also imply that it is
impossible to obtain an approximation to the conditional distribution function of T
that will be accurate for all w and k.
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2.3 Critical Value Function

To obtain a similar test based on T we clearly need to choose the critical value z,
zα(k; w) say, so that Pk(z; w) = 1 − α, and the result in Theorem 1 enables us to do
so exactly, thus producing a version of the likelihood ratio test that is similar, the
CLR test.

For fixed α the equation Pk(z; w) = 1 − α implicitly defines z as a function of w,
but that function cannot, it seems, be written down explicitly. We know from the
results above that zα(k; 0) = cα(k), and, from Proposition 4, that, for all k,

zα(k; w) → cα(1) as w → ∞. (24)

For intermediate values of the conditioning variate w the critical value function is
unknown. Nevertheless, it is relatively straightforward to produce implicit plots of
the function involved using a symbolic computer algebra package. We can do so for
each combination of the two parameters that the distribution depends on - k, and
the observed value of w - and the appropriate critical value can then be read off from
the graph. In fact, since w is continuous, graphical presentation of the critical value
function is more useful than conventional tabulations would be.

Figure 2 provides detailed plots of the critical value function for tests of size
α = .05, for odd values of k from 3 through 21. Figure 3 gives the corresponding
results for even values of k from 2 through to 20. It is evident from the figure that
for fixed k, z.05(k; w) decreases in w, but quite slowly, while for fixed w it increases
quite rapidly in k.

Figures 2 and 3 provide reasonable coverage of (k, w)-space, but of course the
above formulae can also be used (with the aid of a symbolic computer algebra package)
to compute the required critical value for configurations of (k, w) not covered by the
figures.

3 The LR Test and Weak Instruments

Although somewhat removed from our main purpose, it is of interest at this point
to briefly discuss the unconditional properties of the LR statistic. In particular, it
is relatively easy to adapt the methods used above to obtain an expression for the
unconditional cdf of T, and use this to examine the size behaviour of the test under
various assumptions about the behaviour of k and/or the information quantity in(β).
Here we provide the analogue for the LR test of the “weak instruments” results
established for estimators in Staiger and Stock (1997), who assume that in(β) fails
to increase indefinitely as the sample size n increases. We shall show that, under this
assumption, the LR test is oversized, and can be seriously so if k is large.

In principle the unconditional cdf of T can be obtained from the conditional cdf
Pk(z; w) by averaging with respect to the density of w (the non-central χ2 density
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with k degrees of freedom and noncentrality parameter ∆n, say). However, in the
expression for the unconditional cdf (implied by equation (14)),

Pr{T < z|H0} = EbEw (Gk(U)) , (25)

where

U = U(w, b) =
z(z + w)

z + w(1 − b)
, (26)

it turns out to be more convenient to evaluate the expectation with respect to w,
rather than b, first. This produces the following result:

Theorem 2 Under the null hypothesis,

Pr{T < z|H0} = G1(z) − Eb

[

∫ z
1−b

z

gk(u)G∆n

k

(

z(u − z)

(z − u(1 − b))

)

du

]

, (27)

where G∆n

k (·) denotes the cdf of a noncentral χ2 variate with k degrees of freedom
and noncentrality parameter ∆n, and ∆n is proportional to in(β) in (12).

Several properties of the unconditional size of the test,

αLR(z; k, ∆n) = Pr{T > z|H0}

= 1 − G1(z) + Eb

[

∫ z
1−b

z

gk(u)G∆n

k

(

z(u − z)

(z − u(1 − b))

)

du

]

, (28)

say, follow easily from this expression. Beginning with the standard asymptotic result
for the LR test, these are gathered in:

Corollary 1 (1) For fixed k,

αLR(z; k, ∆n) → Pr{χ2(1) > z} as ∆n → ∞. (29)

(2) Uniformly in k and ∆n,

αLR(z; k, ∆n) > Pr{χ2(1) > z}, (30)

and

αLR(z; k, ∆n) < Pr{χ2(1) > z} + Eb

[

∫ z
1−b

z

gk(u)Gk

(

z(u − z)

(z − u(1 − b))

)

du

]

. (31)

i.e., the size of the LR test is uniformly above its asymptotic nominal size, but is
bounded above by the expression on the right in equation (31).
(3) For all k and ∆n,

Pr{χ2(1) > z} < αLR(z; k, ∆n) < Pr{χ2(k) > z}. (32)

That is, the size of the LR test using a fixed critical value is bounded below by that of
a χ2(1) r.v., and above by that of a χ2(k) r.v..
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In the asymptotic sequence adopted by Staiger and Stock (1997) to model “weak
instruments” (or poor information on β), k is fixed and ∆n → ∆ (0 < ∆ < ∞) as
n → ∞. Since G∆n

k (·) is continuous in ∆n, we easily obtain the following:

Proposition 5 Under Staiger/Stock weak-instrument asymptotics, i.e, k fixed and
∆n → ∆ as n → ∞,

αLR(z; k, ∆n) → αLR(z; k, ∆) > Pr{χ2(1) > z}, (33)

i.e., αLR(z; k, ∆) is strictly greater than the asymptotic nominal size.

Thus, not surprisingly, under Staiger/Stock “weak-instruments asymptotics” the
usual asymptotic size result for the LR test fails, and the size of the test is analytically
of the same form as it is in finite samples. These are analogous to the results given
for estimators by Staiger and Stock (1997).

In Figure 4 we plot the upper bound on the size of the LR test given in equa-
tion (31) as a function of k. The points were computed by simulating the expec-

tation EbEw(Gk

(

z(z+w)
z+w(1−b)

)

, with w ∼ χ2(k) (when the bound is attained), and

b ∼ Beta(k−1
2

, 1
2
), for values of k from k = 2 to k = 82 in steps of 2, each point

being generated using a sample size of 1000.2 The actual size of the test will be close
to this upper bound for small values of ∆n (or ∆ in the Staiger/Stock story). It is
clear from Figure 4 that the upper bound rises quite sharply as k increases, so the
true size of the LR test can be considerably above its nominal level when k is large
and ∆n small. This, of course, is the motivation for the conditional approach.

It would be interesting to extend this analysis to study the behaviour of the LR
test under the “many weak instruments” asymptotic sequences like those assumed
by Chao and Swanson (2005), Han and Phillips (2006), and Hansen, Hausman, and
Newey (2006), for instance. In these papers both k and ∆n increase with n, but
not necessarily at the same rate, and this can considerably modify the asymptotic
properties of the commonly used estimators for β. Further study of these effects for
the LR test is, however, a subject for another paper.

4 Several RHS Endogenous variables

Although, in principle, the argument used for the case m = 1 can be applied when
m > 1, because T involves the characteristic root f1 - which is now the smallest root
of a polynomial of degree m + 1 - this is much more difficult. In this section we
discuss a conditional exact test that is motivated by the LR test, but which, except
in special cases, is not the true LR test. This test is designed specifically so that its
properties - both size and power - can be analysed by essentially the same methods
as above.

12



4.1 An Approximate LR Test

In view of Proposition 1, to obtain a similar test the critical value for the test needs
to be chosen so that the conditional size of the test, given P2, is constant. As noted
above, this is difficult for the true LR test, but we now suggest an alternative to the
true LR test that is closely related to it, but for which the similarity condition can
be implemented more easily.

The true LR test rejects for large values of T = q − f1. We seek a statistic of the
form T ∗ = q − f ∗

1 , say, such that (i) f ∗
1 is close to f1, and, to preserve the analogy

with the case m = 1, (ii) f ∗
1 is the smaller of the two roots of a quadratic of the type:

pλ(f) = f 2 − f(λ + q) + λq1, (34)

where λ is a function only of P2, and the statistics

q1 = p′1MP2
p1,

q2 = p′1PP2
p1,

}

(35)

and q = q1 + q2, are analogues of the statistics defined above for the case m = 1. In
terms of the matrix

W = (p1, P2)
′(p1, P2) =

[

w11 w′
21

w21 W22

]

, (36)

q = w11 and q1 = w11.2 = w11 − w′
21W

−1
22 w21. The smaller of the two roots of pλ(f) is

f ∗
1 (λ) =

1

2

{

(λ + q) −
√

(λ + q)2 − 4λq1

}

. (37)

In the case m = 1, the choice λ = w produces f ∗
1 (w) = f1, and so yields the

true likelihood ratio test when m = 1. Let f1 ≤ f2 ≤ ... ≤ fm+1 denote the ordered
characteristic roots of W, and λ1 ≤ λ2 ≤ ... ≤ λm those of W22. If λi = λ for all i,
the characteristic polynomial of W is (see the proof of Lemma 1 in the Appendix,
particularly equation (80))

p̄(f) = (λ − f)m−1pλ(f),

and it easy to see that f1 = f ∗
1 (λ), fm+1 = f ∗

2 (λ), and fi = λ for i 6= 1,m + 1. Thus,
in this special case the test based on T ∗ = q − f ∗

1 (λ) is the true LR test.
In the general case we obtain the following result, proved in the Appendix:

Lemma 1 Let f1 be the smallest characteristic root of W , λ1 be the smallest char-
acteristic root of W22, and f ∗

1 (λ1) the smaller of the two roots of pλ1
(f) = 0. Then:

0 < f∗
1 (λ1) ≤ f1 ≤ λ1. (38)

13



Thus, the suggested test is based on the statistic

T ∗ = q − f ∗
1 (λ1), (39)

and the critical value z must be chosen so that Pr{T ∗ ≤ z|λ1} = 1− α to render the
test similar. Intuitively, Lemma 1 suggests that, at least in large samples, the tests
based on T and T ∗ should agree, since f1 will be close to zero (because W converges
to a rank-m matrix) as the sample size increases. Nevertheless, the test based on T ∗ -
which we shall show can also be rendered similar by conditioning - should be thought
of as a new similar test, motivated by, but usually not the same as, the true LR test.3

Let, for the moment, λ be any positive scalar that is a function of P2 alone. The
following Theorem generalizes Theorem 1:

Theorem 3 Under H0 q1 and q2 are conditionally independent, q1 ∼ χ2(k − m)
and q2 ∼ χ2(m). These are therefore also the unconditional distributions. Define
T ∗ = q − f ∗

1 (λ), with λ a function only of P2, and define

Pm
k (z; λ) = Pr{T ∗ < z|λ; H0} = Eb

[

Gk(z(1 − ab)−1)
]

, (40)

with a = λ/(z + λ) and b ∼ Beta(k−m
2

, m
2
). Then:

Pm
k (z; λ) = (1 − a)

m
2

∞
∑

l=0

al(m
2
)l

l!
Gk+2l(λ + z). (41)

The functions Pm
k (z; λ) occur not only in the conditional distribution function of

T ∗, but also in the power functions for these tests, and in the distribution theory for
the analogous tests when Ω is unknown (see Section 5 below, and Hillier (2005)). The
generalized version of Proposition 3 is easily seen to hold:

Proposition 6 For fixed k ≥ m and z, Pm
k (z; λ) < Gm(z) for all λ > 0, and

Pm
k (z; λ) → Gm(z) as λ → ∞. (42)

That is, the null cdf of T ∗ approaches that of a χ2(m) random variable as the condi-
tioning variate λ → ∞.

And, the functions Pm
k (z; λ) also satisfy a recursive relation analogous to that

given in Proposition 4 for the case m = 1 :

Proposition 7 Pm
m (z, λ) ≡ Gm(z), and, for k > m, the functions Pm

k (z; λ) defined
in equation (41) satisfy the recursion:

Pm
k+2(z; λ) = Pm

k (z; λ) − z
m
2 (λ + z)

k−m
2

2
k
2 Γ(k

2
+ 1)

exp{−λ + z

2
}1F1

(

m

2
,
k

2
+ 1;

λ

2

)

. (43)
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Remark 5 Since the null hypothesis imposes what appear to be m constraints, the
asymptotic reference distribution for the LR test statistic is that of a χ2(m) random
variable. Proposition 6 shows that the conditional distribution given λ does indeed
converge to χ2(m) as λ → ∞, but it can be much closer to χ2(k) for small values of
λ.

Some examples of the functions Pm
k (z; λ1) are shown in Figures 5 and 6. In Figure

5 λ1 = 1, and in Figure 6 λ1 = 8. Again we see that the conditional cdf is sensitive
to k when λ1 is small, but is less so when λ1 is large.

Since this paper was written I have succeeded in showing that the conditioning
argument used in this paper can be generalized to the case m > 1 - see (Hillier
(2006b)). Thus, it is now possible to implement the CLR test when m > 1, although
the test suggested in this section is still much simpler to implement. As a referee has
suggested, it would be interesting to compare these two tests, but this is beyond the
scope of the present paper.

4.2 Critical Value Function for the Approximate LR Test

We have already established that the critical value function zm
α (k; λ), say, satisfies

zm
α (k; 0) = cα(k) and, in Proposition 6, that

zm
α (k; λ) → cα(m) as λ → ∞. (44)

However, as before, the critical value function zm
α (k; λ), implicitly defined by the

equation
Pm

k (z; λ) = 1 − α,

cannot be obtained explicitly, but is readily graphed using a symbolic computer alge-
bra package. Figure 7 provides some examples of these functions for the case α = .05,
values m = 2, 3, and 4, respectively, and, in each case, for k = m+2,m+4, ...,m+10,
thus providing a fairly extensive coverage of the parameter set (k,m, λ).

5 Exact Power Functions: m = 1

Because we now have critical value functions giving, for each pair (k, w) and test size
α, the critical value zα(k; w), it is possible to calculate the power function of the CLR
test, and compare it to that of other tests. Thus, in this section we analyse the power
properties of the CLR and AR tests discussed in Section 2, as well as Kleibergen’s
(2002) suggested test statistic LM = (1− b)q, dealing throughout only with the case
m = 1. For m > 1 the results for tests based on (b, q) alone are straightforward
extensions of those for the case m = 1, and conditional results for the test based on
the statistic T ∗ are exactly analogous to those for m = 1.
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We focus here on the conditional power properties of these tests for w fixed at
its observed sample value. That is, we condition on the observed partial information
on β in the sample actually available. As we shall see, the power properties of these
(and other) tests depend on w, so, extending the argument made in Forchini and
Hillier (2003) in the context of estimation in this model, it can be argued that the
conditional power functions are the relevant basis for comparisons between the tests.
But, even if one dismisses this argument, unconditional properties of the tests can
also be deduced from their conditional counterparts, so the conditional results are
useful from both points of view.

5.1 Conditional and Unconditional Power Functions

When H0 is false p1 and p2 remain independent, and of course normally distributed
with identity covariance matrices, but now E(p1) = cβµ and E(p2) = dβµ, where

(replacing Π by π when m = 1) µ = (Z ′Z)
1

2 π/
√

ω22, cβ =
√

ω22

ω11
β, and

dβ =
1 − ρcβ
√

1 − ρ2
, (45)

where ρ = ω12/
√

ω11ω22 is the correlation between the two endogenous variables.
Note that dβ = 0 at cβ = ρ−1; we shall see below that it is this that induces the
“quirky” behaviour of the power functions of the CLR and LM tests near cβ = ρ−1

noted by Andrews, Moreira, and Stock (2006).

Remark 6 Confining attention to the distribution of the matrix P = (p1, p2) ∼
N(µ(cβ, dβ), Ik ⊗ I2), the problem can be thought of as testing H0 : cβ = 0 in this
distribution. This problem is invariant under the group of transformations P → HP,
H ∈ O(k), and a maximal invariant under this group is the matrix W = P ′P. The LR
test is, of course, an invariant test, but there is no best invariant test (because the best
invariant test for fixed µ depends on µ). Thus, to obtain an optimal test one must
modify the definition of optimality (to, say, average power, not actual), or further
constrain the class of tests considered (by, say, adding similarity to the restriction to
invariant tests). Andrews, Moreira, and Stock (2006) present an extensive discussion
of the problem discussed here using such arguments, and obtain some optimality re-
sults for weighted average and point optimal power criteria. In Hillier (1987a) and
Hillier (2005) I explore the invariance properties of quite general hypothesis testing
problems in much more general structural models with unknown covariance matrix.

From the distribution properties of (p1, p2) we easily deduce the following condi-
tional results for the distributions of (q1, q2), and hence (q, b), given p2 :
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Proposition 8 (Non-Null Distributions) Under H1, q1 and q2 are conditionally in-
dependent, given p2,

q1|p2 ∼ χ′2(k − 1, δ1), with δ1 = c2
βµ′Mp2

µ,

q2|p2 ∼ χ′2(1, δ2), with δ2 = c2
βµ′Pp2

µ.

Thus, under H1,

pdf(q, b|p2) =
1

2
k
2 Γ(1

2
)Γ(k−1

2
)
exp{−1

2
c2
β∆n}exp{−1

2
q}q k

2
−1b

k−1

2
−1(1 − b)−

1

2

×0F1

(

k − 1

2
;
1

4
qbδ1

)

0F1

(

1

2
;
1

4
q(1 − b)δ2

)

, (46)

where
∆n = µ′µ = π′Z ′Zπ/ω22. (47)

Thus, in the non-null case q and b are no longer conditionally independent.

Here, χ′2(v, δ) denotes the non-central chi-square distribution with degrees of free-
dom v and noncentrality parameter δ. To implement the same strategy as was used
above for the null cdf we now need, first, the conditional density of q given both b
and p2, then the conditional density of b given p2. From the results in Proposition 8,
these are (in reverse order) as follows:

Theorem 4 The conditional density of b given p2 is:

pdf(b|p2) = [B(
k − 1

2
,
1

2
)]−1exp{−1

2
c2
β∆n}b

k−1

2
−1(1 − b)−

1

2 (48)

∞
∑

j,l=0

(δ1b)
j(δ2(1 − b))l(k

2
)j+l

j!l!2j+l(k−1
2

)j(
1
2
)l

,

and, since p1 and p2 are independent, q is independent of p2 and q ∼ χ′2(k, c2
β∆n), so

that

pdf(q) =
exp{−1

2
c2
β∆n}

2
k
2 Γ(k

2
)

exp{−1

2
q}q k

2
−1

0F1

(

k

2
;
1

4
qc2

β∆n

)

. (49)

Hence,

pdf(q|b, p2) = pdf(q, b|p2)/pdf(b|p2)

=
exp{−1

2
q}q k

2
−1

2
k
2 Γ(k

2
)











0F1(
k−1
2

; 1
4
qbδ1)0F1(

1
2
; 1

4
q(1 − b)δ2)

∑∞
j,l=0

(δ1b)j(δ2(1−b))l( k
2
)j+l

j!l!2j+l( k−1

2
)j(

1

2
)l











. (50)
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Remark 7 It is clear from these results that when µ = 0 the joint distribution of
(b, q, w) is free of all parameters, and no test based on them can have power. Thus,
we henceforth assume that µ 6= 0.

Before examining the power properties of the CLR test, note that the power
function for the Anderson-Rubin test is, from (49):

PAR
k (c2

β∆n) = exp{−1

2
c2
β∆n}

∞
∑

j=0

(1
2
c2
β∆n)j

j!
{1 − Gk+2j(cα(k))} . (51)

This can be regarded as the power function of the LR test conditioned on both b and
w and, for fixed α and k is easily seen to be monotonically increasing in c2

β∆n. Note
that c2

β and ∆n appear only as the product c2
β∆n.

Theorem 4 enables us to use exactly the same methods as were used above for the
null case to compute the conditional power function of the CLR test, given p2. The
result is given in:

Theorem 5 The conditional power function of the CLR test, given p2, is given by:

Pr{T > zα(k; w)|p2} = exp{−1

2
c2
β∆n}

∞
∑

j,l=0

δj
1δ

l
2

j!l!2j+l

{

1 − P 1+2l
k+2(j+l)(zα(k; w); w)

}

.

(52)

From this result it is very easy to obtain bounds on the conditional power function
of the CLR test. For, it is clear from equation (40) that, for all j, l, k, z > 0 and
w > 0,

Gk+2(j+l)(z) < P 1+2l
k+2(j+l)(z; w) < Gk+2(j+l)(z + w).

This implies:

Proposition 9 The conditional power function of the CLR test, given p2, is bounded
above by the function

PU
k (c2

β∆n; w) = exp{−1

2
c2
β∆n}

∞
∑

j=0

(1
2
c2
β∆n)j

j!
{1 − Gk+2j(zα(k; w))}

= Pr{χ′2(k, c2
β∆n) > zα(k; w)}, (53)

and below by the function

PL
k (c2

β∆n; w) = exp{−1

2
c2
β∆n}

∞
∑

j=0

(1
2
c2
β∆n)j

j!
{1 − Gk+2j(w + zα(k; w))}

= Pr{χ′2(k, c2
β∆n) > w + zα(k; w)}. (54)

Since these functions depend on p2 only through w, they also bound the conditional
power function given w.
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It is also easy to see from the results in Section 2 that zα(k; w) < cα(k) < w +
zα(k; w), which implies:

PL
k (c2

β∆n; w) < PAR
k (c2

β∆n) < PU
k (c2

β∆n; w).

That is, the power function for the AR test also lies between these bounds. However,
the AR and CLR tests are both admissable: we shall see below that their power
functions cross under certain parameter configurations (see Chernozhukov, Hansen,
and Jansson (2006) for theoretical results on this point). Some examples of these
three functions are shown in Figure 8 for the cases k = 3, 11, w = 1, 10, and ∆n = 1.
For larger values of ∆n the pictures are similar but rise more sharply to one as c2

β∆n

increases. It is clear from these simple results that the CLR test cannot conditionally
improve on the AR test when w - the sample information on β - is small, but that
there is scope for considerable improvement when w is large.

To address the question more precisely we need to obtain the exact conditional
power function, given w, rather than p2. To do so, define (recall that we are assuming
that µ 6= 0) :

w1 = p′2Mµp2 ∼ χ2(k − 1),
w2 = p′2Pµp2 ∼ χ′2(1, d2

β∆n),

}

(55)

these variates being independent. Then δ1 = c2
β∆nw1/(w1+w2) and δ2 = c2

β∆nw2/(w1+
w2). Setting x = w1/(w1 +w2), 0 ≤ x ≤ 1, and w = w1 +w2, we have δ1 = c2

β∆nx and
δ2 = c2

β∆n(1 − x). Thus, the conditional power function given p2 depends on p2 only
through (w, x). Note that w and x are analogues of q and b from Section 2. Hence:

Proposition 10 When µ 6= 0, the conditional power function given p2 depends on
p2 only through w and x. The joint density of (x,w) is:

pdf(x,w) =
exp{−1

2
w}w k

2
−1

[B(k−1
2

, 1
2
)]2

k
2 Γ(k

2
)
x

k−1

2
−1(1 − x)

1

2
−1

× exp{−1

2
d2

β∆n}0F1(
1

2
;
1

4
d2

β∆nw(1 − x)), (56)

marginally w ∼ χ′2(k, d2
β∆n), and the conditional density of x given w is:

pdf(x|w) =
x

k−1

2
−1(1 − x)

1

2
−1

[B(k−1
2

, 1
2
)]

{

0F1(
1
2
; 1

4
d2

β∆nw(1 − x))

0F1(
k
2
; 1

4
d2

β∆nw)

}

(57)

By expressing the conditional power function Pr{T > zα(k; w)|p2} in terms of
(x,w), multiplying by pdf(x|w), and integrating out x, we obtain the conditional
power function given w alone:
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Theorem 6 The conditional power function of the CLR test, given w, is:

PCLR
k (β, ∆n; w) = exp{−c2

β∆n/2}
∞

∑

j,l=0

(1
2
c2
β∆n)j+l

j!l!

×
{

1 − P 1+2l
k+2(j+l)(zα(k; w); w)

}

µj,l(d
2
β∆nw), (58)

with

µj,l(d
2
β∆nw) = Ex|w[xj(1 − x)l]

=
(k−1

2
)j(

1
2
)l

(k
2
)j+l

× 1F2(l + 1
2
; j + l + k

2
, 1

2
; 1

4
d2

β∆nw)

0F1(
k
2
; 1

4
d2

β∆nw)
. (59)

It seems unlikely that the unconditional power function can be computed from
this conditional result, because the critical values zα(k; w) themselves depend on w.

The conditional power function for the statistic suggested by Kleibergen (2002),
LM = q2 = (1 − b)q, and indeed other simple functions of (q1, q2), or, equivalently,
(q, b), such as f = q2/q1 = (1 − b)/b, can be computed by methods similar to those
used for the CLR test. Conditional on p2, LM ∼ χ′2(1, δ2), so that

Pr(LM > cα(1)|p2} = exp{−1

2
δ2}

∞
∑

l=0

(δ2/2)l

l!
{1 − G1+2l(cα(1))} .

Thus, setting δ2 = c2
β∆n(1 − x), expanding the exponential term exp{1

2
c2
β∆nx}, and

averaging with respect to pdf(x|w), as above, we obtain:

Theorem 7 The conditional power function for the LM statistic LM = q2 = (1−b)q,
given w, is, for the case m = 1:

PLM
k (β, ∆n; w) = exp{−1

2
c2
β∆n}

∞
∑

j,l=0

(1
2
c2
β∆n)j+l

l!
{1 − G1+2l(cα(1))}Ex|w[xj(1 − x)l]

= exp{−1

2
c2
β∆n}

∞
∑

j,l=0

(1
2
c2
β∆n)j+l

l!
{1 − G1+2l(cα(1))}µj,l(d

2
β∆nw).

(60)

Here, it is straightforward to obtain the unconditional power function from this
conditional result:

Theorem 8 The unconditional power function for the LM test is given by:

PLM
k (β, ∆n) = exp{−1

2
c2
β∆n}

∞
∑

j,l=0

(1
2
c2
β∆n)j+l

l!
{1 − G1+2l(cα(1))} µ̄j,l(d

2
β∆n), (61)
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with

µ̄j,l(d
2
β∆n) = Ew[µj,l(d

2
β∆nw)]

=
(k−1

2
)j(

1
2
)l

(k
2
)j+l

exp{−1

2
d2

β∆n}2F2

(

l +
1

2
,
k

2
; j + l +

k

2
,
1

2
;
1

2
d2

β∆n

)

.

(62)

Power functions for various other statistics that are functions only of (b, q) are
readily obtained by similar methods.

Remark 8 Both PLM
k (β, ∆n; w) and PLM

k (β, ∆n) depend on cβ through both the
term c2

β∆n, and the term d2
β∆n = ∆n(1 − ρcβ)2/(1 − ρ2), as does the function

PCLR
k (β, ∆n; w). As a consequence, in contrast to the power function of the AR

test, these functions are not symmetric about zero, and they exhibit noticeable non-
monotinicity in cβ near the point cβ = ρ−1 (at which d2

β = 0) for some parameter
configurations. This was noted by Andrews, Moreira, and Stock (2006), and is a pre-
cise analogue of the bimodality of the density of the two stage least squares estimator
for β that has been remarked on in the literature (see, for instance, Phillips (2006),
Stock, Wright, and Yogo (2002), and Hillier (1990) and (2006a), and the references
therein).

5.2 Power Comparisons

The conditional power functions for the CLR test, the AR test, and the LM test
evidently depend on the known number of instruments, k, the assumed - known
degree of endogeneity, ρ, the unknown concentration parameter ∆n, and the observed
sample information on β, w, as well as the interest parameter cβ. Although there is
no uniformly best similar test, by studying the conditional power functions derived
here, a clear preference ordering can be established.

Some examples of the power functions, computed from the formulae above, are
depicted in Figures 9 - 12. In Figures 9 and 10 k = 3 and ∆n = 1 and 5, respectively.
The values of w chosen are w = 1, indicating a low value of the sample information,
and w = E(w) = k + ∆n/(1 − ρ2), the mean of w when cβ = 0. When E(w) > 25
w is set at 25. These values therefore represent an “average” sample information
figure, given the other relevant parameters. In Figures 11 and 12 k = 12 and again
∆n = 1 and ∆n = 5, respectively, and the same choices are made for w. From these,
and more extensive study of the (conditional) power functions not reproduced, the
following conclusions emerge:

1. None of these tests uniformly dominates the other two, nor is any of the tests
inadmissable relative to the others.
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2. When the observed information on β, w, is low, the power properties of the AR
and CLR tests are almost indistinguishable, whatever k, ∆n, and ρ, and both
(almost) uniformly dominate the LM test. The LM test can be conditionally
better than both the CLR and AR tests when ρcβ < 0 and ρ is large, but when
it is the margin is slight. When ρ is only moderate, the power disadvantage of
the LM test can be substantial.

3. When w is larger the relationships between the power functions are more com-
plex. For ρcβ < 0, the CLR and LM tests are almost indistinguishable, and
both dominate the AR test, whatever k, ∆n, and ρ. For ρcβ > 0 the power
curves are distorted by the kink at cβ = ρ−1, but whatever the configuration of
the other parameters, the CLR test is either the most powerful test, or close to
being so.

In view of these results it is safe to conclude that, of these three tests, the CLR
test is the preferred test. This conclusion is, of course, based on comparisons of condi-
tional power properties of the CLR and LM tests, given w, and we would argue that,
since there is clear evidence here that the observed information is pertinent to the
properties of the tests, it makes no sense to average over outcomes for w that have not
occurred. Nevertheless, if one insists on comparisons based on unconditional power,
these results still support the conclusion that the CLR test is to be preferred: the
averaging required to produce the unconditional power functions from the reported
conditional functions must preserve this ordering.

As a referee has pointed out, it would be interesting to extend the power function
calculations to the case m > 1, and in particular to compare the power of the ap-
proximate CLR test introduced in Section 4 to that of the true CLR test. As noted
earlier, the results in Hillier (2006b) mean that this exercise is now feasible. It is,
however, beyond the scope of the present paper.

6 Concluding Comments

A satisfactory theory of hypothesis testing for the structural equation/IV regression
model has been sorely lacking in econometrics. The recent upsurge of interest in this
model has sparked renewed interest in the testing problem, and papers by Moreira
(2003), Kleibergen (2002), (2005), Andrews, Moreira and Stock (2006), and Cham-
berlain (2005), have made some progress on the problem for the case where the null
hypothesis specifies all coefficients of right-hand-side endogenous variables, and where
the reduced form covariance matrix is known (or also specified by the null). In par-
ticular, a class of similar tests for this context can be characterized, and a conditional
version of the likelihood ratio test can be shown to be a member of that class.

This paper provides some key results needed to implement these results, namely,
the exact conditional distribution function of the LR statistic, and, more importantly,
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the implicit critical value function needed to render the LR test exact. In the case
of tests for more than one coefficient the results apply to an approximation to the
LR test, rather than the true LR test. The tabulations provided are certainly not
complete, but should cover many situations met by applied workers.

Although such results represent a significant step forward, many important and
difficult problems remain to be solved before we can claim to have a complete theory
of testing for this model. Specifically, we need to develop methods of comparable
effectiveness for the more general cases where the hypothesis specifies only a subvector
of β, and/or the case where the covariance matrix is unknown.

In the first case - testing a subvector of β, but with known covariance matrix,
the null hypothesis restricts the density of y1 in (1) by asserting that E(y1) depends
on only a submatrix of Π, rather than the full matrix. This restriction is not strong
enough to ensure that the analogue of p1 has mean zero under the null, which suggests
that (exact) similarity may be unattainable in this more realistic problem. Likewise,
when Ω is unknown, the transformation matrix UΩ in (8) is unknown, and one can-
not transform to achieve independence between the columns of what has here been
called P, the standardised sufficient statistic, although of course this can be achieved
asymptotically. Thus, the conditional mean E(p1|P2) is no longer free of P2 (zero)
under the null, and again exact similarity seems likely to be unattainable (though
asymptotic similarity will be). This, incidentally, explains why power results under
the known-covariance assumption have much in common with results under the null
when the covariance matrix is unknown.

In Hillier (1987a) and Hillier (2005) I analyse the most general model and test-
ing problems - testing subvectors of parameters, including the coefficients of both
endogenous and/or exogenous variables, with an unknown reduced form covariance
matrix - from an invariance point of view. Likelihood ratio tests are members of the
class of invariant tests, but the challenge remains to provide accurate critical values
for the LR test (conditional or otherwise) that can be used in practice, and that are
not rendered inaccurate in situations where the instruments are weak.

Notes

1One way to achieve similarity for the LR test would be to condition on both b
and w, which would imply choosing the critical value z so that z(1 − ab)−1 = cα(k),
where cα(k) is such that Pr{χ2(k) > cα(k)} = α. But this is equivalent to a test based
on q - the Anderson-Rubin statistic - alone. That is, when conditioned on both b and
w, the similar version of the LR test is equivalent to the Anderson-Rubin test. This
approach would therefore yield nothing new.

2The expectation on the right in equation (31) can be evaluated analytically, but
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is rather messy. The simulation approach used here is a considerably simpler way to
compute the bounding size function of interest.

3The inequality f ∗
1 (λ1) ≤ f1 (in quite different notation) was also asserted by

Kleibergen (2005), who also sought an approximate version of the LR test, for similar
reasons, but his original proof of the result contained an error.

7 Appendix: Proofs of Main Results

Proof of Theorem 1:
We make use of the following well-known result for the cdf of the Chi-square distri-
bution:

Lemma 2 (Abramowitz and Stegun (1972), Section 6.5) The cdf of the χ2(k) distribution,
Gk(c) = Pr{χ2(k) < c}, is given by:

Gk(c) =
(c/2)

k
2

Γ(k
2

+ 1)
1F1(

k

2
,
k

2
+ 1;− c

2
). (63)

For fixed (b, w) and k it follows from the Lemma that:

Pr{T < z|(b, w)} = Pr{q < z(1 − ab)−1|(b, w)}

=
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On multiplying by pdf(b) and integrating with respect to b we find:
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These steps depend on the following standard results/techniques: (1) Gauss’s identity
for the hypergeometric function:

2F1(a; b, c; z) = (1 − z)c−a−b
2F1(c − a; c − b, c; z), (66)

(line 1 → line 2), (2) the observation that the series 2F1(−j, b, c; z) terminates at the
j − th term,

2F1(−j, b, c; z) =

j
∑

l=0

(

j

l

)

(b)l

(c)l

(−z)l, (67)

(line 2 → line 3), and (3) the device of summing double series ‘by diagonals’:

∞
∑

j,l=0

c(j, l) =
∞

∑

j=0

j
∑

l=0

c(j − l, l), (68)

(line 3 → line 4). The final step uses Lemma 1 in reverse.

Proof of Proposition 3:
The first statement follows from equation (19) and the fact that z(1 − ab)−1 ≤
z(1 − b)−1 for all w > 0 and all b, together with Lemma 3 below, which asserts
that Eb[Gk(z(1− b)−1)] = G1(z). The second result can be obtained directly by using
standard results on the asymptotic behaviour of the confluent hypergeometric func-
tion (Abramowitz and Stegun (1972), Chapter 13, Slater (1960)). But, since a → 1
as w → ∞ for all finite z > 0, this also follows from equation (19) and Lemma 3
below.

Proof of Proposition 4:
The function Gk(c) satisfies the recursion:

Gk+2(c) = Gk(c) −
( c

2
)

k
2 exp{− c

2
}

Γ(k
2

+ 1)
(69)

(Abramowitz and Stegun (1972), Section 26.4.8). Using this in the expression for
Pk+2(z; w) we have:
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Proof of Theorem 2:
We first obtain a simple result that is of interest in its own right. We prove the result
directly, but it also follows from the fact that, if b ∼ Beta(k−1

2
, 1

2
) is independent of

q ∼ χ2(k), then (1 − b)q ∼ χ2(1) (see Section 2).

Lemma 3 If b ∼ Beta(k−1
2

, 1
2
),
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Replace y by ỹ = y(1 − b) (Jacobian (1 − b)−1). The integral here becomes
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Now put f = b/(1 − b) (0 < f < ∞, Jacobian (1 + f)−2), giving
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Interchanging the order of integration, and evaluating the integral over 0 < f < ∞
gives

[2
1

2 Γ

(

1

2

)

]−1

∫ z

0

exp{−1

2
y}y 1

2
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establishing the result.
Now, the expectation with respect to w in equation (25) can be regarded as the

expectation with respect to the conditional density of U given b. And if, for fixed b,
the random variable U in (26) satisfies u

¯
< U < ū as w varies over w ≥ 0, we would

have

Pr{T < z|b} = Ew [Gk (U(w, b))] =

∫ ū

u
¯

pdfU(u|b)Gk(u)du, (73)

where pdfU(u|b) is the conditional density of U for fixed b. Integrating by parts,

Pr{T < z|b} = FU(u|b)Gk(u)|ū
u
¯

−
∫ ū

u
¯

FU(u|b)gk(u)du, (74)
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where FU(u|b) is the conditional cdf of U for fixed b. But, for fixed b ∈ (0, 1), the
function U(w, b) is monotonically increasing in w, and satisfies

z ≤ U(w, b) <
z

1 − b
, (75)

so that, for u in this interval, the inequality U(w, b) < u corresponds to the inequality

w <
z(u − z)

(z − u(1 − b))
. (76)

Thus u
¯

= z and ū = z/(1 − b), and, since under the null hypothesis w ∼ χ′2(k, ∆n),
with noncentrality parameter ∆n proportional to in(β) in (12),

FU(u|b) = Pr
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Hence,
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. (78)

Applying the result in the Lemma above completes the proof. �

Proof of Corollary 1 (informal):
(1) This follows simply from equation (27) and the well-known fact that for each k
and c, G∆

k (c) → 0 as ∆ → ∞ (see Ghosh (1970), for instance). The second term in
(27) therefore vanishes as ∆n → ∞.
(2) The first inequality follows directly from equation (27), the second from (27) and
the fact that G∆n

k (·) is decreasing in ∆n.
(3) Since G∆n

k (·) ≤ 1, in the conditional formula, given b, the second term

∫ z
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z
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gk(u)du ≤
∫ z
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z

gk(u)du = Gk

(

z
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)

− Gk(z).

This immediately gives the stated result.

Proof of Lemma 1:
There is an orthogonal m × m matrix H such that W22 = HD2H ′, where D =
diag{

√
λ1, ...,

√
λm}. Define r = D−1H ′w21, and note that q1 = q − r′r, and that the

characteristic roots of W are those of

W̃ =

[

q, r′D
Dr, D2

]

. (79)
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The characteristic polynomial of W̃ is

p̃(f) = det[W̃ − fIm+1]

= (q − f)Πm
i=1(λi − f) −

m
∑

i=1

λir
2
i

[

∏

j 6=i

(λj − f)

]

. (80)

Now, assume that all of the roots fj differ from the λi. Then, for a particular
value of j,

p̃(fj) = [Πm
i=1(λi − fj)](q − fj − g(fj)), (81)

where

g(f) =
m

∑

i=1

r2
i λi

λi − f
. (82)

Hence, in particular, since p̃(f1) = 0, q = f1 + g(f1).
To show that f ∗

1 (λ1) ≤ f1 it is enough to show (because of the shape of pλ(f))
that pλ1

(f1) ≤ 0. But, using the above identity,

pλ1
(f1) = f 2

1 − f1(λ1 + q) + λ1q1

= f 2
1 − f1(λ1 + f1 + g(f1)) + λ1(f1 + g(f1) − r′r)

= (λ1 − f1)g(f1) − λ1r
′r

= f1

m
∑

i=2

r2
i (λ1 − λi)

(λi − f1)
. (83)

Now λ1 ≤ λi for all i > 1, and it is well known that f1 ≤ λ1 ≤ λi, so that the
coefficients in the sum here are non-positive for all i. If any of the fj is equal to a λi

the fact that pλ1
(f1) ≤ 0 is obvious. The result follows.

Proof of Theorem 3:
The proof is virtually identical to that of Theorem 1, beginning from equation (19),
but with b now distributed as Beta(k−m

2
, m

2
). We omit the details.

Proofs of Propositions 6 and 7:
The Proofs of Propositions 6 and 7 are exactly analogous to those of Propositions 3
and 4 and are omitted.

Proof of Proposition 8 and Theorem 4:
These follow from standard properties of quadratic forms in noncentral normal vari-
ables, followed by elementary manipulations. We omit the details.
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Proof of Theorem 5:
From the results in Theorem 4 for the conditional density pdf(q|b, p2), we compute:

Pr{q < z(1 − ab)−1|b, p2} =
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Multiplying this by

pdf(b|p2) =
exp{−1
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and integrating out b, we have
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where Eb(j,l) denotes the expectation with respect to a Beta(j + k−1

2
, l + 1

2
) variate.

But, by definition,

Eb(j,l)

[

Gk+2(j+l)(z(1 − ab)−1)
]

= P 1+2l
k+2(j+l)(z; w), (86)

which gives the result.

Proof of Proposition 9:
The upper bound follows from the fact that, for all w > 0, and all z > 0,

P 1+2l
k+2(j+l)(z; w) > Gk+2(j+l)(z).

Using this in equation (52) with z = zα(k; w) gives the upper bound, since, summing
by diagonals,
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j!
{1 − Gk+2j(z)} , (87)

because δ1 + δ2 = c2
β∆n. The lower bound is obtained in a similar way.

Proofs of Proposition 10 and Theorem 6:
These are again straightforward applications of standard results, followed by elemen-
tary manipulations, and are omitted.

Proofs of Theorems 7 and 8:
These are straightforward, and omitted.
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Figure 1: Conditional Distribution Function of the LR statistic given w; k odd,
k = 1, 3, .., 17. (a) w = 1, (b) w = 8, (c) w = 20. The case k = 1 is on the left, the
cdf moving to the right as k increases.
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Figure 2: Critical Value Function for the CLR test given w; k odd, k = 3, .., 21. The
lowest line is the case k = 3, the topmost k = 21.
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Figure 3: Critical Value Function for the CLR test given w; k even, k = 2, 4, .., 20.
The lowest line is the case k = 2, the topmost k = 20.
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Figure 4: Upper Bound on the Size of the LR test; k = 2, .., 82.
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Figure 5: Generalised Conditional CDF given λ1: λ1 = 1; k = m,m + 2, ..,m + 10.
(a) m = 1, (b) m = 2, (c) m = 4. The cdf moves to the right as k increases.
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Figure 6: Generalised Conditional CDF given λ1: λ1 = 8; k = m,m + 2, ..,m + 10.
(a) m = 1, (b) m = 2, (c) m = 4. The cdf moves to the right as k increases.
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Figure 7: Critical Value Function for the Generalized CLR test; k = m+2, ..,m+10.
(a) m = 2, (b) m = 3, (c) m = 4. The higher lines correspond to larger values of k.
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Figure 8: Bounding Power Functions for the CLR test and AR Power Function: (a)
k = 3, w = 1, (b) k = 3, w = 10, (c) k = 11, w = 1, (d) k = 11, w = 10.
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Figure 9: Power Functions for CLR test (solid line), AR test (dash), and LM test
(crosses): k = 3, ∆n = 1; (a) ρ = .75, w = 1, (b) ρ = .75, w = 5.3, (c) ρ = .95, w = 1,
(d) ρ = .95, w = 13.25.
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Figure 10: Power Functions for CLR test (solid line), AR test (dashes), and LM test
(crosses): k = 3, ∆n = 5 (a) ρ = .75, w = 1, (b) ρ = .75, w = 14.4, (c) ρ = .95, w = 1,
(d) ρ = .95, w = 25.
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Figure 11: Power Functions for CLR test (solid line), AR test (dashes), and LM test
(crosses): k = 12, ∆n = 1 (a) ρ = .75, w = 1, (b) ρ = .75, w = 14.3, (c) ρ = .95, w = 1,
(d) ρ = .95, w = 22.25.
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Figure 12: Power Functions for CLR test (solid line), AR test (dashes), and LM test
(crosses): k = 12, ∆n = 1 (a) ρ = .75, w = 1, (b) ρ = .75, w = 23.4, (c) ρ = .95, w = 1,
(d) ρ = .95, w = 25.
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