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Abstract: I show that a class of fixed effects estimators is reasonably robust for estimating

the population-averaged slope coefficients in panel data models with individual-specific

slopes, where the slopes are allowed to be correlated with the covariates. In addition to

including the usual fixed effects estimator, the results apply to estimators that eliminate

individual-specific trends. Further, asymptotic variance matrices are straightforward to

estimate. I apply the results, and propose alternative estimators, to estimation of average

treatment in a general class of unobserved effects models.
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1. Introduction

The standard fixed effects, or within, estimator is a workhorse in empirical studies that rely

on linear panel data models. When the partial effects of interest are on time-varying

covariates, fixed effects estimation is attractive because it allows for additive, unobserved

heterogeneity that can be arbitrarily correlated with the time-varying covariates. (On the other

hand, with random effects methods we assume that unobserved heterogeneity is uncorrelated

with observed covariates.) Extensions of the standard linear model with an additive

unobserved effect include the random trend model, where each cross-sectional unit is allowed

to have its own linear trend (in addition to a separate level effect); a special case is the

so-called random growth model, as in Heckman and Hotz (1989). Wooldridge (2002a, Section

11.2) provides an overview of these kinds of models.

The properties of fixed effects estimators in general unobserved effects models have been

derived assuming constant coefficients on the individual-specific, time-varying covariates. In

Wooldridge (2003), I pointed out that the usual fixed effects estimator in the standard additive

model is consistent in a model with individual specific slopes whenever the slopes are

conditionally mean independent of the time-demeaned covariates. Importantly, this finding

implies that the individual-specific slopes can be correlated with the time averages of the

covariates, which we tend to think of as the major source of endogeneity in random coefficient

panel data models. [With a small number of time periods, much more has been written about

random coefficient models when the coefficients are assumed to be independent of the
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covariates. See, for example, Hsiao (1986, Chapter 6). For most economic applications, the

independence assumption is unrealistic.]

In this paper, I extend the framework of Wooldridge (2003) to allow for general aggregate

time effects. I show that the fixed effects estimator that sweeps away the individual-specific

intercept and slopes on the aggregate variables is satisfyingly robust to the presence of

individual-specific slopes on the individual-specific covariates. Section 2 contains the main

result. In Section 3, I briefly consider estimation strategies based on first differencing. As a

special case in Section 4, I treat the so-called “random trend” model, which has become

popular in empirical studies [for example, Papke (1994), Hoxby (1996), and Friedberg (1998)].

In addition, I cover average treatment effect estimation in a general unobserved effects model,

generalizing a simple example due to Hahn (2001). Because consistency of the fixed effects

estimator generally rules out aggregate time effects in index models, I also propose modified

estimators that can consistently estimate the average treatment effects when fixed effects does

not. In Section 5, I show how the result extends to models where time-constant observable

covariates are available and correlated with unobserved heterogeneity.

2. Linear Models and a Result for Fixed
Effects

For a random draw i from the population, the model is

yit  wtai  xitbi  uit, t  1, . . . ,T     (2.1)

where wt is a 1  J vector of aggregate time variables – which we treat as nonrandom (without
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consequence, since they are usually just time trends) – ai is a J  1 vector of

individual-specific slopes on the aggregate variables, xit is a 1  K vector of covariates that

change across time (possibly including year dummies), bi is a K  1 vector of

individual-specific slopes, and uit is an idiosyncratic error. In what follows, we view T as

being relatively small, and so we keep it as fixed in the asymptotic analysis. We assume we

have a sample of size N randomly drawn from the population. For simplicity, we assume a

balanced panel.

The object of interest is   Ebi, the K  1 vector of population-averaged partial effects.

With small T, it is not possible to get precise estimates of each bi (when we treat them as

parameters to estimate). Instead, we hope to estimate the average effects using standard

estimators. Throughout we maintain the assumption

Euit|xi1, . . . ,xiT,ai,bi  0, t  1, . . . ,T,     (2.2)

which follows under the conditional mean assumption

Eyit|xi1, . . . ,xiT,ai,bi  Eyit|xit,ai,bi  wtai  xitbi, t  1, . . . ,T.     (2.3)

Assumption (2.3) is a standard strict exogeneity condition in unobserved effects models:

conditional on xit,ai,bi, the covariates from the other time periods do not affect the expected

value of yit. While this rules out the possibility of lagged dependent variables, it does not

restrict the correlation between ai,bi and xi1, . . . ,xiT. The possibility of correlation

between bi and the xit makes (2.1) a correlated random coefficient model, to borrow a phrase

from Heckman and Vytlacil (1998) for the cross-sectional case.

The basic unobserved effects model is obtained with wt  1 and bi  . The random

linear trend model also has bi   but wt  1, t, so that ai  ai1,ai2, where ai2 is the
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random trend for unit i. More flexible trends can be allowed with a sufficient number of time

periods; for example, we can take wt  1, t, t2. However, we cannot allow a full set of year

dummies to interact with separate unobserved heterogeneity terms, since we then lose

identification of . Generally, we must have J  T; see, for example, Wooldridge (2002a,

Section 11.2).

One possibility for analyzing equation (2.1) is to treat the ai and bi as parameters to

estimate for for i. Under (2.2) and an appropriate rank condition, we can obtain unbiased

estimators of ai and bi, say âi and b i, by using ordinary least squares (OLS) on the time series

for each i. Unfortunately, when T is small, the scope of such a strategy is limited. For one, we

would need J  K  T to even implement the procedure. Unless T is fairly large, precise

estimation of bi is not possible. Nevertheless, the average of the b i is generally consistent for

 (for fixed T as N   and N -asymptotically normal. [See Wooldridge (2002a, Section

11.2) for verification in a closely related context.] Since this strategy is not available for large

K, and since the covariance matrix of the resulting estimator is not easy to estimate, alternative

methods for estimating the average effect are desirable.

In this paper, we study estimators of  that are motivated by the assumption that the slopes

bi are constant, but we study the properties of these estimators in the context of model (2.1).

Write bi    di, where Edi  0 by definition. Simple substitution into (2.1) gives

yit  wtai  xit  xitdi  uit
 wtai  xit  vit,

    (2.4)
    (2.5)

where vit  xitdi  uit. Whether any or all of the elements of ai are constant, we estimate  in

(2.1) allowing the entire vector ai to vary by i, and to be arbitrarily correlated with the xit. For

the linear, additive effects model, this leads to the usual fixed effects estimator. More

5



generally, define yi to be the T  1 vector of yit, letW be the T  J matrix with tth row wt, let

Xi be the T  K matrix with tth row xit, and let vi be the vector of vit. Then we can write

yi  Wai  Xi  vi  Wai  Xi  Xidi  ui.     (2.6)

To eliminate ai, define the T  T matrixM  IT WWW1W, and premultipy (2.6) byM:

Myi  MXi Mvi  MXi  MXidi Mui.

We can write the equation in terms of residuals from individual-specific regressions as

ÿi  X i  v i  ÿi  X i  X idi  üi     (2.7)

or

ÿit  x it  v it, t  1, . . . ,T,     (2.8)

where, for instance, x it is the 1  K vector of residuals from the regression xit on

wt, t  1, . . . ,T. The fixed effects (FE) estimator of  – interpreted in the general sense of

eliminating ai from (2.1) – is just the pooled OLS estimator from (2.8). Rather than just

restricting attention to time-demeaning, as in the usual fixed effects analysis, we allow for very

general kinds of individual-specific “detrending.”

Since the FE estimator,  , is just a pooled OLS estimator, sufficient conditions for

consistency are simple to obtain. In addition to the rank condition

rank EX i
X i  K,     (2.9)

a sufficient condition is

EX i
v i  EX i

X idi  EX i
üi  EX i

X idi  EX i
ui  0.

Now, by (2.2), Eui|X i  0, and so we must only worry about EX i
X idi. If

EX i
X idi  0     (2.10)

6



then the FE estimator will be consistent. Since X i
X i   t1

T x it x it, a sufficient condition is

Ex it x itdi  0, t  1, . . . ,T.     (2.11)

Conditions (2.10) and (2.11) are a bit difficult to interpret. A simpler condition that is

sufficient for (2.11) is

Ebi|x it  Ebi, t  1, . . . ,T,     (2.12)

which says that bi is mean independent of all of the “detrended” xit. [If we slightly strengthen

(2.12) to Ebi|x i1, . . .x iT  Ebi, then the fixed effects estimator can be shown to be

unbiased, provided the expectation exists.] Condition (2.12) is notably weaker than the

standard assumption assumed in a random effects environment, that bi is mean independent of

each xit. Intuitively, condition (2.12) allows bi to be correlated with systematic components of

xit. We give some specific examples in Section 3.

Generally, (2.12) is more likely to hold the richer is wt. So, even of we do not think the

term wtai is necessary in (2.1), acting as if (2.1) contains individual-specific trends affords

more robustness for estimating  because more individual specific features are swept out of xit.

Of course, the more that is included in wt, the less variation there is in x it : t  1, . . . ,T, and

so efficiency of  can be adversely affected. In the limiting case J  T, x it  0, t  1, . . . ,T,

and the fixed effects procedure cannot be carried out.

Estimating the asymptotic variance of  is straightforward with large N and small T. The

usual, fully robust estimator – for example, Wooldridge [2002a, equation (10.59)] – is

consistent:

Avar  
i1

N

X i
X i

1


i1

N

X i
ûiûiX i 

i1

N

X i
X i

1

,     (2.13)
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where ûi  ÿi  X i are the T  1 vectors of fixed effects residuals. Even if we assume

homoskedasticity and serial independence of uit : t  1, . . . ,T [conditional on Xi,ai,bi], a

fully robust variance matrix is needed if bi  : the presence of X idi in the error terms

induces both conditional heteroskedasticity and serial dependence. Fortunately, (2.13) is

computed routinely by many regression packages, sometimes under the description of a

“cluster-robust variance matrix estimator.”

3. Methods Based on First Differencing

Often in empirical work, first differencing is used in place of the within transformation in

order to eliminate an additive, unobserved effect. It is easy to see that the first difference (FD)

estimator has robustness properties similar to the FE estimator.

In the model with a single additive, unobserved effect in ai, first differencing gives

yit  xit xitdi  uit, t  2, . . . ,T.     (3.1)

Using an argument similar to the fixed effects case, under a standard rank condition and (2.2),

a sufficient condition for consistency of the FD estimator is

Ebi|xit  Ebi, t  2, . . . ,T,     (3.2)

which explicitly allows bi to be correlated with the first-period covariates, xi1. When T  2

and , (2.12) and (3.2) are the same condition when x it are the time-demeaned covariates. When

T  2, (3.2) differs from (2.12), but they are similar in flavor. A fully robust asymptotic

variance matrix estimator for the FD estimator can be routinely computed after pooled OLS
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estimation in first differences. See Wooldridge (2002a, Section 10.6.2).

For more complicated models, first differencing can be followed by a fixed effects type

analysis to eliminate additional unobserved heterogeneity, in which case the model in first

differences can be analyzed as in Section 2. We explicitly cover the random trend model in the

next section.

4. Some Examples

4.1. The Basic Additive Model

As mentioned earlier, a special case of the setup in Section 2 is the usual unobserved

effects model estimated by fixed effects. Then, x it  xit  x i, where x i  r1
T xir. Condition

(2.12) means that bi can be correlated with x i provided that bi is conditionally mean

independent of the deviations from the means, x it. For example, if xit  fi  r it, t  1, . . . ,T,

then (2.12) allows for arbitrary correlation between fi and bi, provided

Ebi|r i1, . . . ,r iT  Ebi     (4.1)

Similarly, the first differencing estimator is also consistent under (4.1); it, too, allows arbitrary

correlation between bi and fi.

4.2. Random Trend Models

9



If we specify (2.1) as a random trend model, there are two popular approaches to

estimation. The pure fixed effects approach is to follow the procedure from Section 2 – so that

the x it are the detrended values from the regression xit on 1, t, t  1, . . . ,T, for each i. Then, we

can allow even more dependence between bi and time-constant features of xit. For example,

suppose we can write

xit  fi  git  r it, t  1, . . . ,T,     (4.2)

so that each element of xit is allowed to have an individual-specific trend. Then, for each i, x it

depends only on r i1, . . . ,r iT, and so (4.1) is again sufficient. In applications of (2.1), we are

usually worried that bi is correlated with time-constant components of xit – fi and gi in the

case of (4.2) – in which case (4.1) seems reasonable. The process in (4.2) includes the case

where xit is an integrated of order one process with individual-specific drift, as in

xit  gi  xi,t1  qit, t  1, . . . ,T,     (4.3)

where qit : t  1, . . . ,T can have arbitrary serial correlation. Repeated substitution shows

that (4.2) holds with fi  xi0 and r it  s1
t qis. Since r it : t  1, . . . ,T is a function of

qit : t  1, . . . ,T, (4.1) holds if Ebi|qi1, . . . ,qiT  , which seems reasonable since we can

allow bi to be arbitrarily correlated with the vector of initial conditions, xi0, as well as the

vector of drifts, gi.

An alternative estimation approach is to first difference to eliminate the additive effect, and

then to use the within transformation to account for the random trend. First differencing is

more attractive than the pure fixed effects approach from Section 2 when uit : t  1, . . . ,T

contains substantial positive serial correlation. Since we are applying the within
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transformation to the first differenced equation, we see that a sufficient condition for

consistency is

Ebi|x it  Ebi, t  2, . . . ,T,     (4.4)

where x it denotes the time-demeaned first differences. If xit : t  1, . . . ,T follows (4.2),

then first differencing xit eliminates fi while the within transformation applied to the first

differences eliminates gi. In other words, (4.1) is still sufficient for consistency.

Similar conclusions hold for both FE and strategies based on differencing if we take

wt  1, t, t2 (provided T  4). Then, xit can have an individual-specific quadratic trend,

provided bi is mean independent of the idiosyncratic part of xit. And so on.

4.3. Estimating Average Treatment Effects with
Unobserved Heterogeneity

The results in Sections 2 and 3 have interesting implications for estimating average

treatment effects (ATEs) in a class of nonlinear unobserved effects panel data models. For

motivation, consider an example due to Hahn (2001), who was commenting on Angrist (2001).

Hahn (2001) considered an unobserved effects probit model with two periods of panel data,

and a single binary treatment indicator, xit:

Pyit  1|xi1,xi2,ci  ci  xit, t  1,2,     (4.5)

where  is the standard normal cumulative distribution function. Hahn also assumed that

yi1 and yi2 are independent conditional on xi1,xi2,ci, and that no units are treated in the first

time period while all are treated in the second: xi1,xi2  0,1. The last assumption implies
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that xi1,xi2 is independent of ci, which would seem to be ideal for estimating the only

parameter in the model, . Hahn points out that, even with all of the assumptions he imposes,

 is not known to be identified. On the other hand, the average treatment effect,

  Eci    ci, is identified, and a simple, consistent estimator is

  N1 i1
N yi2  yi1. It is easy to see that  is the usual fixed effects estimator in the

simple linear model yit  ai  xit  uit, t  1,2. (Recall that FE is identical to FD when

T  2, and the FD estimator is easily seen to be  because xi2  xi1  1 for all i.). Hahn (2001)

uses this example to show that ATEs can be identified even when underlying parameters are

probably not. But he also uses the special structure of xit : t  1,2 to argue that the success

of Angrist’s (2001) strategy of eschewing nonlinear models in favor of linear methods – even

when yit is a limited dependent variable – hinges on the structure of treatment assignment.

Here, I use the results from Section 2 to determine assumptions under which simple panel data

strategies do recover average treatment effects.

We can identify average treatment effects in a very general class of unobserved effects

models, provided we make assumptions of the kind in Section 2, and assume no time

heterogeneity. Consider

Eyit|xi1, . . . ,xiT,c i  hxit,c i, t  1, . . . ,T,     (4.6)

where h,  is an unknown function, c i is a vector of unobserved heterogeneity, and xit is a

1  K vector of mutually exclusive binary “treatment” indicators. This structure for xit is very

common in the treatment effect literature, where the base group (in time period t) is

characterized by xit  xit1,xit2, . . . ,xitK  0. Other units in the population are subjected to

one, and only one, of K treatments. For example, in the population of people with at least a
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high school education, the base group could be people with no additional schooling. The

treatment indicators can denote different amounts of college. Or, perhaps people participate in

a job training program at different levels, with xit  0 indicating no job training. The leading

case is K  1, where xit is a binary treatment indicator.

There are only two assumptions in (4.6). The first is strict exogeneity of the treatment

indicators, xit, conditional on c i. We have maintained strict exogeneity throughout, and it is

very difficult to relax in general unobserved effects models. Second, (4.6) implies that the

treatment effects are constant across time. For cross sectional unit i, the treatment effect of

treatment level j (relative to no treatment) is

bij  he j,c i  h0,c i,     (4.7)

where e j is the vector with one in its jth entry and zeros elsewhere. Therefore, the ATEs are

j  Ehe j,c i  h0,c i  Ebij, j  1, . . . ,K.     (4.8)

The goal is to determine when the usual fixed effects estimator, applied to a linear model,

consistently estimates the ATEs. This is simple in the pure treatment effects setup because we

can write

Eyit|Xi,c i  ai  xitbi, t  1, . . . ,T     (4.9)

where ai  h0,c i and bi is the K  1 vector of individual-specific treatment effects, bij.

Equation (4.9) holds because each cross-sectional unit falls into one, and only one, treatment

class at time t. Given (4.9), we can apply the results for the fixed effects estimator from

Section 2. If c i is independent of the time-demeaned covariates, x it : t  1, . . . ,T, then so is

bi, and condition (2.12) holds. It follows that, regardless of the nature of yit, for any pattern of

serial dependence, and for general treatment patterns over time – even some that induce
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correlation between xit and c i – the FE estimator consistently estimates the average treatment

effects. Similar comments hold for the first differencing estimator.

Unfortunately, model (4.6) is not as general as we would like. For one, it does not allow

other individual-specific covariates to affect yit. Perhaps most importantly, (4.6) excludes

aggregate time effects, which generally allow ATEs to vary with time, and can be important in

policy analysis with panel data. It turns out that we can identify, and easily estimate,

time-varying ATEs in a general model, provided we change the assumption about the

relationship between the unobserved heterogeneity and xit : t  1, . . . ,T. For simplicity, let

xit be a binary treatment indicator, and replace (4.6) with

Eyit|xi1, . . . ,xiT,c i  htxit,c i, t  1, . . . ,T,     (4.10)

so that ht,  is allowed to vary with time. The average treatment effect now depends on t:

t  Eht1,c i  ht0,c i, t  1, . . . ,T,     (4.11)

Now, rather than assuming that c i is independent of x it : t  1, . . . ,T, we assume

independence conditional on x i:

Dc i|xi1, . . . ,xiT  Dc i|x i or Dc i|x i,x i1, . . . ,x iT  Dc i|x i.     (4.12)

Assumption (4.12) is a nonparametric version of Mundlak’s (1978) conditional mean

assumption in the linear case; see also Chamberlain (1984) and Wooldridge (2002a). It states

that the distribution of the unobserved effect, given the observed history of treatments, depends

only on the fraction of periods treated. Condition (4.12) is similar in spirit to (2.12), but it is

not the same, even if (4.12) could be stated in terms of conditional expectations. For example,

if xit  fi  r it, t  1, . . . ,T and c i  bi, (4.1) is sufficient for (2.12), but (4.1) does not imply

Ec i|xi1, . . . ,xiT  Ec i|x i.
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Under (4.10) and (4.12) we have

Eyit|Xi   htxit,cdGc|Xi   htxit,cdGc|x i  mtxit,x i
 Eyit|xit,x i, t  1, . . . ,T.

    (4.13)

The key is that Eyit|Xi does not depend on xi1, . . . ,xiT in an unrestricted fashion. If xit were

continuous, or took on numerous values, we could use nonparametric methods to estimate

mt, . In the treatment effect case, estimation is very simple because xit,x i can take on only

2T  1 different values (since xit takes on only two values and x i. takes on the values

0,1/T, . . . , T  1/T, 1). Let si1  1x i  1/T, si2  1x i  2/T, . . . , and siT  1x i  1.

Then we can write

Eyit|Xi   t  txit  sit  xitsi  st, t  1, . . . ,T     (4.14)

where si is the 1  T vector of sit and s  Esi. The coefficient on xit is the average

treatment effect. [Generally, iterated expectations implies that

t  EEht1,c i  ht0,c i|x i  Emt1,x i  mt0,x i; see Wooldridge (2002b, Lemma

2.2) for a general treatment.] Subtracting s from si before forming the interactions ensures t

is the treatment effect. In practice, s would be replaced with s  N1 i1
N si. In other words,

for each period t, we run the regression

yit on 1,xit, si1, . . . , siT,xitsi1  s1, . . . ,xitsiT  sT, i  1, . . . ,N,     (4.15)

where the coefficient  t on xit is the estimated ATE for period t.

If we made the random effects assumption Dc i|Xi  Dc i then, of course, the simple

regression of yit on 1,xit, i  1, . . .N would consistently estimate t. If we pool across t (as

well as i) and run the regression yit on 1,d2t, . . . ,dTt,xit,x i, t  1, . . . ,T; i  1, . . . ,N, where drt

is a period r dummy variable, then the common coefficient on xit, which is identical to the
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fixed effects estimate, would be the estimate of the ATE (assumed constant across t). The

regression in (4.15) is more flexible because it allows ATEs to change over time while

allowing Eyit|xit,x i to depend on xit,x i in a completely general way. Provided

xit : t  1, . . . ,T has some time variation, xit and x i will have independent variation for any t,

which is all we need to identify t under (4.12).

Condition (4.12) is hardly general, but it can be relaxed with T  2. For example, if

xi  T  11 t2
T xit is the average change in treatment over the T periods, we might

replace (4.12) with

Dc i|Xi  Dc i|x i,xi or Dc i|xi1, . . . ,xiT  Dc i|x i,xiT  xi1,     (4.16)

where equivalence follows because xi  xiT  xi1/T  1. [This assumption is in the spirit

of assuming bi, the vector of slopes in a linear model, is independent of r i1, . . . ,r iT in (4.2);

but it is not the same condition.] Then,

Eyit|Xi  Eyit|xit,x i,xi  mtxit,x i,xi.     (4.17)

Except for special treatment patterns, the ATE for each time period is identified from the

population regression of yit on xit,x i,xi provided T  3. Generally, the regressors in each

time period can take on 2  T  1  3  6T  1 different values because xi takes on values

in 1/T  1, 0, 1/T  1. We can estimate a saturated regression model by defining two

dummy variables, say, wi0,wi1, for xi taking on the values 0 and 1/T  1, respectively. For

each time period t, the regression would contain an overall intercept, xit, si,wi, interactions

sijwik, and interactions xitsij  s j,xitwik  w k, and xitsijwik  sjwk for all j and k.

Demeaning all of the indicators, including sijwik, before forming the interactions with xit,

ensures that the coefficient on xit is the average treatment effect. As in many cases, it makes
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sense to obtain heteroskedasticity-robust standard errors for the ATEs.

The procedure described in the previous paragraph is costly in terms of degrees of freedom.

For one, T different cross-sectional regressions are used; there is not pooling across t. So, for

estimating t, one has N  6T  1 degrees of freedom. The panel structure of the data is used

only in obtaining the time-constant controls, sij and wik. One could use as regressors

1,xit,x i,xit  xi1,xitx i   x,xitxi   x, where  x is the cross-sectional average of x i and

 x is the average of xi. Still, there is something to say for the general procedure, as it may

properly reflect the uncertainty in estimating ATEs under nonparametric assumptions.

While further embellishments are possible with large T, identification of the ATEs in every

time period hinges on the functions of xit : t  1, . . . ,T assumed to appear in

Dc i|xi1, . . . ,xiT. We cannot allow Dc i|xi1, . . . ,xiT to be entirely unrestricted.

How do the above procedures compare with more common approaches? A general

comparison is not possible because (4.10) puts very little structure on Eyit|Xi,c i [at the cost

of (4.12) or (4.16)]. But suppose yit is a binary response:

Pyit  1|Xi,ci  F t  xit  ci, t  1, . . . ,T,     (4.18)

where F is a cumulative distribution function. If we take F to be the logistic function, and

the yit are conditionally independent across time, then the fixed effects logit estimator is

consistent for  (and the aggregate time effect coefficients). Unfortunately, ATEs are not

identified since we make no distributional assumption for ci. Essentially by construction,

methods that take no stand concerning the unconditional distribution of ci, or the conditional

distribution Dci|Xi, have little hope of identifying ATES.

If F is the standard normal cdf, Chamberlain’s (1980) random effects probit model can be

used, provided we assume ci|Xi  Normal0  1xi1 . . .TxiT,2. [In principle, F could be
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the logit function, but then implementation of Chamberlain’s method is much more difficult.]

Chamberlain’s approach identifies  as well as the ATEs – see Chamberlain (1984) or

Wooldridge (2002a, Chapter 15) – the latter of which vary over time because of the presence

of  t. Compared with the procedure discussed above, Chamberlain’s method allows

unrestricted weights on the xit in Eci|Xi, at the cost of homoskedasticity and normality. The

regression procedure outlined above replaces Chamberlain’s parametric assumptions with

(4.12) or (4.16). The two approaches are complementary, since they work under different sets

of assumptions, neither of which nests the other.

All of the methods described above can be extended to the case of K  1 treatment levels,

but degrees of freedom could be an issue. Then, each of the K elements in x i can take on T  1

different values, and so KT  1 dummy variables are needed to saturate the model, and these

each need to be interacted with the elements of xit. A large cross-sectional sample would be

needed to implement a fully nonparametric analysis under (4.12), and the extension in (4.16)

would require even more data.

5. Other Extensions

Sometimes, we want to allow bi to vary with observed, time-constant covariates, say zi, a

1  L vector:

bi    zi  di,     (5.1)

where  is K  1 and  is K  L. (One possibility is to include the time averages, x i, in zi.)

Under (4.1), we can write
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yit  wtai  xit  zi  xit  vit, t  1, . . . ,T,     (5.2)

where   vec and vit  xitdi  uit, as before. Equation (5.2) is just the formal way of

writing that we add to the original model interactions between the elements of zi and xit. If

Edi|x it  Edi  0, the fixed effects estimator applied to (5.2) would consistently estimate 

and , in which case the average effects     Ezi are consistently estimated by    z
,

where z is the sample average across i.

The methods from Section 4.3 can also be extended when time constant covariates, zi, are

available. For example, in (4.10), we could replace (4.12) with

Dc i|Xi,zi  Dc i|x i,zi,     (5.3)

in which case (4.13) becomes Eyit|Xi,zi  Eyit|xit,x i,zi, t  1, . . . ,T. An estimate of the

ATE at time t is obtained as N1 i1
N Êyit|1,x i,zi  Êyit|0,x i,zi, for a suitable estimator of

the conditional expectation. By including in zi observables such as family background,

education, pre-training earnings, and so on, the assumption that heterogeneity depends only on

the average treatment level may be more plausible. A thorough study that considers estimating

Eyit|xit,x i,zi when the dimension of zi is large or contains continuous variables is left for

future study.
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