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Abstract: I show that a class of fixed effects estimators is reasonably robust for estimating

the population-averaged slope coefficients in panel data models with individual-specific

slopes, where the slopes are allowed to be correlated with the covariates. In addition to

including the usual fixed effects estimator, the results apply to estimators that eliminate

individual-specific trends. Further, asymptotic variance matrices are straightforward to

estimate. I apply the results, and propose alternative estimators, to estimation of average

treatment in a general class of unobserved effects models.
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1. Introduction

The standard fixed effects, or within, estimator is a workhorse in empirical studies that rely

on linear panel data models. When the partial effects of interest are on time-varying

covariates, fixed effects estimation is attractive because it allows for additive, unobserved

heterogeneity that can be arbitrarily correlated with the time-varying covariates. (On the other

hand, with random effects methods we assume that unobserved heterogeneity is uncorrelated

with observed covariates.) Extensions of the standard linear model with an additive

unobserved effect include the random trend model, where each cross-sectional unit is allowed

to have its own linear trend (in addition to a separate level effect); a special case is the

so-called random growth model, as in Heckman and Hotz (1989). Wooldridge (2002a, Section

11.2) provides an overview of these kinds of models.

The properties of fixed effects estimators in general unobserved effects models have been

derived assuming constant coefficients on the individual-specific, time-varying covariates. In

Wooldridge (2003), I pointed out that the usual fixed effects estimator in the standard additive

model is consistent in a model with individual specific slopes whenever the slopes are

conditionally mean independent of the time-demeaned covariates. Importantly, this finding

implies that the individual-specific slopes can be correlated with the time averages of the

covariates, which we tend to think of as the major source of endogeneity in random coefficient

panel data models. [With a small number of time periods, much more has been written about

random coefficient models when the coefficients are assumed to be independent of the
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covariates. See, for example, Hsiao (1986, Chapter 6). For most economic applications, the

independence assumption is unrealistic.]

In this paper, I extend the framework of Wooldridge (2003) to allow for general aggregate

time effects. I show that the fixed effects estimator that sweeps away the individual-specific

intercept and slopes on the aggregate variables is satisfyingly robust to the presence of

individual-specific slopes on the individual-specific covariates. Section 2 contains the main

result. In Section 3, I briefly consider estimation strategies based on first differencing. As a

special case in Section 4, I treat the so-called “random trend” model, which has become

popular in empirical studies [for example, Papke (1994), Hoxby (1996), and Friedberg (1998)].

In addition, I cover average treatment effect estimation in a general unobserved effects model,

generalizing a simple example due to Hahn (2001). Because consistency of the fixed effects

estimator generally rules out aggregate time effects in index models, I also propose modified

estimators that can consistently estimate the average treatment effects when fixed effects does

not. In Section 5, I show how the result extends to models where time-constant observable

covariates are available and correlated with unobserved heterogeneity.

2. Linear Models and a Result for Fixed
Effects

For a random draw i from the population, the model is

yit  wtai  xitbi  uit, t  1, . . . ,T     (2.1)

where wt is a 1  J vector of aggregate time variables – which we treat as nonrandom (without
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consequence, since they are usually just time trends) – ai is a J  1 vector of

individual-specific slopes on the aggregate variables, xit is a 1  K vector of covariates that

change across time (possibly including year dummies), bi is a K  1 vector of

individual-specific slopes, and uit is an idiosyncratic error. In what follows, we view T as

being relatively small, and so we keep it as fixed in the asymptotic analysis. We assume we

have a sample of size N randomly drawn from the population. For simplicity, we assume a

balanced panel.

The object of interest is   Ebi, the K  1 vector of population-averaged partial effects.

With small T, it is not possible to get precise estimates of each bi (when we treat them as

parameters to estimate). Instead, we hope to estimate the average effects using standard

estimators. Throughout we maintain the assumption

Euit|xi1, . . . ,xiT,ai,bi  0, t  1, . . . ,T,     (2.2)

which follows under the conditional mean assumption

Eyit|xi1, . . . ,xiT,ai,bi  Eyit|xit,ai,bi  wtai  xitbi, t  1, . . . ,T.     (2.3)

Assumption (2.3) is a standard strict exogeneity condition in unobserved effects models:

conditional on xit,ai,bi, the covariates from the other time periods do not affect the expected

value of yit. While this rules out the possibility of lagged dependent variables, it does not

restrict the correlation between ai,bi and xi1, . . . ,xiT. The possibility of correlation

between bi and the xit makes (2.1) a correlated random coefficient model, to borrow a phrase

from Heckman and Vytlacil (1998) for the cross-sectional case.

The basic unobserved effects model is obtained with wt  1 and bi  . The random

linear trend model also has bi   but wt  1, t, so that ai  ai1,ai2, where ai2 is the
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random trend for unit i. More flexible trends can be allowed with a sufficient number of time

periods; for example, we can take wt  1, t, t2. However, we cannot allow a full set of year

dummies to interact with separate unobserved heterogeneity terms, since we then lose

identification of . Generally, we must have J  T; see, for example, Wooldridge (2002a,

Section 11.2).

One possibility for analyzing equation (2.1) is to treat the ai and bi as parameters to

estimate for for i. Under (2.2) and an appropriate rank condition, we can obtain unbiased

estimators of ai and bi, say âi and b i, by using ordinary least squares (OLS) on the time series

for each i. Unfortunately, when T is small, the scope of such a strategy is limited. For one, we

would need J  K  T to even implement the procedure. Unless T is fairly large, precise

estimation of bi is not possible. Nevertheless, the average of the b i is generally consistent for

 (for fixed T as N   and N -asymptotically normal. [See Wooldridge (2002a, Section

11.2) for verification in a closely related context.] Since this strategy is not available for large

K, and since the covariance matrix of the resulting estimator is not easy to estimate, alternative

methods for estimating the average effect are desirable.

In this paper, we study estimators of  that are motivated by the assumption that the slopes

bi are constant, but we study the properties of these estimators in the context of model (2.1).

Write bi    di, where Edi  0 by definition. Simple substitution into (2.1) gives

yit  wtai  xit  xitdi  uit
 wtai  xit  vit,

    (2.4)
    (2.5)

where vit  xitdi  uit. Whether any or all of the elements of ai are constant, we estimate  in

(2.1) allowing the entire vector ai to vary by i, and to be arbitrarily correlated with the xit. For

the linear, additive effects model, this leads to the usual fixed effects estimator. More
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generally, define yi to be the T  1 vector of yit, letW be the T  J matrix with tth row wt, let

Xi be the T  K matrix with tth row xit, and let vi be the vector of vit. Then we can write

yi  Wai  Xi  vi  Wai  Xi  Xidi  ui.     (2.6)

To eliminate ai, define the T  T matrixM  IT WWW1W, and premultipy (2.6) byM:

Myi  MXi Mvi  MXi  MXidi Mui.

We can write the equation in terms of residuals from individual-specific regressions as

ÿi  X i  v i  ÿi  X i  X idi  üi     (2.7)

or

ÿit  x it  v it, t  1, . . . ,T,     (2.8)

where, for instance, x it is the 1  K vector of residuals from the regression xit on

wt, t  1, . . . ,T. The fixed effects (FE) estimator of  – interpreted in the general sense of

eliminating ai from (2.1) – is just the pooled OLS estimator from (2.8). Rather than just

restricting attention to time-demeaning, as in the usual fixed effects analysis, we allow for very

general kinds of individual-specific “detrending.”

Since the FE estimator,  , is just a pooled OLS estimator, sufficient conditions for

consistency are simple to obtain. In addition to the rank condition

rank EX i
X i  K,     (2.9)

a sufficient condition is

EX i
v i  EX i

X idi  EX i
üi  EX i

X idi  EX i
ui  0.

Now, by (2.2), Eui|X i  0, and so we must only worry about EX i
X idi. If

EX i
X idi  0     (2.10)
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then the FE estimator will be consistent. Since X i
X i   t1

T x it x it, a sufficient condition is

Ex it x itdi  0, t  1, . . . ,T.     (2.11)

Conditions (2.10) and (2.11) are a bit difficult to interpret. A simpler condition that is

sufficient for (2.11) is

Ebi|x it  Ebi, t  1, . . . ,T,     (2.12)

which says that bi is mean independent of all of the “detrended” xit. [If we slightly strengthen

(2.12) to Ebi|x i1, . . .x iT  Ebi, then the fixed effects estimator can be shown to be

unbiased, provided the expectation exists.] Condition (2.12) is notably weaker than the

standard assumption assumed in a random effects environment, that bi is mean independent of

each xit. Intuitively, condition (2.12) allows bi to be correlated with systematic components of

xit. We give some specific examples in Section 3.

Generally, (2.12) is more likely to hold the richer is wt. So, even of we do not think the

term wtai is necessary in (2.1), acting as if (2.1) contains individual-specific trends affords

more robustness for estimating  because more individual specific features are swept out of xit.

Of course, the more that is included in wt, the less variation there is in x it : t  1, . . . ,T, and

so efficiency of  can be adversely affected. In the limiting case J  T, x it  0, t  1, . . . ,T,

and the fixed effects procedure cannot be carried out.

Estimating the asymptotic variance of  is straightforward with large N and small T. The

usual, fully robust estimator – for example, Wooldridge [2002a, equation (10.59)] – is

consistent:

Avar  
i1

N

X i
X i

1


i1

N

X i
ûiûiX i 

i1

N

X i
X i

1

,     (2.13)
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where ûi  ÿi  X i are the T  1 vectors of fixed effects residuals. Even if we assume

homoskedasticity and serial independence of uit : t  1, . . . ,T [conditional on Xi,ai,bi], a

fully robust variance matrix is needed if bi  : the presence of X idi in the error terms

induces both conditional heteroskedasticity and serial dependence. Fortunately, (2.13) is

computed routinely by many regression packages, sometimes under the description of a

“cluster-robust variance matrix estimator.”

3. Methods Based on First Differencing

Often in empirical work, first differencing is used in place of the within transformation in

order to eliminate an additive, unobserved effect. It is easy to see that the first difference (FD)

estimator has robustness properties similar to the FE estimator.

In the model with a single additive, unobserved effect in ai, first differencing gives

yit  xit xitdi  uit, t  2, . . . ,T.     (3.1)

Using an argument similar to the fixed effects case, under a standard rank condition and (2.2),

a sufficient condition for consistency of the FD estimator is

Ebi|xit  Ebi, t  2, . . . ,T,     (3.2)

which explicitly allows bi to be correlated with the first-period covariates, xi1. When T  2

and , (2.12) and (3.2) are the same condition when x it are the time-demeaned covariates. When

T  2, (3.2) differs from (2.12), but they are similar in flavor. A fully robust asymptotic

variance matrix estimator for the FD estimator can be routinely computed after pooled OLS
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estimation in first differences. See Wooldridge (2002a, Section 10.6.2).

For more complicated models, first differencing can be followed by a fixed effects type

analysis to eliminate additional unobserved heterogeneity, in which case the model in first

differences can be analyzed as in Section 2. We explicitly cover the random trend model in the

next section.

4. Some Examples

4.1. The Basic Additive Model

As mentioned earlier, a special case of the setup in Section 2 is the usual unobserved

effects model estimated by fixed effects. Then, x it  xit  x i, where x i  r1
T xir. Condition

(2.12) means that bi can be correlated with x i provided that bi is conditionally mean

independent of the deviations from the means, x it. For example, if xit  fi  r it, t  1, . . . ,T,

then (2.12) allows for arbitrary correlation between fi and bi, provided

Ebi|r i1, . . . ,r iT  Ebi     (4.1)

Similarly, the first differencing estimator is also consistent under (4.1); it, too, allows arbitrary

correlation between bi and fi.

4.2. Random Trend Models
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If we specify (2.1) as a random trend model, there are two popular approaches to

estimation. The pure fixed effects approach is to follow the procedure from Section 2 – so that

the x it are the detrended values from the regression xit on 1, t, t  1, . . . ,T, for each i. Then, we

can allow even more dependence between bi and time-constant features of xit. For example,

suppose we can write

xit  fi  git  r it, t  1, . . . ,T,     (4.2)

so that each element of xit is allowed to have an individual-specific trend. Then, for each i, x it

depends only on r i1, . . . ,r iT, and so (4.1) is again sufficient. In applications of (2.1), we are

usually worried that bi is correlated with time-constant components of xit – fi and gi in the

case of (4.2) – in which case (4.1) seems reasonable. The process in (4.2) includes the case

where xit is an integrated of order one process with individual-specific drift, as in

xit  gi  xi,t1  qit, t  1, . . . ,T,     (4.3)

where qit : t  1, . . . ,T can have arbitrary serial correlation. Repeated substitution shows

that (4.2) holds with fi  xi0 and r it  s1
t qis. Since r it : t  1, . . . ,T is a function of

qit : t  1, . . . ,T, (4.1) holds if Ebi|qi1, . . . ,qiT  , which seems reasonable since we can

allow bi to be arbitrarily correlated with the vector of initial conditions, xi0, as well as the

vector of drifts, gi.

An alternative estimation approach is to first difference to eliminate the additive effect, and

then to use the within transformation to account for the random trend. First differencing is

more attractive than the pure fixed effects approach from Section 2 when uit : t  1, . . . ,T

contains substantial positive serial correlation. Since we are applying the within
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transformation to the first differenced equation, we see that a sufficient condition for

consistency is

Ebi|x it  Ebi, t  2, . . . ,T,     (4.4)

where x it denotes the time-demeaned first differences. If xit : t  1, . . . ,T follows (4.2),

then first differencing xit eliminates fi while the within transformation applied to the first

differences eliminates gi. In other words, (4.1) is still sufficient for consistency.

Similar conclusions hold for both FE and strategies based on differencing if we take

wt  1, t, t2 (provided T  4). Then, xit can have an individual-specific quadratic trend,

provided bi is mean independent of the idiosyncratic part of xit. And so on.

4.3. Estimating Average Treatment Effects with
Unobserved Heterogeneity

The results in Sections 2 and 3 have interesting implications for estimating average

treatment effects (ATEs) in a class of nonlinear unobserved effects panel data models. For

motivation, consider an example due to Hahn (2001), who was commenting on Angrist (2001).

Hahn (2001) considered an unobserved effects probit model with two periods of panel data,

and a single binary treatment indicator, xit:

Pyit  1|xi1,xi2,ci  ci  xit, t  1,2,     (4.5)

where  is the standard normal cumulative distribution function. Hahn also assumed that

yi1 and yi2 are independent conditional on xi1,xi2,ci, and that no units are treated in the first

time period while all are treated in the second: xi1,xi2  0,1. The last assumption implies
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that xi1,xi2 is independent of ci, which would seem to be ideal for estimating the only

parameter in the model, . Hahn points out that, even with all of the assumptions he imposes,

 is not known to be identified. On the other hand, the average treatment effect,

  Eci    ci, is identified, and a simple, consistent estimator is

  N1 i1
N yi2  yi1. It is easy to see that  is the usual fixed effects estimator in the

simple linear model yit  ai  xit  uit, t  1,2. (Recall that FE is identical to FD when

T  2, and the FD estimator is easily seen to be  because xi2  xi1  1 for all i.). Hahn (2001)

uses this example to show that ATEs can be identified even when underlying parameters are

probably not. But he also uses the special structure of xit : t  1,2 to argue that the success

of Angrist’s (2001) strategy of eschewing nonlinear models in favor of linear methods – even

when yit is a limited dependent variable – hinges on the structure of treatment assignment.

Here, I use the results from Section 2 to determine assumptions under which simple panel data

strategies do recover average treatment effects.

We can identify average treatment effects in a very general class of unobserved effects

models, provided we make assumptions of the kind in Section 2, and assume no time

heterogeneity. Consider

Eyit|xi1, . . . ,xiT,c i  hxit,c i, t  1, . . . ,T,     (4.6)

where h,  is an unknown function, c i is a vector of unobserved heterogeneity, and xit is a

1  K vector of mutually exclusive binary “treatment” indicators. This structure for xit is very

common in the treatment effect literature, where the base group (in time period t) is

characterized by xit  xit1,xit2, . . . ,xitK  0. Other units in the population are subjected to

one, and only one, of K treatments. For example, in the population of people with at least a
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high school education, the base group could be people with no additional schooling. The

treatment indicators can denote different amounts of college. Or, perhaps people participate in

a job training program at different levels, with xit  0 indicating no job training. The leading

case is K  1, where xit is a binary treatment indicator.

There are only two assumptions in (4.6). The first is strict exogeneity of the treatment

indicators, xit, conditional on c i. We have maintained strict exogeneity throughout, and it is

very difficult to relax in general unobserved effects models. Second, (4.6) implies that the

treatment effects are constant across time. For cross sectional unit i, the treatment effect of

treatment level j (relative to no treatment) is

bij  he j,c i  h0,c i,     (4.7)

where e j is the vector with one in its jth entry and zeros elsewhere. Therefore, the ATEs are

j  Ehe j,c i  h0,c i  Ebij, j  1, . . . ,K.     (4.8)

The goal is to determine when the usual fixed effects estimator, applied to a linear model,

consistently estimates the ATEs. This is simple in the pure treatment effects setup because we

can write

Eyit|Xi,c i  ai  xitbi, t  1, . . . ,T     (4.9)

where ai  h0,c i and bi is the K  1 vector of individual-specific treatment effects, bij.

Equation (4.9) holds because each cross-sectional unit falls into one, and only one, treatment

class at time t. Given (4.9), we can apply the results for the fixed effects estimator from

Section 2. If c i is independent of the time-demeaned covariates, x it : t  1, . . . ,T, then so is

bi, and condition (2.12) holds. It follows that, regardless of the nature of yit, for any pattern of

serial dependence, and for general treatment patterns over time – even some that induce
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correlation between xit and c i – the FE estimator consistently estimates the average treatment

effects. Similar comments hold for the first differencing estimator.

Unfortunately, model (4.6) is not as general as we would like. For one, it does not allow

other individual-specific covariates to affect yit. Perhaps most importantly, (4.6) excludes

aggregate time effects, which generally allow ATEs to vary with time, and can be important in

policy analysis with panel data. It turns out that we can identify, and easily estimate,

time-varying ATEs in a general model, provided we change the assumption about the

relationship between the unobserved heterogeneity and xit : t  1, . . . ,T. For simplicity, let

xit be a binary treatment indicator, and replace (4.6) with

Eyit|xi1, . . . ,xiT,c i  htxit,c i, t  1, . . . ,T,     (4.10)

so that ht,  is allowed to vary with time. The average treatment effect now depends on t:

t  Eht1,c i  ht0,c i, t  1, . . . ,T,     (4.11)

Now, rather than assuming that c i is independent of x it : t  1, . . . ,T, we assume

independence conditional on x i:

Dc i|xi1, . . . ,xiT  Dc i|x i or Dc i|x i,x i1, . . . ,x iT  Dc i|x i.     (4.12)

Assumption (4.12) is a nonparametric version of Mundlak’s (1978) conditional mean

assumption in the linear case; see also Chamberlain (1984) and Wooldridge (2002a). It states

that the distribution of the unobserved effect, given the observed history of treatments, depends

only on the fraction of periods treated. Condition (4.12) is similar in spirit to (2.12), but it is

not the same, even if (4.12) could be stated in terms of conditional expectations. For example,

if xit  fi  r it, t  1, . . . ,T and c i  bi, (4.1) is sufficient for (2.12), but (4.1) does not imply

Ec i|xi1, . . . ,xiT  Ec i|x i.
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Under (4.10) and (4.12) we have

Eyit|Xi   htxit,cdGc|Xi   htxit,cdGc|x i  mtxit,x i
 Eyit|xit,x i, t  1, . . . ,T.

    (4.13)

The key is that Eyit|Xi does not depend on xi1, . . . ,xiT in an unrestricted fashion. If xit were

continuous, or took on numerous values, we could use nonparametric methods to estimate

mt, . In the treatment effect case, estimation is very simple because xit,x i can take on only

2T  1 different values (since xit takes on only two values and x i. takes on the values

0,1/T, . . . , T  1/T, 1). Let si1  1x i  1/T, si2  1x i  2/T, . . . , and siT  1x i  1.

Then we can write

Eyit|Xi   t  txit  sit  xitsi  st, t  1, . . . ,T     (4.14)

where si is the 1  T vector of sit and s  Esi. The coefficient on xit is the average

treatment effect. [Generally, iterated expectations implies that

t  EEht1,c i  ht0,c i|x i  Emt1,x i  mt0,x i; see Wooldridge (2002b, Lemma

2.2) for a general treatment.] Subtracting s from si before forming the interactions ensures t

is the treatment effect. In practice, s would be replaced with s  N1 i1
N si. In other words,

for each period t, we run the regression

yit on 1,xit, si1, . . . , siT,xitsi1  s1, . . . ,xitsiT  sT, i  1, . . . ,N,     (4.15)

where the coefficient  t on xit is the estimated ATE for period t.

If we made the random effects assumption Dc i|Xi  Dc i then, of course, the simple

regression of yit on 1,xit, i  1, . . .N would consistently estimate t. If we pool across t (as

well as i) and run the regression yit on 1,d2t, . . . ,dTt,xit,x i, t  1, . . . ,T; i  1, . . . ,N, where drt

is a period r dummy variable, then the common coefficient on xit, which is identical to the

15



fixed effects estimate, would be the estimate of the ATE (assumed constant across t). The

regression in (4.15) is more flexible because it allows ATEs to change over time while

allowing Eyit|xit,x i to depend on xit,x i in a completely general way. Provided

xit : t  1, . . . ,T has some time variation, xit and x i will have independent variation for any t,

which is all we need to identify t under (4.12).

Condition (4.12) is hardly general, but it can be relaxed with T  2. For example, if

xi  T  11 t2
T xit is the average change in treatment over the T periods, we might

replace (4.12) with

Dc i|Xi  Dc i|x i,xi or Dc i|xi1, . . . ,xiT  Dc i|x i,xiT  xi1,     (4.16)

where equivalence follows because xi  xiT  xi1/T  1. [This assumption is in the spirit

of assuming bi, the vector of slopes in a linear model, is independent of r i1, . . . ,r iT in (4.2);

but it is not the same condition.] Then,

Eyit|Xi  Eyit|xit,x i,xi  mtxit,x i,xi.     (4.17)

Except for special treatment patterns, the ATE for each time period is identified from the

population regression of yit on xit,x i,xi provided T  3. Generally, the regressors in each

time period can take on 2  T  1  3  6T  1 different values because xi takes on values

in 1/T  1, 0, 1/T  1. We can estimate a saturated regression model by defining two

dummy variables, say, wi0,wi1, for xi taking on the values 0 and 1/T  1, respectively. For

each time period t, the regression would contain an overall intercept, xit, si,wi, interactions

sijwik, and interactions xitsij  s j,xitwik  w k, and xitsijwik  sjwk for all j and k.

Demeaning all of the indicators, including sijwik, before forming the interactions with xit,

ensures that the coefficient on xit is the average treatment effect. As in many cases, it makes
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sense to obtain heteroskedasticity-robust standard errors for the ATEs.

The procedure described in the previous paragraph is costly in terms of degrees of freedom.

For one, T different cross-sectional regressions are used; there is not pooling across t. So, for

estimating t, one has N  6T  1 degrees of freedom. The panel structure of the data is used

only in obtaining the time-constant controls, sij and wik. One could use as regressors

1,xit,x i,xit  xi1,xitx i   x,xitxi   x, where  x is the cross-sectional average of x i and

 x is the average of xi. Still, there is something to say for the general procedure, as it may

properly reflect the uncertainty in estimating ATEs under nonparametric assumptions.

While further embellishments are possible with large T, identification of the ATEs in every

time period hinges on the functions of xit : t  1, . . . ,T assumed to appear in

Dc i|xi1, . . . ,xiT. We cannot allow Dc i|xi1, . . . ,xiT to be entirely unrestricted.

How do the above procedures compare with more common approaches? A general

comparison is not possible because (4.10) puts very little structure on Eyit|Xi,c i [at the cost

of (4.12) or (4.16)]. But suppose yit is a binary response:

Pyit  1|Xi,ci  F t  xit  ci, t  1, . . . ,T,     (4.18)

where F is a cumulative distribution function. If we take F to be the logistic function, and

the yit are conditionally independent across time, then the fixed effects logit estimator is

consistent for  (and the aggregate time effect coefficients). Unfortunately, ATEs are not

identified since we make no distributional assumption for ci. Essentially by construction,

methods that take no stand concerning the unconditional distribution of ci, or the conditional

distribution Dci|Xi, have little hope of identifying ATES.

If F is the standard normal cdf, Chamberlain’s (1980) random effects probit model can be

used, provided we assume ci|Xi  Normal0  1xi1 . . .TxiT,2. [In principle, F could be
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the logit function, but then implementation of Chamberlain’s method is much more difficult.]

Chamberlain’s approach identifies  as well as the ATEs – see Chamberlain (1984) or

Wooldridge (2002a, Chapter 15) – the latter of which vary over time because of the presence

of  t. Compared with the procedure discussed above, Chamberlain’s method allows

unrestricted weights on the xit in Eci|Xi, at the cost of homoskedasticity and normality. The

regression procedure outlined above replaces Chamberlain’s parametric assumptions with

(4.12) or (4.16). The two approaches are complementary, since they work under different sets

of assumptions, neither of which nests the other.

All of the methods described above can be extended to the case of K  1 treatment levels,

but degrees of freedom could be an issue. Then, each of the K elements in x i can take on T  1

different values, and so KT  1 dummy variables are needed to saturate the model, and these

each need to be interacted with the elements of xit. A large cross-sectional sample would be

needed to implement a fully nonparametric analysis under (4.12), and the extension in (4.16)

would require even more data.

5. Other Extensions

Sometimes, we want to allow bi to vary with observed, time-constant covariates, say zi, a

1  L vector:

bi    zi  di,     (5.1)

where  is K  1 and  is K  L. (One possibility is to include the time averages, x i, in zi.)

Under (4.1), we can write
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yit  wtai  xit  zi  xit  vit, t  1, . . . ,T,     (5.2)

where   vec and vit  xitdi  uit, as before. Equation (5.2) is just the formal way of

writing that we add to the original model interactions between the elements of zi and xit. If

Edi|x it  Edi  0, the fixed effects estimator applied to (5.2) would consistently estimate 

and , in which case the average effects     Ezi are consistently estimated by    z
,

where z is the sample average across i.

The methods from Section 4.3 can also be extended when time constant covariates, zi, are

available. For example, in (4.10), we could replace (4.12) with

Dc i|Xi,zi  Dc i|x i,zi,     (5.3)

in which case (4.13) becomes Eyit|Xi,zi  Eyit|xit,x i,zi, t  1, . . . ,T. An estimate of the

ATE at time t is obtained as N1 i1
N Êyit|1,x i,zi  Êyit|0,x i,zi, for a suitable estimator of

the conditional expectation. By including in zi observables such as family background,

education, pre-training earnings, and so on, the assumption that heterogeneity depends only on

the average treatment level may be more plausible. A thorough study that considers estimating

Eyit|xit,x i,zi when the dimension of zi is large or contains continuous variables is left for

future study.
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