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Abstract

Many approaches to estimation of panel models are based on an average or integ-
rated likelihood that assigns weights to different values of the individual effects. Fixed
effects, random effects, and Bayesian approaches all fall in this category. We provide
a characterization of the class of weights (or priors) that produce estimators that are
first-order unbiased. We show that such bias-reducing weights must depend on the
data unless an orthogonal reparameterization or an essentially equivalent condition is
available. Two intuitively appealing weighting schemes are discussed. We argue that
asymptotically valid confidence intervals can be read from the posterior distribution
of the common parameters when N and T grow at the same rate. Finally, we show
that random effects estimators are not bias reducing in general and discuss important
exceptions. Three examples and some Monte Carlo experiments illustrate the results.
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1 Introduction

In a panel model the likelihood of the data for a given unit is typically a function fi (θ,αi)

of common and individual specific parameters θ and αi, respectively. Interest centers in the

estimation of θ or other common policy parameters constructed as summary measures of

the two types of parameters and data. The central feature of this estimation problem is

the presence of many nuisance parameters (the individual effects) when the cross-sectional

dimension is large relative to the number of time series observations.

Many approaches to estimation of θ in this context are based on an average likelihood

that assigns weights to different values of αi:

fai (θ) =

Z
fi (θ,αi)wi (αi) dαi (1)

where wi (αi) is a possibly θ-specific weight and dαi is a discrete or continuous measure. An

estimate of θ is then usually chosen to maximize the average likelihood of the sample under

cross-sectional independence:
PN

i=1 ln f
a
i (θ).

A fixed effects approach that estimates θ jointly with the individual effects by maximum

likelihood (ML) falls in this category with weights

wi (αi) =

½
1 if αi = bαi (θ)
0 otherwise

(2)

where bαi (θ) is the maximum likelihood estimator of αi for given θ. The resulting average

likelihood in this case is just the concentrated likelihood fi (θ, bαi (θ)).
A random effects approach is also based on an average likelihood in which the weights are

chosen as a model for the distribution of individual effects in the population given covariates

and initial observations. In this case wi (αi) is a parametric or semiparametric density or

probability mass function which does not depend on θ, but includes additional unknown

coefficients:

wi (αi) = gi (αi; ξ) .

Finally, in a Bayesian approach, an average likelihood is also constructed, choosing as

weights a formulation of the prior probability distribution of αi given θ, covariates and initial

observations, under the assumption of prior conditional independence of α1, ...,αN given θ.

However, αi and θ need not be independent, so that the weights assigned to different values

of αi may depend on the value of θ.
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All these approaches, in general, lead to estimators of θ that are not consistent as N

tends to infinity for fixed T , but have large-N biases of order 1/T . This situation, known as

the “incidental parameter problem”, is of particular concern when T is small relative to N

(a common situation in applications), and has become one of the main challenges in modern

econometrics.1

The traditional reaction to this problem has been to look for estimators yielding fixed-

T consistency as N goes to infinity.2 One drawback of these methods is that they are

somewhat limited to linear models and certain nonlinear models, often due to the fact that

fixed-T identification itself is problematic. Other considerations are that their properties

may deteriorate as T increases, and that there may be superior methods that are not fixed-T

consistent.3

More recently, it has been argued that the incidental parameter problem can be viewed

as time-series finite-sample bias when T tends to infinity. Following this perspective, several

approaches have been proposed to correct for the time-series bias. These methods include

bias-correction of the ML estimator of the common parameters (Hahn and Newey 2004, Hahn

and Kuersteiner 2004), of the moment equation (Woutersen 2002, Arellano 2003, Carro 2006)

or of the objective function (Arellano and Hahn 2006a,b, Bester and Hansen 2005a, Hospido

2006), each of them based on analytical or simulation-based approximations.

The aim in this literature has been to obtain estimators of θ with biases of order 1/T 2

(as opposed to 1/T ) and similar large-sample dispersion as the corresponding uncorrected

methods when T/N tends to a constant. This is done in the hope that the reduction

in the order of magnitude of the bias will essentially eliminate the incidental parameter

problem, even in panels where T is much smaller than N , as long as individual time series

are statistically informative.

In this paper, we consider estimators that maximize an average likelihood such as (1) and

provide a characterization of the class of weights that produce estimators that are first-order

unbiased. Specifically, we consider bθ = argmaxθPN
i=1 ln f

a
i (θ) for general weight functions,

or priors, wi (αi).4 For fixed T , we can define the pseudo true value θT = plimN→∞bθ. In
1The classic reference on the incidental parameter problem is Neyman and Scott (1948). Lancaster (2000)

reviews the history of the problem since then.
2See Arellano and Honoré (2001) for a review.
3Alvarez and Arellano (2003) showed that standard panel GMM estimators of linear dynamic models are

asymptotically biased as T and N increase at the same rate.
4We shall indistinctly use the terms “weights” and “priors”, since in this paper we treat priors as automatic

weighting schemes.
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general, θT 6= θ0. However, expanding in powers of T :

θT = θ0 +
B

T
+ o

µ
1

T

¶
.

We look for priors that yield B = 0.

Our results suggest new bias-reducing estimators with attractive computational proper-

ties, as well as a natural way of obtaining asymptotic confidence intervals. They also provide

important insights into the properties of fixed effects, random effects, and Bayesian nonlinear

panel estimators in a unified framework.

The approach we follow was first considered in the panel data context by Lancaster

(2002) from a Bayesian perspective, in situations where common parameters and fixed effects

can be made information orthogonal by reparameterization.5 Indeed, it can be shown that

under information orthogonality taking a uniform prior for the effects reduces the bias on

the parameter of interest. In this paper we generalize this approach to situations where

orthogonal reparameterizations do not exist.

We make four contributions. First, for a given weight function or prior, we derive the

expression of the 1/T term of the bias of the average likelihood relative to an infeasible

average likelihood without uncertainty about pseudo true values of the effects for given

values of θ. We use this finding to show that there always exist bias reducing weights. This

result provides a generalization of Lancaster’s approach to a much wider class of models. We

also find an expression for the bias of the score of the average or integrated likelihood. This

allows us to make the link with information orthogonality. Namely, we show that information

orthogonality or an essentially equivalent condition is both necessary and sufficient for the

uniform prior on the fixed effects to be bias reducing.

Moreover, when (generalized) orthogonal reparameterizations of the fixed effects are not

available, every bias reducing prior has to be data dependent. We denote as “data dependent”

a theoretical weight function which depends on the true values θ0 and αi0:

wi (αi) = πi (αi | θ; θ0,αi0) ,

so that a feasible counterpart will depend on the data in general.

In a second contribution, we discuss two special bias reducing priors. The first one, that

we call the “robust” prior, can be written as a combination of a Hessian and an outer product
5The classic paper on information orthogonality is Cox and Reid (1987), and its discussion by Sweeting

(1987) makes the connection between orthogonality and inference from the integrated likelihood.
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of score term. As such it is related to, but different from, the non-subjective prior introduced

by Harold Jeffreys. The second bias reducing prior is just the normal approximation to the

sampling distribution of the estimated effects for given θ:

wi (αi) ∼ N
³bαi (θ) ,dVar [bαi (θ)]´ .

The bias reduction property comes from the fact that, contrary to (2), the variability of the

fixed effects estimates and its dependence on θ are taken into account. Both robust weighting

schemes are functions of the data.

The third contribution concerns estimation and inference from the integrated likelihood.

As the expression of the robust priors is close to additive corrections of the bias of the

concentrated likelihood (e.g. Di Ciccio and Stern, 1993), one can choose among several

already available methods to find a feasible counterpart for the weight function. Then,

estimation of the common parameters can be performed by integration methods, as well as

using Bayesian simulation techniques such as Markov Chain Monte Carlo. The possibility

of using computationally efficient techniques for estimation is an appealing feature of the

method we propose. Simulation methods can also be useful to compute confidence intervals.

Building on the results in Chernozhukov and Hong (2003), we show that asymptotically

valid confidence intervals of the parameter estimates can be read from the quantiles of the

pseudo-posterior distribution when N and T grow at the same rate.

Finally, we study the existence of bias reducing priors on the individual effects that

are independent of the common parameters, as is the case in the context of random-effects

models, which are very popular in applied work. We find that, in the absence of prior

knowledge on the distribution of the individual effects in the population, it is not possible

in general to correct for first-order bias. In particular, we derive a necessary and sufficient

condition for the Gaussian random effects maximum likelihood (REML) estimator to be

bias reducing. An important special case is the class of linear autoregressive models. In

more general nonlinear models, however, the use of Gaussian REML has no bias-reducing

asymptotic justification.

The related literature includes Woutersen (2002), which obtained the first-order bias

of the integrated likelihood in the case where parameters are information orthogonal, and

proposed a modification of the score when there is no orthogonality. In a contribution

closely related to ours, Severini (1999) studies the conditions under which a classical pseudo-

likelihood is asymptotically equivalent to some integrated likelihood, corresponding to a
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given prior distribution for the effects. The conditions he finds can be seen as a special case

of our results when parameters are information orthogonal. Some of the results of this paper

have been independently obtained by Bester and Hansen (2005b). They consider the form of

bias reducing priors for general parametric likelihood models, and provide a data dependent

prior, which coincides with one of our proposals, but their focus is not on panel data, and

they do not discuss the duality between existence of orthogonal reparameterizations and

non-data dependent bias-reducing priors. Other important differences are that we provide a

formal justification for bias reduction in the panel context, and that we are also concerned

with developing a framework where we can study the bias reducing properties of random

effects estimators.

The plan of the paper is as follows. In Section 2, we derive the expression of the bias of

the average likelihood and make the link with information orthogonality. In Section 3, we

obtain analytical expressions of two special bias reducing weight functions. In Section 4, we

illustrate these results by means of three examples: the dynamic AR(p) model, the Poisson

counts model and the static logit model with fixed effects. In Section 5, we discuss issues

of estimation and inference. Section 6 focuses on the bias reducing properties of random

effects estimators. In Section 7, we report a small Monte-Carlo simulation to study the

finite-sample behavior of the proposed estimators. Lastly, Section 8 concludes.

2 Biases of the integrated likelihood and score

In this section, we derive the expression of the first-order bias of the integrated likelihood

with respect to an arbitrary prior distribution for the individual effects. We start by setting

the notation.

2.1 Notation

Let (yit, x0it)
0, i = 1, ...,N and t = 0, 1, ..., T be the set of observations on the endogenous

variable yit and a vector of strictly exogenous variables xit, that we assume i.i.d. across

individuals. The density of yit conditioned on (xi1, ..., xiT ) and lagged y0s is given by:

fit(yit|θ0,αi0) ≡ f(yit|xit, yi(t−1); θ0,αi0),
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which leads to the expression for the scaled individual likelihood conditioned on initial ob-

servations:

`i(θ,αi) =
1

T

TX
t=1

ln fit(yit|θ,αi).

The likelihood is assumed to depend on a vector of common parameters θ and scalar indi-

vidual fixed effects α1...αN .6 Then, let πi(αi|θ) be a conditional prior distribution on the
individual fixed effect given θ. The conditioning on θ follows from our treatment of αi as

nuisance parameters, while θ are the parameters of interest. Moreover, the subindex i in πi

refers to possible conditioning on strictly exogenous regressors and initial conditions.

Throughout the paper, we will assume that standard regularity conditions are satisfied

(e.g. Severini, 1999). In particular, all likelihood and pseudo-likelihood functions as well

as all priors will be three-times differentiable. We will also assume that the prior is not

dogmatic in the following sense.

Assumption 1 The support of πi(αi|θ) contains an open neighborhood of the true paramet-
ers (αi0, θ0).

The prior will generally depend on T . We will assume that the order of magnitude of the

logarithm of the prior is bounded when T increases:

Assumption 2 When T tends to infinity we have, for all θ and αi:

lnπi(αi|θ) = O(1).

Concentrated likelihood. Our analysis makes use of three different objective functions

at the individual level. The first one is the concentrated or profile likelihood. It is defined as

`ci(θ) = `i(θ, bαi(θ)), where the fixed effects estimates solve bαi(θ) = argmaxαi `i(θ,αi). Thus,
the ML estimator solves bθML = argmaxθ

PN
i=1 `

c
i(θ). As is well-known, bθML is in general

inconsistent for fixed T as N →∞.

Integrated likelihood. Bias-corrected estimators for θ based on the concentrated likeli-

hood have been recently studied in the statistical and econometric literatures (Arellano and
6Considering further lags and multiple fixed effects would complicate the notation, but leave the essence

of what follows unaltered.
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Hahn, 2006a). In this paper, we study the behavior of the integrated likelihood with respect

to a given prior πi(αi|θ). The individual log integrated likelihood is given by:

`Ii (θ) =
1

T
ln

Z
exp [T`i(θ,αi)] πi(αi|θ)dαi.

As noted by Berger et al. (1999), this likelihood would be acceptable to a subjective Bayesian

whose joint prior is separable in the individual effects:

π(θ,α1...αN) = π(θ)π1(α1|θ)...πN(αN |θ).

From this perspective, in this paper we will assume a uniform prior on θ: π(θ) ∝ 1.7 Allowing
for any non dogmatic prior on θ does not affect the analysis.

Target likelihood. We shall compute the first-order bias of the integrated likelihood re-

lative to a target likelihood without uncertainty about the value of the effects for given θ.

Let the target likelihood be `i(θ) = `i(θ,αi(θ)), where αi(θ) = argmaxαi plimT→∞ (`i(θ,αi)).

This function possesses many properties of a proper likelihood. In particular, it is maximized

at θ0 and satisfies Bartlett identities (Severini, 2000). Note that the effects αi(θ)— and as

such the likelihood `i(θ) —are infeasible. The target likelihood will provide a useful theoret-

ical benchmark to compute first-order biases. It is a “least favorable” target likelihood in

the sense that the expected information for θ calculated from `i(θ) coincides with the partial

expected information.

The concentrated and target likelihoods can be regarded as integrated likelihoods with

respect to the priors

πi(αi|θ) = 1{αi = αi(θ)}, and πi
c(αi|θ) = 1{αi = bαi(θ)},

respectively. In this perspective, πci can be interpreted as a sample counterpart of πi. Below,

we investigate the existence of non-degenerate feasible counterparts of πi that, unlike πci ,

reduce first-order bias.

Lastly, we denote the observed score with respect to the fixed effect as

vi(θ,αi) =
∂`i(θ,αi)

∂αi
,

and its derivatives as:

vαii (θ,αi) =
∂vi(θ,αi)

∂αi
, vθi (θ,αi) =

∂vi(θ,αi)

∂θ
, vαiαii (θ,αi) =

∂2vi(θ,αi)

∂α2i
, etc.

7We write a ∝ b to denote that a and b are equal up to a multiplicative constant.
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2.2 Bias of the integrated likelihood

We now derive the expression of the first-order bias of the individual integrated likelihood

relative to the target likelihood:

Eθ0,αi0

£
`Ii (θ)− `i(θ)

¤
= Cst +

Bi(θ)

T
+O

µ
1

T 2

¶
,

for a given prior πi(αi|θ).8 The expectation is taken with respect to exp [T`i (θ0,αi0)], so
that a quantity like Eθ0,αi0

£
`Ii (θ)

¤
will depend on θ, θ0 and αi0. We shall proceed in two

steps.

In a first step, we use a Laplace approximation (e.g. Tierney et al., 1989) to link the

integrated and the concentrated likelihoods. The result is contained in the following lemma.

Lemma 1 Let Assumptions 1 and 2 hold. Then:

Eθ0,αi0

£
`Ii (θ)− `ci(θ)

¤
= Cst− 1

2T
lnEθ0,αi0 [−vαii (θ,αi(θ))]+

1

T
lnπi(αi(θ)|θ)+O

µ
1

T 2

¶
. (3)

Proof. See Appendix.

Then, in a second step we use the formula that gives the first-order bias of the concen-

trated likelihood (e.g. Arellano and Hahn, 2006a):

Eθ0,αi0

£
`ci(θ)− `i(θ)

¤
=
1

2T
{Eθ0,αi0 [−vαii (θ,αi(θ))]}−1 Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤
+O

µ
1

T 2

¶
.

(4)

The expression of the first-order bias of the integrated likelihood then follows directly.

Theorem 1 Let Assumptions 1 and 2 hold. Then:

Eθ0,αi0

£
`Ii (θ)− `i(θ)

¤
= Cst +

Bi(θ)

T
+O

µ
1

T 2

¶
where

Bi(θ) =
1

2
{Eθ0,αi0 [−vαii (θ,αi(θ))]}−1 Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤
−1
2
lnEθ0,αi0 [−vαii (θ,αi(θ))] + lnπi(αi(θ)|θ). (5)

8Throughout the paper, we use Cst to denote any constant term, which depending on the context may
be scalar or vector-valued, and stochastic or nonstochastic.
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Proof. Combining (3) and (4).

As the right-hand side of (5) is O(1), Theorem 1 illustrates the “dominance” argument

(e.g. Lancaster, 2004) that the effect of the prior vanishes as the amount of data increases.

When T goes to infinity, the bias of the integrated likelihood goes to zero irrespective of the

prior, provided that the latter is non-dogmatic. In Section 6, we will see that this property

is shared by random-effects panel data models. However, it turns out that the prior has an

effect on the first-order bias of the integrated likelihood as, in general, Bi(θ) is not locally

constant around θ0.

2.3 Bias of the integrated score

From Theorem 1 we can obtain the expression of the bias of the integrated score evaluated at

the true value θ0. It is convenient, in the likelihood context, to use a simplification proposed

by Pace and Salvan (2006). At the true value θ0, where the information matrix equality is

satisfied, we have:

∂

∂θ

¯̄̄
θ0

³
{Eθ0,αi0 [−vαii (θ,αi(θ))]}−1 Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤ ´
=

∂

∂θ

¯̄̄
θ0

ln
¡{Eθ0,αi0 [−vαii (θ,αi(θ))]}−1 Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤¢
. (6)

The bias of the integrated score is thus given by:

∂

∂θ

¯̄̄
θ0
Bi(θ) =

∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)|θ)− ∂

∂θ

¯̄̄
θ0
ln
³
Eθ0,αi0 [−vαii (θ,αi(θ))]

©
Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤ª−1/2´
.

(7)

Hence the following characterization of bias reducing priors:

Theorem 2 A prior πi is bias reducing if and only if:

∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)|θ) = ∂

∂θ

¯̄̄
θ0
ln
³
Eθ0,αi0 [−vαii (θ,αi(θ))]

©
Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤ª−1/2´
+O

µ
1

T

¶
.

Proof. The condition is an immediate application of (7). Then, lack of first-order bias

of the estimator follows from lack of first-order bias in the score or estimating equation. For

a theory for general bias corrected estimating equations, see Arellano and Hahn (2006b), for

example.
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2.4 Non-data dependent bias-reducing priors and orthogonality

We turn to consider the role of information orthogonality. The next proposition shows the

link between the ability of a prior to reduce bias and information orthogonality.

Proposition 1 The following equality holds:

∂

∂θ

¯̄̄
θ0
Bi(θ) =

∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)|θ) + ∂

∂αi

¯̄̄
αi0

ρi(θ0,αi) (8)

where

ρi(θ,αi) ≡ {Eθ,αi [−vαii (θ,αi)]}−1 Eθ,αi

£
vθi (θ,αi)

¤
.

Proof. See Appendix.

Proposition 1 shows that the quantity ρi(θ,αi), the projection coefficient in the efficient

score for θ, is key in the ability of a given prior to reduce bias. A particular case is the one

of information orthogonality studied by Cox and Reid (1987) and Lancaster (2002). In that

case the information matrix is block diagonal so that Eθ,αi

£
vθi (θ,αi)

¤
is identically zero. It

follows from Proposition 1 that the uniform prior πi(αi|θ) ∝ 1 is bias reducing. The same is
true of all priors that are independent of θ in light of Proposition 1 and the fact that

∂αi(θ)

∂θ

¯̄̄
θ0
= ρi(θ0,αi0).

Conversely, Proposition 1 implies that the uniform prior reduces bias if and only if:

∂

∂αi

¯̄̄
αi0

ρi(θ0,αi) = O

µ
1

T

¶
. (9)

Condition (9) is slightly more general than information orthogonality. For it to be satisfied,

it suffices that ρi(θ,αi) is a function of θ only.

The uniform prior does not depend on the distribution of the data. That is, it is inde-

pendent of the true parameters θ0,α10, ...,αN0. Other non-data dependent priors are given

by orthogonal reparameterizations of the fixed effects, when available. Let ψi = ψi(αi, θ) be

a reparameterization such that ψi and θ are information orthogonal in the sense of equation

(9). In that case equation (9) shows that the uniform prior on ψi is bias-reducing. Hence

the transformed prior on αi:

πi (αi|θ) =
¯̄̄̄
∂ψi(αi, θ)

∂αi

¯̄̄̄

10



is also bias-reducing, as this prior is the Jacobian of the transformation which maps (αi, θ)

onto (ψi, θ). Conversely, any non-data dependent bias-reducing prior πi(αi|θ) can be as-
sociated an orthogonal reparameterization in the sense of equation (9). It suffices to take

ψi = ψi(αi, θ), where:

ψi(αi, θ) =

Z αi

−∞
πi(α|θ)dα.

This discussion shows that there exists a mapping between non-data dependent bias

reducing priors and orthogonal reparameterizations in the sense of (9). Now, such repara-

meterizations do not always exist. In the multiparameter case (when θ is a vector) one ends

up with a partial differential equation which has no solution in general, in close analogy with

the case of strict information orthogonality (Cox and Reid, 1987). Appendix B makes this

statement more precise. Hence, to deal with the general case where orthogonal reparamet-

erizations are not available, it is necessary to search for robust priors that depend on the

data. We address this task in the next section.

Note also that to every reparameterization of the fixed effects ψi(αi, θ), and every prioreπi(ψi|θ) on ψi we can associate the transformed prior in the original parameterization:

πi(αi|θ) = eπi(ψi(αi, θ)|θ) ¯̄̄̄∂ψi(αi, θ)∂αi

¯̄̄̄
.

Then we show the following result in Appendix, which is a corollary of Theorem 2.

Proposition 2 eπi is bias reducing in the transformed parameterization ψi if and only if πi

is bias reducing in the original parameterization αi.

Proof. See Appendix

Proposition 2 shows that the bias reducing properties of a prior are not affected by a

reparameterization of the effects.

3 Two bias reducing priors

3.1 Robust prior

Theorem 1, together with equation (6), show that the following prior is robust, in the sense

that it yields first-order unbiasedness:

πRi (αi|θ) ∝ Eθ0,αi0 [−vαii (θ,αi)]
©
Eθ0,αi0

£
v2i (θ,αi)

¤ª−1/2
. (10)
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This bias-reducing prior (10), which we will call the “robust” prior, is data dependent, as

both expectation terms depend on the true parameters θ0 and αi0.9 In particular, different

robust priors are associated with different individual units. The discussion in the previous

section has shown that non-data dependent priors cannot be robust in cases when orthogonal

reparameterizations of the fixed effects are not available.

Moreover, πRi involves a Hessian term (Eθ0,αi0 [−vαii (θ,αi)]) and an outer product term
(Eθ0,αi0 [v

2
i (θ,αi)]). A closely related expression appears in Jeffreys’ automatic prior when θ

is kept fixed, the expression of which is:

πJi (αi|θ) ∝ {Eθ,αi [−vαii (θ,αi)]}1/2 . (11)

A crucial difference between πRi (αi|θ) and πJi (αi|θ) is that in the latter the expectation is
taken with respect to exp [T`i (θ,αi)] as opposed to exp [T`i (θ0,αi0)]. Thus, in particular

Jeffreys’ prior does not depend on the data. Evaluated at true values, the robust prior πR

boils down to Jeffreys’. However, the distinction between arbitrary parameter values and

true values appears only in (10), and is critical in ensuring bias reduction. In fact, Jeffreys’

prior (11) is generally not bias reducing (see Hahn, 2004).

Before ending this discussion, note that we have assumed a likelihood set-up, as opposed

to a pseudo-likelihood set-up. The likelihood assumption is required to obtain equation (6),

which uses the information identity at true parameter values. In the pseudo-likelihood case,

however, it is still possible to use Theorem 1 to obtain a robust weighting scheme for an

integrated objective function. In effect, using the expression of the bias of the integrated

likelihood (5), it is straightforward to show that the following prior is bias reducing in both

likelihood and pseudo-likelihood settings:

{Eθ0,αi0 [−vαii (θ,αi)]}1/2 exp
µ
−T
2
{Eθ0,αi0 [−vαii (θ,αi)]}−1 Eθ0,αi0

£
v2i (θ,αi)

¤¶
. (12)

Coming back to the likelihood set-up, note that Proposition 1 shows that many other

priors are robust. In particular, the two priors given by (10) and (12) are bias reducing.

Using (12) instead of (10) for estimation can make a difference in finite samples. The Monte

Carlo simulations reported below will illustrate this remark.

3.2 Robust reparameterizations

The following result provides an additional characterization of the robust prior.
9Thus πRi (αi|θ) should be regarded as a shorthand for πRi (αi|θ; θ0,αi0).
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Proposition 3

πRi (bαi(θ)|θ) ∝ 1p
Var (bαi(θ))

µ
1 +Op

µ
1

T

¶¶
. (13)

In addition, every non-dogmatic prior satisfying (13) is bias reducing.

Proof. See Appendix.

Proposition (3) sheds some light on the properties of the robust prior. To see why, let us

consider the reparameterization:

ψi(αi, θ) =
αi − bαi(θ)p
Var (bαi(θ)) . (14)

Reparameterizing the individual effects as in (14) amounts to rescaling the effects, weighting

them in inverse proportion to the standard deviation of the fixed effects MLE.

Specifically, let us consider a prior on ψi that is independent of θ, with cdf F and pdf f .

In terms of the original parameterization, the prior is:10

eπRi (αi|θ) = 1p
Var (bαi(θ))f

Ã
αi − bαi(θ)p
Var (bαi(θ))

!
.

Then, clearly: eπRi (bαi(θ)|θ) ∝ 1p
Var (bαi(θ)) .

It thus follows from Proposition 3 that eπRi is bias reducing.
For the particular choice of ψi ∼ N (0, 1), we obtain the result that the (large-T ) asymp-

totic sampling distribution of the MLE bαi(θ) is a bias reducing prior for αi:
αi|θ ∼ N (bαi(θ),Var (bαi(θ))). (15)

Specifying the a priori distribution of the fixed effects as in (15) is intuitively appealing.

First, unlike the robust prior (πRi ), this prior is proper, so that it will unambiguously lead to

a proper posterior. Second, it can be seen as a feasible counterpart of the (degenerate) prior

associated to the target likelihood (πi). Unlike the prior associated with the concentrated

likelihood (πci), it takes into account the way the precision of bαi(θ) varies with θ. In the

limit, if Var (bαi(θ)) varies slowly with θ then we obtain the uniform prior on the original

effects. This happens when parameters are information orthogonal.
10Note that eπR does not satisfy Assumption 2. This does not matter for the present discussion, however,

as shown by the proof of Proposition 3.
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4 Examples

We turn to consider three specific examples: the dynamic AR(p) model, the Poisson counts

model, and the static logit model.

4.1 Dynamic AR(p)

The model we consider is given by:

yit = µ10yi,t−1 + ...+ µp0yi,t−p + αi0 + εit, i = 1...N, t = 1...T.

Let y0i = (yi,1−p, ..., yi0)
0 be the vector of initial conditions, that we assume observed. Obser-

vations are iid across i. Moreover, it is assumed that:

(εi1, ..., εiT )
0|αi0, y0i ∼ N

¡
0, σ20IT

¢
,

where IT is the identity matrix of order T .

For this model there exist likelihood-based fixed-T consistent estimators (see for example

Alvarez and Arellano, 2004), which can provide a useful benchmark for the application of our

general methods. Another interesting aspect of this illustration is that, as we argue later,

an orthogonal reparameterization is available for the first-order process but not for models

with p > 1.

The individual log likelihood is given by:

`i(µ,σ
2,αi) =

1

T
ln f(yi|y0i ,αi;µ, σ2) = −

1

2
ln(2π)− 1

2
ln(σ2)− 1

2T

TX
t=1

(yit − x0itµ− αi)
2

σ2

where xit = (yi,t−1, ..., yi,t−p)
0 and µ =

¡
µ1, ..., µp

¢0
.

We show in Appendix C that the robust prior can be written as:

πRi
¡
αi|µ,σ2

¢ ∝ ³1 + a(µ− µ0) + bi(µ− µ0,αi − αi0)
´−1/2

,

where a (.) and bi (., .) are linear and quadratic functions, respectively, the coefficients of

which depend on true parameter values and initial conditions. More precisely, a ≡ a(µ0) is
a function of µ0 only, while bi ≡ b(µ0,αi0, yi0) depends on true values and initial conditions.
The quadratic term bi(µ − µ0,αi − αi0) has no effect on the bias. Indeed, it could be

replaced by any other quadratic function in differences µ− µ0 and αi − αi0. Removing the

quadratic terms we may consider:

eπR ¡αi|µ,σ2¢ ∝ {1 + a(µ− µ0)}−1/2 . (16)

14



The prior eπR is also bias-reducing. Note that, as a(µ−µ0) is linear, the function eπR (αi|µ,σ2)
is degenerate for some values of µ. When estimating the prior in practice, this degeneracy

can be a problem. It can then make sense to use the alternative expression (12) for the

robust prior and consider instead:

eπR ¡αi|µ,σ2¢ ∝ expµ−1
2
a(µ− µ0)

¶
. (17)

Now, the priors given by (16) and (17), are data dependent because a depends on µ0.

Looking for a non-data dependent prior requires solving:

∂

∂µ

¯̄̄
µ0,σ

2
0

lnπ
¡
αi
¡
µ,σ2

¢ |µ,σ2¢ ∝ ∂

∂µ

¯̄̄
µ0

ln
³
{1 + a(µ− µ0)}−1/2

´
, (18)

for some function π independent of (µ0,σ
2
0,αi0).

In the AR(1) case, we show in the Appendix that

∂

∂µ

¯̄̄
µ0

ln
³
{1 + a(µ− µ0)}−1/2

´
=
1

T

T−1X
t=1

(T − t)µt−110 .

In this case, equation (18) admits solutions independent of true parameter values. For

example, the following choice works:

π
¡
αi|µ,σ2

¢
= exp

Ã
1

T

T−1X
t=1

T − t
t
µt

!
. (19)

This is the prior found by Lancaster (2002) in terms of the original (non information or-

thogonal) parameterization. Note that this property is specific to the AR(1) case. In the

AR(p) model, p > 1, there generally does not exist a non-data dependent bias reducing prior.

In Section 6 we discuss the existence of bias-reducing data dependent priors for the AR(p)

model that are independent of the common parameters, in the context of random effects

estimation.

4.2 Poisson counts

Let the data consist of T Poisson counts yit with individual means:

Eθ0,αi0(yit) = αi0 exp(x
0
itθ0), i = 1...N, t = 1...T,

where xit are known covariates. The individual log-likelihood is given by:

`i(θ,αi) ∝ −αi 1
T

TX
t=1

exp(x0itθ) +
1

T

TX
t=1

yit ln(αi) +
1

T

TX
t=1

yitx
0
itθ.
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We show in Appendix C that the robust prior is given by:

πRi (αi|θ) ∝
1

αi

Ã
TX
t=1

αi0 exp(x
0
itθ0) + [αi0 exp(x

0
itθ0)− αi exp(x

0
itθ)]

2

!−1/2
. (20)

Then, by Proposition 1 one can add a quadratic adjustment in (θ− θ0) and (αi−αi0) to

the logarithm of πRi without altering its bias properties. It follows that:

eπ(αi|θ) ∝ 1

αi
(21)

is also bias-reducing. Note that πRi is proper, while eπ is not.
As in Lancaster (2002), let us consider the reparameterization: ψi = αi

PT
t=1 exp(x

0
itθ).

Then it is straightforward to show that: ∂2`i(θ,ψi)
∂θ∂ψi

= 0. In this reparameterized model,

parameters are fully orthogonal, not just information orthogonal. In particular, the uniform

prior is bias-reducing. Therefore, in terms of the original reparameterization, the following

prior reduces bias:

πi (αi|θ) ∝
¯̄̄̄
∂ψi(αi, θ)

∂αi

¯̄̄̄
=

TX
t=1

exp(x0itθ).

Interestingly, the robust prior and Lancaster’s prior are directly related, as:11

πi
R(αi(θ)|θ) ∝ eπ(αi(θ)|θ) = TX

t=1

exp(x0itθ) = πi(αi|θ).

4.3 Static logit

We now consider the model:

yit = 1 {x0itθ0 + αi0 + εit > 0} , i = 1...N, t = 1...T

where the x’s are known, and εit are i.i.d. and drawn from the logistic distribution with cdf

Λ.

The individual log-likelihood is given by:

`i(θ,αi) =
1

T

TX
t=1

{yit lnΛ(x0itθ + αi) + (1− yit) ln [1− Λ(x0itθ + αi)]} .

In Appendix C we derive the expression of the robust prior:

πRi (αi|θ) ∝
Ã

TX
t=1

Eθ0,αi0

³
[yit − Λ(x0itθ + αi)]

2
´!−1/2 TX

t=1

Λ(x0itθ + αi) [1− Λ(x0itθ + αi)] .

(22)
11This result follows directly from the expression of αi(θ) given in the appendix.
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As shown in Lancaster (2000), there also exists an orthogonal reparameterization in this

model. Let:

ψi =
TX
t=1

Λ(x0itθ + αi).

Then ψi and θ are information orthogonal.

The uniform prior on ψi is thus bias-reducing. The corresponding prior on the original

individual effects is:

πi(αi|θ) ∝
TX
t=1

Λ(x0itθ + αi) [1− Λ(x0itθ + αi)] . (23)

Note that in this case, Jeffreys’ prior is given by πJi (αi|θ) ∝ {πi(αi|θ)}1/2. It is readily
verified that πJi is not bias-reducing. On the other hand, both πRi and πi reduce bias.

5 Estimation and inference

The previous analysis has shown that, absent the possibility of orthogonalization, the only

priors that lead to bias reduction are data-dependent priors.12 We here explain how to

find feasible counterparts for the robust priors, and we consider methods to perform the

estimation of θ. We then discuss inference issues.

5.1 Estimation

Prior. The expression for the robust prior (10) is very similar to the expression for the

bias of the concentrated likelihood given by equation (4). It also involves the Hessian term

Eθ0,αi0 (−vαii (θ,αi)), as well as the outer product term Eθ0,αi0 (v
2
i (θ,αi)). For this reason, the

problem of finding a feasible counterpart for the robust prior is analogous to the problem of

estimating an additive bias correction for the concentrated likelihood.

The Hessian term can be consistently estimated by the observed Hessian:

− 1
T

TX
t=1

vαiit (θ,αi) =
1

T

TX
t=1

∂2`it(θ,αi)

∂α2i
.

Moreover, in the case of independent observations the outer product term can be consistently

estimated by
1

T 2

TX
t=1

v2it(θ,αi) =
1

T 2

TX
t=1

µ
∂`it(θ,αi)

∂αi

¶2
.

12This result is in a similar spirit to one in Wasserman (2000), which shows that for certain mixture models
data-dependent priors are the only priors that produce intervals with second-order frequentist coverage.
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However, when observations are not independent the same strategy cannot be applied be-

cause of the dynamic dependence of the score. Indeed, as vi(θ, bαi(θ)) = 1
T

PT
t=1 vit(θ, bαi(θ)) =

0, it follows that the expression: −vαii (θ,αi) {v2i (θ,αi)}−1/2 is degenerate at (θ, bαi(θ)).
One possibility to estimate the outer product term consistently is to use expected quant-

ities. Note that estimation of the expectation requires to plug-in consistent estimates of the

true parameters (θ0,αi0). Another possibility is to use a trimmed version of the empirical

mean, as in Hahn and Kuersteiner (2004) or Arellano and Hahn (2006b). Lastly, one can

make use of the identity (13) and estimate the variance of bαi(θ) by parametric bootstrap.
This last idea was proposed by Pace and Salvan (2006) in the context of bias correction of

the concentrated likelihood.

Example. In the static logit example (see 4.3), one can use observed quantities and com-

pute:

bπRi (αi|θ) ∝
(

TX
t=1

³
(yit − Λ(x0itθ + αi))

2
´)−1/2 TX

t=1

Λ(x0itθ + αi) [1− Λ(x0itθ + αi)] . (24)

One can also use expected quantities as:

bbπRi (αi|θ) ∝
(

TX
t=1

Λ(x0itbθ + bαi) [1− 2Λ(x0itθ + αi)] + [Λ(x
0
itθ + αi)]

2

)−1/2
×

TX
t=1

Λ(x0itθ + αi) [1− Λ(x0itθ + αi)] , (25)

where bθ and bαi are consistent estimates of the true parameters when T tends to infinity.
Maximum Likelihood estimates are natural candidates.

Estimation of common parameters. Once a feasible robust weighting scheme is avail-

able, estimation based on the integrated likelihood can be performed using classical or

Bayesian techniques. For this purpose, one can use integration routines (quadrature, Monte

Carlo) to compute the integrated likelihood, and then maximize the latter using optimization

algorithms. This is the approach we have adopted in the Monte Carlo experiments reported

below. However, in highly nonlinear models with possibly many parameters, this approach

can be problematic. Our connection to Bayesian statistics makes it possible to use Bayesian

techniques, such as Markov Chain Monte Carlo, to perform the estimation. Moreover, an

additional appealing feature of the simulation approach is the ability to read confidence

intervals directly from the posterior distribution, as explained in the next subsection.
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Freedom to choose. Lastly, it is worth reiterating that the robust prior can be modified

in a way that does not create first-order bias, but can make a difference in finite samples.

This gives the researcher some degree of freedom in her choice of prior, even if this choice

is constrained by the fact that the bias of the score of the integrated likelihood has to be

(asymptotically close to) zero. In the case of the dynamic AR(p) model studied in the

previous section, arbitrary quadratic terms in µ− µ0 and αi−αi0 can be added to the prior

while keeping the bias-reduction property. However, linear terms cannot be changed without

creating bias. As showed by the Poisson counts and static logit examples, this property is

not limited to linear models. The choice of bias-reducing priors in practice remains an open

area for study.

5.2 Inference

Let `Ii be associated with a bias reducing prior. We define bθ as:
bθ = argmax

θ

NX
i=1

`Ii (θ).

The analysis below still applies if instead of the mode of the integrated likelihood one con-

siders its mean or its median, provided that these quantities exist. Throughout this section,

we assume that the integrated likelihood is proper:Z (
NY
i=1

exp
¡
T`Ii (θ)

¢)
dθ <∞.

In this section, we are concerned with computing confidence intervals for bθ. For this we
need some additional notation. Let

HiT = Eθ0,αi0

µ
−∂2`Ii (θ0)

∂θ∂θ0

¶
, and ΩiT = Eθ0,αi0

µ
∂`Ii (θ0)

∂θ

∂`Ii (θ0)

∂θ0

¶
be the Hessian and the outer product of the individual integrated likelihood at the truth,

and let

H iT = Eθ0,αi0

µ
−∂2`i(θ0)

∂θ∂θ0

¶
, and ΩiT = Eθ0,αi0

µ
∂`i(θ0)

∂θ

∂`i(θ0)

∂θ0

¶
be the same quantities associated with the target likelihood. Then we have the following

lemma.
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Lemma 2 Let `Ii (θ) be an integrated likelihood associated with a prior such that:

∂

∂θ

¯̄̄
θ0
Bi(θ) = O

µ
1

T

¶
;

∂2

∂θ∂θ0
¯̄̄
θ0
Bi(θ) = O

µ
1

T

¶
, (26)

where Bi(θ) is given by equation (5). Then:

HiT = HiT +O

µ
1

T 2

¶
, (27)

ΩiT = ΩiT + ΞiT +O

µ
1

T 2

¶
, (28)

where ΞiT is a term of order 1/T that does not depend on the expression of the prior.

Proof. See Appendix.

Conditions (26) are bias reduction conditions that are satisfied by all the robust priors

derived in the previous sections, as well as by their robust approximations near the true

parameter values.

To understand the lemma, one has to note that HiT is O(1) while ΩiT is O(1/T ), as the

prior is bias reducing. Lemma 2 thus shows that the Hessian of the integrated likelihood

and that of the target are equal up to a small 1/T2 term. However, the outer product terms

of the integrated and the target likelihoods need not coincide to a 1/T order of magnitude,

as in general the term ΞiT is not zero.

A first application of Lemma 2 is that the information bias, defined as:

∆iT = TΩiT +HiT ,

is independent of the form of the robust prior used for estimation. In general, it is O(1) as

the target likelihood has no information bias. Di Ciccio et al. (1996) use a multiplicative

correction on the score of the corrected concentrated likelihood that reduces the bias to

an order O(1/T ). Our result shows that, in general, no prior reduces both the bias of the

integrated likelihood and the information bias. The intuition behind this result is that, as the

use of Laplace approximations makes clear, the prior behaves asymptotically as an additive

correction to the concentrated likelihood.

We now turn to the computation of confidence intervals for θ. Let us assume to start

with that T is fixed. Let us define the pseudo true value associated with the problem of

maximizing the integrated likelihood:

θT = argmax
θ

lim
N→∞

1

N

NX
i=1

Eθ0,αi0

¡
`Ii (θ)

¢
.
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Under fixed-T asymptotics, when N tends to infinity, one has:

√
NT (bθ − θT )→

d
N (0, VT ) , (29)

and the asymptotic variance is given by the “sandwich” formula:

VT = H
−1
T ΩTH

−1
T , (30)

where

HT = lim
N→∞

1

N

NX
i=1

HiT ; and ΩT = lim
N→∞

1

N

NX
i=1

ΩiT .

As the information bias is not zero, the “sandwich” formula does not simplify. This is

due to the fact that the integrated likelihood is not a proper likelihood. In particular, it does

not satisfy Bartlett identities.

Let then

p(θ) =

QN
i=1 exp

£
T`Ii (θ)

¤R nQN
i=1 exp [T`

I
i (θ)]

o
dθ

(31)

be the pseudo-posterior distribution associated with the integrated likelihood and a uniform

prior for θ.13 As the integrated likelihood is assumed proper, the denominator exists.

Theorem 4 in Chernozhukov and Hong (2003) shows that, under suitable regularity con-

ditions, p is asymptotically (when N tends to infinity for fixed T ) equivalent to: N (θT , H−1
T ).

Now, (27) shows that HT is equal to the Hessian of the target likelihood, up to second-

order terms. Moreover, (28) makes clear that the outer products of the target and the

integrated likelihoods are generally different. Hence, unlike the fixed-T variance VT , H−1
T

does not take into account the variability of the fixed effects estimates in the calculation of

the asymptotic distribution. This variability has only second-order effects on the confidence

intervals. As a consequence, the quantiles of the pseudo-posterior distribution are generally

not valid confidence intervals for θT under fixed-T asymptotics.

Nonetheless, the pseudo-posterior distribution of θ is a valid guide for making inference

about θ0 when N and T tend simultaneously to infinity at the same rate. Indeed, in that

case the information matrix equality is satisfied at the limit and both VT and H−1
T tend to

V∞ = H−1∞ . It follows that:

√
NT (bθ − θ0)→

d
N (0, V∞) , when N →∞, and

T

N
→ c > 0. (32)

13Note that p is a pseudo-posterior distribution for θ, since `I is a pseudo-likelihood.
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Therefore, in a double asymptotics perspective, VT and H−1
T have the same justification.

However, a Bayesian derivation points to a justification of H−1T as providing confidence

intervals that can be read directly from the quantiles of the pseudo-posterior distribution.

In practice, the quantiles can be computed directly from the empirical distribution of bθ, e.g.
given by a Markov chain.

6 Random-effects and bias reduction

In this section, we study the first-order bias properties of random-effects maximum likeli-

hood (REML) estimators. We first focus on the case of an integrated likelihood with prior

independence between αi and θ. We then show that random-effects ML estimators can, to

first-order, be embedded into this framework.

6.1 The random-effects model

In this section, we assume that αi0, i = 1...N , are drawn from a distribution with density π0

conditioned on covariates and initial observations. The marginal density of an observation

is thus given by

fi(yi1, ..., yiT |yi0, θ0, π0) =
Z

TQ
t=1

f(yit|xit, yi(t−1); θ0,αi)π0(αi)dαi.

This model is very common in the panel data literature. Often, π0 is supposed to belong to

a known parametric family such as the normal or a multinomial distribution with a finite

number of mass points, possibly independent of covariates. In contrast, here we make no

assumption about the functional form of π0.

Let ξ be a parameter and πi(αi; ξ) be a family of prior distributions indexed by ξ. Im-

portantly, πi(αi; ξ) does not depend directly on the common parameter θ, nor on the cdf of

the data (that is, on the true parameters θ0,αi0). Nevertheless, we do allow πi to depend on

conditioning covariates and/or initial conditions.

The function πi(αi; ξ) has two possible interpretations. It can be regarded as a model for

the population distribution of αi0; this is the “random-effects” perspective. In a Bayesian

perspective, it can also be seen as a hierarchical prior assuming independence between αi

and θ. In both approaches, we are interested in the random-effects pseudo-likelihood:

`REi (θ; ξ) =
1

T
ln

Z
exp(T`i(θ,αi))πi(αi; ξ)dαi,

which is the integrated likelihood with respect to the prior πi(αi; ξ).
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6.2 Random-effects without hyperparameters

For expositional simplicity, we start with the case where there are no hyperparameters ξ and

the prior is given by πi(αi), independent of θ and independent of the data.

Let the bias of the score of the random-effects likelihood at the truth be:

B∞(θ0)
T

≡ plim
N→∞

1

N

NX
i=1

∂`REi (θ0)

∂θ
.

Using Proposition 1 we obtain:

B∞(θ0) = plim
N→∞

1

N

NX
i=1

½
∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)) +

∂

∂αi

¯̄̄
αi0

ρi(θ0,αi)

¾
+O

µ
1

T

¶

= lim
N→∞

1

N

NX
i=1

Eπ0

µ
∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)) +

∂

∂αi

¯̄̄
αi0

ρi(θ0,αi)

¶
+O

µ
1

T

¶
,

(33)

where π0 is the population distribution of the individual effects.14 At this stage, it is useful

to recall that:
∂

∂θ

¯̄̄
θ0
αi(θ) = ρi(θ0,αi0). (34)

Using (33) and (34), we find that πi is first-order bias reducing if and only if:

lim
N→∞

1

N

NX
i=1

Eπ0

µ
1

πi(αi0)

∂

∂αi

¯̄̄
αi0

πi(αi)ρi(θ0,αi)

¶
= O

µ
1

T

¶
. (35)

In the particular case where πi = π0 is the population density from which the fixed effects

are drawn, there is no bias. To see why, remark that, in this case:

Eπ0

µ
1

πi(αi0)

∂

∂αi

¯̄̄
αi0

πi(αi)ρi(θ0,αi)

¶
=

Z µ
∂

∂αi

¯̄̄
αi
π0(αi)ρi(θ0,αi)

¶
dαi. (36)

To make the argument formally, we use the following assumption:

Assumption 3

lim
αi→±∞

π0(αi)ρi(θ0,αi) = 0.

If Assumption 3 holds, then the right-hand side of (36) is zero. Hence, if πi is the

population density of the individual effects, then the random-effects likelihood has no first-

order bias.
14In general, π0 is conditional on covariates and initial conditions, but for simplicity our notation does not

make explicit that π0 may be unit-specific.
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Moreover, under Assumption 3 it can easily be checked that the bias of the score of the

random-effects likelihood admits the following alternative expression:

B∞(θ0) = plim
N→∞

1

N

NX
i=1

Eπ0

µ
ρi(θ0,αi0)

∂

∂αi

¯̄̄
αi0
ln

πi(αi)

π0(αi)

¶
. (37)

Equation (37) suggests that the bias of the random-effects has two sources: (i) the non-

orthogonality of the effects, i.e. the presence of the ρ term; and (ii) the distance between

the population density of the effects π0 and the postulated density πi.

6.3 Random-effects with hyperparameters

We now turn to Random-Effects Maximum Likelihood (REML) estimation. Let ξ be a

set of parameters and πi(αi; ξ) be a family of prior distributions indexed by ξ. As in the

previous paragraph, πi(αi; ξ) does not depend directly on the common parameter θ, nor does

it directly depend on the data through the true parameter values. We are interested in the

asymptotic properties of the estimator that maximizes the random-effects pseudo-likelihood

with respect to θ and ξ. A typical example is when π(αi; ξ) is a normal distribution with

unknown mean and variance, ξ = (m, s2). In another example, the parameters m and s2

may be functions of covariates and/or initial conditions as in Chamberlain (1984).

To study the bias properties of the REML estimator, it is convenient to start by concen-

trating the likelihood with respect to ξ. Let:

bξ(θ) = argmax
ξ

NX
i=1

`REi (θ; ξ).

Then the score of the concentrated random-effects likelihood is given by:

1

N

NX
i=1

∂

∂θ

¯̄̄
θ0
`REi (θ;bξ(θ)) = 1

N

NX
i=1

∂

∂θ

¯̄̄
θ0
`REi (θ;bξ(θ0)).

where the equality comes from the envelope theorem. The bias of the score of the concen-

trated random-effects likelihood is thus:

B∞(θ0)
T

= plim
N→∞

1

N

NX
i=1

∂

∂θ

¯̄̄
θ0
`REi (θ;bξ(θ0))

= lim
N→∞

1

N

NX
i=1

Eπ0

µ
∂

∂θ

¯̄̄
θ0
`REi (θ; ξ(θ0))

¶
, (38)

where:

ξ(θ) = plim
N→∞

bξ(θ).
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Equation (38) shows that the first-order bias properties of the random effects likelihood

are the same as the ones of an integrated likelihood with prior πi(αi; ξ(θ0)). The analysis

of the previous subsection is thus easily extended to the cases where hyperparameters are

present. In particular, using equation (35) we see that REML is bias reducing if and only if

lim
N→∞

1

N

NX
i=1

Eπ0

µ
1

πi(αi0; ξ(θ0))

∂

∂αi

¯̄̄
αi0

πi(αi; ξ(θ0))ρi(θ0,αi)

¶
= O

µ
1

T

¶
. (39)

In addition, we show the following result in the Appendix, which helps to interpret the

pseudo true value ξ(θ0).

Lemma 3 For all θ, we have:

lim
N→∞

1

N

NX
i=1

Eπ0

µ
∂ lnπi(αi(θ); ξ(θ))

∂ξ

¶
= O

µ
1

T

¶
. (40)

Proof. See Appendix.

Lemma 3 provides a heuristic interpretation of ξ(θ), as the pseudo true value of ξ for the

model πi(.; ξ) and the “data” α1(θ), ...,αN(θ). Evaluated at θ = θ0, equation (40) shows that

ξ(θ0) provides the best approximation, in the Kullback-Leibler sense, to the distribution π0

on the basis of the family πi.

We can now state two sufficient conditions for bias reduction:

Proposition 4 (i) If the common parameters and the individual effects are information

orthogonal, then every REML estimator is bias reducing.

(ii) If π0 belongs to the parametric family πi(.; ξ), and if Assumption 3 holds, then REML

is bias reducing.

Proof. Part (i) comes from the fact that, if parameters are information orthogonal, then

ρi(θ,α) = 0 for all (θ,α). This implies that (39) is satisfied.

To show part (ii), assume that there exists a ξ0 such that π0 = πi(.; ξ0). Under standard

identification conditions in parametric models, equation (40) yields that ξ(θ0) = ξ0+O(1/T ).

The same argument as at the end of the previous subsection follows.

The sufficient conditions stated in Proposition 4 are restrictive. In general, REML based

on a given parametric family of priors does not reduce bias. We now discuss an important

special case and study when Gaussian REML is robust. We prove the following theorem in

the Appendix.
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Theorem 3 Gaussian REML reduces first-order bias if and only if there exist ai0(θ) and

ai1(θ), possibly dependent on exogenous covariates and/or initial conditions, such that:

ρi(θ,αi) = ai0(θ) + ai1(θ)αi +O

µ
1

T

¶
. (41)

Proof. See Appendix.

Theorem 3 gives a necessary and sufficient condition for Gaussian REML to reduce bias.

The next subsection gives examples of models that satisfy condition (41), such as the dynamic

AR(p) model. In these models, the bias of REML based on the Gaussian family is of order

1/T 2. Still, most models do not satisfy condition (41). In those cases, the bias of the

Gaussian REML estimator is of order 1/T .

6.4 Examples

We turn to reexamine the three examples of Section 4. We first study linear dynamic autore-

gressive models, and show that the Gaussian REML estimator is first-order bias reducing,

irrespective of the form of the individual effects. We also provide a connection to Gaussian

random-effects estimation in a linear model with one endogenous regressor and many in-

struments. Next, in the Poisson counts case, we find that there exists an improper robust

prior independent of the common parameters. Moreover, usual RE specifications lead to bias

reduction. Lastly, in the static logit case we find that no REML estimator reduces bias. In

nonlinear models, thus, the success of random-effects likelihood inference depends critically

on prior knowledge about the form of the fixed effects.

Dynamic AR(p). We start with the dynamic AR(p) model of Section 4. We show in

Appendix C that, for this model:

ρi(µ, σ
2,αi) = a0(µ)y

0
i + a1(µ)αi,

where y0i is the vector of initial conditions, and a0(µ) and a1(µ) are matrices. Hence, it

follows from Theorem 3 that Gaussian REML is bias reducing for this model. This result

was proven by Cho, Hahn and Kuersteiner (2004) in the case p = 1. Moreover, it is easy to

check that it still holds if strictly exogenous covariates are included.

Linear model with one endogenous regressor and many instruments. A closely

related example is the following linear model with one endogenous regressor in a panel
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context:15

yit = θαi + uit,

xit = αi + vit,

where errors are i.i.d. and: µ
uit
vit

¶
∼ N (0,Ω) .

In the following we assume that covariance matrix Ω is given. We let

Ω−1 =
µ

ω11 ω12
ω21 ω22

¶
.

In this example there is an analogy between having a large number of individual effects and

a large number of instruments in a simultaneous equations perspective (see Hahn, 2000).

We show in the Appendix that:

ρi(θ,αi) = αi
−ω11θ − ω12

ω11θ
2 + 2ω12θ + ω22

.

We are thus in the case of Theorem 3, and Gaussian REML is bias reducing. A related

situation arises in Chamberlain and Imbens’ (2004) use of REQML under Bekker’s (1994)

asymptotics. Our treatment of this example shows that the linearity of the model is crucial

for the success of random-effects methods.

Poisson counts. For the Poisson counts model, we have:

ρi(θ,αi) = −αih(xi, θ),

where:

h(xi, θ) =

PT
t=1 exp(x

0
itθ)xitPT

t=1 exp(x
0
itθ)

.

It follows that Gaussian REML is also bias reducing in this model.

In addition, remark that the local approximation to the robust prior:

eπ(αi|θ) = 1

αi

is a bias reducing prior that is independent of θ. However, eπ is an improper prior which does
not correspond to a random-effects specification.
15We are grateful to Jinyong Hahn for this suggestion.
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Assume now that π belongs to the Γ(p, r) family, for some p > 0, r > 0. This family

has been widely used to estimate θ by REML in order to correct for overdispersion (see e.g.

Gouriéroux et al., 1984). Here we study the bias reduction properties of this specification.

We have:

π(αi; p, r) =
prαr−1i exp(−pαi)

Γ(r)
.

It is straightforward to check that the left-hand side in equation (39) is equal to:

lim
N→∞

− 1

N

NX
i=1

Eπ0 (r(θ0)− p(θ0)αi0)h(xi, θ0). (42)

Now, Lemma 3 implies that:

Eπ0

µ
∂ lnπ(αi0; p(θ0), r(θ0))

∂p

¶
= O

µ
1

T

¶
.

This implies:
1

p(θ0)
Eπ0 (r(θ0)− p(θ0)αi0) = O

µ
1

T

¶
,

which in turn implies that (42) is O(1/T ). As a consequence, Gamma REML is also bias

reducing in the Poisson model.

Static logit. In the case of the static logit model, we have that:

ρi(θ,αi) = −
PT

t=1 Λ(x
0
itθ + αi)(1− Λ(x0itθ + αi))xitPT

t=1Λ(x
0
itθ + αi)(1− Λ(x0itθ + αi))

.

This is a highly nonlinear expression in αi, θ and xi = (xi1...xiT )
0. Thus, it is very likely

that no prior independent of θ will be bias reducing. For example, Theorem 3 shows that

Gaussian REML is not robust. This will be the case of virtually all REML estimators of the

static logit model.

Note that this lack of unbiasedness is not corrected for by allowing the prior to depend

on covariates xit, as in Chamberlain (1984)’s probit model. In that case, it is still impossible

to correct for the first-order bias without permitting the prior to depend on the common

parameters θ.

7 Monte Carlo simulation

In this section, we provide some Monte Carlo evidence on the finite sample behavior of

integrated likelihood estimators.
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Static logit model. We first focus on the static logit model:

yit = 1 {x0itθ0 + αi0 + εit > 0} , i = 1...N, t = 1...T.

The xit are constant across simulations and drawn from a N (0, 1) distribution. The indi-
vidual effects are drawn in each simulation from N (xi, 1), where xi = 1

T

PT
t=1 xit. Lastly, εit

are i.i.d. draws from the logistic cdf, and θ0 is set to one. In all the experiments N is 100.

Tables 1 and 2 show some statistics of the empirical distribution of 100 draws of bθ, wherebθ can be one of the following estimators: “uncorrected” refers to the MLE, and “corrected”
to the corrected MLE, obtained using the Di Ciccio and Stern (1993) adjustment based on

equation (4), see Arellano and Hahn (2006a, p.13-14); “uniform” is the integrated likelihood

estimator with uniform prior πi ∝ 1; “Lancaster” is the integrated likelihood with the uni-
form prior on the orthogonal parameters written in terms of the original effects, see equation

(23); “robust, observed” refers to the integrated likelihood with the robust prior constructed

from observed quantities, see (24), while “robust, infeasible” refers to the integrated likeli-

hood with the robust prior estimated using expected quantities where the true parameter

θ0 is assumed known, see (25); “robust, iterated 1” refers to the same estimator, but when

the expectation in (25) is evaluated at bθ, the “robust” integrated likelihood estimator; then,
“robust, iterated∞” is obtained iterating this procedure until convergence; “random effects”
is the Gaussian random-effects estimator; lastly, “conditional logit” is Chamberlain’s (1980)

conditional logit.16

Tables 1 and 2 show that the bias of the MLE can be large: it is equal to 33% for T = 5

and still 6% for T = 20. The corrections based on the concentrated likelihood and the

various integrated likelihoods give roughly the same results. In all cases considered, using

one of these corrections reduces the bias by a factor between 2 and 3. The best performance,

in terms of bias, mean squared error (MSE) and mean absolute error (MAE), is achieved

by Lancaster (1998)’s integrated likelihood given by equation (23). Note that the infeasible

estimator based on (25) and the iterated corrections do not give better results than the

correction based on observed quantities.

The Gaussian random effects MLE gives rather good results. Our experiments (not

reported) showed that the relative performance of the RMLE worsens when the correlation

between αi0 and xi increases, and when the sampling distribution of the individual effects
16Both the random-effects and conditional logit estimators were computed using the STATA xtlogit and

clogit commands, respectively. The other estimators were computed using GAUSS.
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departs from the normal. Lastly, the conditional logit estimator is consistent for fixed T .

Still, note that several corrected/integrated estimators yield MSE and MAE comparable to

—or lower than— the ones of conditional logit for T = 10 and T = 20. This suggests that,

for intermediate values of T , it may not be obvious to choose a fixed-T consistent estimator

rather than bias-corrected alternatives. Hahn, Kuersteiner and Newey (2004) show that bias-

corrected estimators are second-order efficient. Clearly, under suitable regularity conditions

our robust integrated likelihood estimator falls into the class considered by these authors.17

In contrast, there is a potential efficiency loss in conditioning on the sufficient statistic in

the conditional logit model.

Finally, in Figure 1 we draw the likelihood function of the static logit model (thin line).

The thick line and the dashed line show the bias-corrected likelihood function (using the Di

Ciccio and Stern formula) and the robust integrated likelihood. The two pseudo-likelihoods

are concave. Moreover, it is clear on the figure that they both correct bias with respect to

the MLE.

AR(1) model. Next, we consider the dynamic AR(1) model:

yit = µ10yit−1 + αi0 + εit, i = 1...N, t = 1...T.

Individual effects are drawn in each simulation from a standard distribution. Moreover, the

initial condition yi0 is drawn in the stationary distribution of yit for fixed i. Lastly, εit are

i.i.d. standard normal draws, and µ10 is set to .5. As before, N is 100. The standard

deviation of errors, set to one, is treated as known.

With non i.i.d. data, the choice of local approximation of the formulas for prior dis-

tributions may be important, as illustrated in Figure 2. Panel a) of Figure 2 shows the

likelihood function of the dynamic AR(1) model (thin line). The thick line shows the integ-

rated likelihood with prior given by the formula (16), obtained using expected quantities.

The function is degenerate around µ1 = .8. Moreover, a close look at the Figure shows two

local extrema. The local maximum corresponds to µ1 around .5, which means that inference

from this local maximum is bias reducing. Still, the flatness of the curve suggests that one

might have trouble trying to find this maximum using standard maximization algorithms.

This problem is likely to be worse in situations with more parameters to consider. Panel b)
17A second-order Laplace approximation of the integrated likelihood —as in Tierney et al. (1989)— is

necessary to prove this result formally.
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Table 1: Various estimators of θ in the static logit model, T = 5 and T = 10

T = 5
Mean Median STD bp, .05 bp, .10 MSE MAE

uncorrected 1.33 1.30 .235 .929 1.08 .163 .335
corrected 1.12 1.08 .188 .838 .868 .0489 .170
uniform 1.61 1.62 .260 1.22 1.29 .442 .613
Lancaster 1.06 1.05 .150 .800 .843 .0260 .126

robust, observed 1.11 1.09 .199 .821 .867 .0523 .176
robust, infeasible 1.18 1.17 .146 .950 .963 .0530 .193
robust, iterated 1 1.13 1.14 .184 .878 .914 .0504 .172
robust, iterated ∞ 1.23 1.22 .195 1.01 1.03 .0907 .236
random effects 1.14 1.13 .163 .854 .905 .0418 .178
conditional logit .997 .983 .172 .749 .793 .0283 .138

T = 10
Mean Median STD bp, .05 bp, .10 MSE MAE

uncorrected 1.13 1.13 .117 .950 .994 .0296 .140
corrected 1.06 1.05 .0975 .902 .927 .0136 .0943
uniform 1.26 1.26 .147 1.05 1.06 .0893 .263
Lancaster 1.02 1.03 .0911 .880 .899 .00880 .0790

robust, observed 1.05 1.05 .109 .884 .909 .0145 .0974
robust, infeasible 1.07 1.06 .100 .895 .933 .0142 .0946
robust, iterated 1 1.04 1.04 .0892 .918 .932 .00976 .0785
robust, iterated ∞ 1.08 1.06 .0896 .939 .970 .0139 .0938
random effects 1.03 1.03 .0986 .865 .906 .00848 .0832
conditional logit .997 .998 .0961 .859 .884 .0105 .0754
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Table 2: Various estimators of θ in the static logit model, T = 20 and T = 100

T = 20
Mean Median STD bp, .05 bp, .10 MSE MAE

uncorrected 1.06 1.06 .0683 .947 .971 .00826 .0757
corrected 1.02 1.03 .0606 .912 .946 .00424 .0530
uniform 1.12 1.11 .0683 .990 1.03 .0184 .119
Lancaster .997 .997 .0548 .900 .921 .00298 .0429

robust, observed 1.01 1.00 .0702 .905 .929 .00500 .0527
robust, infeasible 1.04 1.04 .0613 .923 .955 .00558 .0629
robust, iterated 1 1.01 1.00 .0673 .885 .934 .00459 .0536
robust, iterated ∞ 1.02 1.02 .0688 .893 .948 .00525 .0567
random effects 1.02 1.01 .0664 .920 .940 .00579 .0523
conditional logit 1.01 .995 .0682 .905 .920 .00492 .0535

T = 100
Mean Median STD bp, .05 bp, .10 MSE MAE

uncorrected 1.01 1.01 .0326 .948 .961 .00113 .0275
corrected .999 .998 .0303 .949 .958 .000910 .0233
uniform 1.02 1.03 .0249 .981 .993 .00119 .0288
Lancaster 1.00 1.01 .0293 .955 .967 .000869 .0234

robust, observed .989 .988 .0275 .941 .953 .000863 .0237
robust, infeasible 1.00 1.01 .0280 .954 .962 .000789 .0223
robust, iterated 1 .998 1.00 .0282 .949 .961 .000790 .0227
robust, iterated ∞ 1.00 1.00 .0283 .953 .964 .000792 .0229
random effects 1.00 1.00 .0278 .953 .975 .000821 .0202
conditional logit 1.00 1.00 .0264 .957 .969 .000764 .0227
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Figure 1: The uncorrected (thin line), bias-corrected (thick line) and integrated (dashed
line) likelihoods, one simulation, T = 10 (Logit model)

a) Prior based on equation (10) b) Prior based on equation (12)

Figure 2: The uncorrected (thin line) and integrated (thick line) likelihoods, one simulation,
T = 10 (AR(1) model)
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on the same figure shows the integrated likelihood for the prior (17). The situation there

is strikingly different, as the pseudo-likelihood is nicely concave. Moreover, its maximum is

still much closer to the truth than the MLE. In the rest of this section, we use the prior (17)

to estimate common parameters.

Table 3 shows some statistics of the empirical distributions of some estimators for T = 10:

the MLE (“observed”), and diverse corrections based on various degrees of trimming (from

q = 1 to q = 3); Then, the integrated likelihood based on the uniform prior (“uniform”)

and on the Lancaster prior (“Lancaster”) given by (19); the “robust” expression of the

prior is based on (12) where the outer product is estimated using observed quantities with

various degrees of trimming; the “expected” prior is the one given by (17), and plugged-in

the “robust, q = 2” result to start the iterations in “iterated”; lastly, “GMM” refers to the

estimator discussed in Arellano and Bond (1991).

We find a large bias of the MLE (30%) that is corrected for by almost one half by both

the corrections of the concentrated likelihood and the robust integrated likelihood. In both

cases the preferred degree of trimming is 2. The uniform prior yields no bias reduction at

all, and the Lancaster prior based on the available orthogonalization gives almost no bias.

Interestingly, the infeasible robust prior based on expected quantities and the true value of µ10

gives even better results, in terms of bias, MSE and MAE. Moreover, the iterated estimators

have also very good finite sample properties. In our simulations, we found that two iterations

were enough to get very close to the infinitely iterated estimator. As the formulas of these

priors are not based on parameter orthogonalization, these results suggest that iteration

of the analytical expressions of the prior such as (12) can be useful in order to deal with

non i.i.d. data. Lastly, remark that the GMM estimator suffers from a small bias, which

disappears when N grows (recall that N = 100 in the experiments). Moreover, it has larger

variance than all the other estimators. The result is that the integrated likelihood functions

with priors based on analytical calculations (infeasible and iterated) compare favorably with

the fixed-T consistent GMM estimator in terms of MSE and MAE.

We then look at the behavior of random-effects estimators in the dynamic AR(1) model.

In this setting, Alvarez and Arellano (2003) showed that the Gaussian RE pseudo-likelihood

based on αi ∼ N (m1 +m2yi0, s
2) reduces bias. Then, Cho et al. (2004) showed that this

is also the case of the RE specification αi ∼ N (m, s2), where the mean of αi is misspecified
to be independent of the initial observation yi0. We have shown that this result generalizes
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Table 3: Various estimators of µ1 in the dynamic AR(1) model

T = 10
Mean Median STD bp, .05 bp, .10 MSE MAE

uncorrected .333 .328 .0320 .288 .300 .0290 .167
corrected, q = 1 .391 .390 .0341 .336 .342 .0131 .109
corrected, q = 2 .402 .402 .0327 .348 .359 .0107 .0984
corrected, q = 3 .384 .384 .0343 .328 .340 .0145 .116

uniform .336 .335 .0330 .277 .296 .0281 .164
Lancaster .504 .506 .0374 .435 .455 .00140 .0302

robust, observed q = 1 .393 .394 .0296 .335 .352 .0123 .107
robust, observed q = 2 .409 .413 .0304 .356 .368 .00920 .0910
robust, observed q = 3 .394 .395 .0345 .332 .342 .0125 .106
robust, infeasible .500 .502 .0302 .449 .455 .000903 .0240
robust, iterated 1 .479 .477 .0299 .429 .436 .00133 .0299
robust, iterated ∞ .499 .497 .0323 .445 .455 .00104 .0264

GMM .468 .470 .0667 .349 .375 .00545 .0583

to dynamic AR(p) models with exogenous covariates. Here we investigate the finite-sample

behavior of the two estimators (“correlated” and “independent”, respectively) for various

values of T . Table 4 shows that, in spite of the theoretical result, the “independent” REML

estimator is substantially biased for T as large as 20, compared to its “correlated” counterpart

(which is also fixed-T consistent). Thus, in dynamic linear models, it may be important to

allow (even parametrically) for correlation between the individual effects and the initial

conditions in the estimation.

AR(2) model. We end this simulation section by considering the dynamic AR(2) model

yit = µ10yit−1 + µ20yit−2 + αi0 + εit, i = 1...N, t = 1...T.

As before, the individual effects are drawn in each simulation from a standard distribution

and the initial conditions yi,−1 and yi0 are drawn in the stationary distribution of (yit, yit+1)

for fixed i. Then, εit are i.i.d. standard normal draws, µ10 is set to .5 and µ20 to 0. Lastly,

N is 100, and the standard deviation of errors, set to one, is treated as known.

To estimate the priors, we use the robust formula given in (12). Analytical expressions

are given in the Appendix. Table 5 presents the results for T = 10. We find that the MLE

is biased. A difference with the AR(1) case is that if the corrected concentrated likelihood

and the robust integrated likelihood estimated using observed quantities reduce bias, they
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Table 4: Gaussian random-effect ML estimators of θ in the dynamic AR(1) model

T = 5
Mean Median STD bp, .05 bp, .10 MSE MAE

independent .872 .873 .0222 .830 .840 .143 .372
correlated .620 .639 .0984 .440 .469 .0263 .134

T = 10
Mean Median STD bp, .05 bp, .10 MSE MAE

independent .872 .871 .0171 .842 .845 .140 .372
correlated .519 .506 .0713 .430 .459 .00624 .0497

T = 20
Mean Median STD bp, .05 bp, .10 MSE MAE

independent .860 .863 .0248 .814 .823 .130 .360
correlated .502 .503 .0233 .464 .478 .000399 .0183

T = 100
Mean Median STD bp, .05 bp, .10 MSE MAE

independent .500 .500 .00882 .487 .489 .0000771 .00669
correlated .501 .502 .0101 .485 .488 .0000865 .00828

do so only for the first autoregressive parameter. In that case, only the analytical correction

(“infeasible”) reduces both biases. Interestingly, as before only one or two iterations starting

with the “robust” estimate get close to these infeasible estimates. Moreover, as in the AR(1)

case, the iterated analytical corrections compare favorably with the GMM estimator. Note

that in the AR(2) case no orthogonal reparameterization is available. The results obtained

for the iterated estimators thus seem remarkable, both in terms of bias and mean squared

error.

8 Conclusion

Many approaches to the estimation of panel data models rely on an average likelihood that

assigns weights to different values of the individual effects. In this paper, we study under

which conditions such weighting schemes are robust, in that they yield biases of order 1/T 2

as opposed to 1/T .

We find that robust weights, or priors, must in general satisfy two conditions. First, they

have to depend on the data, in the case where orthogonal reparameterizations do not exist.
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Table 5: Various estimators of (µ1, µ2) in the dynamic AR(2) model

T = 10
Mean bµ1 MSE bµ1 Mean bµ2 MSE bµ2

uncorrected .385 .0146 -.0774 .00700
corrected, q = 1 .419 .00808 -.101 .0111
corrected, q = 2 .423 .00734 -.0780 .00715

uniform .369 .0189 -.104 .0119
robust, observed q = 1 .451 .00371 -.137 .0198
robust, observed q = 2 .435 .00602 -.0873 .00868
robust, infeasible .451 .00352 -.00801 .00117
robust, iterated 1 .441 .00455 -.0262 .00203
robust, iterated ∞ .446 .00405 -.0187 .00175

GMM .452 .00680 -.0285 .00304

Second, they must not impose prior independence between the common parameters and the

individual effects, as we show that random effects specifications are not bias reducing in

general.

We propose two bias-reducing priors, that deal with the incidental parameter problem

by taking into account the uncertainty about the individual effects. Our approach, based on

prior distributions and integration, has a natural connection with simulation-based estima-

tion techniques, such as MCMC. In addition, we show that asymptotically valid confidence

intervals can be read from the quantiles of the pseudo-posterior distribution.

Our Monte Carlo evidence suggests rather good finite sample properties. It seems very

interesting to investigate the behavior of our method as the complexity of the model increases.

If what we propose turns out to be feasible and satisfying, then structural microeconometric

models could be a natural field of application.
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APPENDIX

A Proofs

Proof of Lemma 1. Let us fix i, and denote

Li =

Z
exp [T`i(θ,αi)]πi(αi|θ)dαi.

Assuming that `i(θ,αi) has a unique maximum bαi(θ) and using a Laplace approximation as in
Tierney et al. (1989) we obtain:

Li = πi(bαi(θ)|θ)Z exp

µ
T`i(θ, bαi(θ)) + T

2
vαii (θ, bαi(θ)) (αi − bαi(θ))2¶dαiµ1 +Opµ 1T

¶¶
= πi(bαi(θ)|θ) exp [T`i(θ, bαi(θ))]Z exp

µ
T

2
vαii (θ, bαi(θ)) (αi − bαi(θ))2¶ dαiµ1 +Opµ 1T

¶¶
,

= πi(bαi(θ)|θ)√2π {−Tvαii (θ, bαi(θ))}−1/2 exp [T`i(θ, bαi(θ))]µ1 +Opµ 1T
¶¶

.

It thus follows that:

`Ii (θ)− `ci(θ) =
1

2T
ln

µ
2π

T

¶
− 1

2T
ln (−vαii (θ, bαi(θ))) + 1

T
lnπi(bαi(θ)|θ) +Opµ 1

T 2

¶
, (1)

where Assumption 1 allows us to take logs.
Now by expanding the sample moment condition vi(θ, bαi(θ)) = 0 around αi(θ) we immediately

find that bαi(θ)− αi(θ) =
A√
T
+Op

µ
1

T

¶
,

where A = Op(1) and Eθ0,αi0 [A] = 0. This implies that:

vαii (θ, bαi(θ)) = vαii (θ,αi(θ)) + B√
T
+Op

µ
1

T

¶
= Eθ0,αi0 [v

αi
i (θ,αi(θ))] +

C√
T
+Op

µ
1

T

¶
,

where B and C are Op(1) with zero mean. Expanding the log yields:

Eθ0,αi0 ln (−vαii (θ, bαi(θ))) = lnEθ0,αi0 [−vαii (θ,αi(θ))] +Oµ 1T
¶
. (2)

Likewise, using Assumption 2 we obtain:

Eθ0,αi0 lnπi(bαi(θ)|θ) = lnπi(αi(θ)|θ) +Oµ 1T
¶
. (3)

Taking expectations in (1) and combining the result with (2) and (3) yields:

Eθ0,αi0
£
`Ii (θ)− `ci(θ)

¤
=

1

2T
ln

µ
2π

T

¶
− 1

2T
lnEθ0,αi0 [−vαii (θ,αi(θ))] +

1

T
lnπi(αi(θ)|θ) +O

µ
1

T 2

¶
.
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Proof of Proposition 1. The bias of the integrated score is:

∂

∂θ

¯̄̄
θ0
Bi(θ) =

∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)|θ)− ∂

∂θ

¯̄̄
θ0

³
ln
³
Eθ0,αi0 [−vαii (θ,αi(θ))]

©
Eθ0,αi0

£
v2i (θ,αi(θ))

¤ª−1/2´´| {z }
A

.

We first need the following Lemma:

Lemma 4
∂

∂θ

¯̄̄
θ0
αi(θ) = {Eθ0,αi0 [−vαii (θ0,αi0)]}−1 Eθ0,αi0

h
vθi (θ0,αi0)

i
≡ ρi(θ0,αi0). (4)

Proof. Straightforward, by differentiating the moment condition solved by αi(θ) with respect
to θ:

Eθ0,αi0 [vi (θ,αi(θ))] = 0.

We also need the information matrix equality at true values:

Eθ0,αi0 [−vαii (θ0,αi0)] = TEθ0,αi0
£
v2i (θ0,αi0)

¤
. (5)

In order to simplify the notation, we drop the arguments inside the expectation terms when
they are evaluated at true values. We obtain:

A =
E(vαiθi ) + ρiE(v

αiαi
i )

E(vαii )
− 1
2
· 2E(v

θ
i vi) + 2ρiE(v

αi
i vi)

E(v2i )

=
−1

E(−vαii )
n
E(vαiθi ) + TE(vθi vi) + ρi [E(v

αiαi
i ) + TE(vαii vi)]

o
=

−1
E(−vαii )2

n
E(−vαii )

³
E(vαiθi ) + TE(vθi vi)

´
+ E(vθi ) (E(v

αiαi
i ) + TE(vαi vi))

o
=

−1
E(−vαii )2

½
E(−vαii )

∂

∂αi

¯̄̄
θ0,αi0

Eθ,αi(v
θ
i (θ,αi))− E(vθi )

∂

∂αi

¯̄̄
θ0,αi0

Eθ,αi(−vαii (θ,αi))
¾
,

where

Eθ,αi(v
θ
i (θ,αi)) =

Z
vθi (θ,αi)fi(y; θ,αi)dy; and: Eθ,αi(v

αi
i (θ,αi)) =

Z
vαii ((θ,αi)fi(y; θ,αi)dy.

It follows that

A = − ∂

∂αi

¯̄̄
θ0,αi0

³
{Eθ,αi [−vαii (θ,αi)]}−1Eθ,αi

h
vθi (θ,αi)

i´
,

and the proposition is proved.

Proof of Proposition 2. Assume that πi is bias reducing. Then Theorem 2 implies:

∂

∂θ

¯̄̄
θ0
lnπi(αi(θ)|θ) = ∂

∂θ

¯̄̄
θ0
ln
³
Eθ0,αi0 [−vαii (θ,αi(θ))]

©
Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤ª−1/2´
+O

µ
1

T

¶
.

Note that it follows from the invariance property of ML that

ψi(θ) = ψi(αi(θ), θ).
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Moreover it is easily verified that:

Eθ0,αi0 [−vαii (θ,αi)] =
µ
∂ψi(αi, θ)

∂αi

¶2
Eθ0,αi0

h
−vψii (θ,ψi(αi, θ))

i
−∂2ψi(αi, θ)

∂α2i
Eθ0,αi0 [vi(θ,ψi(αi, θ))] ,

and:

Eθ0,αi0

£
v2i (θ,αi)

¤
=

µ
∂ψi(αi, θ)

∂αi

¶2
Eθ0,αi0

£
v2i (θ,ψi(αi, θ))

¤
,

where with some abuse of notation we have written vi(θ,ψi) for the score of the reparameterized

likelihood with respect to the new fixed effects. Evaluating these two equalities at (θ,αi(θ)) and

using that Eθ0,αi0

£
vi(θ,ψi(θ))

¤
= 0 yields:

Eθ0,αi0 [−vαii (θ,αi(θ))] =
µ
∂ψi(αi(θ), θ)

∂αi

¶2
Eθ0,αi0

h
−vψii (θ,ψi(θ))

i
,

and:

Eθ0,αi0

£
v2i (θ,αi(θ))

¤
=

µ
∂ψi(αi(θ), θ)

∂αi

¶2
Eθ0,αi0

£
v2i (θ,ψi(θ))

¤
,

Hence:

∂

∂θ

¯̄̄
θ0
ln eπi(ψi(θ)|θ) =

∂

∂θ

¯̄̄
θ0

∙
lnπi(αi(θ)|θ)− ln

¯̄̄̄
∂ψi(αi(θ), θ)

∂αi

¯̄̄̄¸
=

∂

∂θ

¯̄̄
θ0
ln
³
Eθ0,αi0 [−vαii (θ,αi(θ))]

©
Eθ0,αi0

£
Tv2i (θ,αi(θ))

¤ª−1/2´
− ∂

∂θ

¯̄̄
θ0
ln

¯̄̄̄
∂ψi(αi(θ), θ)

∂αi

¯̄̄̄
+O

µ
1

T

¶
=

∂

∂θ

¯̄̄
θ0
ln
³
Eθ0,αi0

h
−vψii (θ,ψi(θ))

i©
Eθ0,αi0

£
Tv2i (θ,ψi(θ))

¤ª−1/2´
+

∂

∂θ

¯̄̄
θ0
ln

¯̄̄̄
∂ψi(αi(θ), θ)

∂αi

¯̄̄̄
− ∂

∂θ

¯̄̄
θ0
ln

¯̄̄̄
∂ψi(αi(θ), θ)

∂αi

¯̄̄̄
+O

µ
1

T

¶
=

∂

∂θ

¯̄̄
θ0
ln
³
Eθ0,αi0

h
−vψii (θ,ψi(θ))

i©
Eθ0,αi0

£
Tv2i (θ,ψi(θ))

¤ª−1/2´
+O

µ
1

T

¶
.

Hence one implication. The other implication follows by symmetry.

Proof of Proposition 3. A stochastic expansion of vi(θ, bαi(θ)) in the neighborhood of (θ,αi(θ))
yields: bαi(θ)− αi(θ) = {Eθ0,αi0(−vαii (θ,αi(θ)))}−1 vi(θ,αi(θ)) +Op

µ
1

T

¶
.

This yields:

Eθ0,αi0 (bαi(θ)− αi(θ)) = O

µ
1

T

¶
,

and:

Eθ0,αi0
h
(bαi(θ)− αi(θ))

2
i
= {Eθ0,αi0 [−vαii (θ,αi(θ))]}−2 Eθ0,αi0

£
v2i (θ,αi(θ))

¤
+O

µ
1

T 2

¶
.
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Hence:

Var (bαi(θ)) = £πRi (αi(θ)|θ)¤−2 +Oµ 1

T 2

¶
.

Hence, as Var (bαi(θ)) = O(1/T ) we have:
πRi (αi(θ)|θ) ∝

1p
Var (bαi(θ))

µ
1 +O

µ
1

T

¶¶
.

Equation (13) follows by remarking that

πRi (bαi(θ)|θ) = πRi (αi(θ)|θ)
µ
1 +Op

µ
1

T

¶¶
,

by the same arguments as in the proof of Lemma 1.

To show the second part of the Proposition, let πi be a non-dogmatic prior satisfying:

πi(bαi(θ)|θ) ∝ 1p
Var (bαi(θ))

µ
1 +Op

µ
1

T

¶¶
.

Then the proof of Lemma 1 shows that the only quantity that matters in bias reduction is
lnπi(bαi(θ)|θ). This result comes directly from the Laplace approximation to the integrated likeli-
hood, and does not require Assumption 2 to hold. As

lnπi(bαi(θ)|θ) = lnπRi (bαi(θ)|θ) +Opµ 1T
¶
,

and as πRi is robust, it follows that πi is also bias reducing.

Proof of Lemma 2. We have, for all θ:

`ci(θ)− `i(θ) = Eθ0,αi0
¡
`ci(θ)− `i(θ)

¢
+ bAi(θ),

where bAi(θ) = Op(1/√T ), and Eθ0,αi0 ³ bAi(θ)´ = 0. Hence:
`Ii (θ)− `i(θ) =

1

2T
ln

µ
2π

T

¶
− 1

2T
ln (−vαii (θ, bαi(θ))) + 1

T
lnπi(bαi(θ)|θ)

+Eθ0,αi0
¡
`ci(θ)− `i(θ)

¢
+ bAi(θ) +Opµ 1

T 2

¶
,

= Cst + bAi(θ) + bBi(θ)
T

+Op

µ
1

T 2

¶
,

where Eθ0,αi0 [ bBi(θ)/T ] = Bi(θ)/T is the bias of the integrated likelihood, given by (5).
As Eθ0,αi0( bAi(θ)) = 0 for all θ, we have:

Eθ0,αi0
³ bAi(θ0)´ = 0; Eθ0,αi0

µ
∂

∂θ

¯̄̄
θ0

bAi(θ)¶ = 0; Eθ0,αi0
µ

∂2

∂θ∂θ0
¯̄̄
θ0

bAi(θ)¶ = 0.
Moreover it follows from (26) that:

Eθ0,αi0

µ
∂

∂θ

¯̄̄
θ0

bBi(θ)¶ = 0; Eθ0,αi0

µ
∂2

∂θ∂θ0
¯̄̄
θ0

bBi(θ)¶ = 0.
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The lemma immediately follows:

Eθ0,αi0
µ
∂2`Ii (θ0)

∂θ∂θ0

¶
= Eθ0,αi0

µ
∂2`i(θ0)

∂θ∂θ0

¶
+O

µ
1

T 2

¶
,

Eθ0,αi0
µ
∂`Ii (θ0)

∂θ

∂`Ii (θ0)

∂θ0

¶
= Eθ0,αi0

µ
∂`i(θ0)

∂θ

∂`i(θ0)

∂θ0

¶
+ Eθ0,αi0

Ã
∂`i(θ0)

∂θ

∂ bAi(θ0)
∂θ0

!

+Eθ0,αi0

Ã
∂ bAi(θ0)

∂θ

∂`i(θ0)

∂θ0

!
+ Eθ0,αi0

Ã
∂ bAi(θ0)

∂θ

∂ bAi(θ0)
∂θ0

!
+O

µ
1

T 2

¶
.

Note that

ΞiT ≡ Eθ0,αi0
Ã
∂`i(θ0)

∂θ

∂ bAi(θ0)
∂θ0

!
+ Eθ0,αi0

Ã
∂ bAi(θ0)

∂θ

∂`i(θ0)

∂θ0

!
+ Eθ0,αi0

Ã
∂ bAi(θ0)

∂θ

∂ bAi(θ0)
∂θ0

!

need not be zero in general. Note also that, as: Eθ0,αi0
µ

∂
∂θ

¯̄̄
θ0
`i(θ)

¶
= 0, all the terms in (28) are

O(1/T ).

Proof of Lemma 3 The first-order conditions of the maximization imply that:

NX
i=1

∂`REi (θ;bξ(θ))
∂ξ

=
NX
i=1

1

T

R
exp [T`i(θ,αi)]

n
∂πi(αi;bξ(θ))/∂ξo dαiR

exp [T`i(θ,αi)]π(αi;bξ(θ))dαi = 0.

A Laplace approximation of the two integrals yields, as in the proof of Lemma 1:Z
exp (T`i(θ,αi))

∂πi(αi;bξ(θ))
∂ξ

dαi =
√
2π (−Tvαii (θ, bαi(θ)))−1/2 exp [T`i(θ, bαi(θ))]

×∂πi(bαi(θ);bξ(θ))
∂ξ

µ
1 +Op

µ
1

T

¶¶
,Z

exp (T`i(θ,αi))πi(αi;bξ(θ))dαi =
√
2π (−Tvαii (θ, bαi(θ)))−1/2 exp [T`i(θ, bαi(θ))]

×πi(bαi(θ);bξ(θ))µ1 +Opµ 1
T

¶¶
.

Hence we obtain:
1

N

NX
i=1

lnπi(bαi(θ);bξ(θ))
∂ξ

µ
1 +Op

µ
1

T

¶¶
= 0,

where we have denoted by πξ the derivative of π with respect to ξ. Then, taking the plim we have:

lim
N→∞

1

N

NX
i=1

Eπ0
µ
Eθ0,αi0

lnπi(bαi(θ); ξ(θ))
∂ξ

¶
= 1 +O

µ
1

T

¶
.

Lastly, using that Eθ0,αi0(bαi(θ)− αi(θ)) = O(1/T ) we obtain:

lim
N→∞

1

N

NX
i=1

Eπ0
µ
lnπi(αi(θ); ξ(θ))

∂ξ

¶
= 1 +O

µ
1

T

¶
.
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Proof of Theorem 3 In this proof, we assume away individual covariates. Including them

complicates the notation, but the essence of the proof remains the same.
The Gaussian prior satisfies:

lnπ(αi;µ,σ
2) = −1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
(αi − µ)2.

Then let µ(θ0) = plim
N→∞

bµ(θ0). We verify easily that:
µ(θ0) = Eπ0(αi0) +O(

1

T
); σ2(θ0) = Eπ0(α2i0)− {Eπ0(αi0)}2 +O

µ
1

T

¶
.

Let us assume that π is bias reducing. As there are no individual covariates, the bias of the
integrated score writes:

Eπ0
µ

∂

∂αi

¯̄̄
αi0

ρi(θ0,αi)

¶
− Eπ0

µ
ρi(θ0,αi0)

µ
αi0 − µ(θ0)
σ2(θ0)

¶¶
= O

µ
1

T

¶
.

Assuming that ρi(θ,αi) is continuous in αi and θ we can suppose that:

ρi(θ,αi) =
∞X
k=0

ak(θ)α
k
i ,

where the ak functions possibly depend on covariates xi. We then have:

∞X
k=0

ak(θ0)

µ
kEπ0

³
αk−1i0

´
−Eπ0

µ
αki0

µ
αi0 − µ(θ0)
σ2(θ0)

¶¶¶
= O

µ
1

T

¶
.

The two first terms in this sum are zero. We thus have:

∞X
k=2

ak(θ0)

µ
kEπ0

³
αk−1i0

´
− Eπ0

µ
αki0

µ
αi0 − Eπ0(αi0)

Eπ0(α2i0)− Eπ0(αi0)2
¶¶¶

= O

µ
1

T

¶
.

Hence:

∞X
k=2

ak(θ0)
³
Eπ0

³
αk+1i0

´
− Eπ0(αi0)Eπ0(αki0)− k

¡
Eπ0(α2i0)− Eπ0(αi0)2

¢
Eπ0

³
αk−1i0

´´
= O

µ
1

T

¶
.

This equality has to be satisfied for all distribution of fixed effects αi0, hence for each set of moments.
Taking a distribution such that Eπ0(αi0) = 0 and Eπ0(α2i0) − Eπ0(αi0)2 = 1 yields the following
simplification:

∞X
k=2

ak(θ0)
³
Eπ0

³
αk+1i0

´
− kEπ0

³
αk−1i0

´´
= O

µ
1

T

¶
.

Then it can be argued, by induction, that ak(θ0) = O(1/T ) for all k ≥ 2. Hence one implication.
The other implication is straightforward.
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B Existence of non-data dependent bias-reducing priors

In this section of the Appendix, we show that the existence of orthogonal reparameterizations in
the sense of equation (9) is not guaranteed in general. To proceed, remark that, by Proposition 1,
a fixed prior is bias reducing if and only if the following equation holds:

ρi(θ0,αi0)
∂ lnπi(αi0|θ0)

∂α
+

∂ lnπi(αi0|θ0)
∂θ

+
∂

∂αi

¯̄̄
αi0

ρi(θ0,αi) = O

µ
1

T

¶
.

Up to a term in O(1/T ), this is a first-order partial differential equation of the form:

∂g

∂α
f +

∂g

∂θ
+ h = 0, (6)

where f and h are known vector functions, and g is an unknown scalar function.
One can solve for g in (6) equation-by-equation. Let

∂g

∂α
fk +

∂g

∂θk
+ hk

be the kth component of the Left-Hand Side in (6). Let also α = α(k)(ψ(k), θ) be a reparameteriz-
ation such that ∂α(k)/∂θk = fk. We suppose that we have chosen one possible reparameterization
among the possible ones, and we denote also ψ(k) the inverse transformation of α(k). Lastly, let
g(k)(ψ(k), θ) = g(α(k)(ψ(k), θ), θ). One has ∂g(k)/∂θk + hk = 0, which can be solved as:

g(k)(ψ(k), θ) = −
Z θk

−∞
hk(α

(k)(ψ(k),eθk, θ−k),eθk, θ−k)deθk + ϕ(k)(ψ(k), θ−k). (7)

In this equation, θ−k denotes vector θ without its kth component, and ϕ(k) is an arbitrary function

of ψ(k) and θ−k.

Now, g(k)(ψ(k), θ) = g(α(k)(ψ(k), θ), θ) for all k. Equation (7), for all k, thus defines a set of

restrictions that g has to satisfy simultaneously.
These restrictions are generally incompatible, as the following argument shows. Let us take

k 6= k0. Then:

ϕ(k)(ψ(k)(α, θ), θ−k)− ϕ(k
0)(ψ(k

0)(α, θ), θ−k0) =

Z θk

−∞
hk(α

(k)(ψ(k)(α, θ),eθk, θ−k),eθk, θ−k)deθk
−
Z θk0

−∞
hk0(α

(k0)(ψ(k
0)(α, θ),eθk0 , θ−k0),eθk0 , θ−k0)deθk0

(8)

does not depend on g (that is, on the prior). Now, the left-hand side in (8) generates a (continuous)

manifold of dimension at most K is the space RK+1 spanned by (α, θ). Equation (8) thus forms a

non trivial set of restrictions. There is no general guarantee that these restrictions are satisfied.

C Derivations for the three examples

For notational simplicity we drop the indices of the expectation terms when they are evaluated at

true parameter values.
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C.1 Dynamic AR(p)

Let y0i = (yi,1−p, ..., yi0)0 be the vector of initial conditions, that we assume observed. In matrix
form, we have:

yi = Xiµ0 + αi0ι+ εi,

where the tth row of Xi is x0it = (yi,t−p, ..., yi,t−1), µ0 =
¡
µ10...µp0

¢0, and ι is a T × 1 vector of ones.
The scaled individual log-likelihood is given by:

`i(µ,σ
2,αi) =

1

T
ln f(yi|y0i ,αi;µ,σ2) = −

1

2
ln(2π)− 1

2
ln(σ2)− 1

2T

TX
t=1

(yit − x0itµ− αi)
2

σ2
.

We thus have:

vi(µ,σ
2,αi) =

1

T

TX
t=1

(yit − x0itµ− αi)

σ2
,

and hence:
E
£−vαii (µ,σ2,αi)¤ = 1

σ2
.

Moreover:

E
£
v2i (µ,σ

2,αi)
¤
=

1

T 2σ4
ι0E
¡
(yi −Xiµ− αiι) (yi −Xiµ− αiι)

0¢ ι,
=

1

T 2σ4
ι0E
¡
(Xi(µ0 − µ) + (αi0 − αi)ι+ εi) (Xi(µ0 − µ) + (αi0 − αi)ι+ εi)

0¢ ι.
Note that this expectation depends on the true values of the parameters. Note also that the

expectation is taken for i fixed. The same will be true of the variances and covariances that we will

consider in this section of the Appendix.

Computation of E
£
v2i (µ,σ

2,αi)
¤
. One has:

Var (εi +Xi(µ0 − µ)) = Var
¡
εi +

£
(µ0 − µ)0 ⊗ IT

¤
vecXi

¢
.

Let B(µ0, µ) = (µ0 − µ)0 ⊗ IT . Then:
Var (εi +Xi(µ0 − µ)) = σ2IT + E

¡
εi (vecXi)

0¢B(µ0, µ)0 +B(µ0, µ)E ¡εi (vecXi)0¢0
+B(µ0, µ)Var (vecXi)B(µ0, µ)

0.

To compute these expressions, we shall write the model as (see Alvarez and Arellano, 2004,
appendix A.3): µ

Ip 0
BTp BT

¶µ
y0i
yi

¶
=

µ
y0i

αiι+ εi

¶
,

where

¡
BTp BT

¢
=

⎛⎜⎜⎝
−µp0 −µ(p−1)0 ... −µ10 1 0 0 ... 0 0

0 −µp0 ... −µ20 −µ10 1 0 ... 0 0
... ... ... ... ... ... ... ... ... ...
0 0 ... 0 0 0 0 ... −µ10 1

⎞⎟⎟⎠ .
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Inverting the system yields:

yi = CTpy
0
i + αiCT ι+CT εi,

where CT = B−1T and CTp = −B−1T BTp.
At this stage, it is convenient to introduce the (T + p)× (Tp) selection matrix such that

vec(Xi) = P
0
µ
y0i
yi

¶
.

Moreover, the matrix B(µ0, µ)P
0 reads:⎛⎜⎜⎜⎜⎜⎜⎝

µ10 − µ1 µ20 − µ2 ... µp0 − µp 0 0 ... 0 0
0 µ10 − µ1 µ20 − µ2 ... µp0 − µp 0 ... 0 0
0 0 µ10 − µ1 µ20 − µ2 ... µp0 − µp ... 0 0
... ... ... ... ... ... ... ... 0
0 0 0 0 ... 0 ... 0 0
0 0 0 0 ... 0 ... µp0 − µp 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We shall write:
B(µ0, µ)P

0 =
¡
A(µ0, µ) B(µ0, µ)

¢
,

where A(µ0, µ) is T × p and B(µ0, µ) is T × T .
Now:

vec(Xi) = P
0
µ
y0i
yi

¶
= P 0

µ
Ip
CTp

¶
y0i + αiP

0
µ

0
CT ι

¶
+ P 0

µ
0

CT εi

¶
. (9)

It thus follows that

E
£
εi (vecXi)

0¤B(µ0, µ)0 = σ20

³
0p C

0
T

´
PB(µ0, µ)

0

= σ20C
0
TB(µ0, µ)

0.

Then:

B(µ0, µ)Var (vecXi)B(µ0, µ)
0 = σ20B(µ0, µ)P

0
µ
0 0

0 CTC
0
T

¶
PB(µ0, µ)

0

= σ20B(µ0, µ)CTC
0
TB(µ0, µ)

0.

Hence:

Var (εi +Xi(µ0 − µ)) = σ20IT + σ20C
0
TB(µ0, µ)

0 + σ20B(µ0, µ)CT

+σ20B(µ0, µ)CTC
0
TB(µ0, µ)

0.
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Now:

E
¡
(Xi(µ0 − µ) + (αi0 − αi)ι+ εi) (Xi(µ0 − µ) + (αi0 − αi)ι+ εi)

0¢
= Var (εi +Xi(µ0 − µ)) + E (Xi(µ0 − µ) + (αi0 − αi)ι+ εi)E (Xi(µ0 − µ) + (αi0 − αi)ι+ εi)

0 .

Since:

vec(Xi) = P
0
µ

Ip
CTp

¶
y0i + αi0P

0
µ

0
CT ι

¶
+ P 0

µ
0

CT εi

¶
,

it follows that

E [Xi(µ0 − µ)] = B(µ0, µ)E [vec(Xi)]
=

¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι.

The previous results yield:

E
£
v2i (µ,σ

2,αi)
¤
=

1

T 2σ4
ι0
n
σ20IT + σ20C

0
TB(µ0, µ)

0 + σ20B(µ0, µ)CT

+σ20B(µ0, µ)CTC
0
TB(µ0, µ)

0

+
£¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι+ (αi0 − αi)ι

¤×£¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι+ (αi0 − αi)ι

¤0 o
ι.

The robust prior is thus given by:

πRi
¡
αi|µ,σ2

¢ ∝ ³
ι0
n
σ20IT + σ20C

0
TB(µ0, µ)

0 + σ20B(µ0, µ)CT

+σ20B(µ0, µ)CTC
0
TB(µ0, µ)

0

+
£¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι+ (αi0 − αi)ι

¤×£¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι+ (αi0 − αi)ι

¤0 o
ι
´−1/2

,

∝
³
1 + a(µ− µ0) + b(µ− µ0,αi − αi0)

´−1/2
,

where
a(µ− µ0) =

1

T
ι0
n
C
0
TB(µ0, µ)

0 +B(µ0, µ)CT
o
ι (10)

is a linear function of µ− µ0, and

b(µ− µ0,αi − αi0) =
1

Tσ20
ι0
n
σ20B(µ0, µ)CTC

0
TB(µ0, µ)

0

+
£¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι+ (αi0 − αi)ι

¤×£¡
A(µ0, µ) +B(µ0, µ)CTp

¢
y0i + αi0B(µ0, µ)CT ι+ (αi0 − αi)ι

¤0 o
ι (11)

is a quadratic function of µ− µ0 and αi − αi0.
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The AR(1) case. Let us assume that p = 1. Then:

CT =

⎛⎜⎜⎝
1 0 ... 0
µ10 1 ... 0
... ... ... ...

µT−110 µT−210 ... 1

⎞⎟⎟⎠ ,
so that:

CT ι =
1

1− µ01

⎛⎜⎜⎝
1− µ10
1− µ210
...

1− µT10

⎞⎟⎟⎠ .
Moreover:

CTp =

⎛⎜⎜⎝
µ10
µ210
...
µT10

⎞⎟⎟⎠ ,
and

A(µ0, µ) =

⎛⎜⎜⎝
µ10 − µ1

0
...
0

⎞⎟⎟⎠ , B(µ0, µ) =

⎛⎜⎜⎝
0 0 ... 0 0

µ10 − µ1 0 ... 0 0
0 µ10 − µ1 ... 0 0
0 0 ... µ10 − µ1 0

⎞⎟⎟⎠ .
Hence πRi

¡
µi|µ,σ2

¢
is proportional to

n
σ20T + 2σ

2
0

µ10 − µ1
1− µ10

·
T−1X
t=1

¡
1− µt10

¢
+ σ20

µ
µ10 − µ1
1− µ10

¶2
·
T−1X
t=1

¡
1− µt10

¢2
+"µ

(µ10 − µ1)
1− µT10
1− µ10

¶
y0i + αi0

µ10 − µ1
1− µ10

·
T−1X
t=1

¡
1− µt10

¢
+ (αi0 − αi)T

#
×

"µ
(µ10 − µ1)

1− µT10
1− µ10

¶
y0i + αi0

µ10 − µ1
1− µ10

·
T−1X
t=1

¡
1− µt10

¢
+ (αi0 − αi)T

#0 o−1/2
.

We thus obtain:

πRi
¡
αi(µ,σ

2)|µ,σ2¢ ∝ n
T + 2

µ10 − µ1
1− µ10

·
T−1X
t=1

¡
1− µt10

¢
+

µ
µ10 − µ1
1− µ10

¶2
·
T−1X
t=1

¡
1− µt10

¢2 o−1/2
.

Hence, for π to reduce bias we need that:

∂ lnπ
¡
αi(µ,σ2)|µ,σ2

¢
∂µ

¯̄̄
µ10,σ

2
0,αi0

=
1

T (1− µ10)
·
T−1X
t=1

¡
1− µt10

¢
=
1

T

T−1X
t=1

(T − t)µt−110 .
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Gaussian REML. We have:

vi(µ,σ
2,αi) =

1

T

TX
t=1

(yit − x0itµ− αi)

σ2
,

and hence:

E
¡−vαii (µ,σ2,αi)¢ = 1

σ2
; E

¡−vµi (µ,σ2,αi)¢ = − 1

Tσ2

TX
t=1

xit; E
³
−vσ2i (µ,σ2,αi)

´
= 0.

Dropping for simplicity the derivative with respect to σ2 we obtain:

ρi(µ,αi) = −
1

T

TX
t=1

E(xit).

Let us define the following p× (T + p) matrix:
Q =

¡
Ip ... Ip

¢
P 0.

Then as
TX
t=1

xit =
¡
Ip ... Ip

¢
vec(Xi),

we obtain, using (9):

ρi(µ,αi) = −
1

T

µ
Q

µ
Ip
CTp

¶
y0i + αiQ

µ
0
CT ι

¶¶
,

where CTp and CT are functions of µ.

C.2 Linear model with one endogenous regressor

The individual log-likelihood is given by (see e.g. Hahn, 2000):

`i(θ,αi) = −1
2
ln |Ω|− 1

2T
ω11

TX
t=1

(yit − θαi)
2− 1
T
ω12

TX
t=1

(yit − θαi) (xit − αi)− 1

2T
ω22

TX
t=1

(xit − αi)
2 .

We thus have:

vi(θ,αi) =
1

T
ω11θ

TX
t=1

(yit − θαi) +
1

T
ω12

TX
t=1

(yit − 2θαi + θxit) +
1

T
ω22

TX
t=1

(xit − αi) .

Then:
E (−vαii (θ,αi)) = ω11θ

2 + 2ω12θ + ω22,

and:

vθi (θ,αi) =
1

T
ω11

TX
t=1

(yit − 2θαi) + 1

T
ω12

TX
t=1

(−2αi + xit) .

Hence, at true values:
Eθ0,αi0

³
vθi (θ0,αi0)

´
= −ω11θ0αi0 − ω12αi0.

We obtain that:

ρi(θ,αi) = αi
−ω11θ − ω12

ω11θ
2 + 2ω12θ + ω22

.
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C.3 Poisson counts

We have:

vi(θ,αi) =
1

Tαi

TX
t=1

¡
yit − αi exp(x

0
itθ)
¢
.

Note that it follows that:

αi(θ) = αi0

PT
t=1 exp(x

0
itθ0)PT

t=1 exp(x
0
itθ)

. (12)

Moreover:

E (−vαii (θ,αi)) =
1

Tα2i

TX
t=1

αi0 exp(x
0
itθ0),

and:

E
¡
v2i (θ,αi)

¢
=

1

T 2α2i

TX
t=1

E
¡
(yit − αi exp(x

0
itθ))

2
¢
,

=
1

T 2α2i

TX
t=1

³
E
¡
(yit − E(yit))2

¢
+
¡
E(yit)− αi exp(x

0
itθ)
¢2´

,

=
1

T 2α2i

TX
t=1

αi0 exp(x
0
itθ0) +

¡
αi0 exp(x

0
itθ0)− αi exp(x

0
itθ)
¢2
,

where we have used that Var(yit) = E(yit) = αi0 exp(x
0
itθ0). Hence:

πRi (αi|θ) ∝
1

αi

Ã
TX
t=1

αi0 exp(x
0
itθ0) +

¡
αi0 exp(x

0
itθ0)− αi exp(x

0
itθ)
¢2!−1/2

.

C.4 Static logit

We have:

vi(θ,αi) =
1

T

TX
t=1

¡
yit − Λ(x0itθ + αi)

¢
.

It follows that:

E [−vαii (θ,αi)] =
1

T

TX
t=1

Λ(x0itθ + αi)(1−Λ(x0itθ + αi)), (13)

and:

E
£
v2i (θ,αi)

¤
= E

Ã
1

T

TX
t=1

¡
yit − Λ(x0itθ + αi)

¢!2

=
1

T 2

TX
t=1

E
³¡
yit − Λ(x0itθ + αi)

¢2´
, (14)

where we have used the fact that observations are i.i.d. across T .
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