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Abstract

Fixed effects estimators of panel models can be severely biased because of the well-known incidental parameters
problem. We show that this bias can be reduced by using a panel jackknife or an analytical bias correction motivated
by large T'. We give bias corrections for averages over the fixed effects, as well as model parameters. We find large
bias reductions from using these approaches in examples. We consider asymptotics where T grows with n, as an
approximation to the properties of the estimators in econometric applications. We show that if T grows at the same
rate as n the fixed effects estimator is asymptotically biased, so that asymptotic confidence intervals are incorrect,
but that they are correct for the panel jackknife. We show T growing faster than n!/3 suffices for correctness of

the analytic correction, a property we also conjecture for the jackknife.



1 Introduction

Panel data, consisting of observations across time for different individual economic agents, allows the possibility
of controlling for unobserved time invariant individual heterogeneity. Such heterogeneity can be an important
phenomenon, and failure to control for it can result in misleading inferences. This problem is particularly severe
when the unobserved heterogeneity is correlated with explanatory variables. Such a situation arises naturally when
some of the explanatory variables are decision variables and the unobserved heterogeneity represents variation in
tastes or technology.

Models and methods of controlling for unobserved heterogeneity in linear models are well established: see
Chamberlain (1984) and Arellano and Honoré (2001) for references and discussion. Controlling for unobserved
heterogeneity is much more difficult in nonlinear models. Conditional maximum likelihood can be used in the rare
instance that there is a sufficient statistic for the individual effect (Anderson, 1970). In a few cases clever estimators
that do not depend on individual effects have been found (e.g. Manski, 1987, Honoré, 1992, and Horowitz and Lee,
2003). However, such cases are the exception rather than the rule. In most models no sufficient statistic exists and
no clever estimator has been found. Further, such clever estimators usually provide no guidance towards estimating
averages over individual effects.

One way of attempting to control for individual effects in nonlinear models is to treat each effect as a separate
parameter to be estimated. Unfortunately, such estimators are typically subject to the incidental parameters
problem noted by Neyman and Scott (1948). The estimators of the parameters of interest will be inconsistent if the
number of individuals n goes to infinity while the number of time periods T is held fixed. This inconsistency occurs
because only a finite number of observations are available to estimate each individual effect. Hence the estimation
error for the individual effects does not vanish as the sample size grows, and this error contaminates the estimates
of parameters of interest.

Even in static models the incidental parameters bias can be severe, e.g. see Chamberlain (1980) and Abrevaya
(1997), although the size of the bias varies greatly with the parameter of interest, e.g. see Greene (2002). Increasing
T need not fully solve this problem, because fixed effects estimators are asymptotically biased even if T grows at
the same rate as n. For dynamic linear models this result was shown by Hahn and Kuersteiner (2002) and we show
it here for nonlinear models.

We consider two approaches to reducing the bias from fixed effects estimation in nonlinear models. The panel
jackknife uses the variation in the fixed effects estuinators as each time period is dropped, one at a time, to form a
bias corrected estimator using the Quenouille (1956) and Tukey (1958) jackknife formula as in Newey (1989). The
analytic bias correction uses the bias formula obtained from an asymptotic expansion as T grows, similarly to Hahn
and Kuersteiner (2002). This correction is obtained by generalizing a bias formula from Waterman et. al. (2000),
estimating the bias term, and using this to correct the estimator. We also relate the analytical bias-correction
formula to an interesting approach developed by Woutersen (2002).

In nonlinear models the object of interest may be an average over the fixed effects rather than the parameters of
the likelihood. Such object are of interest because they can be used to summarize results for the whole population.
For example, Chamberlain (1984) considers the effect of changing regressors on the average over the fixed effect of
a binary choice probability. Here we also give bias corrections for such averages.

In numerical and Monte Carlo examples we find that these large T' bias corrections can substantially reduce

incidental parameters bias. We find that this bias is particularly small for averages over fixed cffects of probit



choice probabilities. Surprisingly, there is no incidental parameters bias at all for these average probabilities in a
Gaussian linear model.

We analyze the properties of both jackknife and analytical bias corrections under asymptotics as n and 7' grow.
We show that if T grows faster than n'/3, the analytic bias correction yields an estimator that is asymptotically
normal and centered at the truth. Thus, the analytic bias correction may have good properties in economic
applications, where n tends to be much greater than 7. Woutersen (2002) gives an analogous result for his bias
correction. We also show that the jackknife correction is asymptotically normal centered at the truth when »n and
T grow at the same rate. We conjecture that the jackknife correction also has this limiting distribution when T
grows faster than n'/3, although we do not show it here because it is difficult to do. As usual, the asymptotic
theory is primarily intended as an approximation to the finite sample distribution of the estimator, here especially
to its bias. Under our asymptotic approximation, the bias correction does not increase the asymptotic variance.
This suggests that the benefit of bias reduction substantially dominates any potential increase of variance.

In Section 2 we use some comparatively simple calculations to describe how the bias corrections work. Section 3
gives two numerical examples. Section 4 describes and interprets the analytical bias corrections. Section 5 presents
bias corrections for averages over fixed effects. Section 6 gives the Monte Carlo results. Asymptotic theory is given

in Section 7.

2 Fixed Effects and Bias Correction

We first describe fixed effects estimators. Let the data observations be denoted by z;, (¢t = 1,...,T;i = 1,...,n). Let
f denote a p x 1 vector of parameters, «; a scalar individual effect, and f (2|6, «) a density function with respect to
some measure. The setting where = = (y, z) and f is a conditional density of y given z is included as a special case
when the dominating measure for f is a product of the marginal distribution for z with some measure for y. The
fixed effects estimator is obtained by doing maximum likelihood treating each «; as a parameter to be estimated.

Assuming that z;; are independent across ¢ and t, and concentrating out the «; leads to

n T T
Or = argmaxz Zlnf (z]0, 0, (8)), @ (0) = argmalenf (2110, ) .
A -
Here the @; () depends on the data only through Z; = (241, .., zi7)’. For any function m (Z;r, a;), let E im (Zir, )]

= limp—soo ! Z;L:l E [m (Z;r, a;)], where here and in the asymptotics we treat each o, as fixed (i.e. we condition
on them). It will follow from the usual extremum estimator properties (e.g. Amemiya, 1973) that as n — oo with

T fixed,

~
Oy — Op, Or

Il

argmax E
0

T
> In f (200, 6 (9))1 . (1)

t=1
When z;; has pdf f(zi;00,;), generally 7 # 6y. This is the incidental parameters problem noted by Neyman
and Scott (1948). The source of this problem is the estimation error of &; (8). If each &; (#) were replaced by «; (6)
maximizing E Zil In f (2:)0, )|, then 87 = 6. We consider corrections for the asymptotic hias 87 — 6g.

Some expansions can be used to explain our results. Note that the bias should be small for large enough T
ie., limp_ o 07 = 6y. Furthermore, for smooth likelihoods we generally have 8, = 6, + % + O (%) for some
B. TIntuitively, expanding in @; () around o; (6) leads to bias terms of order 1/7" from three sources: a) the

asymptotic bias of @; (¢) as T' grows; b) the correlation resulting from &; (6) and 0 depending on the same data,



and; ¢) the variance of @; (8). We will make this intuition precise below, and derive the formula for B. We will also
generally have, as n,T — oo, VnT (5 — 9T> 4N (0,€). This is just asymptotic normality of  when centered at
its probability limit, a result known to hold even under misspecification (e.g. White, 1982).

Under these general conditions the fixed effects estimator is asymptotically biased even if T' grows at the same

rate as n. For n/T — p,

VAT (8- 60) = VaT (9 - or) +¢FT§+O<\/%> % N (Byp,9Q).

Thus, even when T grows as fast as n, asymptotic confidence intervals based on the fixed effects estimator will be
incorrect, due to the limiting distribution of vnT (5 - 00> not being centered at 0.
The panel jackknife is an automatic method of bias correction. To describe it, let 5(,,) be the fixed effects

estimator based on the subsample excluding the observations of the tth period. The jackknife estimator is

T
0=T0 (T -1)) 0)/T. (2)
t=1
To explain the bias correction from this estimator it is helpful to consider a further expansion

B D 1
Or =6+ =+ — — .
T 0+T+T2+O<T3> (3)
The limit of 8 for fixed T and how it changes with T shows the effect of the bias correction. The estimator 0 will

converge in probability to

1 1 1 1
TOr — (T —1)0p_4 90+(T T—1>D+O<T2> 90—|—O<T2>

Thus, we see that the asymptotic bias of the jackknife corrected estimator is of order 1/72. Consequently, as we
show below, this estimator will have an asymptotic distribution centered at 0 when n/T" — p. We conjecture that
this same result will hold with T/n'/? — oo, although it would be difficult to show, due to the presence of the T'
and (T — 1) multiplicative factors in equation (2).

The panel jackknife is less complicated than it may seem, although it does require T+ 1 fixed effects estimations.
As recently noted by Greene (2002), careful construction of an algorithm can make fixed effects computation quite
straightforward. Furthermore, good starting values for 5(” and the fixed effects are provided by 8 and ;. It may
even be possible to obtain the bias reduction by using a one or two step estimator in place of 5(”, starting at 0.

An analytical bias correction is to plug into the formula for B estimators of its unknown components to construct
B , and then form a bias corrected estimator

9 =0

Il

~|

- (4)
This estimator removes enough of the incidental parameters bias that it may give correct confidence intervals as

long as T grows faster than n*/3. To see this, suppose that v/nT (E — B) /T 20 (e.g. which holds if B=8B (5)

for a smooth function B (8) of §). Then for T/n'/3 — oo,

\/ﬁ@l90):ﬁ(§ﬁ9T>—\/g<§—B>+O<\/%>iN(O,Q). (5)

We will give precise regularity conditions for this result to hold.



For small T this estimator may be sensitive to the choice of B. If 8 is heavily biased and it is used in the
construction of B it may adversely affect the properties of 51. One way to deal with this problem is to use 51 in
the construction of another B, and then form a new bias corrected as in equation (4).! One could even iterate this
procedure, updating B several times using the previous estimator of 6. To be precise, let B (0) denote an estimator
of B depending on €, and suppose that B=8B (5) Then 51 =0-B (@) /T. Tterating gives gk =0-B (51%1) /T,

(k=2,3,...). If this estimator were iterated to convergence it would give 6" solving
0 =6-B (@‘”) /T (6)

In general this estimator will not have improved asymptotic properties, but may have lower bias for small T', as it
does in some of the examples to follow.
The bootstrap is another way of reducing bias. We conjecture that some version of a bootstrap bias correction

would also remove the asymptotic bias (e.g. with truncation as in Hahn, Kuersteiner, and Newey, 2002).

3 Numerical Examples

The practical importance of these bias corrections depends on how much bias is removed for the relatively small T
that is often relevant in econometric applications. In this section we provide some simple examples showing that
these corrections can remove the great majority of the bias even with small 7. We do this by calculating probability
limits as n grows with 7" fixed.

The first example has z;; distributed N (a;,8). This example was considered in Neyman and Scott (1948),
who showed that 8 = 6y — 64/T. Since the formula for 87 is linear in 1/7, we have B = —8y. Thus, B can be
estimated by B = B (5) for B (#) = —#. Using this B for the bias correction gives 9 =9 ﬁ/T =0+ g/T,
which converges to 63 = 0o[(T — 1)/T)(1 + 1/T) = 6y — 0 /T2. Tterating the bias correction to convergence gives,
as in equation (6), the solution to 0" =8+ @OO/T, which is 87 = [T/ (T — 1)]5, which is consistent. It can also
be shown that the jackknife bias correction yields 6 = [I/(T—1)] 6, and so is consistent for 8y. To summarize
and illustrate these results, Table One presents limits 6, F)%p, 67,875 of the fixed effects, one-step bias correction,
fully iterated bias correction, and jackknife estimators as n — oo with T fixed. We find that even the one-step bias

correction is a substantial improvement, although the iterated and jackknife bias corrections are perfect.

Table One: N (ay,1)

T | 6r | 6% | 65 | 67y
3 |.67].8 |1 1

4 | .75 .94 |1 1

5 | .80 .96 {1 1

7 1.8 (.98 |1 1
10, .90 .99 | 1 1

The second example is estimation of the survivor function in a regression version of the previous model, which
corresponds to the choice probability in a probit model. In a binary choice model Chamberlain (1984) proposed

averaging over the marginal distribution of the fixed effects to measure how regressors affect choice probabilities.

"This iterated bias correction was suggested to us by V. Chernozhukov.



Here we consider a local version for a linear model, the derivative of the probability of the survivor function of
y with respect to x, averaged over the fixed effect. Specifically, suppose that y;; = 25,8, + a; + €i;, where ¢4
~ N (0,02). As is well known, the fixed effects MLE B is consistent but 62 converges to o2 — a2 /T, as in the

previous example. The prediction we consider is

[ 0Ps(y > rle.a)joa) fla)da = [ 108(1a'5y - r + aljo)0s) ftado
@/ap (—”jlﬁo o “> fla)da.

o a

(

Ho

l

The fixed effects estimator of j, is obtained by plugging in the fixed effects estimators of 8, «;, and ¢ and

=30 <fﬁf+a> .

i=1

averaging over &;, as in

Surprisingly, this estimator is consistent at n — oo for fixed T, despite the inconsistency of & and the estimation
error in &;. Intuitively, consistency occurs because the —c?/T downward bias in 62 is exactly compensated for
by the estimation error in &; being Gaussian with variance o?/T. Furthermore, the estimated average survivor
function S = S, ® (’/LR_T’M) /n, will also be consistent, because fi is its derivative and is consistent for each
@’

Because the fixed effects estimator [ is consistent for any T, the jackknife bias corrected estimator will also be
consistent for every T. The analytical bias correction need not be consistent when the estimator is, but will be
very close for large T. In the tables below, the analytical bias correction is nearly consistent. The analytical bias

corrected estimator is

n JE oA I3 A
Z ¢) X /6 ~7 + ; o (/1)// T ﬁ :’ + ; /2T /TL
g g

i=1

?
SRS

where we take & = T&%/(T — 1) to be the fully iterated bias corrected estimator and B to be the fixed effects
estimator. Table Two shows the ratio of the probability limit of this estimator to the truth for a; ~ N(0,0?) and

m = (z'By —r)/o equal to 0, 1, and 2.

Table Two: Survivor Derivative

m=0{m=1|m=2
991 989 976
995 991 978
997 993 980
998 994 984
10 | .999 997 988

~jo | e lwNg

We see that there is very little bias in the estimated survivor function with an analytical bias correction. These
results, as well as the consistency of fixed effects and jackknife bias correction help explain the low biases we find
in the estimation of average choice probability derivatives in the Monte Carlo results below. Although we do
not expect fixed effects to be consistent outside this simple example, it appears that in more than one case that

probabilities, when they are averaged over fixed effects, have very small bias.

2To see consistency, note that § converges to So = E[®((m + &1)/021)] where &; = oy + v;, v; ~ N(0,02/T), U% =% —a?/T, and
m =ga'f—r. Since E[®((m+ &;)/op)lay] is the CDF of a normal mixture of v; with N(0,02), which CDF is ®((m+a;)/0), it follows
by interated expectations that Sp = E[®((m + «;)/0)].



4 Analytical Bias Correction
A little more notation is useful for describing the analytical bias correction. Let
Jd 0 ,
ug (6, ) = % log f (zi]0, @), v (B, ) = 7o log f (240, @),
and additional subscripts denote partial derivatives, e.g. w;9(8, @) = Ouy, (8, «) /06. Also, define

U (8) = 0 (0,0 (9)), Vita (F) = 034a(0, 0 (0)), Vitan (8) = vitaa (0, ;i (8)), Uy (0) = uin(8,@; (0)),

T T
it (0) = Tra(0,8 (0)), Titae () = a0, G (6), u?,-,,w)z—@u(e)/(Z%(@/T),3?<9>:§:@” (0) /T
s=1 s=1

-~ 2 . . . . . . . —~
Here 1, (8) and &7 (8) are estimators of the influence function and asymptotic variance, respectively, of @; (6) as

Bi (9) = - <
S ,

T T
O = — Z{uiw (6,4 (8)) — T (0) [Zw(e,ai )/ Bisn (0)”
i s=1

=1 t=1 s=1

T grows. Let,

-1

Tise <9>> D {Bia (B) i (6) + Tisaa (0)57 (6) /2,

s=1

i~

3

Here B,L (0) is an estimator of the higher-order asymptotic bias of Bi (#) from a stochastic expansion of &; (#) as T

grows. An analytic, i.e. closed form estimator, of the bias term can be formed as

n T
B(o)=—H(0)"50).5(0) = — 53 {8 036 430 0)] 4 e (0057 ) 2]
The bias corrected estimator, either one step or iterated, can then be formed as described above, with B (6) = B (4).
We give an interpretation of the formula for B (6) below.
It is interesting to note that the bias correction B (f) does not depend on the likelihood setting, and so would be
valid for any fixed effects m-estimator based on the moment equations E [u;; (0g, ;)] = 0 and F [vy (69, ;)] = 0.
For simplicity though, we will only give asymptotic theory for the maximum likelihood setup.

The likelihood setting can be used to simplify the bias correction using Bartlett identities. Let

T T
U (8) = Ty (8) = Bue (8) D This (6) Tis (0) / (Z Vs (9)2> Vair (0) = T3t (8)° + Tt (0) -
s=1 s=1
n T n T
B() = -HO)'D©), H()= ‘—; Y STk 0) T (8), B(9) = ;—1 > Uie(8) Vair (6) (Z Bis <9>2> :
i=1 t=1 i=1 {=1 s=1

The bias corrected estimator can then be formed with B (6) = B (§). This correction uses outer products in place of
some derivatives. In the Monte Carlo example we find that this replacement has very little effect on the properties
of bias corrected estimators.

The analytical bias correction has an interpretation that explains its form. The matrix H(6) is an estimator of
the Jacobian of 3, , 4 (#) /(nT") with respect to 6, the first term (involving uie) being the direct derivative and
the second being the derivative acting through &;(6). The vector b(#) is an estimator of E[Z” iy (Bg) /(nT)] =

Eli;¢(60)]. Its form can be explained by an expansion. For notational convenience suppress the 6y and a; arguments



of wui (6, ), vy (0, ), and their partial derivatives evaluated at (Bo, ;) {€.B. Vita = Vita (fo,i)). Then, using

independence across t, standard higher-order asymptotics gives (e.g. Rilstone et. al., 1996), for T' — oc,

T
— _ 1 .
i =a;+ B;/T + Z'ﬁl’n/T + 0, (1/T), ¥y = —F [vita] l vit, By = —E [vita] : {E [Vitats) + 5E [vitaal E [ﬂ)ft]}

t=1

Then, expanding around a;, and assuming orders in probability correspond to orders in expectation, we obtain

Elugt (00,85)] = Eluw) + E [uie (@ — oi)] + E [uim (@ — aﬂ /24 0(1/T)

I

0+ %{E[uvfam1 +E [uitawit] +E [uitaa] E [w?t] /2} +o0 (1/T) -

Thus we see that there are three terms in the bias of the moment function, all arising from the randomness of &;.
The first term comes from the asymptotic bias of &;. The second term comes from correlation of uy, with ¥,
and is present because &; is computed from the same observations as 6. The third term is pure random parameters
bias, that corresponds to the standard bias formula for nonlinear functions of sample averages. The expression b (6)
is just a samplc analog of this formula.

The likelihood based bias correction uses second and third order Bartlett identities in its construction. The

identities used are, for Vag = v2 + vita,

Evita] = —E[v3], Eluia) = —Eluivit), Eluig) = —Eluguy,], Elvie] = —Elvgul,],
Evitavit] + Evitaal/2 = —FEviVeu]/2, Eltiavit] + Eltitaal /2 = —E [ Vait] /2.

These identities imply that 8, = —E[v%] 2E[v;;Vai:]/2, so that for Uy = i — v E[v3] L E[virus]. we have

Eltital8; + Eltitathy] -+ E[“itaa]E[wmﬂ
= E[Uitvit]E[Uft]_zE [/U'i,ijZif] /2 - E[U;ZJ‘IE[U“VQH}/Q = _E[U?t]_lE[U“VQH}/?:.

The formula for b(#) is a sample analog of this expression. Also, the term H(#) is an outer product approximation
to the Jacobian based on the Bartlett identities.

Another approach to bias correction for fixed effects, that helps explain the relationship of our estimators to
those of Lancaster (2002) and Woutersen (2002), is to construct the estimator as the solution to a bias corrected
version of the estimating equation (i.e. first-order conditions). Firth (1993) suggests this approach to asymptotic
bias correction with a fixed number of parameters and Fernandez (2003) for nonlinear panel data models. To
describe it, let M (8) = S, Z?:l Gy (0) /(nT), so that the fixed effects estimator solves m(d) = 0. Also, let
b(8)/T be an estimator of the order 1/T bias of 7 (f) when 6 is the true parameter, such as b(g) = b(8) or

b(#) = b(#). Consider an estimator 8 obtained by solving

0 = (0) — b(6) /T. (8)

This estimator also uses an analytical bias correction, but to the estimating equation rather than the estimator.

As an example, when b(#) = b(6), the estimator § would solve

n T T
0=>">" lau(6)+ %ﬁ (0) Vair (6) / <Z Bis <9>2>} : (9)

i=1 t=1



As shown in Appendix I, this estimating equation is asymptotically equivalent to Woutersen’s (2002) Laplace
approximation to the integral of a parameter orthogonalization. In this sense, an estimating equation version of
our fixed effects bias correction is equivalent to Woutersen’s (2002) approach. Unlike Woutersen’s (2002), this bias
correction requires no integration, and so may be easier to implement in practice.

Bias corrections of estimating equations are related to the iterated bias correction discussed in Section 2. To
describe this relationship, let m(8) be some vector of functions of parameters and data and consider an estimator
0 satisfying 1m.(6) = 0. Suppose that 0 satisfies equation (6), where B(0) = H(6)~'b(6), H(#) is an estimator of
O1n(0)/00 at the true parameter, and b() /T is an order 1/T bias estimator for m(f) when 8 is truc. Then equation
(6) implies that 07 solves

0= H(6) (5 - 9) —b(8) /T = (5) + H(6) (@ - 9) ~ () /T (10)

If i (6) is linear in # and H () = & (0)/d0, this equation is the same as equation (8). Otherwise, this equation is an
approximation to equation (8). Thus we find that the fully iterated bias corrected estimator 6 can be interpreted
as the solution to an approximation to equation (8). In particular, the fully iterated bias corrected estimator based
on the likelihood correction B(6) = H(0)~'b(#) is an approximation to the solution to equation (9), and hence an
approximation to the Woutersen (2002) estimator.

The one-step bias correction él =0-B (é) /T may have computational advantages over the solution to an
estimating equation and over the iterated bias correction. In a number of important models the likelihood is
concave in 8 and aq, ..., a,, so that the fixed effects estimator g is straightforward to calculate. Also, the formula
for the bias correction has a closed form, so that the bias correction can easily be computed. In contrast, the
estimating equation and fully iterated bias correction require solution to a nonlinear equation, which may be more

difficult to calculate.

5 Bias Corrections for Fixed Effect Averages
The type of object we consider is an average over the fixed effects of the form
p(w) = E[m(w, z, 00, ;)] .

An example is Chamberlain’s (1984) average probability difference for probit, where y is the probit binary dependent
variable, w = (z, %) is a pair of regressor values, and m (w, 7,0, ) = & (2’6 4+ o) — ® (2’6 + ) . A local version of
this would be its derivative with respect to x, where m (w, z,68, ) = 6¢ (2’8 + ).

We can counstruct a bias corrected estimator of p(w) by a panel jackknife or by an analytical method. To

describe the panel jackknife here let &;(;) be the fixed effect with the t" observation excluded and

n T
~ 1 - ~ 1 =
i(w) = T E g m (11),:1',,,9,ai> B (w) = m E E m (w, 31-5,9(,),(211(,)) \

i=1 t=1 i=1 st

T
filw) = TR@W)— (T -1 fig, @) /T.

t=1

Here fi(w) is a jackknife bias corrected estimator of p(w).



It is also possible to construct an analytic bias correction. Let 8 be a bias corrected estimator (either jackknife
or analytical) of 8 and &; = & (5)} (i = 1,...,n) the corresponding fixed effects. Also, let 6%(0) = T'/ Zf:l D (6)2,
B:(0) = —52(0)* Zle 32 (0)Vaur (0) /2T, and 1;, (8) = 52(0):1(0) denote maximum likelihood versions of estimated

bias terms. Then a bias corrected estimator of 1 that uses the likelihood structure is

i(w) = iim(w,zm?)’,&i)/nT—&(w)/T,

i=1 t=1
T

A (w) = ﬁlT— iZ{mn (w7 zit,g, &) [Bl (5) + 1y, (5)} + Moo (w,zit,g, 541-> (?12 (5) /2}.

i=1 t=1

When m,, does not depend on z;;, the ¥, (5) term can be dropped. We could also give a form of the bias correction

that does not depend on the likelihood structure, which we omit for brevity.

6 A Monte Carlo Study

For a Monte Carlo example we consider fixed effects probit estimation, using a design similar to that of Heckmman
(1981). The model design is:

Yir — 1(.’1,‘”90 + o e > 0), o ~ ]V(O7 1),6” ~ N(O, 1),
Xt = t/lo+.’L’1;’1,A1/2+u“7$1;0 = U0, Uit = U(—1/2,1/2)
N = 100,T=83=1,-1.

Although this design does not fit completely within our framework, because z;; is correlated over time, we use it
hecause it is similar to a widely cited design, and so helps us compare our results with previous ones. Also, yit is
independent over time conditional on «; and (..., 2;7), so there is no autocorrelation in that sense.

We give results for estimators of 8g. We also consider estimation of the average of the derivative of the choice

probability ®(2’8 + «) with respect to x at a particular x = w, which is
1= 0o E[p(w'0y + ;)]

The fixed effects estimator of this object is ft = 0 S (w’é + di) /n and the jackknife bias correction is described

in Section 5. The analytical bias corrected estimator 1s
pt =0 "lp(w'd + &) — ¢ (w'0 + &)B,(6)/T — " (w0 + ¢;)52(0) /2T /n,
i=1

where 6 = @1 is the bias corrected estimator of 8, ¢&; is the corresponding estimator of the fixed effect, 81(9) and
52(0) are the MLE bias and asymptotic variance estimators, respectively, described in Section 5.

Table Three gives the Monte Carlo results for the estimator of 6y when 7' = 8 and 69 = 1. Here SD is the
standard deviation of the estimator, § denotes a rejection frequency with nominal value given at the columu top,
and SE/SD is the ratio of the average standard error to standard deviation. Analytic refers to the MLE (outer
product) bias correction and Analytic-M to that based on general estimating equations, i.e. to B(#) in Section

4. We find little difference in performance between these two types of analytic correction. We also find that



iterating the bias correction seemed not to matter much, although for brevity we do not report those results. We
see here that the fixed effects MLE is biased upward by around 20 percent, confirming the results of Greene (2002)
and Woutersen (2002). The bias corrections all reduce the bias to about 5 percent. In addition, they reduce the
dispersion. An explanation for this reduction is that the probit coefficients are analogous to the ratio of a regression
coefficient to a scale parameter. If the primary fixed effect bias is as if the scale parameter were too small, as it
would be in a linear model, then the correction would raise the scale parameter and shrink the estimator towards
zero, and so reduce dispersion. We also find large improvements in rejection frequencies, which arc much closer to

their nominal values after bias correction.

Table Three: Properties of 6, T = 8.
Estimator of 8y | Mean | Med. | SD | p;.05 | p;.10 | SE/SD

MLE 1.18 | 1.17 | .151 | .267 | .370 901
Jackknife 953 | 950 | .119 | .056 | .102 1.08
Analytic 1.05 | 1.05 | .134 | .062 | .135 985

Analytic-M 1.05 1.05 | .132 | .060 | .126 1.00

Table Four gives the ratio of estimators to the truth for the estimator fi of the average probability derivative
evaluated at the mean of the regressor. We find quite small fixed effect biases. They are not quite as small as
in the linear model, but are very small relative to standard errors. We also find little improvement in rejection

frequencies here. The source of this problem may be underestimation of dispersion, as shown by the last column.

Table Four: Properties of i, T' = 8.

Estimator of j/pq | Mean | Med. | SD | $;.05 | $;.10 | SE/SD
MLE 1.02 1.02 | .131 | .078 | .140 .893
Jackknife 1.00 992 | 1130 | .086 | .159 .869
Analytic 1.02 1.02 | .133 | .090 | .153 .857
Analytic-M 1.02 1.02 | .131 | .087 | .154 .870

Tables Five and Six give corresponding results to Tables Three and Four respectively, for T' = 4. The results

are similar, but with larger biases and dispersion and less accurate standard errors.

Table Five: Properties of é, T=4
Estimator of g | Mean | Med. | SD | ;.05 | ;.10 | SE/SD

MLE 1.42 1.41 | 397 | 269 | .373 .814
Jackknife 752 743 | 262 | .100 | 177 1.15
Analytic 1.12 1.11 | .306 | .055 | .101 1.02

Analytic-M 1.21 1.20 | .335 | .102 | .172 940

Table Six: Properties of i1, T = 4.

Estimator of pt/p, | Mean | Med. | SD | $;.05 | p;.10 | SE/SD
MLE 1.00 | 1.00 | .257 | .103 | .168 .829
Jackknife 1.06 | 1.05 | .307 | .159 | .224 704
Analytic 996 | .994 | .265 | .113 ; .178 811
Analytic-M 1.05 1.05 | .266 | .117 185 .805
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7 Asymptotic Theory

The first result we consider is the asymptotic distribution of the fixed effects MLE when n,7T — o0 at the same

rate. We impose the following conditions:
Condition 1 n,T — oo such that % — p, where ) < p < o0,

Condition 2 (i) The function log f (;0,«) is continuous in (8,o) € Y, (it) The parameter space T is com-
pact; (#i) There exists a function M (=) such that |log f (20, )| < M (=), M’ < M (z4), and

8(0,0;)
sup; B [M(zﬁ,):m} < 0.

Condition 3 For each n > 0, inf; [G( (6o, i0) — SUP{(g,0):/(8,0)— (60,0} >0} C0) (05 a)} > 0, where

T
Gy (6, ) = 1210gf (30,00) =T71Y g (20, 00), Gy (8, i) = E [log f (5 6. cvi)]
t=1

t=1

Let Z; = EU, UL .

Condition 4 (i) There exists some M (z;) such that

< M (%) 0<m+mg <1,...,6

8ml +1my log f (/:'Zf, 9, Cki)
9™ da™

and sup; E []VI(,%)Q} < 00 for some @ > 64; (ii) E[T;) > 0; (iii) min; E [vZ] > 0.

Under these conditions we can obtain the asymptotic distribution of the fixed effects MLE as n and T' grow at

the same rate.
Theorem 1 Under Conditions 1, 2, 3, and 4, we have
~ _ B 1 - . _1 - ‘
vnT (9 — 90) L N (BVBAEZ] Y, B=-3 (E[7.)) ™" E[E [UsVai) /E [v]].

Proof. See Appendix A. =
Waterman et al (2000) derive the asymptotic distribution of vnT (5 — 90) assuming that 6 and @; are consistent

for #y and cvg, and dim (#) = 1. Theorem 1 is a rigorous result that includes consistency for  and «v;, in the sense
that,

1<4i<

Pr H@— 90‘ z 71} =0 (T'l) 7 Pr [max lq; — cvip] > 77} —0 (T—l) .

We also allow for dim (@) to be bigger than 1.

Next, we show that the analytic bias correction eliminates the asymptotic bias term.
~1 ~ o~
Theorem 2 If T/n'/3 — co, and conditions 2, 3, and 4 are satisfied, then 8 =6 — B(0)/T satisfies

VAT (8"~ 60) <4 N (0BT} ).

11



Proof. See Appendix B. =

By equation (23) in Appendix B, we can see that (ﬁ > thzl [’]\iﬁﬁ{t)_l is a consistent estimator of the
asymptotic variance (E[Z;])~! of vnT (51 - 90), which can be used in the usual way for asymptotic inference
about 6p. Also, it is straightforward to show asymptotic normality of any of the iterated bias corrected estimators,
0 —o-BE"T.

Under n/T — p, Waterman et. al. (2000) derive the asymptotic distribution of a bias corrected estimator that

is not feasible. Let Vi, = (vit, Vair)' and

72, =(0,1) (E [‘7” :QD E [‘Z‘tUit} .
Their estimator, for scalar 8, is a solution to

T

n

DS i (8) = Vaur(8)p;} = 0.

i=1 t=1
This estimator is based on a modified estimating equation that is different than Woutersen’s (2002). It is not
feasible because p; is unknown. In contrast, our estimator (and that of Woutersen, 2002) is based on a feasible bias
correction, i.e. one that is computed from the data. Also, Theorem 2 is rigorous, allows for T' to grow slower than
n, and allows 6 to be a vector.

The jackknife bias corrected estimator has the same limiting distribution as the analytic bias corrected estimator

when T grows at the same rate as nn. In order to simplify the proof we only show this for scalar 6.
Theorem 3 Suppose that dim (6) = 1. Also suppose that Conditions 1, 2, 3, and 4, hold. We then have
VAT (8- 60) <= N (0,{EIZ]} ).

Proof. See Appendix C. m

It seems plausible that @1 and 6 would be asymptotically efficient with respect to our asymptotics. Formal proof
of such efficiency would require a Hajék-type convolution theorem, as established by Hahn and Kuersteiner (2002)
for the case of panel AR(1) model with Gaussian innovation. Such a result is outside the scope of the current

paper.

8 Summary

We developed two methods of reducing bias of the fixed effects maximum likelihood estimator for nonlinear panel
models with fixed effects, an analytic method and an automatic method based on a panel jackknife. It would be
useful to have some measure of how well these bias corrections work in a particular application. One could do this
by estimating the extra term D in the expansion of equation (3). One could also seek to remove D by analytical
and/or jackknife methods. Such analysis is expected to be substantially complicated, and we leave it to future

research.
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Appendix I: Relationship to Woutersen (2002)
by

Ivan Fernandez-Val

Let Eg o, [®] denote the expectation with respect to the joint density IO, f(216, «;). Let
git(0, ;) = uir(0, ;) — { Eg,a; Uit (0, )]/ Eg o, [Vita (0, o)} vie (0, i),

Note that gi; = Ui, Eg.a, [ui(0, ;)] =0, and Eg o, [vit(0, )] = 0, so that Ep . [gi: (6, ;)] = 0. Differentiating this
identity twice with respect to «, assuming that differentiation inside the integral is allowed, and evaluating at the
truth gives

0 = Elgita) + E[Ustvit], 0 = E[gitaa] + 2E[gitavit] + E[Uivita] + E[Usv7].
Furthermore, by construction of gi; we have Ey o, [gita (8, ;)] = 0, so that differentiating this identity with respect
to o gives Elgiiae] + Elgitavi) = 0. Plugging this in, and using the form of Va;, gives Elgitaa) = ElUuVai]. By

this equality it follows that another form of bias corrected estimating equation is

n T T
0= 3 | (6) + 5uaal6 (0))/ (Z e <9>2>} .

i=1 t=1

This estimating equation is exactly like that of Woutersen (2002), except that it is missing a term that is multiplied
by Zthl Gita (8, &:(0))/T. Because Elgio] = 0, this additional term will converge in probability to zero, so that
dropping it does not affect the bias correction asymptotically. Thus, we find that the bias corrected estimating

equation (9) is a modified version of Woutersen’s (2002) estimating equation.

Appendix II
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A Proof of Theorem 1

The proof consists of two steps. First, it is shown that 9 is consistent. Second, asymptotic normality is established.
Consistency proof is rather standard, and is presented in a supplementary appendix available upon request. There,

it is shown that, under Conditions 1, 2, and 3, Pr [5— 90’ > 77] =0 (T‘l)7 and Prmax <<, |6 — ajo| 2 7] =

0 (Tﬁl) for every n > 0. Proof of asymptotic normality starts with the observation that MLE 8 also solves

T o 5 — :
= 2?21 Y U <Zit;9,ai <9>>, where U (zig; 8, 00) = wi (0, 0) — pig - vie (0, ), and pyg = E{ugpvie]/ E [’Uft].
For accounting purpose, it turns out to be convenient to attach the subscript ¢ to U and V' when they are evaluated
at zi;. Let F = (Fy,...,F,) denote the collection of distribution functions. Let F = (ﬁh .. .,ﬁ'n), where ﬁ

denotes the empirical distribution function for the stratum i. Define F (¢) = F' + VT (ﬁ —F > foree [0,T —1/2],
For each fixed ¢ and e, let a; (8, F; (¢)) and 8 (F (¢€)) be the solutions to the estimating equations

oﬁ/v 0,0, (0, F, (€))) O—Z/ )i (0(F(€)), Fi (€))) dF (c).

. 3
By Taylor series expansion, we have § (F) —6(F)= %05 0)+3 (#) 0% (0) + 5 <ﬁ> G°%¢ (€), where 6° (¢) =

A6 (F (€))/ de, 6° (€) = d20 (F (€))/ de?.. .., and € is somewhere in between 0 and T-1/2, We thercfore have

VnT (9 (ﬁ) - 9(F)> - ﬁ%eﬂ (0) + \/ﬁ% (%)29 \/-\/_ “e (7). (11)

In a supplementary appendix available upon request, it is shown that the last term in (11) is o, (1) under Condition

4. Tt is shown below that

—1
1 1 —
VT —8°(0) — N[0, { im — I ,
VT © nooo n;

1 1 2 ce o 1 n 1 i - 1 - E[VQitUi]

from which Theorem 1 follows.

Let
hi(,€) = Ui (50 (F (€)), i (6 (F (€)), Fi (€))) (12)

The first order condition may be written as

- %Z / hi (- €) dF, (€) (13)
=1"

Differentiating repeatedly with respect to €, we obtain

1< 'dhi(-,e
0 - EZ./ dE 712/111 ’ dAzT (14)
r]h7 ,€) dhl( €) -
0 = 3Y [ dinw Y [P inn 1)

0 = lz/"’“(" Vi (6) + 3% Z/d'“ 2 Ay (16)

n 4 de3
=1

where A;7 = VT (ﬁm — Fl)



A1l 6°(0)

Because dhii,(f) = ahégl’é) &+ ah(')'(({,’c) gou 90 4 %(;—) 99 we may rewrite (14) as
Ohi (-,¢) 08 Ohs (,€) Da; 89 Ohs (- €) dos L g
Y 1F; = hi (-, €)dA;
”Z/< a6’ aﬁ Doy 07 9c T 0o 0c )" (E)Jrn;/]( ¢ ddir

Evaluating at € = 0, and noting that E [U] = 0, we obtain

We therefore have

1. 1< - o1 -
o it

A.2 of and of
In the ith stratum, «; (8, F; (¢)) solves the estimating equation
[ Vi (0, F e) P (0) = 0

Differentiating the LHS with respect to # and €, we obtain

0 — / Vil:99) ik (o) + (/ OVi(0.€) (6)) 00 (9, Fi ()

o Jdo; o0
B “OVi (-, 0,¢) (e Oa; (0, F; (€)) — ‘
0 = </ B dF; (,)) — 5 +/V1 (,0,€)dA;p.
Observe that
da; (6, F; v, AR AN
« (89 (f)) _ (/ (gal )(IF,L (6)) (/ E?O 6) dFl (6)) "

Evaluating the derivatives of «; evaluated at € = 0 gives

ae _ _E{%] :E[(i)vé] :O(l)

' E [%} E[V?) ’

T — T

CY(? _ _ Zt:_Vit< _ T 1/2 Zt:l V;f — O (1)

1 JTE 2% B[V Pt

where .
of = da; (8, F; (0)) of = Oa; (0, F; (0))
T ol ’ ¢ Oe
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A3 6<(0)

Note that

d*hi (- €) Gi(e) + 0%h (-,€) da; 90\ 98 N O0%h; (-, €) Oy o6 n oh; (-, €) 0_‘29
de? Ty 90’00, \ 00 0c) Be = 00'8a; Oe Oe 00" Oe?

2hi (-,€) 90 Do, 9 8?hy (-,€) (Do 0\®  0%hy (-,€) [ Bey; 9O Devi
960, 0c 0F 9 | da? (W é?) el (ae' ae> De
Oh; (-,€) (00 0%a; \ 00 Oh;(-,¢€) 0%y 08 Oh; (-, €) Oa; 920
dav; (I aeae’) Be Do 06O e da; 06 e
82hi (- €) 00 Doy O%hy () [0 B0\ Doy O%hi(,€) (B \”
00 9c; e e da? (89’5{?) et oa? (E)
Oh; (-, €) & @9_ N Oh; (-, €) 0%
Oo; e’ Oe day  Oe?’

where G; (-,€) 1s a p-dimensional column vector such that its r-th element Qi(r) (-,€) is equal to Qi( )(~,e) =

. 1 og2p(r)
‘)ng) 2 géag(;’e) ()936 and h( ) (-,€) denotes the r-th element of h;.
Evaluating each term of (15) at € = 0, and noting that E [U;"] = 0, we obtain
1. [0U; 2 & 0*U; 9*U;
= — pee i <. B 95 ‘1,
0 n ;E {89’] (0) + n ;a" [dé 8al} Za {(‘)af }
2 i e N (92U1 1 77 7 9 2 8 U-b 1 - P) 02U1
J 4+ — 0°(0) o - FE 6° — 0° -E — - F
oy ; (0) e [09'80@ 0+ n 12; (6°(0) ) da? T ; () da?

2 - ([ [ U; 2 y oU;
+ ;( WdAiT> —Zl 9 / iT+ — E / dAm

where
— € / 1 - 82Ui(1) € 1
G= [9 (0) (EZIE 0008’ 6(0), - 7;

from which we obtain

(%211)966@ L eS8 nz [ an,

=1
€ o°U; € 1 § at O°U; G\ ¢
49 <;Zn E {89/8%}) 8 (0) + (n ; B {aai } (n,?) > 6 (0)
42 s Ay a - (af) )0 (0)+6
n a6 n
25" g (o) O°Ui | pe ! < (0) Ou,
o ZQ B [39 "Ocv; ] o0+ n Z (0" (0) f) o {d”f ]

i=1 =1

Because

0 U — l - oo 23;1 I/it ’
;Z [ } B nZE[Ui ]<\/—T_E‘[V2]>
€ ' ()Ul ‘ - Z, ”
;ai / (()—deAv’T oon Z \/—EI[V2 ( Z ))
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(e - (3o ()0
(w5 er)ro = o(F)or(F) -0 ()
(5w = o))
(52 it )owr ~ ou(F)on(5)-or(2)

and

~—
R~
I
Q
3

we may write

6 (0) = (%

Therefore, we have

=1

uM:

o) e ()
Zt 1 Vit 1
(i ) Y Hem v2<
1 Lat=1 Vit Vit
(1) 1L [F

D) +0,(3)

( e )

+ o, (1)

\/_E[V2

.,

1 EUme]
S (e 2y (1
. (U’ e V’ﬂ ot

The terms in square parentheses have joint limiting normal distributions by CLT. Their product is a quadratic

form with mean

EV.UM]  EWUM™)  EWLUM EVRUT]  EVaU]  E[VeuUil

E[V? BV BV wWVE) 2EVE] 2E[VP]

T () o~ f<nzz> ( iy V”U>+op<1>

B Proof of Theorem 2

Therefore, we have

Proof of the theorem under the stronger condition where n = O (T') is be provided here. (More general proof

under the condition n = o (TS) is available as Supplementary Appendix II upon request.) It suffices to show that
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3=

B+ o0, (1). The conclusion easily follows from /nT

it (5) — E [Vaguy]| £

L (o)
T;Vm@)u

< (maxE Mft

—_

T
Z (M2 ~ E [MZ])
1:1

1

’ T

1 -
— Vs
T; “(

> (}9— 90‘ + mlax|ai — g )

= /25 =
. =" 1 L
9) i (9) -7 Z Vairtsse | +

B/P+o0p(1). Note that for My = M (zit)

§ VZN‘UH‘_
§ VZH“H

By Lemma 2 in Supplementary Appendix I, we obtain
L
max | Z (Mj - E []Wft])’ =0, (1), max Z Vasrttis — E [Vageui]| = o, (1
t=1
Cowbined with Lemmas 4 and 5 in Supplementary Appendix I, we obtain
T
max | — Z it ( > Wit ( ) — E [Vauuyull = 0p (1)
We can similarly show that
1 & 2 1 G s
max 7 Z Vit (9> —F [U”] =0p(1), max T Z it (9> it (9) — E [Vauvid]
t=1 t=1
1 2 1 & ~
max T ;'&it (9) - F [um =0, (1), max T ;u“ (9) Vit (9) — Eluvi)
It follows that
n T n n o1 n
1 PP 1 1 —-Z UiVaiw 1 E [V Us)
LR DI Do R ae
nT i=1 t=1 n i=1 n =1 T Zt 1‘/3 n i=1 Vv”
from which we obtain
1 n T 1 n
LSS 0,0, = dim L3 710,00
nT ; it e ; +op (1)
1 - —11“_ ZfF:l ﬁit‘?ﬂt . 1 E [‘/QH‘U,”]
na Iyt gz Ay 2% vt
=1 T t=1 "it =1 R

C Proof of Theorem 3

By Theorem 7 in Supplementary Appendix I, we have Pr [

1 n 1
- _ 9(6566 — 1
20‘/T—T\/T (€) = o0p (1)

- L n
- 120y T -1

and

T.
1

1

%966566 (?)1 >

] =

T

[Vairts]
LGllvt]
).
=0, (1).
=0, (1).
= op (1)
(23)
(24)

o (71:) . Therefore,

0 (E)|

111 dX

efeee (E(t))
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where 67;7° denotes the delete-¢ version of §{;7*, and the second equality is based on
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from which the conclusion follows.
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