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ABSTRACT

I study a simple, widely applicable approach to handling the initial

conditions problem in dynamic, nonlinear unobserved effects models. Rather

than attempting to obtain the joint distribution of all outcomes of the

endogenous variables, I propose finding the distribution conditional on the

initial value (and the observed history of strictly exogenous explanatory

variables). The approach is flexible, and results in simple estimation

strategies for at least three leading dynamic, nonlinear models: probit,

Tobit, and Poisson regression. I treat the general problem of estimating

average partial effects, and show that simple estimators exist for important

special cases.



1. INTRODUCTION

In dynamic panel data models with unobserved effects, the treatment of

the initial observations is an important theoretical and practical problem.

Much attention has been devoted to dynamic linear models with an additive

unobserved effect, particularly the simple AR(1) model without additional

covariates. As is well known, the usual within estimator is inconsistent,

and can be badly biased. [See, for example, Hsiao (1986, Section 4.2).]

For linear models with an additive unobserved effect, the problems with

the within estimator can be solved by using an appropriate transformation --

such as differencing -- to eliminate the unobserved effects. Then,

instrumental variables (IV) can usually be found for implementation in a

generalized method of moments (GMM) framework. Anderson and Hsiao (1982)

proposed IV estimation on a first-differenced equation, while several

authors, including Arellano and Bond (1991), Arellano and Bover (1995), and

Ahn and Schmidt (1995), improved on the Anderson-Hsiao estimator by using

additional moment restrictions in GMM estimation. More recently, Blundell

and Bond (1998) and Hahn (1999) have shown that imposing restrictions on the

distribution of initial condition can greatly improve the efficiency of GMM

over certain parts of the parameter space.

Solving the initial conditions problem is notably more difficult in

nonlinear models. Generally, there are no known transformations that

eliminate the unobserved effects and result in usable moment conditions,

although special cases have been worked out. Chamberlain (1992) finds moment

conditions for dynamic models with a multiplicative effect in the conditional

mean, and Wooldridge (1997) considers transformations for a more general
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class of multiplicative models. Honoré (1993) obtains orthogonality

conditions for the unobserved effects Tobit model with a lagged dependent

variable. For the unobserved effects logit model with a lagged dependent

variable, Honoré and Kyriazidou (2000) find an objective function that

identifies the parameters under certain assumptions on the strictly exogenous

covariates.

The strength of semiparametric approaches is that they allow estimation

of parameters (although only relative effects can be estimated) without

specifying a distribution (conditional or unconditional) of the unobserved

effect. Unfortunately, identification hinges on some strong assumptions

concerning the strictly exogenous covariates -- for example, time dummies are

not allowed in the Honoré and Kyriazidou (2000) approach, nor are variables

that always increase for each cross-sectional unit, such as age or workforce

experience. Honoré and Kyriazidou also reduce the sample to cross-sectional

units with no change in the discrete covariates over the last two time

periods. In practice, this could be a significant reduction in the sample

size, especially considering the semiparametric estimators converge at rates

� � � � �
less than the standard

�
N, where N is the size of the cross section.

Another practical limitation of the Honoré (1993) and Honoré and

Kyriazidou (2000) estimators is that partial effects on the response

probability or conditional mean are not identified. Therefore, the economic

importance of covariates, or even the amount of state dependence, cannot be

determined from semiparametric approaches.

In this paper I reconsider the initial conditions problem in a

parametric framework for nonlinear models. A parametric approach has all of

its usual drawbacks because I specify an auxiliary conditional distribution
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for the unobserved heterogeneity; misspecification of this distribution

generally results in inconsistent parameter estimates. Nevertheless, in some

leading cases the approach I take leads to some remarkably simple maximum

likelihood estimators. Further, I show that the assumptions are sufficient

for uncovering the quantities that are usually of interest in nonlinear

applications: partial effects on the mean response, averaged across the

population distribution of the unobserved heterogeneity. In some leading

cases, estimated average partial effects are easy to obtain.

Previous research in parametric, nonlinear models has primarily focused

on three different ways of handling initial conditions in dynamic models with

unobserved heterogeneity; these are summarized by Hsiao (1986, Section 7.4).

The simplest approach is to treat the initial conditions for each cross-

sectional unit as nonrandom constants. Unfortunately, this implies an

untenable assumption, namely, that the initial outcome of the response

variable or variables, y , is independent of unobserved heterogeneity, c ,i0 i

and any observed exogenous variables. Even when we observe the entire

history of the process {y }, the assumption of independence between c andit i

y is very strong. For example, suppose we are interested in modelingi0

earnings of individuals once they leave school, and y is earnings in thei0

first post-school year. The fact that we observe the start of this process

is logically distinct from the assumption that unobserved heterogeneity --

containing "ability" and "motivation," say -- is independent of initial

earnings.

A better approach is to explicitly allow the initial condition to be

random, and then to use the joint distribution of all outcomes on the

response -- including that in the initial time period -- conditional on
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unobserved heterogeneity and observed strictly exogenous explanatory

variables. The main complication with this approach is specifying the

distribution of the initial condition given unobserved (and observed)

heterogeneity. Some authors insist that the distribution of the initial

condition represent a steady-state distribution. While the steady-state

distribution can be found in special cases -- such as the first-order linear

model without exogenous variables (see Bhargava and Sargan (1983) and Hsiao

(1986, Section 4.3)) and in the unobserved effects probit model without

additional conditioning variables (see Hsiao (1986, Section 7.4)) -- it

cannot be done generally.

For the dynamic probit model with covariates, Heckman (1981) proposed

approximating the conditional distribution of the initial condition.

(Bhargava and Sargan (1983) effectively take this same approach for the

linear AR(1) model with strictly exogenous covariates.) This avoids the

practical problem of not being able to find the conditional distribution of

the initial value. But, as we will see, it is computationally more difficult

than necessary for obtaining both parameter estimates and estimates of

averaged effects in nonlinear models.

The approach I suggest in this paper is to model the distribution of the

unobserved effect conditional on the initial value and any exogenous

explanatory variables. This suggestion has been made before for particular

models. For example, Chamberlain (1980) mentions this possibility for the

linear AR(1) model without covariates, and Blundell and Smith (1991) study

the conditional maximum likelihood estimator of the same model; see also

Blundell and Bond (1998). (In this paper, I use the phrase "conditional

maximum likelihood" in its most general sense: it simply means that the
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likelihood function is conditional on a set of variables.) For the binary

response model with a lagged dependent variable, Arellano and Carrasco (2002)

study a maximum likelihood estimator conditional on the initial condition,

where the distribution of the unobserved effect given the initial is taken to

be discrete. When specialized to the binary response model, the approach

here is more flexible, at least along some dimensions, and computationally

much simpler: the response probability can have the probit or logit form,

strictly exogenous explanatory variables are easily incorporated along with a

lagged dependent variable, and standard random effects software can be used

to estimate the parameters and averaged effects.

Specifying a distribution of heterogeneity conditional on the initial

condition results in a joint distribution of outcomes after the initial

period conditional on the initial value and any strictly exogenous variables.

This approach has several advantages. First, we are free to choose the

auxiliary distribution so as to be flexible or convenient. Because we are

not specifying the distribution of the initial value, conditonal on

unobserved heterogeneity, we need not even consider the notion of a steady-

state distribution. Of course, we might just view the approach here as a

different approximation that has some computational advantages. Second, in

several leading cases -- probit, ordered probit, Tobit, and Poisson

regression -- an auxiliary distribution can be chosen that leads to a

straightforward parameterization that can be estimated using standard

software. Third, partial effects on mean responses, averaged across the

distribution of unobservables, are identified and can be estimated without

much difficulty. I show how to obtain these partial effects generally in

Section 4, and Section 5 covers the probit and Tobit models.
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2. EXAMPLES

We introduce three examples in this section in order to highlight the

important issues; we return to these examples in Section 5. In all of the

examples, we assume random sampling in the cross section dimension, where the

cross section (N) is large relative to the number of time periods (T). The

asymptotic analysis is for fixed T.

EXAMPLE 1 (Dynamic Probit Model with Unobserved Effect): For a random draw i

from the population and t = 1,2,...,T,

P(y = 1 � y ,...,y ,z ,c ) = � (z � + � y + c ). (2.1)it i,t-1 i0 i i it i,t-1 i

This equation contains several assumptions. First, the dynamics are first

order, once z and c are also conditioned on. Second, the unobservedit i

effect is additive inside the standard normal cumulative distribution

function, � . (We could specify the logit function, rather than the probit

function, but we focus on probit here.) Third, the z satisfy a strictit

exogeneity assumption: only z appears on the right hand side, even thoughit

z = (z ,...,z ) appears in the conditioning set on the left. Naturally,i i1 iT

z can contain lags, and even leads, if appropriate, of exogenousit

variables.)

As we will see in Sections 3 and 4, the parameters in (2.1), as well as

average partial effects, can be estimated by specifying a density for ci

given (y ,z ). A homoskedastic normal distribution with conditional meani0 i

linear in parameters is especially convenient, as we will see in Section 5.

The typical approaches to this model are computationally more difficult; see,
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for example, Hsiao (1986, Section 7.4). �

EXAMPLE 2 (Dynamic Tobit Model with Unobserved Effect): We write a dynamic

Tobit model as

y = max[0,z � + g(y )� + c + u ] (2.2)it it i,t-1 i it

2
u � y ,...,y ,z ,c ~ Normal(0,� ), (2.3)it i,t-1 i0 i i u

for t = 1,2,...,T. This model applies to corner solution outcomes, where yit

is an observed response that equals zero with positive probability but is

continuously distributed over strictly positive values. It is not well

suited to true data censoring applications (such as top-coded data or

durations), as in that case we would want a lagged value of the latent

variable underlying (2.2) to appear. The function g( � ) is generally a vector

function, which allows the lagged value of the observed response to appear in

a variety of ways. For example, we might have g(y ) = {1[y = 0],1[y >-1 -1 -1

0]log(y )}, which allows the effect of lagged y to be different depending on-1

whether the previous response was a corner solution (zero) or strictly

positive. In this case, � is 2 � 1.

A maximum likelihood approach that treats the c as parameters toi

estimate is computationally difficult, and inconsistent for fixed T. Little

is known about the properties of such an estimator for various T. Honoré

(1993) proposes orthogonality conditions that identify the parameters, but

average partial effects are apparently unidentified. We will show how to

� � � � �
obtain

�
N-consistent estimates of the parameters as well as average partial

effects in Section 5. �

7



EXAMPLE 3 (Dynamic Unobserved Effects Poisson Model): For each t = 1,...,T,

y given (y ,...,y ,z ,c ) has a Poisson distribution with meanit i,t-1 i0 i i

E(y � y ,...,y ,z ,c ) = c exp[z � + g(y )� ]. (2.4)it i,t-1 i0 i i i it i,t-1

Again, we allow for the lagged dependent variable to appear in a flexible

fashion. For example, this could consist of a set of dummy variables for

specific outcomes on y . To test the null hypothesis of no statei,t-1

dependence, we test H : � = 0. A reasonable analysis allows c to be0 i

correlated with the initial condition and z . Chamberlain (1992) andi

Wooldridge (1997) have proposed orthogonality conditions based only on (2.4),

where no conditional distributional assumptions are needed for y or c .it i

Unfortunately, because the moment conditions have features similar to using

first differences in a linear equation, the resulting GMM estimators can be

very imprecise. In Section 5 we show how a particular model for a

conditional distribution for c leads to a straightforward maximum likelihoodi

analysis. �

3. GENERAL FRAMEWORK

3.1. Random Sampling

In this section we let i denote a random draw from the cross section,

and let t denote a time period. We assume that we observe (z ,y ) for t =it it

1,...,T, and we observe y . In the general framework, we are interested ini0

G
the conditional distribution of y �

�
given (z ,y ,c ), where z isit it i,t-1 i it

J
a vector of conditioning variables at time t and c �

�
is unobservedi

heterogeneity. (In the general setup, the dimension of z can change withit
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t, although in our examples the dimension of z is fixed.) We denote theit

conditional distribution by D(y � z ,y ,c ). The asymptotic analysis isit it i,t-1 i

with the number of time periods, T, fixed, and with the cross section sample

size, N, going to infinity.

We make two key assumptions on the conditional distribution of interest.

First, we assume that the dynamics are correctly specified. This means that

at most one lag of y appears in the distribution given outcomes back to theit

initial time period. Second, z = {z ,...,z } is appropriately strictlyi i1 iT

exogenous, conditional on c . Both of these can be expressed as follows:i

ASSUMPTION A.1: For t = 1,2,...,T,

D(y � z ,y ,c ) = D(y � z ,y ,...,y ,c ). � (3.1)it it i,t-1 i it i i,t-1 i0 i

We could allow for additional lags of y in the conditional distributionit

but, as we will see below in stating Assumption A.3, we would generally need

more time periods.

We next assume that we have a correctly specified parametric model for

the density representing (3.1) which, for lack of a better name, we call the

"structural" density.

ASSUMPTION A.2: For t = 1,2,...,T, f (y � z ,y ,c;� ) is a correctlyt t t t-1

specified density for the conditional distribution on the left hand side of

(3.1), with respect to a � -finite measure � (dy ). The parameter space, � , ist

P
a subset of

�
. Denote the true value of � by � ��� . �o

The requirement that we have a density with respect to a � -finite measure is
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not restrictive in practice. (The assumption that this measure does not

depend on t is also not very restrictive.) If y is purely discrete, � ist

counting measure. If y is continuous, � is Lebesgue measure. Ant

appropriate � -finite measure can be found for all of the possible response

variables of interest in economics, including those that are neither purely

discrete nor purely continuous (such as a Tobit response). In this section,

we do not need the measure explicitly, but we do refer to it in Section 4.

Most specific analyses of dynamic, nonlinear unobserved effects models

begin with assumptions very similar to A.1 and A.2. (Examples include

dynamic logit, probit, and Tobit models. An exception is Honoré and

Kyriazidou (2000), who consider the dynamic binary response model without

specifying the response probability. But they can only get consistency of

� � � � �
the parameters up to scale, the estimator converges at a rate slower than

�
N,

and it is very unlikely the estimator has an asymptotic normal distribution

when properly scaled.) Together, A.1 and A.2 imply that the density of

(y ,...,y ) given (y = y , z = z, c = c) isi1 iT i0 0 i i

T�
f (y � z ,y ,c;� ), (3.2)t t t t-1 o

t=1

where we drop the i subscript to indicate dummy arguments of the density. In

using (3.2) to estimate � , we must confront the fact that it depends on theo

unobservables, c. One possibility is to construct the log-likelihood

function that treats the N unobserved effects, c , as (vectors of) parametersi

to be estimated. This leads to maximizing the function

N T� �
log f (y � z ,y ,c ;� ). (3.3)t it it i,t-1 i

i=1t=1

over � and (c ,...,c ). While this approach avoids having to restrict the1 N

distribution of c -- conditional or unconditional -- it is computationallyi

difficult. More importantly, with fixed T, it suffers from an incidental
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parameters problem: except in very special cases, the estimator of � iso

inconsistent.

The alternative is to "integrate out" the unobserved effect. As we

discussed in the introduction, there have been several suggestions for doing

this. The first, which is to treat the y as fixed, is the same as assumingi0

y is independent of (z ,c ). Generally, this is too strong an assumption.i0 i i

We can follow the general route of attempting to find the density for

(y ,y ,...,y ) given z . If we specify f(y � z,c) theni0 i1 iT i 0

f(y ,y ,...,y � z,c) = f(y ,...,y � y ,z,c) � f(y � z,c). (3.4)0 1 T 1 T 0 0

Next, we specify a density f(c � z). We can then integrate (3.4) with respect

to this density to obtain f(y ,y ,...,y � z). This approach requires0 1 T

specifying a model for f(y � z,c) and f(c � z), and can be computationally0

demanding. Plus, sample selection on the basis of the initial condition yi0

generally leads to inconsistency of the MLE (see Section 3.2).

Rather than trying to find the density of (y ,y ,...,y ) given z , myi0 i1 iT i

suggestion is to use the density of (y ,...,y ) conditional on (y ,z ).i1 iT i0 i

Because we already have the density of (y ,...,y ) conditional oni1 iT

(y ,z ,c ) -- given by (3.2) -- we need only specify the density of ci0 i i i

conditional on (y ,z ). Because this density is not restricted in any wayi0 i

by the specification in Assumption A.2, we can choose it for convenience, or

flexibility, or, hopefully, both. (Even if f(y � z,c) is restricted by0

Assumption A.2 -- for example, by our desire to have the steady-state

distribution -- f(c � y ,z) is not restricted because f(c � z) is not0

restricted.) As in Chamberlain’s (1980) analysis of unobserved effects

probit models with strictly exogenous explanatory variables, we view the

device of specifying f(c � y ,z) as a way of obtaining relatively simple0
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estimates of � . Specifying a model for f(c � y ,z) seems no worse than havingo 0

to specify models, which themselves can only be approximate, for f(y � z,c).0

Further, as we will see in Section 4, we are also able to estimate a variety

of average partial effects.

ASSUMPTION A.3: h(c � y ,z;� ) is a correctly specified model for the density0

M
of D(c � y ,z ) with respect to a � -finite measure � (dc). Let ���

�
be thei i0 i

parameter space and let � denote the true value of � . �o

Technically, we need to introduce the � -finite measure, � , in Assumption A.3.

In practice, the measure would be either Lebesgue measure -- when c isi

assumed to have a continuous distribution, and so integrals involving c arei

the usual Riemann integrals -- or � would be the counting measure if c isi

discrete, in which case the integrals are weighted averages.

Assumption A.3 is much more controversial than Assumptions A.1 and A.2.

Ideally, we would not have to specify anything about the relationship between

c and (y ,z), whereas A.3 assumes we have a complete conditional densityi i0

correctly specified. In some specific cases -- linear models, logit models,

Tobit models, and exponential regression models -- consistent estimators of

� are available without Assumption A.3. We mentioned several of these ino

the introduction and in Section 2. But these estimators are complicated and

need not have particularly good statistical properties (although they are

consistent without Assumption A.3). Another problem with semiparametric

estimators often goes unnoticed: in nonlinear models where unobserved

effects are correlated with explanatory variables, semiparametric methods,

essentially by construction, do not allow us to recover the partial effects
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of interest, because these depend on the distribution of the unobserved

heterogeneity. Therefore, while we can often estimate the directions of the

effect of a policy under weaker assumptions, we cannot estimate the size of

the effect. As we will see in Section 4, by imposing Assumption A.3, we are

able to identify and estimate average partial effects.

To make the asymptotics straightforward, we assume the density in A.3

depends on a parameter vector, � , with fixed dimension. This makes our

analysis traditionally parametric. Alternatively, we could use a

seminonparametric approach, as in Gallant and Nychka (1987). Unfortunately,

the limiting distribution results when the dimension of � is allowed to

increase with N are not generally available for nonlinear models. Plus,

generaly identifiability of � would become an issue. In practice,o

researchers applying seminonparametric methods choose flexible forms for the

auxiliary densities -- in this case, h(c � y ,z;� ) -- but, for inference, use0

the usual parametric asymptotics.

Under Assumptions A.1, A.2, and A.3, the density of (y ,...,y ) giveni1 iT

(y = y , z = z) isi0 0 i

T
� �

� �
f (y � z ,y ,c; � ) h(c � y ,z;� )� (dc), (3.5)t t t t-1 o 0 o

� �
J t=1�

which leads to the log-likelihood function conditional on (y ,z ) for eachi0 i

observation i:

T
� � � �

�
( � , � ) = log

� �
f (y � z ,y ,c; � ) h(c � y ,z ; � ) � (dc) . (3.6)i t it it i,t-1 i0 i

� � � 	
J t=1�

To estimate � and � , we sum the log likelihoods in (3.6) across i = 1,...,No o

and maximize with respect to � and � . The resulting conditional MLE (CMLE)

� � � � �
is

�
N-consistent and asymptotically normal under standard regularity

conditions. (One set of conditions is covered in Wooldridge (2002, Chapter
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13).) In dynamic unobserved effects models, the log likelihoods are

typically very smooth functions, and we usually assume that the needed

moments exist and are finite. From a practical perspective, identification

is the key issue. Generally, if D(c � y ,z ) is allowed to depend on alli i0 i

elements of z then the way in which any time-constant exogenous variablesi

can appear in the structural density is restricted. To increase explanatory

power, we can always include time-constant explanatory variables in z , but,it

unless we make specific exclusion restrictions, we will not be able to

identify separate the partial effect of the time-constant variable from its

correlation with c .i

If z contains only contemporaneous variables, then the time-zeroit

value, z , does not appear in D(y ,...,y � y ,z ,z ,c ). Nevertheless,i0 i1 iT i0 i i0 i

we could model the density for D(c � y ,z ,z ) by including z , in whichi i0 i i0 i0

case the likelihood function is conditional on (y ,z ,z ). If thei0 i i0

structural model is orignally specified for D(y � z ,y ,z ,c ) -- soit it i,t-1 i,t-1 i

that a lag of z is included along with a lag of y -- then z must appearit it i0

in the final conditioning set.

If we want to expand the structural model in (3.1) to allow, say, yi,t-2

in the conditional distribution, then the density in Assumption A.3 would be

for D(c � y ,y ,z ), where y and y are the first two initial values.i i0 i,-1 i i0 i,-1

This increases the data requirements. With larger T we can afford to be more

flexible in the dynamics in the structural model.

3.2. Sample Selection and Attrition

We derived the log-likelihood in Section 3.1 under the assumption that we

14



observe data on all cross-sectional units in all time periods. For

unbalanced panels under certain sample selection mechanisms, we can use the

same conditional log likelihood for the subset of observations constituting a

balanced panel. Let s be a selection indicator: s = 1 if we observe datai i

in all time periods (including observing y ), and zero otherwise. Then, ifi0

(y ,...,y ) and s are independent conditional on (y ,z ), the MLE usingi1 iT i i0 i

the balanced panel will be consistent, and the usual asymptotic standard

errors and test statistics are asymptotically valid. Consistency follows

N
because the log-likelihood on the restricted sample is simply

�
s

�
( � , � ).i i

i=1

Now, for each i, E[s
�
( � , � )] = E{E[s

�
( � , � ) � y ,z ]} =i i i i i0 i

E{E(s � y ,z ) � E[
�
( � , � ) � y ,z ]}, where the first equality follows byi i0 i i i0 i

iterated expectations and the second follows by the conditional independence

assumption between (y ,...,y ) and s . But (� ,� ) maximizesi1 iT i o o

E[
�
( � , � ) � y ,z ] for all (y ,z ). Therefore, ( � , � ) maximizesi i0 i i0 i o o

E[s
�
( � , � )]; provided P(s = 1 � y ,z ) is sufficiently bounded from zero,i i i i0 i

and standard identification conditions hold on the original model, (� ,� ) iso o

still identified by the log likelihood using the balanced panel. See

Wooldridge (2002, Chapter 17) for further discussion.

When sample selection and attrition are an issue, obtaining the density

conditional on (y ,z ) has some advantages over the more traditionali0 i

approach, where the density would be conditional only on z . In particular,i

the current approach allows selection and attrition to depend on the initial

condition, y . For example, if y is annual hours worked, an MLE analysisi0 i0

based on the conditional log-likelihood (3.6) allows attrition to differ

across initial hours worked; in particular workers who were initially

unemployed are allowed to having missing data probabilities different from
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full- or part-time workers. In the traditional approach, one would have to

explicitly model selection or attrition as a function of y , and do ai0

complicated Heckit-type analysis.

Of course, reducing the data set to a balanced panel potentially

discards a lot of information. But the available semiparametric methods have

the same feature. For example, the objective function in Honoré and

Kyriazidou (2000) includes differences in the strictly exogenous covariates

for T = 3. Any observation where � z is missing for t = 2 or 3 cannotit

contribute to the analysis.

Similar comments apply to stratified sampling. Any stratification that

is a function of (y ,z ) can be ignored in the conditional MLE analysis. Ini0 i

fact, it is more efficient not to use any sampling weights. See Wooldridge

(1999, 2001) for a general treatment of stratification based on endogenous

and conditioning variables. By contrast, the usual approach of finding a

joint density of (y ,...,y ,y ) given z requires estimation usingiT i1 i0 i

sampling weights if stratification depends on y .i0

4. ESTIMATING AVERAGE PARTIAL EFFECTS

As mentioned in the introduction and in Section 2, in nonlinear models

it is often insufficient to have consistent, asymptotically normal estimators

of the parameters, � . For example, even in a standard binary response modelo

for cross section data, without unobserved heterogeneity, the sizes of the

coefficients do not allow us to determine the effects of the covariates on

the response probabilities. Instead, in models such as logit and probit, the

partial effects on the response probability -- evaluated at interesting
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values of the covariates, or averaged across the covariates -- are usually

reported. The same is true of Tobit models applied to corner solution

outcomes, where the effects of the covariates on mean responses are of

primary interest.

In dynamic panel data models with unobserved effects, estimating partial

effects is even more complicated, and the semiparametric literature has been

mostly silent on this issue. Typically, we would like the effect on the mean

response after averaging the unobserved heterogeneity across the population.

Essentially by construction, semiparametric approaches do not allow for

estimation of average partial effects: the main goal of semiparametric

methods in panel data contexts is to estimate parameters without making

distributional assumptions on the unobserved effects. In this section, I

show that average partial effects (APEs) are generally identified, and I

� � � � �
propose consistent,

�
N-asymptotically normal estimators. When we apply the

estimators to specific examples in Section 5, we obtain some particularly

simple estimators. Estimating average partial effects allows us to determine

the importance of any dynamics in the model, as opposed to just testing

whether there are dynamics.

Let q(y ) be a scalar function of y whose conditional mean we aret t

interested in at time t. The leading case is q(y ) = y when y is a scalar.t t t

In other words, we are interested in

m(z ,y ,c; � ) = E[q(y ) � z = z ,y = y ,c = c)]t t-1 it it t i,t-1 t-1 i

=
�
q(y )f (y � z ,y ,c;� )� (dy ), (4.1)t t t t t-1 o t

G�

where � (dy ) is the measure for the density f (see Assumption A.2) and z ,t t t

y , and c are values that we must choose. Unfortunately, since thet-1
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unobserved heterogeneity rarely, if ever, has natural units of measurements,

it is unclear which values we should plug in for c. One possibility is the

population mean value, � = E(c ). Under Assumptions, A.1, A.2, and A.3, �o i o

is identified. To see this, by iterated expectations we have � =o

E[E(c � y ,z )] = E[a(y ,z ;� )], wherei i0 i i0 i o

a(y ,z ;� ) =
�
ch(c � y ,z ;� )� (dc). (4.2)i0 i o i0 i o
J�

Equation (4.2) is simply the expectation of c conditional on (y ,z ), andi i0 i

^
it can be found by Assumption A.3. Because the CMLE � is a consistent,

� � � � � � � � � ��
N-asymptotically normal estimator of � , a consistent,

�
N-asymptoticallyo

normal estimator of � iso

N^ -1 ^
� = N

�
a(y ,z ; � ). (4.3)i0 i

i=1

A consistent estimator of m(z ,y , � ; � ) is thent t-1 o o

^ ^ ^ ^
m(z ,y , � ; � ) =

�
q(y )f (y � z ,y , � ; � ) � (dy ). (4.4)t t-1 t t t t t-1 t

G�

We can estimate partial effects by computing derivatives of (4.4) with

respect to elements of (z ,y ) or computing differences with respect tot t-1

elements of (z ,y ). As we will see in Section 5, (4.4) is straightforwardt t-1

to compute when q(y ) = y for probit and Tobit models. (On the other hand,t t

obtaining standard errors is more challenging. We can use the delta method

or, perhaps, bootstrapping.)

^ ^
One problem with evaluating m(z ,y ,c; � ) at c = � is that it estimatest t-1

partial effects at the population unit with the average heterogeneity, and

this may apply to only a small fraction of the population. If c has ai

^ ^
continuous distribution, m(z ,y ,� ; � ) technically represents none of thet t-1

population (because P(c = � ) = 0).i o

An alternative is to average m(z ,y ,c; � ) across the distribution oft t-1 o
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c . That is, we estimatei

� (z ,y ) = E[m(z ,y ,c ; � )], (4.5)t t-1 t t-1 i o

where the expectation is with respect to c . (For emphasis, variables withi

an i subscript are random variables in the expectations; others are fixed

values.) Under Assumptions A.1, A.2, and A.3, we do not have a parametric

model for the unconditional distribution of c , and so it may seem that wei

need to add additional assumptions to estimate (4.5). Fortunately, this is

not the case. We can obtain a consistent estimator of (4.5) using iterated

expectations:

E[m(z ,y ,c ; � )] = E{E[m(z ,y ,c ; � ) � y ,z ]}t t-1 i o t t-1 i o i0 i
� � � �

= E
�
q(y )f (y � z ,y ,c;� )� (dy ) h(c � y ,z ;� )� (dc) , (4.6)t t t t t-1 o t i0 i o

� � � 	
G�

where the outside expectation is with respect to the distribution of

(y ,z ). While (4.6) is generally complicated, it simplifies considerablyi0 i

in some leading cases, as we will see in Section 5. In effect, we first

compute the expectation of q(y ) conditional on (z ,y ,c ), which isit it i,t-1 i

possible because we have specified the density f (y � z ,y ,c;� ); often thet t t t-1 o

expectation is available in closed form. Typically, the hard part is

integrating m(z ,y ,c) with respect to h(c � y ,z ;� ).t t-1 i0 i o

One point worth emphasizing about (4.6) is that � appears explicitly.o

In other words, while � may be properly viewed as a nuisance parameter foro

estimating � , it is not a nuisance parameter for estimating APEs. Becauseo

the semiparametric literature treats � as a nuisance parameter -- moreo

generally, h(c � y ,z) is a nuisance function -- there seems little hope that0

semiparametric approaches will generally deliver consistent, let alone

� � � � ��
N-asymptotically normal, estimates of APEs in dynamic, unobserved effects
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panel data models.

Given (4.6), a consistent estimator of q(z ,y ) follows immediately:t t-1

N-1 ^ ^
N

�
r(z ,y ,y ,z ;� ,� ), (4.7)t t-1 i0 i

i=1

where r(z ,y ,y ,z ; � ,� ) is the function inside the expectation int t-1 i0 i o o

� � � � �
(4.6). This is a

�
N-asymptotically normal estimator of � (z ,y ). Notet t-1

that this estimator is not in any way conditional on the initial conditions,

y , or the exogenous variables, z : we are averaging these out over a largei0 i

cross section, which gives us a consistent estimator of the mean in the

population.

In order for (4.7) to be consistent for q(z ,y ), we assume a randomt t-1

sample from the population. If the sample has been stratified on the basis

of (y ,z ) then we would replace (4.7) with a weighted average, where thei0 i

weights are the inverse probability sampling weights. If the sample is

selected on the basis of (y ,z ), we would generally have to model thei0 i

selection probability, P(s = 1 � y ,z ), in order to consistently estimatei i0 i

the APE. See Wooldridge (2002b).

5. THE EXAMPLES REVISITED

We now reconsider the examples from Section 2, showing how we can apply

the results from Sections 3 and 4. We emphasize that, for certain choices of

the density h(c � y ,z;� ) in Assumption A.3, very convenient simplications0

exist for many leading cases. For notational simplicity, we drop the "o"

subscript on the true values of the parameters.
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5.1. Dynamic Binary and Ordered Response Models

In addition to (2.1), assume that

2
c � y ,z ~ Normal(� + � y + z � , � ), (5.1)i i0 i 0 1 i0 i 2 a

where z is the row vector of all (nonredundant) explanatory variables in alli

time periods. If, as occurs in many applications, z contains a full set ofit

time period dummy variables, these elements would be dropped from z . Thei

presence of z in (5.1) means that we cannot identify the coefficients oni

time-constant covariates in z , although time-constant covariates can beit

included in z in (5.1).i

Given (2.1) and (5.1), we can write

T ytf(y ,y ,...,y � y ,z,c;
�
) =

�
{ � (z � + � y + c) (5.2)1 2 T 0 t t-1

t=1
1-yt� [1 - � (z � + � y + c)] },t t-1

where
�

= ( ��� ,� ) � . When we integrate this with respect to the normal

distribution in (5.1), we obtain the density of (y ,...,y � y ,z ).i1 iT i0 i

Interestingly, we can specify the integrated density in such a way that

standard random effects probit software can be used for estimation. If we

write

c = � + � y + z � + a , (5.3)i 0 1 i0 i 2 i

2
where a is independent of (y ,z ) and distributed as Normal(0, � ), then yi i0 i a it

given (y ,...,y ,z ,a ) follows a probit model with response probabilityi,t-1 i0 i i

� (z � + � y + � + � y + z � + a ). (5.4)it i,t-1 0 1 i0 i 2 i

This is easy to derive by writing the latent variable version of the model as

*
y = z � + � y + c + uit it i,t-1 i it

and plugging in for c from (5.3):i

*
y = z � + � y + � + � y + z � + a + u . (5.5)it it i,t-1 0 1 i0 i 2 i it
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Equation (5.4) follows from (5.5) by noting that u givenit

(z ,y ,...,y ,a ) ~ Normal(0,1). It follows that the density ofi i,t-1 i0 i

(y ,...,y ) given (y = y ,z = z,a = a) isi1 iT i0 0 i i

T yt�
{� (z � + � y + � y + z� + a) (5.6)t t-1 1 0 2

t=1
1-yt� [1 - � (z � + � y + � y + z� + a)] }.t t-1 1 0 2

Therefore, the density of (y ,...,y ) given (y = y ,z = z) is obtainedi1 iT i0 0 i

2
by integrating (5.6) against the Normal(0,� ) density:a

T
�

yt
� �

{� (z � + � y + � y + z� + a) (5.7)t t-1 1 0 2
�
t=1�

1-yt� [1 - � (z � + � y + � y + z� + a)] }(1/� )� (a/� )da.t t-1 1 0 2 a a

Interestingly, the likelihood in (5.7) has exactly the same structure as the

standard random effects probit model, except that the explanatory variables

at time period t are

x � (1,z ,y ,y ,z ). (5.8)it it i,t-1 i0 i

Importantly, we are not saying that a is independent of y , which isi i,t-1

clearly impossible. Further, the density in (5.7) is clearly not the joint

density of (y ,...,y ) given (x ,...,x ), as happens in the case withi1 iT i1 iT

strictly exogenous x . Nevertheless, the way random effects probit works isit

by forming the products of the densities of y given (x ,a ), and thenit it i

integrating out using the unconditional density of a , and this is preciselyi

what (5.7) calls for. So we add y and z as additional explanatoryi0 i

variables in each time period and use standard random effects probit software

2
to estimate � , � , � , � , � , and � . (We might want to conserve on degrees0 1 2 a

� � � � �
of freedom by, say, using the time average, z , in place of z .) Thei i

estimate of � is of interest in its own right, as it tells us the direction1

of the relationship between c and y . (Incidentally, for applications thati i0
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include aggregate time effects -- which is usually warranted -- (5.8) makes

it clear that aggregate time dummies should appear only once in x , as theseit

do not vary across i.)

Unlike in semiparametric approaches to these models, we can easily

obtain estimated partial effects at interesting values of the explanatory

variables. As discussed in Section 4, there are two possibilities. First,

we can evaluate the standard normal cdf at an estimate of E(c ). But E(c ) =i i

^ ^ � � � � � � � � � � �^
� + � E(y ) + E(z )� , which is consistently estimated by � + � y + z � ,0 1 i0 i 2 0 1 0 2

where the estimates are the conditional MLEs and the overbars represent

� � � � �
averages in the cross section. For example, y is the proportion of people0

with y = 1. Then, we can compute derivatives or differences ofi0

^ ^ ^ ^ � � � � � � � � � � �^� (z � + � y + � + � y + z� ) (5.9)t t-1 0 1 0 2

with respect to elements of z or y , and evaluate these at interestingt t-1

values of z and y .t t-1

We can also estimate the average partial effects on the response

probabilities which, in this model, are based on

E[ � (z � + � y + c )], (5.10)t t-1 i

where the expectation is with respect to the distribution of c . The generali

formula in (4.7) turns out to be easy to obtain. Again, replace c with c =i i

� + � y + z � + a , so that (5.8) is0 1 i0 i 2 i

E[� (z � + � y + � + � y + z � + a )], (5.11)t t-1 0 1 i0 i 2 i

where the expectation is over the distribution of (y ,z ,a ). Now, just asi0 i i

in Section 4, we use iterated expectations:

E[ � (z � + � y + � + � y + z � + a )]t t-1 0 1 i0 i 2 i

= E{E[ � (z � + � y + � + � y + z � + a ) � y ,z ]}. (5.12)t t-1 0 1 i0 i 2 i i0 i

The conditional expectation inside (5.12) is easily shown to be
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� (z � + � y + � + � y + z � ), (5.13)t a a t-1 a0 a1 i0 i a2

where the a subscript denotes the original parameter multiplied by (1 +

2 -1/2� ) . Now, we want to estimate the expected value of (5.11) with respecta

to the distribution of (y ,z ). A consistent estimator isi0 i

N-1 ^ ^ ^ ^ ^
N

� � (z � + � y + � + � y + z � ), (5.14)t a a t-1 a0 a1 i0 i a2
i=1

^2 -1/2 ^ ^
where the a subscript now denotes multiplication by (1 + � ) , and � , � ,a

^ ^ ^ ^2
� , � , � , and � are the conditional MLEs. We can compute changes or0 1 2 a

derivatives of equation (5.14) with respect to z or y to obtain averaget t-1

partial effects.

Equation (5.14) extends Chamberlain’s (1984, equation (3.4)) method of

computing partial effects in the probit model with strictly exogenous

explanatory variables. The delta method can be used to obtain asymptotic

standard errors for these average effects. See, for example, Newey and

McFadden (1994).

The importance of an estimate such as (5.14) is that it allows us to

determine the magnitudes of partial effects, including the importance of any

state dependence. While semiparametric approaches allow us to test for state

dependence, we cannot generally conclude whether state dependence is

economically important. The same can be said of Chamberlain’s (1978) test

for state dependence: while it can be made robust to structural serial

correlation, it does not provide an estimate of the importance of the state

dependence.

It is straightforward to allow a more flexible conditional mean in

(5.1), provided it is linear in parameters. For examples, including

interactions between y and z is simple. Allowing for heteroskedasticityi0 i

is more complicated and would probably require special programming.
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Specification testing is relatively easy. For example, after estimating the

^ ^ 2 ^ ^ 3
basic model, terms such as (� y + z � ) and ( � y + z � ) could be added1 i0 i 2 1 i0 i 2

and their joint significance tested using a standard likelihood ratio test.

Score tests for, say, exponential heteroskedasticity in Var(c � y ,z ), ori i0 i

nonnormality in D(c � y ,z ), would be valuable.i i0 i

The same kind of derivation goes through if we replace � ( � ) in (5.7)

with the logit function. The parameters can be estimated using standard

random effects logit software where the explanatory variables are as in (5.8)

and the unobserved effect has a normal distribution.

A dynamic ordered probit (or ordered logit) model would also be fairly

straightforward to estimate using the current approach. Suppose that yit

takes on one of the values in {0,1,...,J}. Then, we can specify y asit

following an ordered probit model with J lagged indicators, 1[y = j], ji,t-1

= 1,...,J, and strictly exogenous explanatory variables, z . So, theit

*
underlying latent variable model would be y = z � + r � + c + e ,it it i,t-1 i it

where r is the vector of J indicators, and e has a conditionali,t-1 it

*
standard normal distribution. The observed value, y , is determined by yit it

falling into a particular interval, where the end points or cut points must

be estimated. If we specify c � y ,z as having a homoskedastic normali i0 i

distribution, standard random effects ordered probit (or random effects

ordered logit) software can be used. Probably we would allow h(c � y ,z;� ) to0

depend on a full set of indicators, 1[y = j], j = 1,...,J, which describei0

all of the possible states for the initial outcome.

Certainly there are some criticisms that one can make about the

conditional MLE approach in this example. First, suppose that there are no

2
covariates, so that (5.1) reduces to c � y ~ Normal(� + � y ,� ). Unlessi i0 0 1 i0 a
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� = 0, this assumption implies that c has a mixture of normals distribution1 i

[with mixing probability P(y = 1)], rather than a normal distribution, asi0

would be a standard assumption. But c given y has some distribution, andi i0

it is unclear why an unconditional normal distribution for c is a priorii

better than a conditional normal distribution. In fact, for cross-sectional

binary response models, Geweke and Keane (1999) find that, empirically,

mixture-of-normals probit models fit significantly better than the standard

probit model. Granted, the mixing probability here is tied to y , and the0

variance is assumed to be constant (though this can be relaxed). But in many

applications we assume that unobserved heterogeneity has a conditional normal

distribution rather than an unconditional normal distribution.

A related criticism is that if � = 0 then, because c given z cannot bei i

normally distributed unless � = 0, the model is not compatible with1

Chamberlain’s (1980) static random effects probit model. That the model here

does not encompass Chamberlain’s is true, but it is unclear why normality of

c given z is necessarily a better assumption than normality of c giveni i i

(y ,z ). Both are only approximations to the truth, and, when estimating ai0 i

dynamic model, it is much more convenient to use (5.1). Plus, Chamberlain’s

static model does not allow estimation of either � or the amount of state

dependence, as measured by the average partial effect. (In an application of

an early version of this paper, Erdem and Sun (2001) find evidence for ��� 0

in the choice dynamics for five different products. Interestingly, they

cannot reject � = 0 in any case.)1

Another criticism of an assumption like (5.1) is the same criticism that

has been aimed at Chamberlain’s (1980) random effects probit model with

strictly exogenous covariates. Namely, if we want the same model to hold for
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any number of time periods T, the normality assumption in (5.1) imposes

distributional restrictions on the z . For example, suppose that � = 0.it 1

Then, for (5.1) to hold for both T and T - 1, z � given (z ,...,z )iT 2T i1 i,T-1

would have to have a normal distribution. While theoretically this is a

valid criticism, it is hardly unique to this setting. For example, suppose

we specify a probit model for employment status, based on a set of

characteristics that exclude health status. Later, a binary indicator

indicating bad health becomes available. If we add the health indicator to

the covariates, the correct model can no longer be probit. In fact, every

time an explanatory variable is added to a probit or Tobit analysis, the

probit or Tobit model can no longer hold unless the new variable is normally

distributed. It seems counterproductive to worry about the logical

inconsistencies that arise when estimating nonlinear models with different

sets of explanatory variables. Such considerations make a strong theoretical

case for semiparametric methods, but when semiparametric metods are

difficult, inefficient, and do not estimate the quantities of interest, we

must look to parametric methods.

Criticisms of assumptions like (5.1) have more bite if we have

unbalanced panel data. Then, we would have to specify a different

conditional distribution of c for each configuration of missing data.i

Currently, the only solution to this problem is the one described in Section

3.2: if sample selection is exogenous conditional on (y ,z ), we can usei0 i

the balanced subpanel. As discussed in Sections 1 and 3.2, semiparametric

methods also must exclude data when the panel is not balanced.

5.2. Dynamic Corner Solution Models
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For the Tobit model with functions of the lagged dependent variable, the

density in Assumption A.2 is

f (y � z ,y ,c, � ) = 1 - � [(z � + g(y )� + c)/� ], y = 0t t t t-1 t t-1 u t

= (1/� )� [(y - z � - g(y )� - c)/� ], y > 0.u t t t-1 u t

To implement the conditional MLE, we need to specify a density in Assumption

A.3. Again, it is convenient for this to be normal, as in (5.1). For the

Tobit case, we might replace y with a more general vector of functions, ri0 i0

� r(y ), which allows c to have a fairly flexible conditional mean.i0 i

Interactions between elements of r and z may be warranted. We can use ani0 i

argument very similar to the probit case to show that the log likelihood has

a form that can be maximized by standard random effects Tobit software, where

the explanatory variables at time t are x � (z ,g ,r ,z ) and git it i,t-1 i0 i i,t-1

*� g(y ). In particular, the latent variable model can be written as yi,t-1 it

= z � + g � + c + u = z � + g � + � + r � + z � + u , whereit i,t-1 i it it i,t-1 0 i0 1 i 2 it

2
u given (z ,y ,...,y ,a ) has a Normal(0, � ) distribution. Again, weit i i,t-1 i0 i u

2 2 2
estimate � rather than � , but � is exactly what appears in the averagea c a

partial effects. We are thinking of cases where y is not the result ofit

true data censoring (such as top coding) but rather is a corner solution

response (such as labor supply, charitable contributions, amount of life

insurance, and so on).

Denote E(y � w = w ,c = c) asit it t i

2
m(w

�
+ c, � ) = � [(w �

+ c)/ � ](w
�

+ c) + � � [(w �
+ c)/� ], (5.15)t u t u t u t u

^ � � � � � ^ � � � � � �^
where w = (z ,g ). A consistent estimator of E(c ) is � + r � + z � ,t t t-1 i 0 0 1 2

where the estimates are the conditional MLEs and the overbars denote sample

averages. Even better, we can estimate the average partial effects. As in
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the probit case, it is convenient to rewrite the APE in terms of a :i

2 2
E[m(w

�
+ c , � )] = E[m(w

�
+ � + r � + z � + a ,� )]t i u t 0 i0 1 i 2 i u

2
= E{E[m(w

�
+ � + r � + z � + a ,� ) � r ,z ]}, (5.16)t 0 i0 1 i 2 i u i0 i

where the first expectation is with respect to the distribution of c and thei

second expectation is with respect to the distribution of (y ,z ,a ). Thei0 i i

second equality follows from iterated expectations. Since a and (r ,z )i i0 i

2
are independent, and a ~ Normal(0, � ), the conditional expectation in (5.16)i a

2
is obtained by integrating m(w

�
+ � + r � + z � + a ,� ) over a witht 0 i0 1 i 2 i u i

2
respect to the Normal(0, � ) distribution. Since m(w

�
+ � + r � + z � +a t 0 i0 1 i 2

2
a ,� ) is obtained by integrating max(0,w

�
+ � + r � + z � + a + u )i u t 0 i0 1 i 2 i it

2
with respect to u over the Normal(0, � ) distribution, it is easily seenit u

that the conditional expectation in (5.16) is

2 2
m(w

�
+ � + r � + z � ,� + � ). (5.17)t 0 i0 1 i 2 a u

A consistent estimator of the expected value of (5.17) (with respect to the

distribution of (r ,z )) is simplyi0 i

N-1 ^ ^ ^ ^ ^2 ^2
N

�
m(w

�
+ � + r � + z � ,� + � ). (5.18)t 0 i0 1 i 2 a u

i=1

The same kind of argument can be used to estimate averaged partial effects

conditional on y being positive, that is, on E(y � y > 0,w = w ,c =it it it it t i

c).

Other corner solution responses can be handled in a similar manner. For

example, suppose y is a fractional variable that can take on the valuesit

zero and one with positive probability (for example, fraction of pension

assets in the stock market). Then we can define y in terms of the latentit

*
variable y introduced earlier. The practical issues are how the laggedit

dependent variable should appear and how the initial value y should appeari0

in the distribution for c .i
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The discussion of the merits and drawbacks of the conditional normality

assumption for c given (y ,z ) are essentially the same as in the probiti i0 i

case.

5.3. Dynamic Poisson Model

As in Section 2, we assume that y given (y ,...,y ,z ,c ) has ait i,t-1 i0 i i

Poisson distribution with mean given in (2.4). As in the previous cases,

there exists a choice of the conditional density in Assumption A.3 that

simplifies the analysis. Write

c = a exp(� + r � + z � ), (5.19)i i 0 i0 1 i 2

where r is a vector of functions of y . Assume that that a isi0 i0 i

independent of (z ,y ) and a ~ Gamma( � ,� ), which is analogous to Hausman,i i0 i

Hall, and Griliches (1984). (This implies the normalization restriction

E(a ) = 1.) Then, for each t, y given (y ,...,y ,z ,a ) has a Poissoni it i,t-1 i0 i i

distribution with mean

a exp(z � + g � + � + r � + z � ), (5.20)i it i,t-1 0 i0 1 i 2

where r denotes a vector function of y . Call the mean in (5.20) a m .i0 i0 i it

Then the density of (y ,...,y ) given (z ,y ,a ) is obtained, as usual, byi1 iT i i0 i

the product rule:

T yt�
exp(-a m )(a m ) /y !i it i it t

t=1
T y T

�
t

� � �
n

=
�
m /y ! exp -a

�
m a , (5.21)it t i it i

� � � �
t=1 t=1

where n = y + ... + y . When we integrate out a with respect to the1 T i

Gamma(� ,� ) density, we obtain a density which has the usual random effects

Poisson form with Gamma(� ,� ) heterogeneity, as in Hausman, Hall, and

Griliches (1984, equation (2.3)). The difference is that the explanatory
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variables are (z ,g ,r ,z ). These are obviously not strictlyit i,t-1 i0 i

exogenous due to the presence of g . But the log likelihood for each ii,t-1

has the same form as if they are. This makes estimation especially

convenient in a software package such as Stata, which estimates random

effects Poisson models with Gamma heterogeneity. We could instead assume

that a has a lognormal distribution with mean unity.i

6. EMPIRICAL APPLICATION: THE PERSISTENCE OF UNION MEMBERSHIP

Vella and Verbeek (1998) (hereafter, VV) use panel data on working men

to estimate the union wage differential, accounting for unobserved

heterogeneity. I use their data to estimate a simple model of union

membership dynamics. Most of the interesting explanatory variables in VV’s

data set are constant over time. One variable that does change over time is

marital status (marr ). A simple dynamic model of union membership isit

P(union = 1 � union ,...,union ,marr ,...,marr ,c ) (6.1)it i,t-1 i0 i1 iT i

= � (� + � marr + � union + c ), t = 1,...,T,t 1 t 1 i,t-1 i

where t = 1 corresponds to 1981 and t = T corresponds to 1987. The initial

time period is 1980. The unobserved effect, c , is assumed to satisfyi

assumption (5.1), where z is the 1 � T vector of marital status indicatorsi

and y = union . The � are unrestricted year intercepts.i0 i0 t

The first column in Table 1 contains the conditional maximum likelihood


estimates. These were obtained simply by using the Stata 7.0 "xtprobit"

command, where a full set of time dummies, current marital status, lagged

union status, union membership status in 1980 (union ), and the marital0

status dummy variables for 1981 through 1987 (marr through marr ) are1 7
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included as explanatory variables. (The coefficients on the year dummies are

not reported.) Asymptotic standard errors are given in parentheses.

(Table 1 about here.)

Even after controlling for the unobserved effect using the model in

Section 5.1, the coefficient on the lagged union status variable is very

statistically significant. It seems practically large, too (.884), although

we hold off discussing magnitudes until we have estimated the partial effect

on the response probability with the unobserved hetegerogeneity averaged out.

The initial value of union status is also very important, and implies that

there is substantial correlation between the unobserved heterogeneity and the

initial condition. In fact, the coefficient on union (1.499) is much larger0

than the coefficent on the lag, union .t-1

Getting married is estimated to have a marginally significant effect on

belonging to a union, with a t statistic of about 1.61. Recall that the

variables marr , ..., marr are included to allow for partial correlation1 7

between c and marital status in all time periods. Interestingly, there isi

no clear pattern to the coefficients, and only marr is statistically7

different from zero at the 5% level.

In order to explicitly control for some observed heterogeneity, column

two includes the time-constant variables educ and black. While we cannot

necessarily identify the causal effects of education and race on union

membership, we can always include them in the model for unobserved

heterogeneity in (5.1), which means we just list them as additional

explanatory variables. The coefficient on educ is very insignificant, while
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blacks are significantly more likely to belong to a union. Interestingly,

even after educ and black are included, there is much unobserved

heterogeneity that cannot be explained by union , marr , ..., marr , educ,0 1 7

^
and black: � = 1.086 (the estimate of the conditional standard deviation ofa

c ), and it is statistically different from zero. This means that thei

unobserved effect a = c - E(c � union ,marr ,...,marr ,educ ,black )i i i i0 i1 i7 i i

accounts for about 54.1% of the unexplained variance of the composite error,

a + u , where u has a conditional standard normal distribution.i it it

As emphasized in Section 4, it is often important to obtain an estimated

partial effects with respect to the lagged dependent variable (and perhaps

other explanatory variables). Here, we estimate the probability of being in

a union in 1987 given that the man is or is not in a union in 1986, broken

down also by marital status. As discussed in Section 5.1, we average out the

distribution of c using equation (5.14), and we compute the effect fori

married and single men separately. Specifically, Table 2 reports

N-1
N

� � [(-1.800 - .0083 + .178 marr + .884 uniont t-1
i=1

^ ^ 1/2
+ � y + z � )/(1 + 1.248) ],1 i0 i 2

for union = 0 or 1 and marr = 0 or 1, where -.0083 is the coefficient ont-1 t

^2 ^
the 1987 year dummy and � = 1.248. The � are reported in column one ofa j

Table 1.

(Table 2 about here.)

For a married man belonging to a union in 1986, the estimated

probability of belonging to a union in 1987 -- averaged across the

distribution of c -- is .415. For a married man not belonging to a union ini
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1986, the estimated probability is .227. The difference, .188, is an

estimate of the state dependence of union membership. The magnitude for

unmarried men, .176, is similar.

7. CONCLUSIONS

I have suggested a general method for handling the initial conditions

problem in dynamic, nonlinear, unobserved effects panel data model. The key

insight is that, in general nonlinear models, we can use a joint density

conditional on the strictly exogenous variables and the initial condition.

Because we model the density of the unobserved effect conditional on the

observed initial condition (and exogenous variables), this is not the same as

treating the initial condition as fixed. Conditional MLE can be used and has

its standard asymptotic properties as the cross section sample size

increases.

The auxiliary conditional density can be modeled in a very flexible way,

but perhaps the most important contribution of the paper is that it shows how

to obtain remarkably simple estimators in dynamic probit, Tobit, and Poisson

unobserved effects models for specific choices of the auxiliary density. We

have considered the important problems of estimating the partial effects at

the average value of the unobserved heterogeneity and the partial effects

averaged across the distribution of the unobserved heterogeneity. The APEs

are generally identified under Assumptions A.1, A.2, and A.3. For some

leading cases, the APEs are easy to estimate; hopefully, the availability of

simple estimates will make reporting them routine in empirical work, where

the current focus is on parameter estimates.
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Many issues can be studied in future research. For example, because we

might choose the model for D(c � y ,z ) for convenience -- as with thei i0 i

examples in Section 5 -- it is important to know the consequences of

misspecifying the density in Assumption A.3. Intuitively, as the size of the

cross section increases, we can make the density h(c � y ,z;� ) more and more0

flexible (as in the so-called seminonparametric literature). In all of the

examples in Section 5, as N gets large we can easily let the conditional mean

function E(c � y ,z ) be very flexible in (y ,z ) -- so, for example, we cani i0 i i0 i

add interactions and various powers. If we want to be flexible along other

dimensions -- for example, in the probit and Tobit cases allowing

Var(c � y ,z ) to be heteroskedastic -- computation becomes more of an issue.i i0 i

Unless nonlinearities in the model are caused by true data censoring,

any study to evaluate the impact of various choices in Assumption A.3 on the

robustness of the estimators should focus on estimates of average partial

effects. As is well known, it frequently makes no sense to compare parameter

estimates across different nonlinear models. (An example is probit and

logit, where the scale factors entering the partial effects differ by the

multiple .625.)

The approach proposed in Section 3 can be modified when some of the

explanatory variables fail the strict exogeneity requirement. When the zit

contain policy variables or individual-choice variables, these can respond to

past movements in y , and this can invalidate Assumption A.1. (For example,it

if marital status is included in an employment probit, future marital status

may depend on lagged employment status.) Wooldridge (2000) lays out a

framework for handling models with feedback. Finally, the idea of specifying

a conditional distribution for the unobserved effect given the initial
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conditions should prove useful for analyzing dynamic unobserved effects

models with attrition or sample selection. Wooldridge (1995) covers the case

of linear models with strictly exogenous explanatory variables, but allowing

for a lagged dependent variable in the structural equation is nontrivial.
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Table 1��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� �� ��
Dependent Variable: union

�
t

� �� �� �� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� �
Explanatory (1) (2)

� �� �
Variable

� �� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� �
marr .179 .180

�
t

��
(.111) (.111)

�� �� �� ��
union .884 .895

�
t-1

� �
(.094) (.094)

� �� �� �� �
union 1.499 1.461

�
0

��
(.165) (0.172)

�� �� �� ��
marr .155 .145

�
1

� �
(.210) (.212)

� �� �� �� �
marr -.194 -.182

�
2

��
(.210) (.208)

�� �� �� ��
marr -.087 -.090

�
3

� �
(.231) (.236)

� �� �� �
marr .215 .265

�
4

�
(.244) (.247)� �� �� ��

marr .00004 .00003
�

5
� �

(.00007) (.00007)
� �� �� �� �
marr .292 .273

�
6

��
(.253) (.255)

�� �� �� ��
marr -.429 -.390

�
7

� �
(.215) (.220)

� �� �� �� �
educ � � � � � � � � � � � � � � � � � � � � � � � � � -.013

� ��
(.036)

�� �� �� ��
black � � � � � � � � � � � � � � � � � � � � � � � � � .526

�� �
(.192)

� �� �� �� �
constant -1.800 -1.731

� ��
(0.445)

�
(0.148)

� �� �
^

� �
� 1.117 1.086

�
a

��
(0.097) (0.093)

�� �� �� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� ��
Log Likelihood Value -1,288.28 -1,284.40

�� �� �
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