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Abstract. This paper presents a new estimator for the mixed proportional

hazard model that allows for a nonparametric baseline hazard and time-varying

regressors. In particular, this paper allows for discrete measurement of the durations

as happens often in practice. The integrated baseline hazard and all parameters are

estimated at regular rate,
√
N, where N is the number of individuals. A hazard

model is a natural framework for time-varying regressors if a flow or a transition

probability depends on a regressor that changes with time since a hazard model

avoids the curse of dimensionality that would arise from interacting the regressors

at each point in time with one another.

Keywords: Mixed Proportional Hazard Model, Time-varying regressors, Heterogeneity.

1. Introduction

The estimation of duration models has been the subject of significant research in

econometrics since the late 1970s. Since Lancaster (1979), it has been recognized that it

is important to account for unobserved heterogeneity in models for duration data. Failure

to account for unobserved heterogeneity causes the estimated hazard rate to decrease

more with the duration than the hazard rate of a randomly selected member of the

population. Moreover, the estimated proportional effect of explanatory variables on the

population hazard rate is smaller in absolute value than that on the hazard rate of the

∗Comments are welcome, jhausman@mit.edu and woutersen@jhu.edu.
†We thank Su-Hsin Chang, Matthew Harding, and Marcel Voia for research assistance. We have

received helpful comments from Bo Honoré, Moshe Buchinsky and seminar participants at Harvard-MIT,
UCLA, Texas A&M, Rice University, Yale University, UC Santa Barbara, the University of Maryland,
and the University of Virginia.
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average population member and decreases with the duration. To account for unobserved

heterogeneity Lancaster proposed a parametric Mixed Proportional Hazard (MPH) model,

a generalization of Cox’s (1972) Proportional Hazard model, that specifies the hazard rate

as the product of a regression function that captures the effect of observed explanatory

variables, a base-line hazard that captures variation in the hazard over the spell, and a

random variable that accounts for the omitted heterogeneity.

Lancaster’s MPH model was fully parametric, as opposed to Cox’s semi-parametric

approach, and from the outset questions were raised on the role of functional form and

parametric assumptions in the distinction between unobserved heterogeneity and dura-

tion dependence1. This question was resolved by Elbers and Ridder (1982) who showed

that the MPH model is semi-parametrically identified if there is minimal variation in

the regression function. A single indicator variable in the regression function suffices to

recover the regression function, the base-line hazard, and the distribution of the unob-

served component, provided that this distribution does not depend on the explanatory

variables. Semi-parametric identification means that semi-parametric estimation is feasi-

ble, and a number of semi-parametric estimators for the MPH model have been proposed

that progressively relaxed the parametric restrictions.

Nielsen et al., (1992) showed that the Partial Likelihood estimator of Cox (1972) can be

generalized to the MPH model with Gamma distributed unobserved heterogeneity. Their

estimator is semi-parametric because it uses parametric specifications of the regression

function and the distribution of the unobserved heterogeneity. The estimator requires

numerical integration of the order of the sample size, which further limits its usefulness

and makes it impractical for most situation in econometrics. Heckman and Singer (1984)

considered the non-parametric maximum likelihood estimator of the MPH model with a

parametric baseline hazard and regression function. Using results of Kiefer and Wolfowitz

(1956), they approximate the unobserved heterogeneity with a discrete mixture. The

rate of convergence and the asymptotic distribution of this estimator are not known.

Another estimator that does not require the specification of the unobserved heterogeneity

1Heckman (1991) gives an overview of attempts to make this distinction in duration and dynamic
panel data models.
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distribution was suggested by Honoré (1990). This estimator assumes a Weibull baseline

hazard and only uses very short durations to estimate the Weibull parameter.

Han and Hausman (1990) and Meyer (1990) proposes an estimator that assumes that

the baseline hazard is piecewise-constant, to permit flexibility, and that the heterogeneity

has a gamma distribution. We present simulations and a theoretical result that show that

using a nonparametric estimator of the baseline hazard with gamma heterogeneity yields

inconsistent estimates for all parameters and functions if the true mixing distribution is

not a gamma, which limits the usefulness of the Han-Hausman-Meyer approach. Thus,

we find it important to specify a model that does not require a parametric specification

of the unobserved heterogeneity.

Horowitz (1999) was the first to propose an estimator that estimates both the base-

line hazard and the distribution of the unobserved heterogeneity nonparametrically. His

estimator is an adaptation of the semi-parametric estimator for a transformation model

that he introduced in Horowitz (1996). In particular, if the regressors are constant over

the duration then the MPH model has a transformation model representation with the

logarithm of the integrated baseline hazard as the dependent variable and a random er-

ror that is equal to the logarithm of a log standard exponential minus the logarithm of

a positive random variable. In the transformation model the regression coefficients are

identified only up to scale. As shown by Ridder (1990) the scale parameter is identified

in the MPH model if the unobserved heterogeneity has a finite mean. Horowitz (1999)

suggests an estimator of the scale parameter that is similar to Honoré’s (1990) estimator

of the Weibull parameter and consistent if the finite mean assumption holds so that his

approach allows estimation of the regression coefficients (not just up to scale). However,

the Horowitz approach only permits estimation of the regression coefficients at a slow rate

of convergence and it is not N−1/2 consistent, where N is the sample size. In practice,

there may be three obstacles for applying Horowitz (1999) MPH estimator. First, the du-

rations need to be measured at a continuous scale in order to estimate the transformation

model. This condition often does not hold in economic data, e.g. unemployment duration

data as discussed in Han and Hausman (1990). Second, like the transformation model, the
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MPH estimator does not allow for time-varying regressors. Finally, the estimator relies

on arbitrarily short durations to estimate the scale parameter and, therefore, converges

slowly. Thus, the regression coefficient estimates, which are often of primary interest, are

often not estimated very precisely2.

In this paper, we derive a new estimator for the mixed proportional hazard model

(with heterogeneity) that allows for a nonparametric baseline hazard and time-varying re-

gressors. No parametric specification of the heterogeneity distribution nor nonparametric

estimation of the heterogeneity distribution is necessary. Intuitively, we condition out the

heterogeneity distribution, which makes it unnecessary to estimate it. Thus, we elimi-

nate the problems that arise with the Lancaster (1979) approach to MPH models. In our

new model the baseline hazard rate is nonparametric and the estimator of the integrated

baseline hazard rate converges at the regular rate, N−1/2, where N is the sample size.

This convergence rate is the same rate as for a duration model without heterogeneity. The

regressor parameters also converge at the regular rate. A nice feature of the new estima-

tor is that it allows the durations to be measured on a finite set of points. Such discrete

measurement of durations is important in economics; for example, unemployment is often

measured in weeks. In the case of discrete duration measurements, the estimator of the

integrated baseline hazard only converges at this set of points, as would be expected.

It may be argued that the bias in the estimates of the regression coefficients is small,

if the estimates of the MPH model indicate that there is no significant unobserved het-

erogeneity. The problem with this argument is that estimates of the heterogeneity distri-

bution are usually not very accurate. Given the results in Horowitz (1999) this finding

should not come as a surprise. The simulation results in Baker and Melino (2000) show

that it is empirically difficult to find evidence of unobserved heterogeneity, in particular

if one chooses a flexible parametric representation of the baseline hazard. However, Han-

Hausman (1990) and applications of their approach have found significant heterogeneity

using a flexible approach to the baseline hazard. Bijwaard and Ridder (2002) find that the

2 It should be noted that the slower than N−1/2 convergence of Horowitz (1999) estimator is a property
of the model. Hahn (1994) and Ishwaran (1996a) show that no estimator can converge at rate N−1/2

under the assumptions of Horowitz (1999). Horowitz (1999) assumes that the first three moments of the
heterogeneity distribution exist and Ishwaran (1996b) shows that the fastest possible rate of convergence
is N−2/5 for that case and Horowitz’ (1999) estimator converges arbitrarily close to that rate.
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bias in the regression parameters is largely independent of the specification of the baseline

hazard. Hence, failure to find significant unobserved heterogeneity should not lead to the

conclusion that the bias due to correlation of the regressors and the unobservables that

affect the hazard is small.

Because it is empirically difficult to recover the distribution of the unobserved hetero-

geneity, estimators that rely on estimation of this distribution may be unreliable. There-

fore, we avoid estimating the unobserved heterogeneity distribution. Nevertheless, we can

identify and estimate the regression parameters and the integrated baseline hazard. We

find the removal of the requirement to estimate the heterogeneity distribution a major

advantage of our approach3. Our estimator is related to the estimator by Han (1987). Han

derives an estimator, up to scale, of the regression coefficients. However, Han’s estimator

cannot handle time-varying regressors and we estimate the regression coefficients when

time-varying regressors are present as well as the scale of the regression coefficients. In

particular, by estimating the regression coefficients up to scale, each regression coefficient

can be interpreted as the elasticity of the hazard with respect to its regressor. Simi-

larly, Chen’s (2002) estimator of the transformation model cannot handle time-varying

regressions and only gives the transformation function up to scale. While Horowitz’s

(1999) estimator is not subject to the limitation of estimating the regression coefficients

up to scale only, it converges slowly and it is not N−1/2 consistent which makes standard

inferences techniques inapplicable unless N is very large.

A hazard model is a natural framework for time-varying regressors if a flow or a

transition probability depends on a regressor that changes with time since a hazard model

avoids the curse of dimensionality that would arise from interacting the regressors at each

point in time with one another. A nonconstructive identification proof for the duration

model with time-varying regressors can be produced using techniques similar to Honoré

(1993b) and Honoré (1993a) gives such a proof. In particular, Honoré (1993a) does not

assume that the mean of the heterogeneity distribution is finite4. Ridder and Woutersen

(2003) argue that it is precisely the finite mean assumption that makes the identification

3An unconditional approach is also used, in another context, by Heckman (1978) who develops uncon-
ditional tests to distinguish true and spurious state dependence.

4 nor does Honoré (1993a) assume a tail condition as in Heckman and Singer (1985).
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of Elbers and Ridder (1982) ‘weak’ in the sense that the model of Elbers and Ridder (1982)

cannot be estimated at rate N−1/2. As in Honoré (1993a), we do not need the finite mean

assumption which gives an intuitive explanation why we can estimate the model at rate

N−1/2.

This paper is organized as follows. Section 2 discusses the mixed proportional hazard

model (with heterogeneity) and presents our estimator. Section 3 shows that our estimator

converges at the regular rate and is asymptotically normally distributed. Section 4 adjust

the objective function for the case of an endogenous regressor. Section 5 shows that

misspecifying the heterogeneity yields inconsistent estimates, even if the baseline hazard

is nonparametric. Section 6 presents an empirical example and section 7 concludes.

2. Mixed Proportional Hazard Model

Lancaster (1979) introduced the mixed proportional hazard model in which the hazard is

a function of a regressor X, unobserved heterogeneity v, and a function of time λ(t),

θ(t | X, v) = veXβ0λ(t). (1)

The function λ(t) is often referred to as the baseline hazard. The popularity of the mixed

proportional hazard model is partly due to the fact that it nests two alternative expla-

nations for the hazard θ(t | X) to be decreasing with time. In particular, estimating the

mixed proportional hazard model gives the relative importance of the heterogeneity, v,

and genuine duration dependence, λ(t), see Lancaster (1990) and Van den Berg (2001) for

overviews. Lancaster (1979) uses functional form assumptions on λ(t) and distributional

assumptions on v to identify the model. Examples by Lancaster and Nickell (1980) and

Heckman and Singer (1984), however, show the sensitivity to these functional form and

distributional assumptions. We avoid theses functional form and distributional assump-

tions and consider the mixed proportional hazard model with time-varying regressors,

θ(t|x(t), v) = vex(t)β0λ(t) (2)

where x(t) is a set of regressors that can vary with time, v denotes the heterogeneity and

is independent of x(t) and λ(t) denotes the baseline hazard. We also use x(t) to denote

the sequence of the regressors x(s) for s = 0 to s = t. The mixed proportional hazard
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model of equation (2) implies the following survival probabilities,

P (T ≥ t|x(t), v) = F̄ (t|x(t), v) = exp(−v
Z t

0

ex(s)β0λ(s)ds) and

P (T ≥ t|x(t)) = Ev{F̄ (t|x(t), v)} = Ev{exp(−v
Z t

0

ex(s)β0λ(s)ds)}. (3)

In applied work, duration are measured discretely and to fix ideas we assume that the

duration are measured on a weekly scale. We also assume that the regressors could only

change at the beginning of the week. Let the regressor xi1 denote the vector of regressors

of individual i during week 1, xi2 the regressors of individual i during week two etc. We

now can write equation (3) as follows,

P (T ≥ t|x(t)) = Ev{F̄ (t|x(t), v)} = Ev{exp(−v
tX

s=1

exsβ0+δ0,s)},

where t is a natural number, δ0,s = ln{
R s
s−1 λ(s)ds} and we normalize δ0,1 = 0. This

specification is similar to Han-Hausman (1990) who specify δ0,s in a similar manner, but

who specify and estimate v parametrically, a requirement we remove in this paper.

Kendall (1938) proposes a statistic for rank correlation. If we are interested in the

rank correlation between T and the index Xβ, then Kendall’s (1938) rank correlation has

the following form,

Q(β) =
1

N(N − 1)
X
i

X
j

1{Ti > Tj}1{Xiβ > Xjβ}.

Han (1987) proposes an estimator that maximizes Q(β), the rank correlation between T

and the index Xβ. Under certain assumptions, including that the T only depends on X

through the index Xβ, maximizing Q(β) yields an estimate for β up to scale, excluding

the intercept which cannot be estimated.5.

However, Kendall’s (1938) rank correlation cannot be used for the case of time-varying

regressors since it is unclear which regressor one should use. We therefore propose the

following modification of the rank correlation. In particular, in our model, the expectation

does depend on an index, although it has a more complicated form. Define Zi(l;β, δ) =

5For this reason, Han (1987) estimates β/||β||; alternatively, a nonzero coefficient of a regressor could
be normalized to be one in absolute value, e.g. |β1| = 1.



Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity 8

Pl
s=1 e

Xisβ+δs . We propose minimizing the following objective function,

Q(β, δ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

(4)

Thus, Zi(l;β, δ) is the index during the lth period. The intuition for this objective function

is the following. We are comparing two different individuals as does Han’s objective

function. However, we are now also taking account of the outcome in each period through

the parameters for the integrated hazard function, δ. The probability that individual i

survives period l is larger than the probability that individual j survives period k if and

only if Zi(l;β0, δ0) < Zj(k;β0, δ0). Vice versa if Zi(l;β0, δ0) > Zj(k;β0, δ0). Thus, we use

the outcomes for individuals i and j together with these probabilities to yield an objective

function that permits identification of the parameters β0 and δ0, without the restriction

of only up to scale as in the Han approach. Consider the expectation of the objective

function,

E{Q(β, δ)} =
P

i

P
j

PL
l=1

PK
k=1

N(N − 1) E[{e−vZi(l;β0,δ0)−e−vZj(k;β0,δ0)}·1{Zi(l;β, δ) < Zj(k;β, δ)}].

This expectation of the objective function is minimized at the true value of the parameters.

To see this, suppose that Zi(l;β0, δ0) > Zj(k;β0, δ0) so that e
−vZi(l;β0,δ0) < e−vZj(k;β0,δ0).

Thus, {β, δ} = {β0, δ0}minimizes [Ev{e−vZ,i(l;β0,δ0)−e−vZj(k;β0,δ0)}1{Zi(l;β, δ) < Zj(k;β, δ)}|Z]

for each set {i, j, k, l} and therefore the expectation of the sum.6 Note that our approach

focuses on the probability than an individual i survives period l (measured from time

0) which permits a convenient treatment of the heterogeneity in comparison with the

“traditional” approach that focuses on the hazard function. By only using comparisons

measured from time t = 0 we are able to “condition out” the heterogeneity distribution.

The more traditional hazard approach considers the probability of survival conditional on

individual i surviving up to period l which requires an explicit treatment of the hetero-

geneity distribution.

The definition of Q(β, δ) that is given above contains a double sum so that the number

of computational operations for calculating Q(β, δ) is N2 (note that L and K are fixed).

6 In the appendix 1 we show that the true value uniquely minimizes the expectation of the objective
function.
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In order to reduce the number of computational operations to be of the order N lnN , we

use the rank operator. In particular, let dr = 1{T ≥ r} for the vector T of length N. Let

d be constructed by stacking the vectors dr vertically for all r = 1, ...,K. Now both d and

Z are of dimension NK × 1. If a regressor is continuously distributed conditional on the

other regressors, then we can re-write Q(β, δ) using these vectors and the rank function,

Q(β, δ) =
1

N(N − 1)

NKX
j=1

d(j)[2 ·Rank(Z(j))−NK].

The computational burden to calculate7 Q(β, δ) is proportional to N ln(N).

Note that we have identification of β rather than identification only up to an unknown

scale coefficient, which is the usual outcome of most previous approaches to the prob-

lem. Also, note that by focussing on survival from the beginning of the sample, we have

eliminated the requirement to specify the heterogeneity distribution since no survival bias

(dynamic sample selection) occurs in our sample comparisons. Our identification is some-

what similar to the nonconstructive identification result of Elbers and Ridder (1982) in

the sense that we also assume a continuously distributed regressor. However, our identifi-

cation results differs in two important ways. First, our identification proof is constructive

in the sense that it suggests an estimator. Second, our identification result does not rely

on an iterative procedure. An iterative procedure typically precludes N1/2 consistency8.

3. Large Sample Properties

In this section, we derive the large sample properties of our estimator. Suppose that

xk = {x1, ..., xk}, x1, ..., xk are scalars. We say that the density of the regressor is positive

around xk if at least one element of xk is continuously distributed and the density is

positive around all continuously distributed elements of xk. We assume that we observe

{Ti, xi} where Ti is a natural number and Ti ∈ [0,K], K > 1. For example, we observe

unemployment duration, which is measured in weeks, and want to estimate the integrated

baseline hazard at the end of each week. We assume the following.

7Suppose we have an ordered vector of length N − 1; calculating the rank of a new, N th observation
is ln(N). We can see this by observing that having 2(N − 1) elements to begin with would require us to
compare the ‘new’ observation to the median of the 2(N − 1) elements; we are then back to comparing
the new element to N −1 observation. Thus, the extra cost is ln(N). The summation then yields the rate
N ln(N).

8 Indeed, Hahn (1994) shows that the identification result of Elbers and Ridder (1982) holds for singular
information matrices, so that no

√
N estimator exists.
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Assumption 1 (Time-varying Regressors): Let (i) {T, v, x} be a random sample,

x = {x1, ..., xK}, x1, ..., xK are scalars, {T, x} be observed and K ≥ 2; (ii) v and x

are independent, (iii) Pr(T ≥ l|x) = Ev exp{−v
Pl

s=1 e
xsβ+δs} for l = 1, ...,K; (iv)

δ1 is normalized to be zero, let {β, δ} ∈ Θ, which is compact; (v) let G be a K by

K matrix and let the element Glk be equal to one if ∃ a pair {xl, xk} ∈ R2K such

that Pr(T ≥ l|xl) = Pr(T ≥ k|xk) where the density of the regressor is positive in an

arbitrarily small neighborhood around xl or xk and let Glk be zero otherwise; let the

matrix G represent a connected graph; (vi) either (a) xr = xc if x1 = x2 = ... = xr = xc

(thus, x1 = xc), Pr(x
K = xc) > 0 for some xc ∈ R, let G∗ be a K by K matrix and

let the element G∗lk be equal to one if ∃ a pair {xc, xk} ∈ RK+1 such that Pr(T ≥

l|xc) = Pr(T ≥ k|xk) where the density of the regressor is positive in an arbitrarily small

neighborhood around xc or xk and let G∗lk be zero otherwise; let the matrix G∗ represent

a connected graph; or (b) xl,1|xl,2, xl,3, ..., xl,K , xl−1, xl−2, ... is continuously distributed

for all l, and Pr(T ≥ l|xl) = Pr(T ≥ k|xk) where xl,1 is in the interior of the support

of xl,1|xl,2, xl,3, ..., xl,K , xl−1, xl−2, ... for all k; (vii) ∃ a pair {x1, x01, x02} ∈ R3, x01 6= x02,

such that 0 < Pr(T ≥ 1|x1, x2) = Pr(T ≥ 2|x01, x02) < 1 where the density of the regressor

is positive in an arbitrarily small neighborhood around x1 or {x01, x02}.

Conditions (i)-(vi(a)) ensure identification up to scale and condition (i)-(vii) ensures

complete identification9. Condition (iii) is satisfied if the data generating process is the

mixed proportional hazard model of equation (2) with exogenous regressors that can

change at the beginning of each period. Condition (vi) assumes that either (a) the regres-

sor are constant with positive probability or (b) a regressor is continuously distributed

conditional on the other regressors and earlier realizations of the regressors. The substan-

tial restriction of condition (vii) is that one of the regressors varies with time; the theorem

below still holds if condition (vii) holds after relabelling the periods. For example, one can

label week 1 through 8 as period 1 so that condition (vi) holds while the other condition

hold before or after relabelling.

9Matrices with only zeros and ones can be represented by graphs; a connected graph means that,
informally speaking, you can ‘travel’ from one point to any other point but not necessarily directly.
Condition (v) is considerably weaker than a condition that a regressor has a positive conditional density
on the whole real line.
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Theorem 1:

Let assumption 1 hold. Let δ be contained in a compact subset D of RK and normalize

δ1 = 0. Let {β̂, δ̂} = argmin
β,δ

Q(β, δ) where

Q(β, δ) =
1

N(N − 1)
X
i

X
j

KX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l) < Zj(k)}.

Then

{β̂, δ̂}→
p
{β, δ}.

Suppose that the regressor is a vector instead of a scalar. The easiest way to prove

identification for that case is by noting that one can identify the regressor up to scale

using only observations of the first period. In particular, the parameter vector could

be estimated up to scale using the maximum rank correlation estimator (MRC). Rank

correlation was introduced by Kendall (1938) and Han (1987) proposed the MRC estima-

tor. Han (1987) assumes that one regressor has infinite support conditional on all other

regressors. We weaken this assumption. In particular, if all regressors are distributed

continuously, then we only require one regressor is continuously distributed conditional

on the others without any support restrictions. In order to estimate β up to scale, we

assume the following.

Assumption 2: Let (i) β be contained in a compact subset eB of Rq (ii) Pr(T ≥

1|x1) = G(x1β, v) where G(., .) is a strictly monotonic decreasing function in its first

argument; (iii) {T, v, x} be a random sample (iv) let x1 = {x1,1, x̃1}, let S̃ denote that

support or a subset of the support of x̃1, let S̃1 denote the interior of the support of

the continuously distributed x1,1 conditional on x̃1 and let, for all x̃1 ∈ S̃1, there be an

xi1,1 ∈ S̃1 such that 0 < Pr(T ≥ 1|x1,1, x̃1) = p < 1 for some p; (v) let S denote the

support of x conditional on x̃ ∈ S̃1 and assume that this support of x, S, is not contained

in any proper linear subspace of Rq, (v) β1 6= 0, and (vi) v and x are independent.
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Proposition 1

Let assumption 2 hold. Let {κ̂} = argmin
κ:|κ1|=1

Q(κ) where

Q(κ) =
1

N(N − 1)
X
i

X
j

[1{Ti ≥ 1}− 1{Tj ≥ 1}]1{Zi(1) < Zj(1)}.

Then

κ̂→
p
β/|β1|.

This proposition states that β can be estimated up to scale under weaker support

conditions than presented by Han (1987). In particular, if all regressors are distributed

continuously, then we only require that x1,1 is continuously distributed on a small interval

without assuming that it has support over the whole real line10. If regressor has a discrete

distribution and the support of the continuously distributed variables is small, then we

can first condition on the regressor with the discrete distribution and identify the whole

model using theorem 1 and proposition 1. We then can try to identify the coefficient on

the regressor using the objective function of equation (4). Alternatively, we can check

whether this objective function empirically identifies the parameters. Suppose that none

of the regressors varies with time (most likely, this would be due to quality of the data) and

that we want to estimate β up to scale. We can then use the objective function of equation

(4). Besides the mild support condition, this objective function can also handle known

censoring points that depend on the regressors while Han’s (1987) objective function

cannot handle such censoring.

Choosing G(x1β) = Ev exp(−vex1β) in proposition 1 and combining the theorem 1 and

proposition 1 yields a consistency result for {β̂, δ̂2, ..., δ̂K}. Thus, instead of estimation of

β up to scale, the objective function Q(β, δ) permits estimation of the β, including the

scale.

Theorem 2 (Consistency):

Let assumption 1-2 hold. Let Pr(T ≥ l|x) = Ev exp(−
Ps=l

s=1 ve
xsβ+δs). Let δ be contained

10To see this, consider choosing S̃ such that x∗1β1,0 < x̃β̃0 < x∗∗1 β1,0 for some x
∗
1 and x∗∗1 ∈ S̃1 and

note that there must exist such an x∗1 and x∗∗1 since S̃1 contains an interval.



Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity13

in a compact subset D of RK and normalize δ1 = 0. Then

{β̂, δ̂}→
p
{β, δ}.

3.1 Asymptotic Distribution

In this subsection, we derive the asymptotic distribution of our estimator. As before,

we use the following objective function, where θ = {β, δ},

QN (θ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l) < Zj(k)}.

In the appendix, we show that

QN (θ) =

P
i

N

LX
l=1

1{Ti ≥ l}K[1− 2F̂Z{Zi(l)}]. (5)

where F̂Z{Zi(l)} = j

N−1
K
k=1

K 1{Zj(k) < Zi(l)}.Note thatE[F̂Z{Zi(l)}|Zi(l)] = FZ{Zi(l)}

where FZ is the cumulative distribution function of Zi(l) for l = 1, ...,K and i = 1, ...,N.

Let Q0(θ) be twice continuously differentiable at θ0 with respect to θ and let H denote

the second derivative divided by the constant K and evaluated at θ0, i.e.

H =
1

K
∇θθQ0(θ0).

We assume the following.

Assumption 3 (Interior): Let θ0 = (β, δ) ∈ Interior(Θ), where Θ is compact.

Let fZ{Zi(l)} denote the density of Zi(l).

Assumption 4: Let (i) the second derivative H be nonsingular ; (ii) let fZ(z) be differ-

entiable and let |fZ(z)∂Z∂θ | < M for all θ, |dfZ{z}dz | < M for all z and for some M <∞.

Assumption 4 is a standard regularity condition and supports an argument based on a

Taylor expansion11.
11We cannot immediately apply Sherman (1993) since he requires that QN (θ0)− Q0(θ0) = Op(N−1),

an assumption that is violated for our objective function. Therefore, we apply Newey (1991) and Newey
and McFadden (1994, lemma 2.8 and section 7).
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Theorem 3 (Asymptotic Normality)

Let assumption 1-4 hold. Then

√
N{θ̂ − θ}→

d
N(0,H−1ΩH−1)

where Ω = E[DN (θ0)DN (θ0)
0] and

DN (θ) = −2
P

i√
N
[
LX
l=1

1{Ti ≥ l}fZ{Zi(l)}
∂Zi(l)

∂θ
−E[

LX
l=1

1{Ti ≥ l}fZ{Zi(l)}
∂Zi(l)

∂θ
]].

The function DN(θ) is an ‘approximate derivative’ and an ‘influence function’ in the

terminology of Newey and McFadden (1994). It allows to view the asymptotic behavior of

an estimator as an average, multiplied by
√
N.Moreover, bootstrapping an asymptotically

normally distributed estimator that can be represented by an influence function yields a

consistent variance-covariance matrix and consistent confidence intervals, see Horowitz

(2001, theorem 2.2)12 . In the application, we bootstrap the estimator.

The matrix Ω = E[DN (θ0)DN (θ0)
0] can be estimated using a sample analogue where

fZ{Zi(l)} can be estimated using a second order kernel that omits observation i. In order

to estimate H let ei denote the ith unit vector, εN a small positive constant that depends

on the sample size, and Ĥ the matrix with i, jth element

Ĥij =
1

4ε2N
[Q̂(θ̂+eiεN+ejεN )−Q̂(θ̂−eiεN+ejεN )−Q̂(θ̂+eiεN−ejεN )+Q̂(θ̂−eiεN−ejεN )].

Lemma 1 (Newey and McFadden, Estimating H)

Let the conditions of theorem 3 be satisfied. Let εN → 0 and εN
√
N →∞. Then Ĥ →

p
H.

Theorem 3 requires the regressors to be exogenous. Sometimes a regressor can qualify

as an exogenous regressor, even if its value depend on survival up to a certain point.

For example, a treatment that is randomly assigned with probability ph to individuals

who survived h periods may appear to be endogenous since it depends on survival. How-

ever, in this duration framework, we can relabel the treatment as if it is given at the

beginning of the spell with probability ph and consider the randomly assigned treatment

12Horowitz (2001, theorem 2.2) averages gn(Xi).
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exogenous13. In the next section, we consider endogenous regressors, such as randomly

assigned treatment with partial compliance.

Our estimates of {δ1, ..., δK} imply an estimate for the the integrated hazard. In

particular, suppose that we measure survival at {0, 1, ...,K}, e.g. weekly unemployment

data, then dΛ(t) = s=tX
s=1

exp(δ̂s) where t ∈ {0, 1, ...,K}.

We define the average hazard on the interval [a, b) to be the value λ for which
R b
a
λ(s)ds =

Λ(b)− Λ(a). This gives an expression for the average hazard,

dλ(s) = exp(δ̂t) for t− 1 < s < t.

If the duration are measured on a fine grid, then one could also approximate the hazard

by numerically differentiating the integrated hazard dΛ(t). Thus, we can estimate the
integrated hazard rate at each point and also approximate the hazard rate at each point.

This differs considerably from Chen (2002), who only estimates the logarithm of the

integrated hazard up to a unknown scalar, so that we do not know whether the hazard is

increasing or decreasing.

4. An Endogenous Regressor

The last section dealt with exogenous regressors. However, some regressors are endogenous

in the sense that the regressor depends on the unobserved heterogeneity. This situation

occurs often in panel data and the genesis of the problem and an approach to a solution to

the problem are discussed in e.g. Mundlak (1961), Hausman and Wise (1979) and Haus-

man and Taylor (1981). For example, in the National Supported Work Demonstration14

data, long term unemployed individuals are randomly offered training but some choose

not to participate. Thus, there is a partial compliance problem and the treatment indi-

cator can depend on unobserved heterogeneity. See also Heckman, LaLonde, and Smith

(1999). The duration model of this paper gives a natural framework to handle survival

13 In particular, individuals that do not survive up to period h will be assigned treatment with probability
ph; an alternative is to use a weighting function that gives the weiths ph and (1 − ph) to both possible
outcomes.
14Ham and LaLonde (1996) discuss this data
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selection and time-varying regressors. As discussed in the last section, the model can han-

dle survivor selection without using instrumental variables. However, some treatment are

not just endogenous in the sense of dynamic or survival selection but are also endogenous

in the sense that the treatment still depends on the unobserved heterogeneity v, even

after conditioning on survival. Let R ∈ {0, 1} denote the treatment assignment and let

X ∈ {0, 1} denote actual treatment. Let R be randomly assigned among the individuals

that are unemployed at time h. Suppose that an individual can refuse treatment, that is,

we can observe R = 1 and X = 0 for a particular individual. The refusal of treatment,

or equivalently, the choice of participating, can potentially depend on the unobserved

heterogeneity v or on the observed regressors. If the probability of X depends on v, the

distribution p(v|X = 1) is different from p(v|X = 0). In particular, let X be a function of

R, v and other exogenous regressor and random noise. Since the distribution of v depends

on X, we have, in general,

Ev{e−vZi(l)|Zi(l),X = 0} 6= Ev{e−vZj(l)|Zj(l) = Zi(l),X = 1}.

Therefore, Ev{e−vZi(l)|Zi(l),X} may not be decreasing in Zi(l). Therefore, we need to

adjust the objective function Q(β, δ) that was introduced above,

Q(β, δ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

(6)

One can view the indicators 1{Ti ≥ l} and 1{Tj ≥ k} as estimators of survival functions.

In order to deal with the self selection into treatment, we replace these indicators by

other estimates of survivor functions. In particular, we replace 1{Ti ≥ l} and 1{Tj ≥ k}

by survivor functions that have the same unobserved heterogeneity distribution so that

we do not have to explicitly model the distribution of the heterogeneity. Suppose that

individuals are treated at the beginning of period h. In order to avoid survival bias, we

condition on survival up to h and also on the index at h− 1, Z(h− 1). Let R denote the

treatment intention15, X the actual treatment and R, X ∈ {0, 1}. For now, we assume that

R = 0 implies X = 0 and that P (X = 1|R = 1) > P (X = 1|R = 0). Suppose that there

are individuals that could have different values of R or X but that have identical values of
15The support of any instrument can be reduced to two points.
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exogenous regressors. For example, they became unemployed at the same time and also

have the same exogenous regressors but can have different values of R or X. Let these

groups be denoted by G1, ..., GM and let κ be an estimate of the odds ratio, κ = 1−p̂
p̂ where

p̂ = i 1{Ti≥h}1{Ri=1}
i 1{Ti≥h}

. For each group, we construct the following distribution functions,

F̂g,11 =

P
i∈g
PK

l=h 1{Ti ≥ l}1{Xi = 1}P
i∈g
PK

l=h 1{Ti ≥ h}1{Xi = 1}
and

F̂g,00 =

P
i∈g
PK

l=h[1{Ti ≥ l}1{Ri = 0}1{Xi = 0}− κ · 1{Ti ≥ l}1{Ri = 1}1{Xi = 0}]P
i∈g
PK

l=h[1{Ti ≥ h}1{Ri = 0}1{Xi = 0}− κ · 1{Ti ≥ h}1{Ri = 1}1{Xi = 0}]

=

P
i∈g
PK

l=h 1{Ti ≥ l}1{Xi = 0}[1{Ri = 0}− κ · 1{Ri = 1}]P
i∈g
PK

l=h 1{Ti ≥ h}1{Xi = 0}[1{Ri = 0}− κ · 1{Ri = 1}]
.

We use these functions instead of 1{Ti ≥ l} and 1{Tj ≥ k} in equation (6). Define Zg,11(l)

as the index of the the individuals of group g with R = X = 1. Similarly, Zg,00(l) is the

index of group g for which R = X = 0. Define

Q∗1(β, δ) =

P
g

M

KX
l=h

KX
k=h

[F̂g,11(l)− F̂g,00(k)]1{Zg,11(l) < Zg,00(k)}.

For the periods 1, 2, ..., (h− 1) we can use the same statistic16 as in earlier sections,

Q∗2(β, δ) =
1

N(N − 1)
X
i

X
j

h−1X
l=1

h−1X
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

Moreover, since R = 0 implies X = 0 we can also define R∗ as in the last section. In

particular, Let R∗ = R for all individuals who have been assigned treatment and for

all others we assign R∗ = 0 with probability 1 − p̂, i.e. P (R∗ = 0|R = 0) = 1 and

P (R∗ = 0|Ti < h) = 1− p̂. We then define

Q∗3(β, δ) =

P
i

N
1(R∗i = 0)

P
j

N − 11(R
∗
j = 0)

KX
l=1

KX
k=1

[1{Ti ≥ l}−1{Tj ≥ k}]1{Zi(l;β, δ) < Zj(k;β, δ)}.

We then minimize the following objective function,

Q∗(β, δ) = w1Q
∗
1(β, δ) + w2Q

∗
2(β, δ) + (1− w1 − w2)Q

∗
3(β, δ)

where 0 < w1 < 1 and 0 < w2 < 1. Let the random assignment or instrumental variable

assumptions mentioned above hold and let the specification assumptions of theorem 2
16 If we calculate the rank of the indices Zik for k = 1, ..., (h − 1) and i = 1, ..., N, then we can use

Q(β, δ) = 1
N(N−1)

N(h−1)
j=1 d(j)[2 ·Rank(Z(j))−N(h− 1)].
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hold so that Q∗1(β, δ) has a maximum at the true value of the parameters. If M , the

number of groups, is finite, than Q∗1(β, δ) does not point identify any parameters. This

complicates the choice of the weights. Suppose that the limit of Q∗1(β, δ), Q
∗
2(β, δ) and

Q∗3(β, δ), together, identify the parameters but that Q
∗
1(β, δ) does not play a role in local

asymptotics. Let the assumptions of theorem 2 and 3 hold for the objective functions

Q∗2(β, δ) and Q∗3(β, δ). In that case, consistency and asymptotic normality follows from

theorem 2 and 3 for any 0 < w1 < 1 and 0 < w2 < 1. In particular, after choosing

w1 = w2 =
1
3 to get an initial estimate, one can calculate the asymptotic variance-

covariance matrix using theorem 2 and lemma 1 using Q∗2(β, δ) and Q∗3(β, δ). The ratio

w2/(1−w1 −w2) can then be chosen to minimize a function of the asymptotic variance.

In a second step, one can minimize Q∗(β, δ) using the estimate the ratio estimates for

the weights 17 . For finite M, one can use Q∗1(β, δ) without using Q
∗
2(β, δ) or Q

∗
3(β, δ) to

derive bounds but this is beyond the scope of the paper.

The objective function Q∗1(β, δ) can be interpreted as conditioning on both survival up

to the end of period h as well as Z(h) which removes possible dependence between treat-

ment assignment and the unobserved heterogeneity term. This data generating process

resembles the data of Ham and LaLonde (1996); see also Heckman, LaLonde, and Smith

(1999). We can extend the analysis in a straightforward manner to the situation of

noncompliance in both treatment and control individuals, so that R = 1 and X = 0 for

a particular individual and R = 0 and X = 1 for another individual. However, since

the latter situation is relatively unlikely to occur in practice, we leave the details as an

exercise.

5. Gamma Mixing Distribution

Han and Hausman (1990) and Meyer (1990) use a flexible baseline hazard and model the

unobserved heterogeneity as a gamma distribution. In this section we discuss the sensi-

tivity of the estimators of the MPH model to misspecification of the mixing distribution.

In particular, misspecifying the heterogeneity yields inconsistent estimators and having a

flexible integrated baseline hazard Λ(t) does not compensate for a failure to control for

17An easier but computationally more intensive way is to determine the asymptotic variance using
bootstrap and to try several values for w1 ∈ [0, 1], w2 ∈ [0, 1].
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heterogeneity. We illustrate this using two examples.

Example 1:

Suppose we estimate the following hazard model, θ(t|v, x) = φxλ(t). The function λ(t)

is nonparametric and one could (incorrectly) think that the flexibility of this function

‘compensates’ for the lack of unobserved heterogeneity. This model implies that the

following survivor function, P (T ≥ t|x) = F̄ (t | x) = exp(−φxΛ(t)). Suppose we observe

F̄ (t | x) for x = 0, 1 and all t ≥ 0. We define F̄0(t) = F̄ (t | x = 0) and estimate Λ(t),

Λ̂(t) = − ln F̄ (t | x = 0)

For a given Λ̂(t) = − ln F̄ (t | x = 0), the MLE of φ can be derived (see appendix) and it

can be shown that

plim
N→∞

φ̂ =
−1

E[ln{F̄0(T )}|x = 1]
.

where F̄0 is the survival function for x = 0. Suppose that v ∼ Gamma(α,α), so that

F̄0(t) =
³
1 + Λ(t)

α

´−α
and − lnF0(t) = α ln

³
1 + Λ(t)

α

´
. Note that φxΛ(T ) = Z

v where Z

has an exponential distribution with mean one. This yields

plim
N→∞

φ̂ =
1

E[α ln{1 + Z/(φvα}] .

where v ∼Gamma(α, α). Note that φ only appears in the denominator of an argument of

a logarithmic function. This does not bode well for consistency. Using N = 10, 000 we

find the following,
True φ True α plim φ̂

φ = 2 α = 1 φ̂ = 1.46

φ = 2 α = 2 φ̂ = 1.09

φ = 10 α = 1 φ̂ = 4.04

φ = 10 α = 2 φ̂ = 3.20

¥

Example 2:

Suppose we estimate the following hazard model, θ(t|v, x) = vexβλ(t) where v has a

gamma distribution. The function λ(t) is nonparametric and this time one could (incor-

rectly) think that the flexibility of this function ‘compensates’ for the restrictive assump-

tion that v has a gamma distribution.
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Suppose the data is generated by a hazard model, θ(t|v, x) = vexλ(t) where p(v) = ec−v,

v ≥ c and c ≥ 0. Thus, v is an exponential stochast to which the nonnegative number c is

added and the true value of β equals one.

Consider estimating this model under the assumption of gamma heterogeneity. Without

loss of generality, we can write the integrated baseline hazard as follows,

Λ(t) = H(t)d

where H(t) is unrestricted and d > 0. Horowitz (1996) and Chen (2002) show how to

estimate H(t) at rate
√
N. Suppose that the conditions of Horowitz (1996) or Chen (2002)

are fulfilled and that one first estimates H(t) using one of these methods. Estimating d

is then like estimating a Weibull model. In the appendix, we show that the inconsistency

of β does not depend on the distribution of the regressors. Using N = 10, 000, we found

the following,
c β γv δv β; γv = 2, δv = 1
0 1 1 1 1
0.1 1.11 1.12 0.96 1.06
0.2 1.15 1.23 0.89 1.09
0.3 1.16 1.30 0.84 1.12
0.5 1.17 1.42 0.76 1.14
1 1.21 1.75 0.54 1.21
2 1.30 1.87 0.33 1.27

For c = 0, correct specification, all parameters can be consistently estimated; the last

column gives estimation results for β for γv = 2 and δv = 1. The simulation results show

that the inconsistencies increases with c.

¥

Note that the asymptotic bias in the examples above does not depend on the shape of the

hazard. The following lemma gives a reason for the asymptotic bias.

Lemma 2: Let θ(t | v, x) = vexβλ(t) where v ⊥ x. Let v − c | T ≥ 0 ∼ Gamma(γv, δv).

If c = 0, then F̄ (t|x) decreases at a polynomial rate. If c > 0, then F̄ (t|x) decreases at an

exponential rate.

The lemma states that the survivor probability as a function of time decreases at a poly-

nomial rate if the unobserved heterogeneity distribution is a gamma distribution but that
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the survivor probability decreases at an exponential rate if the unobserved heterogeneity

distribution is a shifted gamma distribution. As the examples show, misspecification of

the heterogeneity distribution cannot, in general, be corrected by a flexible baseline haz-

ard. The estimator presented in this paper does not rely on specifying or estimating the

heterogeneity distribution which explains its better performance in terms of asymptotic

bias and consistency.

6. Empirical Results

We estimate our new duration model on a sample of 15,491 males who received unem-

ployment benefits beginning in 1998 in a data set called the Study of Unemployment

Insurance Exhaustees public use data. The study was designed to examine the character-

istics, labor market experiences, unemployment insurance (UI) program experiences, and

reemployment service receipt of UI recipients.18

The study sample consists of UI recipients in 25 states who began their benefit year in

1998 and received at least one UI payment, and is designed to be nationally representative

of UI exhaustees and non-exhaustees. The data description is:

“The data come from the UI administrative records of the 25 sample states

and telephone interviews conducted with a subsample of these UI recipients.

Telephone interviews were conducted in English and Spanish between July

2000 and February 2001 using a two-stage process. For the first 16 weeks,

all 25 participating states used mail, phone, and database methods to locate

sample members, who were then asked to complete the survey. The second

stage, conducted in 10 of the sample states, added field staff to help locate non-

responding sample members. The administrative data include the individual’s

age, race, sex, weekly benefit amount, first and last payment date, the state

where benefits were collected, and whether benefits were exhausted.” (op. cit.)

The survey data contain individual level information about labor market and other

activities from the time the person entered the UI system through the time of the inter-

view. However, we limit our econometric study to the first 25 weeks of unemployment
18The following description follows from http://www.upjohninst.org/erdc/uie/datasumm.html which

has further details of the sample design and results.
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due to the recognized change in behavior in week 26 when UI benefits cease for a signif-

icant part of the sample, see e.g. Han-Hausman (1990). The data include information

about the individual’s pre-UI job, other income or assistance received, and demographic

information.

We use two indicator variables, race and age over 50 in our index specification. We

also use the replacement rate which is the weekly benefit amount divided by the UI

recipient’s base period earnings. Lastly, we use the state unemployment rate of the state

from which the individual received UI benefits during the period in which the individual

filed for benefits. This variable changes over time. Table 1 gives the means and standard

deviations for the variables we use in our empirical specification:

––––––––––––—

Table 1 here

––––––––––––—

We first estimate the unknown parameters of the model using the gamma heterogeneity

specification of Han-Hausman (1990) and Meyer (1990) (HHM). This specification allows

for a piecewise constant baseline hazard, which does not restrict the specification since

unemployment duration is recorded on a weekly basis. However, it does impose a gamma

heterogeneity distribution on the specification which can lead to inconsistent estimates

as we discussed above. We estimate the model using a gradient method and report the

HHM estimates and bootstrap standard errors in Table 2.

––––––––––––—

Table 2 here

––––––––––––—

The estimates of the parameters, as reported in table 2, should not depend on how

many weeks of data we use (6, 13 or 24 weeks). However, the coefficients differ signif-

icantly. We find significant evidence of heterogeneity in the two larger samples, while

in the 6 period sample we do not estimate significant heterogeneity. We also find the

expected negative estimates for all of the coefficients with the state unemployment rate a

significant factor in affecting the probability of exiting unemployment. When comparing
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the estimates of the βi across the 3 samples, the scaling changes depending on the vari-

ance of the estimate gamma distribution. Thus, the ratios of the coefficients should be

compared. The ratios of the coefficients across samples remain similar with the results

for the 13 period and 24 period very close to each other.

We now turn to estimate of the new duration specification, which does not require

estimation of a heterogeneity distribution using the same samples as above. Optimization

of the objective function can now create a problem because of its lack of smoothness. Usual

Newton-type gradient methods or conjugate gradient (simplex) methods do not work in

this situation. To date we have found that generalized pattern search algorithms perform

best.19 We use the pattern search routine from Matlab to estimate the parameters. See

the Appendix for further details of our computational approach. The basic idea is to begin

with the gamma heterogeneity estimates and to construct a “bounding box” around each

parameter estimates of 3 standard deviations. We then find new estimates and increase

the bounding box until we do not find an increase in the objective function. The routine

converges relatively rapidly. We estimate standard errors using a bootstrap approach. In

Table 3 we give the estimates of the new duration model. We also check our pattern

search results using a genetic optimization approach that is also discussed in the appendix.

The genetic optimization approach has the advantage of not depending on initial values.

However, it has the disadvantage of taking much longer to solve so it cannot be used

feasibly to bootstrap the results to estimate the standard errors. However, the results of

the pattern search algorithm and the genetic optimization algorithm are very similar as

we describe in the appendix.

––––––––––––—

Table 3 here

––––––––––––—

Again we find that all of the estimated coefficients have the expected negative signs.

The coefficients are also estimated with a high degree of statistical precision, although this

19Further research would be helpful here. We have also used gradient algorithms on a smoothed
objective function to obtain initial estimates and then employed Nelder-Mead routines to find the optima.
However, the pattern search algorithms appear to work best. See e.g. Audet and Dennis (2003) for a
recent survey of pattern search algorithms.
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finding may be a result of our large sample size of 15,491 individuals. We again find that

the ratio of coefficients remains relatively stable across the three different samples with

the exception of the replacement rate which becomes increasingly larger with respect to

the state unemployment rate as the sample length increases. The change in the estimated

coefficient for the replacement rate for the 24 week sample appears to arise because most

recipients’ unemployment insurance terminates after 26 weeks. Han-Hausman (1990)

found a significant change in behavior at week 26. As individuals start to approach week

26 the size of the replacement rate has a diminished effect on their behavior as they foresee

the end of their unemployment benefits beginning to draw near.

In Figures 1 and 2 we plot the survival curves for the 13 week and 24 week gamma

heterogeneity estimates and for the estimates from the new model. We fit the survival

curves using a second order local polynomial estimator which takes account of the standard

deviations of the estimated period coefficients in Table 2 and 3.20 The estimated local

polynomial survival curves fit the data well for all specifications.

––––––––––––—

Figure 1 here

––––––––––––—

––––––––––––—

Figure 2 here

––––––––––––—

We find that the results of the new model gives extremely similar results for the 6

period data and the 13 period data. Indeed, a Hausman (1978) specification test on the

slope coefficients is 0.42 with 4 degrees of freedom. Thus, we find that the new model

is not sensitive to the number of periods used to estimate the model. For the 24 period

model we find the coefficients again very close to the other results except for the coefficient

of the replacement rate. A Hausman test now rejects the equality of the slope coefficients

with a value of 234.3, based essentially on the change in the replacement rate coefficient.

However, since most individuals’ unemployment benefits run out in the 26th week, the

20We explain our approach in more detail in the appendix.
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change in the estimated coefficient is likely because of unmodeled dynamics at the point of

benefit exhaustion. Lastly, if we test the ratios of the gamma heterogeneity model versus

the new duration model we do not reject the ratios are the same for 6 periods with a test

value of 3.5; we marginally reject equality of coefficient ratios for 13 periods with a test

value of 6.2; and we do reject equality of coefficient ratios for 24 weeks with a test value

of 12.4. Thus, the new duration model does find differences from the previous gamma

heterogeneity model. The new duration model also has the advantage that the absolute

value of the estimated coefficients is not sensitive to the length of the data period, while

the gamma heterogeneity model does not have this property.

The main difference we find between the results of the gamma heterogeneity survival

curves and the semi-parametric survival curves is that the gamma heterogeneity survival

curves are initially steeper. Thus, the gamma heterogeneity results predict a higher prob-

ability of exiting unemployment in the early periods than do the semi-parametric results.

However, again the differences are not substantial. We reject equality of the survival

curves due to the extremely small standard errors we estimate given our very large sam-

ple.

7. Conclusion

Since Lancaster (1979), it has been recognized that it is important to account for un-

observed heterogeneity in models for duration data. Failure to account for unobserved

heterogeneity makes the estimated hazard rate decreases more with the duration than the

hazard rate of a randomly selected member of the population. In this paper, we derive a

new estimator for the mixed proportional hazard model that allows for a nonparametric

baseline hazard and time-varying regressors. By using time varying regressors we are able

to estimate the regression coefficients, instead of estimates only up to scale as in some of

the previous literature. We also do not require explicit estimation of the heterogeneity

distribution in estimating the baseline hazard and regression coefficients. The baseline

hazard rate is nonparametric and the estimator of the integrated baseline hazard rate

converges at the regular rate, N−1/2, where N is the sample size. This is the same rate

as for a duration model without heterogeneity. The regressor parameters also converge at
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the regular rate. A nice feature of the new estimator is that it allows the durations to be

measured on a finite set of points. Such discrete measurement of durations is important

in economics; for example, unemployment is often measured in weeks. In that case, the

estimator of the integrated baseline hazard only converges at this set of points.
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Appendix 1: Proof of Theorem 1

Proof of Theorem 1:

We first establish identification and then show that the estimator converges in probability.

Identification:

Let assumption 1 (i)-(vi(a)) and (vii) hold so that a regressor can stay constant over time

with positive probability. To simplify the proof we first consider a two period model.

Without loss of generality, let β0 > 0 (if β0 < 0, multiply x by -1). Consider the following

reparametrization, δ2 = ln(eβc−1) for some c > 0. The same reasoning as in the main text

yields that the true values {β0, c0} yield a minimum of the expectation of the objective

function for any set {i, j, k, l} and for any regressor. We now argue that c yields a unique

minimum. The expectation of the contributions of a subset of the observations that

compares realizations of the first and second period, i 6= j, of the objective function have

the following form,

E[{e−vZi(l=2;β0,δ0) − e−vZj(k=1;β0,δ0)} · 1{Zi(l = 2;β, δ) < Zj(k = 1;β, δ)}|xi, xj , xi1 = xi2]

= E([exp{−v(exi1β + exi1β+δ)}− exp{−vexj1β}] · 1{exi1β + exi1β+δ < exj1β}]|xi, xj , xi1 = xi2).

Using δ2 = ln(ecβ − 1) for some c > 0 yields exi1β + exi1β+δ = exi1β+cβ. Thus,

E[{e−vZi(l=2;β0,δ0) − e−vZj(k=1;β0,δ0)} · 1{Zi(l = 2;β, δ) < Zj(k = 1;β, δ)}|xi, xj , xi1 = xi2]

= E([exp{−v(exi1β+c0β)}− exp{−vexj1β}] · 1{exi1β+cβ < exj1β}]xi, xj , xi1 = xi2)

= E([exp{−v(exi1β+c0β)}− exp{−vexj1β}] · 1{c− (xj1 − xi1) < 0}]|xi, xj , xi1 = xi2) (7)

= E([exp{−v(exi1β+c0β)}− exp{−vexj1β}] · 1{c− xij < 0}]|xi, xj , xi1 = xi2).

where xij = xj1−xi1. Next note that under assumption 1, {c0−xij} and exi1β+c0β−exj1β

have both support around zero since ∃ a pair {xa, xb,1, xb,2} ∈ R3, xb,1 = xb,2, such that

Pr(T ≥ 1|xa,1, xa,2) = Pr(T ≥ 2|xb,1, xb,2) (equivalently, xa = c0 + xb) where the density

of the regressor is positive in an arbitrarily small neighborhood around xa,1 or {xb,1, xb,2}.

Thus, we can find neighborhoods B in R such that dFxij (B) > 0, and for each xij ∈ B we
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have 1{c0 − xij < 0} 6= 1{c− xij < 0}. This implies that, for c 6= c0, i 6= j and xi1 = xi2,

E{Q(β∗, c0)}−E{Q(β∗, c)}

≥ E[{e−vZi(l=2;β∗,c0) − e−vZj(k=1;β
∗,c0)} ·

·[1{Zi(l = 2;β∗, c0) < Zj(k = 1;β
∗, c0)}− 1{Zi(l = 2;β∗, c) < Zj(k = 1;β, c)}]

≥ E{([exp{−v(exi1β+c0β)}− exp{−vexj1β}] ·

·[1{c0 − xij < 0}− 1{c− xij < 0}])|xij ∈ B}P (xij ∈ B) > 0.

The last equation implies that c0 is identified.

In order to show identification of β, define

Hij(β, c) = exi1β + exi2β+δ2 − exj1β (8)

= exi1β + exi2β+cβ − exi2β − exj1β

using δ2 = ln(ecβ − 1). Define

H∗ij(β, c) = 1 + e(xi2−xi1+c)β − e(xi2−xi1)β − e(xj1−xi1)β .

Differentiating with respect to β gives

∂H∗ij(β, c)

∂β
= (xi2 − xi1 + c)e(xi2−xi1+c)β − (xi2 − xi1)e

(xi2−xi1)β − (xj1 − xi1)e
(xj1−xi1)β.

Let P (Ti ≥ 2|xi) ≥ P (Tj ≥ 1|xj) so that E[exp{−v(exi1β0 + exi2β0+β0c0 − exi2β0)}|xi] ≥

E[exp{−v(exj1β0)}|xj ]. This implies that Hij(β0, c0) = exi1β0 + exi2β0+β0c0 − exi2β0 −

exj1β0 ≤ 0 and that H∗ij(β0, c0) = 1 + e(xi2−xi1+c0)β0 − e(xi2−xi1)β0 − e(xj1−xi1)β0 ≤ 0.

Suppose that xi2 − xi1 < 0 so that 1 − e(xi2−xi1)β0 > 0 for any value of β0 > 0. This

implies that e(xi2−xi1+c0)β0 < e(xj1−xi1)β0 so that (xi2 − xi1 + c0) < (xj1 − xi1). This

implies that
∂H∗ij(β,c0)

∂β < 0 for all β > 0 so that H∗ij(β, c0) < H∗ij(β0, c0) if β > β0 and

H∗ij(β, c0) > H∗ij(β0, c0) if β < β0. In particular, given the assumption 1 (v), for those

values of the regressors for which P (Ti ≥ 2|xi, xi1 > xi2) ≥ P (Tj ≥ 1|xj) and xi2−xi1 < 0,

the conditional expectations of the contributions to the objective functions,

{P (Ti ≥ 2|xi, xi1 > xi2)− P (Tj ≥ 1|xj)} ∗ 1{H∗ij(β, c0) < 0}

are maximized for any value of β for which β ≥ β0.
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Now consider P (Ti ≥ 2|xi, xi1 > xi2) ≤ P (Tj ≥ 1|xj) thenE[exp{−v(exi1β0+exi2β0+β0c0−

exi1β0)}] ≤ E[exp{−v(exj1β0)}]. This implies that Hij(β0, c0) = exi1β0 + exi2β0+β0c0 −

exi2β0 − exj1β0 ≥ 0 and that H∗∗(β0, c0) = e(xi1−xi2)β0 + eβ0c0 − 1− e(xj1−xi2) ≥ 0. Again,

suppose that xi2 − xi1 < 0 so that e(xi1−xi2)β0 − 1 > 0 for any value of β0 > 0. This

implies that ec0β0 > e(xj1−xi2)β0 so that c0 > (xj1−xi2). This implies that ∂H∗∗(β,c0)
∂β > 0.

Similar reasoning as above implies that the conditional expectations of the contributions

to the objective functions,

{P (Ti ≥ 2|xi, xi1 > xi2)− P (Tj ≥ 1|xj)} ∗ 1{H∗(β, c0) < 0}

are maximized for any value of β for which β ≤ β0. Thus, β0 is identified if xi2−xi1 < 0.

A similar reasoning applies if xi2−xi1 < 0 so that β0 is identified under the assumptions.

Identification of {β, δ} is equivalent to identification of {β, c}. Now consider a model with

multiple periods. Consider the following reparametrization, ρk = ln{
Pk

s=1 exp(δs)} for

all k. For those individuals whose regressors do not change, we have

Zi(k, β, δ) =
kX

s=1

exp(xiβ + δs) = exp(xiβ)
kX

s=1

exp(δs)

= exp(xiβ) exp[ln{
kX

s=1

exp(δs)}} = exp(xiβ + ρk) = Zi(k, β, ρk).

Thus, for a subset of the data, we have a single index and assumption 1 identifies

these single index parameters up to scale, {β/|β|, ρ2/|β|, ρ2/|β|, ...}, using a simplified

version of the proof of proposition 1 below. In particular, note that exp(xiβ + ρk) =

exp{|β|(xiβ/|β| + ρk/|β|)} and that ρk/|β| is like a dummy of a particular time period.

Then, note that G∗1r must be nonzero for some r since G is a connected graph. This

identified ρr. Next note that an element of {G∗1s, G∗rs} is nonzero for some s since G∗ is a

connected graph and so on. Thus, only β remains to be identified and we identify it using

the same reasoning as for a two scaler period.

Now suppose that assumption 1 (i)-(v), (vi(b)) and (vii) hold. We first consider

identification in the two period model. By assumption 1 (vii), we have

Pr(T ≥ 1|xa,1, xa,2) = Pr(T ≥ 2|xb,1, xb,2)
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for some xa, xb. This implies that

E([exp{−v(exp(xa,1β) + exp(xa,2β + δ))}])− exp{−v(exp(xb,1β))}] = 0

thus,

E([exp{−v(exp(xa,1β) · (1 + exp({xa,2 − xa,1}β + δ))}])− exp{−v(exp(xb,1β))}] = 0

Define exp(δ) = exp{(xa,1 − xa,2)β} · {exp(c∗β)− 1} for some c∗ > 0. This yields

E([exp{−v(exp(xa,1β + c∗))}])− exp{−v(exp(xb,1β))}] = 0.

This yields the same expected contribution to the objective function as equation (7) so

that {β, c∗} are identified. Next, consider a model with multiple periods. Note that, by

assumption 1 (vi(b)), xl,1|xl,2, xl,3, ..., xl,K , xl−1, xl−2, ... is continuously distributed for

all t, and Pr(T ≥ l|xl) = Pr(T ≥ k|xk) where xl,1 is in the interior of the support

of xl,1|xl,2, xl,3, ..., xl,K , xl−1, xl−2, ... for all k. Thus, xl,1 is conditionally continuously

distributed on an interval for all l so that all parameters are identified at least up to scale.

Finally, β can be identified using the same reasoning as for a two scaler period.

Convergence in probability:

Define

Q0(β, δ) = E{QN (β, δ)}

= E[E{QN (β, δ)|Z}]

= E[

P
i

N

LX
l=1

Ev{e−vZi(l)|Zi(l)}
KX
k=1

[2 ∗ FZ(Zi(l))− 1]]

where FZ is the cdf of Zi(l) for l = 1, ...,K and i = 1, ...,N. The function Q0(β, δ) is

continuous and minimized at the true value of the parameters. The function Q(β, δ) is

stochastically equicontinuous and the conditions of Newey and McFadden (1994, lemma

2.8) are satisfied so that Q(β, δ) converges uniformly to EQ(β, δ). Moreover, Θ is as-

sumed to be compact and the data are i.i.d., so that consistency follows from Newey and

McFadden (1994, theorem 2.1). Note that these arguments do not require that there is

unobserved heterogeneity; they still hold if all individuals have the same value of v.
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Appendix 2: Proof of Proposition 1

Proof of Proposition 1:

Identification up to scale: Let W ∗ denote the random variable x1 for which x̃1 ∈ S̃1. Let

W be the difference between two realizations of W ∗. The support of W ∗, and therefore

of W, is not contained in any proper linear subspace of Rq. This implies that E{WW 0} is

positive definite (e.g. see Newey and McFadden (1994, page 2125)). Therefore, for β∗ 6= β,

W 0(β − β∗) 6= 0 on a set with positive probability so that W 0β 6= W 0β∗ on a set with

positive probability. We need that 1{W 0β < 0} 6= 1{W 0β∗ < 0} on a set with positive

probability. To see that this is the case, note that the first component ofW is the difference

between two independent and continuously distributed random variables so that the first

component of W is also continuously distributed. Next, let W = {W1, W̃} and note that

the support of W̃ is not contained in a linear subspace of Rq−1. Moreover, condition (iv)

implies that W 0β is continuously distributed around zero so that β is identified up to

scale.

Estimation up to scale: The probability limit of EQ(κ) is uniquely maximized at κ =

β/|β1|. All conditions of Newey and McFadden (1994, theorem 2.1 and lemma 2.8) are

satisfied and consistency follows.

Appendix 3: Proof of Theorem 2

Proof of Theorem 2: Note that one can consistently estimate the regressors up to scale

by proposition 1 and that Q(β, δ) incorporates the objective function of proposition 1.

Consider replacing xiβ = xiκ|β1| by {xiκ̂ · |β1|} in the objective function and note that

xiκ̂ then plays the role of xi in theorem 1; note that an additional error term converges

to zero in probability and consistency follows from theorem 1 and Newey and McFadden

(1994, theorem 2.1 and lemma 2.8).

Appendix 4: Proof of Theorem 3: Asymptotic Normality
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QN (θ) =
1

N(N − 1)
X
i

X
j

LX
l=1

KX
k=1

[1{Ti ≥ l}− 1{Tj ≥ k}]1{Zi(l) < Zj(k)}

=
1

N(N − 1)
X
i

X
j

LX
l=1

[1{Ti ≥ l}
KX
k=1

1{Zi(l) < Zj(k)}

− 1

N(N − 1)
X
i

X
j

KX
l=1

1{Tj ≥ k}
LX

k=1

1{Zi(l) < Zj(k)}

=

P
i

N

LX
l=1

1{Ti ≥ l}
P

j

N − 1

KX
k=1

[1{Zi(l) < Zj(k)}− 1{Zi(l) > Zj(k)}]

=

P
i

N

LX
l=1

1{Ti ≥ l}
P

j

N − 1

KX
k=1

[1− 2 ∗ 1{Zj(k) < Zi(l)}]

with probability one. Thus,

QN (θ) =

P
i

N

LX
l=1

1{Ti ≥ l}K[1− 2F̂Z{Zi(l)}].

Proof of theorem 2:

We proof theorem 3 by applying Newey (1991) and Newey and McFadden (1994, lemma

2.8 and section 7) and we follow their notation as much as possible.

DN = −2
P

i√
N
[1{Ti ≥ l}−E(1{Ti ≥ l}|Xi)]

LX
l=1

fZ{Zi(l)}
∂Zi(l)

∂θ

−2[E(1{Ti ≥ l}|Xi)]
LX
l=1

fZ{Zi(l)}
∂Zi(l)

∂θ
−E[

P
i

N

LX
l=1

1{Ti ≥ l}fZ{Zi(l)}
∂Zi(l)

∂θ
]].

The assumption |fZ(z)∂Z∂θ | < M, the random sample assumption of assumption 1 and

the Lindeberg-Levy central limit theorem implies that
√
NDN (θ) converges to a normal

distribution with variance-covariance Ω = E[DN (θ0)DN (θ0)
0].

Note that

QN (θ)−QN (θ0) = 2K

P
i

N

LX
l=1

1{Ti ≥ l}[F̂ (Z0,i(l))− F̂ (Zi(l))]

Q0(θ)−Q0(θ0) = 2K ∗EX [

P
i

N

LX
l=1

E{1(Ti ≥ l)|Xi}[FZ{Z0,i(l)}− FZ{Zi(l)}]]

where the subscript zero denotes that Z0,i(l) is a function of θ0, the true value. Let

1−G(w) denote the cumulative distribution function of the logistic distribution, G(w) =

1
1+exp(w) , and let G

0(w) = − exp(w)
{1+exp(w)}2 . Note that G(u/h)−1(u > 0) decreases exponen-

tially in 1/h for all u 6= 0.
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Let F̃ (.) denote the smoothed F̂ (.),

F̃ (Zi(l)) =

P
i

N − 1

KX
k=1

G{Zi(l)− Zj(k)

h
}. (9)

With probability one, Zi(l)− Zj(k) 6= 0. Consider u and u0 and let ∆ = u− u0.

G(u/h) = G(u0/h+∆/h) =
1

1 + exp(u0/h+∆/h)
.

Thus,

G(u/h)−G(u0/h) =
1

1 + exp(u0/h+∆/h)
− 1

1 + exp(u0/h)

=
exp(u0/h)− exp(u0/h+∆/h)

{1 + exp(u0/h)}{1 + exp(u0/h+∆/h)}

=
exp(u0/h)

{1 + exp(u0/h)}
1− exp(∆/h)

{1 + exp(u0/h+∆/h)}

Thus, for ∆ →p 0 for N → ∞ and h ∝ Nδ, δ < 0, we have {
√
N

|∆| [G(u/h) − G(u0/h)]}

→
p
0. Define

qN (θ)− qN (θ0) = 2

P
i√
N

LX
l=1

1{Ti ≥ l}
KX
k=1

{F̃ (Z0,i(l))− F̃ (Zi(l))}. (10)

The above reasoning implies that {QN (θ)−QN (θ0)}/K is closely approximated by qN (θ)−

qN (θ0). In particular,

sup
θ∈Θ

|
√
N

||θ − θ0||
[
QN (θ)−QN (θ0)

K
− {qN (θ)− qN (θ0)}]|→

p
0

where the uniform convergence follows from Newey (1991). Define q0(θ) − q0(θ0) =

E{qN (θ)− qN (θ0)}, and define

rN(θ) = qN (θ)− qN (θ0)− {q0(θ)− q0(θ0)}

Note that rN (θ) is continuously differentiable. A Taylor approximation around θ = θ0

yields

rN (θ) = {
∂qN (θ)

∂θ
|θ=θ̄ −

∂q0(θ)

∂θ
|θ=θ̄}(θ − θ0)
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for some intermediate value θ̄ ∈ [θ, θ0]. For h ∝ N−1/5,

rN (θ) = {∂qN (θ)
∂θ

|θ=θ̄ −
∂q0(θ)

∂θ
|θ=θ̄}(θ − θ0)

= 2

P
i

N

LX
l=1

1{Ti ≥ l}{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

− 2E[

P
i

N

LX
l=1

1{Ti ≥ l}{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

= 2

P
i

N

LX
l=1

[1{Ti ≥ l}−E(1{Ti ≥ l}|X)]{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

− 2

P
i

N

LX
l=1

[E(1{Ti ≥ l}|X)]{ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}

− E[E(1{Ti ≥ l}|X){ 1
h

exp(Zi(l)/h)

{1 + exp(Zi(l)/h)}2
∂Zi(θ)

∂θ
}]]|θ=θ̄(θ − θ0)

= 2

P
i

N

LX
l=1

[1{Ti ≥ l}−E(1{Ti ≥ l}|X)]{fZ(Zi(l))
∂Zi(θ)

∂θ
}|θ=θ̄(θ − θ0)

− 2

P
i

N

LX
l=1

[E(1{Ti ≥ l}|X){fZ(Zi(l))
∂Zi(θ)

∂θ
}

− E[E(1{Ti ≥ l}|X){fZ(Zi(l))
∂Zi(θ)

∂θ
}]]|θ=θ̄(θ − θ0) + op(

||θ − θ0||√
N

)

= −DN (θ0)√
N

(θ − θ0) + op(
||θ − θ0||√

N
). (11)

The continuous differentiability of rN (θ) with respect to θ implies that this convergence

is uniform. Thus, [QN (θ)−QN(θ0)− {Q0(θ)−Q0(θ0)}]/K can be approximated by rN

and the continuously differentiable rN can be approximated by DN . Define

RN (θ) =
√
N [QN (θ)−QN (θ0)−K ·DN (θ − θ0)− {Q0(θ)−Q0(θ0)}].

The above reasoning implies that, for any δN → 0, sup||θ−θN ||≤δN |RN (θ)/[1 +
√
N ||θ −

θN ||]|→
p
0. Thus, assumption (v) of Newey and McFadden (1994, theorem 7.1) is satisfied.

Q.E.D.

Proof of Lemma 1

All conditions of Newey and McFadden theorem 7.4 are satisfied and the result follows.

Appendix: Examples
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Example 1:

Assumption: Let (i) θ(t|v, x) = φxλ(t) so that F̄ (t | x) = exp(−φxΛ(t)) (ii) F̄ (t | x) be

observed for x = 0, 1 and all t ≥ 0.

We first estimate the integrated baseline hazard, Λ̂(t) = − ln F̄ (t | x = 0) = F̄0(t).

Assumption (i) implies the following density, f(t | x = 1) = φλ(t)e−φΛ(t). Suppose that

λ(t) and Λ(t) are known, then the log likelihood and its derivative have the following

form,

L(φ) = lnφx + lnλ(t)− φxΛ(t)

∂L(φ)

∂φ
=

x

φ
− xΛ(t)⇒

plim
N→∞

φ̂MLE = 1/E{Λ(T )|x = 1} = −1/E[ln{F̄0(T )}|x = 1].

Let v ∼ Gamma(α, α), so that F̄0(t) =
³
1 + Λ(t)

α

´−α
and − lnF0(t) = α ln

³
1 + Λ(t)

α

´
.

Note that φxΛ(T ) = Z
v where Z has an exponential distribution with mean one. This

yields

plim
N→∞

φ̂ =
1

E[α ln{1 + Z/(φvα}] .

where v ∼Gamma(α, α).

Example 2:

After transforming the dependent variable using the transformation model of Horowitz

(1996) we define W = H(T ). Note that H(T )|β| is distributed as an exponential random

variable so that W is distributed as a Weibull random variable with parameter |β|. As in

the example, let β > 0. Consider the Weibull model with a Gamma mixing distribution,

θ (wi | v, xi) = vexiβαwα−1
i

v ∼ Gamma (γv, δv)

F̄ (wi|xi) = Eve−ve
xiβtαi =

1³
1 +

exiβwαi
δv

´γv
f(wi|xi) =

αγve
xiβwα

i

δv

1³
1 +

exiβwαi
δv

´γv+1
Li(α, β, γv, δv) = lnα+ ln γv + xiβ + α lnWi − ln δv − (γv + 1) ln

µ
1 +

exiβWα
i

δv

¶
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Imposing the restriction α = β and using

exiβWβ
i = (e

xiβWβ
i )

β/β = (Zi)
β/β

where Zi is distributed as an exponential stochast with mean one gives

Li(β, γv, δv) = lnβ + ln γv + (β/β) lnZi − ln δv − (γv + 1) ln
µ
1 +

(Zi)
β/β

δv

¶
.

This likelihood does not depend on the regressor21 x, which implies that the probability

limit of β does not depend on the distribution of x.

Appendix: Computational Issues

by Matthew Harding, Jerry Hausman, and Tiemen M. Woutersen

We estimate the parameter vector (β, δ) from the following objective function which

corresponds to a mass of indicator functions:

Q(β, δ) =
nX
i=1

LX
l=1

1{Ti ≥ l}
nX
j=1

KX
k=1

[1{Zi(l) < Zj(k)}− 1{Zi(l) > Zj(k)}]. (12)

Optimization of this objective function using iterated sums is not feasible since for

the specification with 24 periods it takes approximately 15 minutes to evaluate one such

objective function in Matlab. Note however that for all individuals i which pass the

criterion Ti ≥ l the objective function evaluates the difference between the number of

individuals with an index less than the index of individual i and the number of individuals

with an index greater than the index of individual i. This information is also contained

in the ranking of individual’s indices and thus can be more efficiently extracted using the

Rank function. This suggest that an efficient implementation of this optimization will be

similar to that of Chen (2002).

We can define dk = 1{T ≥ k} for the vector T of dimension N×1. Let d be constructed

by stacking the vectors dk vertically for all k = 1, ...,K. Similarly let Z be constructed

by stacking the vectors Z(k) for all k = 1, ...,K. Now both d and Z are of dimension

NK × 1. We can now rewrite Q(β, δ) using these vectors and the Rank function:
21The same reasoning holds for a negative β0 (since the sign can be determined using Han (1987) and

for a multivariate regressor (since this can be reduced to a scalar by estimating the regression coefficient
up to scale using Han (1987).
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Q(β, δ) =
1

N(N − 1)

NkX
i=1

d(i) [2 ·Rank(Z(i))−NK] . (13)

This simpler yet numerically identical representation22 will be more efficient to evaluate

numerically because (i) it has only one summation sign and (ii) computation of the rank

function requires sorting for which highly efficient algorithms are available. Indeed it now

takes less than one second to estimate one such objective function for the specification

with 24 periods.

Models with non-smooth objective functions in the parameters have been traditionally

estimated using the Nelder-Mead simplex method (see, e.g. Abrevaya, 1999; Cavanah

and Sherman, 1998). In this particular example the large number of local optima makes

the Nelder-Mead method computationally unstable. The Nelder-Mead algorithm fails to

converge or takes unreasonably long to do so.23

Pattern search methods have been available for many decades and rigorous convergence

results have become available in recent years (Lewis and Torczon, 1999; Audet and Dennis,

2003). Although anecdotal evidence on the performance of these algorithms often suggests

slow convergence we find that the convergence of the objective function at 4 decimal places

for the specification with 13 periods takes about 20 minutes while the specification with

24 periods takes approximately 50 minutes to convergence.

We shall now provide a brief introduction to the mechanism of pattern search.24 For

some given real valued objective function Q(γ) defined on the n-dimensional Euclidean

space, let γ0 be the initial guess. In our case we use γ0 = [ bβ,bδ]Gamma, the parameter

estimates from the HHM Gamma Heterogeneity model estimated using a quasi-Newton

derivative based method. Additionally define a forcing function ρ(t) to be a continuous

function such that ρ(t)/t→ 0 as t→ 0. Let ∆k control the step length at each iteration.

Search patterns for some initial starting value γ0 are drawn from a given generating set.

A minimal generating set corresponds to some positive spanning set for the n-dimensional

space, where the number of dimensions corresponds to the number of parameters to be

22There is still an issue regarding the treatment of ties in the Rank function but it seems to matter
little in practice.
23Convergence of the objective function to 4 decimal places may take as long as 9 hours to compute.
24For a more detailed review and convergence proofs see Kolda, Lewis and Torczon (2003).
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estimated. The defining requirement for a generating set is that any vector in Rn may be

written as a linear combination of elements in the generating set using positive coefficients

only. A generating set will thus contain at least n+1 elements. To illustrate the generating

set for n = 2 is

G =

½µ
1
0

¶
,

µ
−1
−1

¶
,

µ
−1
1

¶¾
. (14)

Alternatively we could use the set of 2n coordinate directions as the elements of our

generating set. In our application however we have found computational performance to

be superior under the setup with n+1 directions. Additionally, heuristic additions to the

generating set may be implemented in order to improve speed and performance. These

heuristic additions allow the algorithm to evaluate other points in the same direction as

the last successful search, but further away from the starting point than the standard

elements of the generating set would allow for, thus allowing for the possibility that if the

correct direction of improvement was found, several computation steps will be skipped

and the search converges more rapidly. Random polling vectors also provide heuristic

evaluations of the objective function without compromising the convergence properties of

the algorithm which only depend on the minimal generating set.

We use the standard errors of the HHM estimation to construct a "bounding box" that

is then used to bound the parameter space for the optimization under the semi-parametric

setup. We start with a bounding25 box of ± 3 standard errors.

At each iteration the algorithm evaluates the objective function for all vectors gk ∈ G

and compares Q(γk + ∆kgk) with Q(γk) − ρ(∆k). If an improvement is found γk+1 =

γk +∆kgk and ∆k is increased to ∆k+1. If no improvement is found then γk+1 = γk and

∆k is decreased to ∆k+1. This process is iterated to convergence.

Since the true parameter values are not guaranteed to lie within this bounding box it

may be that the algorithm constrained by the location and size of the bounding box only

reaches a local optima. In order to correct for this possibility we gradually expand the

bounding box as long as the estimated parameters change with a larger bounding box. A

large bounding box however may imply that the estimates have only low precision, since
25We would increase the number of standard errors if the sample size would be larger.
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the algorithm visits every point in the domain with a probability decreasing in the size of

the bounding box. In order to improve accuracy, once the desired size of the bounding box

has been reached, the bounding box is re-centered on the new parameter estimates from

the semi-parametric setup. The size of the bounding box is then sequentially decreased

in order to verify the accuracy of the obtained estimates. Refinements are made if an

improvement is found.

We use the estimated values bδPattern to compute an estimate of the survival probability
at each time period. Using the delta method we compute the associated estimates of the

standard error of the survival probability in each period. Interpretation is made easier

by smoothing the pair (P (T ≥ ti), ti) for all time periods ti using a local polynomial

method. The neighborhood of ti is defined as a percentage of the total number of periods

under consideration and may be chosen using cross-validation techniques. Each point in

the neighborhood N(ti) is assigned two sets of weights. One set of weights is inversely

proportional to the standard error of the survivor estimate as given by the pattern search

optimization. The other set of weights is provided by the tri-cubic weight function and

weighs the impact of distant data points on the smoothing estimate of one particular

observation. The tri-cubic weight function involved in the smoothing of point ti places

the following weight on observation tj :

W (ti, tj) =

Ã
1−

µ
|ti − tj|

maxtj∈N(ti) |ti − tj |

¶3!3
1

½
0 ≤ |ti − tj |

maxtj∈N(ti) |ti − tj |
< 1

¾
. (15)

The smoothed estimates of the survivor function are then computed as the predicted

values of the weighted linear regression of second degree for each point in the corresponding

neighborhood using the two sets of weights. The choice of the span of the neighborhood

at each point using cross-validation tends to matter little in this case.

The pattern search method we employed to derive estimates of the model parameters

seems to perform well, both in terms of accuracy and computational time. Nevertheless,

the nature of the objective function and the dependency of our use of the pattern search

method on a good estimate of the relevant bounding box, raises the question to what

extent a global optimum has been reached for our objective function. Since it is possible

to conceive of our optimization problem as a stochastic optimization problem we consider



Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity40

the implementation of a genetic optimization procedure as a global optimizer capable of

overcoming the nondifferentiability of the objective function, as discussed by Spall (2003).

Few applications of this procedure to econometrics exist in spite of numerous reported

successful implementations in other areas of science (Haupt and Haupt, 1998; Reeves and

Rowe, 2003).

Genetic optimization methods describe a number of processes based on principles from

biological sciences aimed at generating a population of parameter values which optimizes

its fitness defined as the corresponding value of the objective function. The core idea

involves the use of stochastic perturbations in the population of potential optimizing

parameters so as to improve the optimality of the solution. This approach mirrors the

biological concept of evolution. The use of a population of parameters as the primary

building block of the algorithm aims at avoiding convergence towards one local optimum.

Since the outcome of a genetic optimization procedure is not dependent on the initial

population we use as starting values for the population unit-uniform random numbers.

The objective function is evaluated for each member of the population. Members of the

population with the best values are selected as candidates for the generation of individuals

of the subsequent population through the processes of elitism, crossover or mutation. A

(small) number of the successful members of a population are simply copied over in the

next generation of the population, a process termed elitism. The crossover process ran-

domly combines values of the parameter vector of two evolutionary successful individuals

to obtain a new individual for the next population. The process of mutation adds random

noise from a Normal distribution to the parameter values of one successful individual to

create a new individual in the next generation. Since with each additional generation we

are more likely to close-in on the optimum, we shrink the variance of the mutation process

at each generation.

Convergence for the genetic optimization process tends to be much slower than that

of the pattern search procedure. Nevertheless, the algorithm can be used to confirm the

global optimality of the point estimates obtained by pattern search. Our results using

genetic optimization are the same as the pattern search algorithm to 4 significant digits
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for the objective function.
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Table 1: Data Description and Summary Statistics 

Variable Description Mean Standard 
Deviation 

Race = 1 if UI recipient is Black or African-American 0.1172 0.3217 
Age = 1 if UI recipient is over 50 years old at the start of 

the benefit year 
0.1776 0.3822 

Replacement Rate = Weakly Benefit Amount divided by UI recipient’s 
base period earnings 

0.0129 0.0076 

State 
Unemployment 
Rate 

= Unemployment rate of the state from which the 
individual received UI benefits during the period in 
which the individual filed for benefits 

  

 Week 1 4.6863 1.0875 

 Week 2 4.6726 1.0834 

 Week 3 4.6603 1.0794 

 Week 4 4.6453 1.0747 

 Week 5 4.6301 1.0698 

 Week 6 4.6211 1.0649 

 Week 7 4.6164 1.0665 

 Week 8 4.5981 1.0641 

 Week 9 4.5710 1.0616 

 Week 10 4.5382 1.0615 

 Week 11 4.5318 1.0630 

 Week 12 4.5091 1.0678 

 Week 13 4.4832 1.0751 

 Week 14 4.4620 1.0802 

 Week 15 4.4604 1.0756 

 Week 16 4.4490 1.0735 

 Week 17 4.4400 1.0675 

 Week 18 4.4407 1.0557 

 Week 19 4.4316 1.0546 

 Week 20 4.4207 1.0452 

 Week 21 4.4240 1.0337 

 Week 22 4.4315 1.0298 

 Week 23 4.4364 1.0240 

 Week 24 4.4414 1.0156 

 Week 25 4.4424 1.0121 

 

 



Table 2: HHM Gamma Heterogeneity Model, Period 1 normalized to zero.

Parameters s.e. Parameters s.e. Parameters s.e.
alpha 0.9307 2.1675 0.1089 0.0120 0.0993 0.0182
gamma 7.9607 0.2383 0.3164 0.0773 0.1655 0.6082
State Unemployment Rate -0.1019 0.0246 -0.2762 0.0341 -0.3875 0.0393
Race -0.0350 0.0653 -0.2167 0.1155 -0.2061 0.1370
Age>50 -0.2047 0.0623 -0.4290 0.0932 -0.4317 0.1557
Replacement Rate -0.5393 0.0497 -0.5498 0.0562 -0.5059 0.1493

Period 2 -0.3259 0.0747 -0.0494 0.0787 0.0010 0.1576
3 0.0198 0.0814 0.5517 0.0905 0.6479 0.1342
4 -0.3032 0.0939 0.4661 0.1157 0.6053 0.1222
5 0.1430 0.1026 1.1678 0.1275 1.3511 0.1532
6 -0.3780 0.1256 0.8858 0.1553 1.1134 0.1979
7 1.4905 0.1811 1.7608 0.1879
8 1.3001 0.2086 1.6111 0.2144
9 1.7490 0.2228 2.0944 0.2359

10 1.7326 0.2486 2.1103 0.2753
11 2.2152 0.2661 2.6362 0.3007
12 2.3336 0.2870 2.7970 0.3510
13 2.6485 0.3108 3.1545 0.3966
14 3.4413 0.3856
15 3.8034 0.4204
16 3.7589 0.5024
17 4.3672 0.5399
18 4.4417 0.5073
19 4.9485 0.5167
20 4.9909 0.5785
21 5.3740 0.5845
22 5.4392 0.6022
23 5.9363 0.6546

Period 24 6.0436 0.6891

Number of observations 15,491 15,491 15,491
Likelihood 0.6664 1.2242 1.0131

6 periods 13 periods 24 periods



Table 3: New Duration Model, Period 1 normalized to zero.

Parameters s.e. Parameters s.e. Parameters s.e.

State Unemployment Rate -1.4672 0.0965 -1.4643 0.0832 -1.3953 0.0483
Race -0.5663 0.2728 -0.5928 0.2444 -0.5656 0.2105
Age>50 -1.0701 0.2146 -1.0712 0.1974 -0.8067 0.1770
Replacement Rate -2.2347 0.1778 -2.2693 0.1588 -0.5372 0.1097

Period 2 2.7287 0.1295 2.6191 0.1604 2.0707 0.2422
3 3.8869 0.1298 4.1002 0.1812 3.2261 0.2451
4 5.0912 0.1276 5.4381 0.1657 4.2821 0.2116
5 5.6051 0.1440 5.9834 0.1737 4.7376 0.2132
6 6.5985 0.1380 7.1400 0.1704 5.7784 0.2028
7 7.1200 0.2092 5.6905 0.2444
8 7.9306 0.1860 6.5007 0.1955
9 8.2543 0.2017 6.7297 0.2212

10 8.3960 0.2382 6.5937 0.3050
11 8.7536 0.2265 7.1753 0.2422
12 9.4656 0.2218 7.8302 0.2218
13 9.7804 0.2361 8.3342 0.2227
14 8.1757 0.3352
15 8.4889 0.3058
16 9.1671 0.2548
17 9.5479 0.2597
18 9.8108 0.2818
19 10.0790 0.2968
20 10.6790 0.3018
21 10.7060 0.3229
22 10.9360 0.3409
23 10.9230 0.3419

Period 24 11.3860 0.3437

Number of observations 15,491 15,491 15,491
Objective Function 30.221 122.050 332.890

6 periods 13 periods 24 periods
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