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Abstract

For the problem of testing the hypothesis that all m coefficients of the right-
hand-side endogenous variables in an IV regression are zero, the likelihood ratio (LR)
test can, if the reduced form covariance matrix is known, be rendered similar by
a conditioning argument. To exploit this fact requires knowledge of the relevant
conditional cdf of the LR statistic, but the statistic is a function of the smallest
characteristic root of an (m+1)−square matrix, and is therefore analytically difficult
to deal with when m > 1. We show in this paper that an iterative conditioning
argument used by Hillier (2006) and Andrews, Moreira, and Stock (2007) to evaluate
the cdf in the case m = 1 can be generalized to the case of arbitrary m. This means
that we can completely bypass the difficulty of dealing with the smallest characteristic
root. Analytic results are obtained for the case m = 2, and a simple and efficient
simulation approach to evaluating the cdf is suggested for larger values of m.
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1 Introduction

Interest in the problem of hypothesis testing in the classical IV-regression/structural-
equation model has seen a resurgence in the last few years, largely because recent
work on weak instruments has shown that inference procedures founded on purely
asymptotic arguments can be extremely unreliable. When errors are Gaussian with
known covariance matrix, and we are testing the coefficients of all m (say) right-
hand-side endogenous variables jointly, we know from the work of Moreira (2003),
and Andrews, Moreira, and Stock (2006, 2007), and others, that the likelihood ratio
(LR) test can be rendered similar by a conditioning argument. And, it seems from
simulation results that replacing the assumed-known covariance matrix by an esti-
mator may not be too damaging to the results. Thus, in principle at least, the size of
the LR test need not be sensitive to weak instruments, or inadequate information in
any sense, though of course its power will be. The problem is to provide the critical
values needed to implement this so-called conditional LR (CLR) test, and it is to this
issue that this paper is addressed.

The main part of the paper is a purely theoretical exercise. The reader interested
only in using the test in practice should finish reading this Introduction, and then
skip directly to Section 5, which explains in detail how the results in the paper can
be implemented.

In the case m = 1, Hillier (2006) has recently derived the exact conditional cdf of
the LR statistic, and used this to provide plots of the critical value function needed
to implement the CLR test. He also uses the same analytical approach to derive
the exact conditional power functions for the CLR test, and some other tests that
have been proposed for the problem. Andrews, Moreira, and Stock (2007) had earlier
used an equivalent argument, together with numerical integration, to compute the
conditional null cdf of the LR statistic for the case m = 1, but power calculations
have hitherto relied entirely on rather crude simulation methods.

When m > 1 the LR statistic involves the smallest characteristic root of an
(m + 1)−square symmetric matrix, i.e., the smallest root of a polynomial of degree
m+1. It would therefore seem on the face of it that little analytical progress could be
made for the case m > 1. Even in the case m = 2 we have to deal with the smallest
root of a cubic - a formidable formula in itself. And, for m ≥ 4, of course, no explicit
formula for the roots is available. Both Hillier (2006, Section 3) and Kleibergen (2007)
discuss - as a way round this problem - a similar test for several parameters that is
based upon, but not in general identical to, the CLR test. This approach is easy to
implement, but since most of the power calculations so far available suggest that the
true CLR test is generally near-optimal, it seems desirable to provide methods that
facilitate its use in practice, and that is our purpose here.

The main accomplishment of this paper is to show that a generalized version
of the approach used in Hillier (2006) and Andrews, Moreira, and Stock (2007) for
the case m = 1 can also be used in the case m > 1. That is, we shall show that,
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notwithstanding the fact that the LR statistic cannot be written down directly as a
function of the underlying data, its conditional cdf can be computed by a sequential
conditioning argument.

The argument is iterative. The first step is to show that, after a suitable trans-
formation of variables, the statistic of interest - a complicated (in general, implicit)
function of the sufficient statistics for the problem - is monotonically related to a
random variable that is independent of all other variables and has very simple dis-
tribution properties.1 Conditioning on those remaining variables, the null conditional
cdf of the LR statistic is therefore easily written down. The conditional cdf we seek
is, after this first step, the conditional expectation of a well-behaved function of the
remaining variables. In the case m = 1 the first step leaves only the evaluation of a
one dimensional integral to yield the required conditional cdf . In Hillier (2006) this
integral is evaluated analytically, and Andrews, Moreira, and Stock (2007) evaluate
it by numerical integration.

In the case m > 1 the first-step result provides simple bounds on the conditional
cdf that can be useful without further calculation. But, continuing with the discussion
of the exact cdf, the first step in the process leaves an m−dimensional integration
that in turn involves the smallest root of a polynomial, this time of degree m. Using
an argument which exactly parallels that used for the first step, we show that this
root is again a monotonic function of a random variable with simple distribution
properties, and which is again independent of the remaining variables. Thus, the
integral required after the first step can be evaluated reasonably easily, given the
remaining m − 1 variables. In the case m = 2 this second step leaves only the
evaluation of a one-dimensional integral - again, the expectation of a fairly simple
function of that variable - and we give the analytic details for this case in Section 4.

Remarkably, when m > 2 the function whose expectation remains to be evaluated
after this second step, is an explicit, relatively simple, function of the remaining ran-
dom variables. Thus, even when m > 2, the second step in this iterative conditioning
process is sufficient to completely bypass the complexity arising from the fact that we
are dealing with a characteristic root. Evidently, this result has general applicability
well beyond the confines of the problem to which it is applied here.

Of course, when m > 2 (and even when m = 2 - see Section 4.2 below) the in-
tegrations required to produce an analytical expression for the cdf are formidable.
A second purpose of the paper is to suggest a simple simulation procedure for eval-
uating the integrals involved, based on the fact that they are essentially the ex-
pectations of relatively simple random functions, with nice properties. Section 5
discusses the implementation of the tests in practice, and the associated computa-
tional issues. Throughout the paper we denote the cdf of the χ2(k) distribution by
Gk(c) = Pr{χ2(k) < c}.
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2 Model, Assumptions, LR Test

We use, as is common in this literature, the stripped-down IV model consisting of a
single linear structural equation (or IV regression equation), together with a reduced
form equation for the right-hand-side endogenous variables that appear in it:

y1 = Y2β + u, (1)

Y2 = ZΠ + V, (2)

with y1 n× 1, Y2 n×m, Z n× k, and β m× 1. In general we might wish to test the
hypothesis H0 : β = β0, but there is no loss of generality in taking β0 = 0, which we
do from now on (simply replace y1 by y1 − Y2β0 if β0 6= 0). The changes needed to
accomodate the more realistic case where both equations contain additional exogenous
variables are described in Section 5. Combining (1) and (2) produces, under Gaussian
assumptions, a joint distribution for Y = (y1, Y2) of the form:

Y ∼ N(ZΠ(β, Im), In ⊗ Ω), (3)

and we assume that the covariance matrix for the rows of Y , Ω, is known. In this
model the matrix Z ′Y is minimal sufficient for the unknown parameters (Π, β). Under
these assumptions there is no loss of generality in assuming that the variables have
been scaled so that Ω has the form of a correlation matrix, Ω = {ρij; i, j = 1, ...,m+1},
with ρii = 1. We assume that this has been done, and merely note that, although this
rescales the parameters too, it does not affect the truth or falsity of the hypothesis of
interest. Finally, to avoid degeneracies, we assume throughout that k > m, so that
β is overidentified.

Remark 1 The assumptions of joint normality and known covariance matrix are, of
course, unrealistic. To motivate these assumptions we may (as usual in this literature)
appeal to results in Staiger and Stock (1997), where it is shown that, under so-called
weak-instrument asymptotics, the asymptotic properties of inferential procedures based
on the sufficient statistics for the model (3) correspond to those that apply under the
assumptions made above. Alternatively, we may note the simulation evidence that,
in the Gaussian model with unknown covariance matrix, using an estimator for Ω
seems to leave the main results that follow approximately intact. Note, though, that
the problem of exact inference in the Gaussian model with unknown covariance matrix
is not the subject of this paper, at least not directly.

There is a block-triangular matrix UΩ of the form

UΩ =

(

1 a′

0 A

)

with the property that U ′
ΩΩUΩ = Im+1. We define the standardised sufficient statistic

(p1, P2) = (Z ′Z)−
1

2Z ′Y UΩ. (4)
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Under the null hypothesis we then have that p1 and P2 are independent, p1 ∼ N(0, Ik),
and P2 ∼ N(M, Im ⊗ Ik), with M (a transformation of Π) a nuisance parameter.
Since the the null distribution of P2 is complete, similarity for tests of H0 can only
be achieved by tests that have Neyman structure with respect to P2, i.e., whose size
conditional on P2 does not depend on P2 (see Hillier (1987b) for background, and
Moreira (2003)). In what follows, therefore, we shall always be concerned with the
conditional properties of the LR test given P2.

The LR test rejects the null hypothesis when the statistic

T = q − f1 (5)

is large, where f1 is the smallest characteristic root of

W = (p1, P2)
′(p1, P2), (6)

and q = w11 = p′1p1. Note that, if k = m, f1 = 0 and the LR test is identical to
a test based on the Anderson-Rubin statistic q, which is χ2(k) under H0. It is for
this reason that we assume that k is strictly larger than m. Under this condition,
because T is a function of P2 the usual LR test is non-similar: its size depends on M.
However, exactly as in the case m = 1, the test can be rendered similar by choosing
the critical value in such a way that, conditional on P2, the size of the test is free of
P2. In fact, we shall see below that the distribution of T depends on P2 only through
the characteristic roots of W22 = P ′

2P2, so we need only consider the conditional
properties of T for fixed values of those roots.

In general we cannot write f1 explicitly as a function of W. Nevertheless, as
indicated in the Introduction, the conditional distributional properties of T , given
P2, can be deduced by an indirect argument.2 First, let

W22 = P ′
2P2 = HD2H ′

be the spectral decomposition of W22, where D = diag{
√
λ1,

√
λ2, ...,

√
λm}, the λi

being the characteristic roots of W22, and H is an m×m orthogonal matrix containing
the eigenvectors of W22. We assume throughout that the λi are labelled in increasing
order, and, to avoid repeated diversions, we assume that the λi are distinct (except
where otherwise indicated). All of the results to follow can be obtained without this
assumption, but it does simplify the proofs. Next define

r = D−1H ′P ′
2p1, (7)

so that

W =

(

q r′DH ′

HDr HD2H ′

)

=

(

1 0
0 H

)(

q, r′D
Dr, D2

)(

1 0
0 H

)′
,

and f1 is also the smallest characteristic root of

W̃ =

(

q, r′D
Dr, D2

)

. (8)

It follows from these observations that:
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Proposition 1 The properties of the LR test statistic depend on the properties of W
only through the properties of q, r, and the characteristic roots λ1, ..., λm of W22.

We can therefore focus on the variates q, r, and λ1, ..., λm, and conditioning on P2

is equivalent to conditioning on the characteristic roots λ1, ..., λm. Now, the charac-
teristic polynomial of W̃ is, up to sign,

ψ(f) = det[fIm+1 − W̃ ] = det

(

f − q, −r′D
−Dr, fIm −D2

)

.

Direct expansion of the determinant yields:

ψ(f) = (f − q)Πm
i=1(f − λi) −

m
∑

i=1

λir
2
i

(

m
∏

j 6=i=1

(f − λj)

)

, (9)

and f1 is the smallest root of the equation ψ(f) = 0. We now show that, after
a suitable transformation to new variables, this characteristic polynomial can be
written as a simple function of q - in fact, it is linear in q. This will enable us to show
(in the next Section) that T is strictly monotonically increasing in q when all of the
remaining variables - which are constructed so as to be independent of q - are held
fixed.

Define
q1 = p′1MP2

p1, (10)

where MP2
= Ik−P2(P

′
2P2)

−1P ′
2. Under the null hypothesis, q1 and r are conditionally

independent, given P2,

q1|P2 ∼ χ2(k −m), and

r|P2 ∼ N(0, Im).

Since these distributional properties are free of the conditioning variables P2 they
also hold unconditionally. Thus, unconditionally, q1 and r are independent and are
independent of P2, and hence also of the characteristic roots of W22, the λi.

Next, let
q2i = r2

i , i = 1, ...,m.

Under the null hypothesis the q2i are independent of q1, of each other, and of the λi,
and each is χ2(1). Now define the m+ 1 new variates

q = q1 + Σm
i=1q2i,

b = q1/q,
ci = q2i/(Σ

m
i=1q2i), i = 1, ...,m− 1.







(11)

The following null distribution properties for (q, b, c1, ...cm−1) follow easily:
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Proposition 2 Under the null hypothesis, q, b, and c1, ..., cm−1 are independent, q ∼
χ2(k), b ∼ Beta(k−m

2
, m

2
), and (c1, ..., cm−1) have the Dirichlet distribution with pa-

rameters (1
2
, 1

2
, ..., 1

2
; 1

2
). These m + 1 variables are independent of λ1, ..., λm, and we

have

q1 = bq,

q2i = ci(Σ
m
i=1q2i) = ciq(1 − b), i = 1, ...,m− 1.

We also put cm = 1 − Σm−1
i=1 ci, so that q2m = q(1 − b)cm.

We may now rewrite the characteristic polynomial (9) in terms of these variables
as:

ψ(f) = fψ1(f) − qψ2(f), (12)

where
ψ1(f) = Πm

i=1(f − λi) (13)

is essentially the characteristic polynomial of W22 (of degree m in f), and

ψ2(f) = ψ1(f) + (1 − b)
m
∑

i=1

ciλi

(

m
∏

j 6=i=1

(f − λj)

)

, (14)

again a polynomial of degree m in f.
Notice that ψ1(f) is determined entirely by (λ1, ..., λm), which we will condition on

(i.e., hold fixed), and that ψ2(f) is determined by (b, c1, ..., cm−1) and (λ1, ..., λm), all
of which are independent of q under H0. If we initially hold all of these variates fixed
the roots of ψ(f) = 0 are the points where the fixed polynomial fψ1(f) intersects
one member of the family of polynomials indexed by q :

̥ψ2
= {qψ2(f) : q > 0}.

Note that all members of the family ̥ψ2
vanish at the same points, the m roots of

the equation ψ2(f) = 0; this is the key to the monotonicity property that we seek to
establish.

3 First Monotonicity Property

The argument in Hillier (2006), which deals with the case m = 1, is based on showing
that the LR statistic T is (for fixed values of the other variables involved) monotonic-
increasing in q. This is easily established in the case m = 1 by using the explicit
formula for the statistic directly. Only the formula for the smallest root of a quadratic
is needed in the case m = 1. In the general case a direct approach is unavailable,
because the smallest root f1 cannot usually be written explicitly as a function of the
other variables. In this section we shall show that, nevertheless, an exactly analogous
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monotonicity property holds when m > 1. Some care is needed to make the argument
precise.

For fixed (b, c1, ..., cm−1) and (λ1, ..., λm), the equation ψ(f) = fψ1(f)−qψ2(f) = 0
may be interpreted as defining a relation between the scalar variables q and f . It
is this relation that we first need to study. In the direction f → q the relation is
defined by the equation q(f) = fψ1(f)/ψ2(f). Here, since we require that q > 0,
f must be restricted to values for which ψ1 and ψ2 have the same sign. Subject to
this restriction, and the requirement that ψ2 must not vanish, this is a well-defined
function for all f > 0.

In the direction q → f , however, there is a difficulty: for each q > 0 we know that
the equation ψ(f) = 0 has m+ 1 real roots, so in this direction the relation (which is
only implicitly defined, in general) cannot be represented by a well-defined function.
The key to resolving this difficulty is to recall the Cauchy interlacing inequalities
(Courant and Hilbert (1953), p.454), which, together with the fact that W is positive-
definite symmetric, assert that

0 ≤ f1 ≤ λ1 ≤ .... ≤ fm ≤ λm ≤ fm+1 <∞. (15)

Since, for our purposes, the λi will be treated as fixed, these inequalities may be used
to partition the domain of f into non-overlapping intervals, and we may represent
the relation q → f by a function with m+ 1 branches, one in each interval.

Thus, let Li = [λi−1, λi), i = 1, ...,m+1 (with λ0 ≡ 0 and λm+1 ≡ ∞) denote m+1
disjoint intervals whose union is R+. In each such interval we may define a branch
of the function q → f (see Figure 1 below for the case m = 2). Correspondingly, we
may restrict the domain of q(f) to Li, so that we have a matching set of functions
qi(f) : Li 7→ R defined by qi(fi) = fiψ1(fi)/ψ2(fi), with fi ∈ Li. Note that, with a
slight abuse of notation, fi here denotes a variable with domain Li (not just a root
of ψ(f) = 0). It is now at least plausible that each branch of the function, relating q
and an fi, is monotonic (one-to-one), and we shall in fact show that this is the case.

Before doing so we need to establish some properties of the polynomial ψ2(f) for
fixed b, c1, ..., cm−1, and λ1, ..., λm. The results needed are collected in the following
Lemma:

Lemma 1 (i) The polynomial ψ2(f) has exactly m real roots f2i, say, with precisely
one root in each of the intervals Li, i = 1, ...,m. (ii) If the f2i are labelled in increasing
order, for each i = 1, ...,m we have λi−1 ≤ fi ≤ f2i ≤ λi. (iii) For i = 1, ...,m, on
each of the sub-intevals λi−1 < f < f2i containing the roots fi of ψ(f) = 0, ψ2(f) 6= 0
and q(f) > 0. For f > λm (i.e., f ∈ Lm+1), ψ2(f) 6= 0 and q(f) > 0.

Proof. All proofs are in the Appendix.
Let Ri = [λi−1, f2i) ⊂ Li, i = 1, ...,m + 1, with λ0 = 0 and f2,m+1 = +∞.

According to the Lemma, ψ2(fi) 6= 0 on Ri, and q(fi) > 0. From now on we denote
by fi only values of f in Ri. We are now in a position to show that each of the
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relations between q and fi ∈ Ri defined by ψ(f) = 0 is strictly monotonic-increasing,
and hence one-to-one. Further, we will show that this is also true for the function
T (q) = q − f1(q), the function corresponding to the LR statistic.

Consider first the function q(f) defined by

q(f) =
fψ1(f)

ψ2(f)
, (16)

and the function
T (f) = q(f) − f, (17)

which corresponds to the LR statistic when f is restricted to R1. The following result
shows that both q(f) and T (f) are strictly monotonic-increasing.

Lemma 2 Let q(f) = fψ1(f)/ψ2(f) and T (f) = q(f) − f. Then, q′(f) > 0 and
T ′(f) > 0. i.e., both q(f) and T (f) are strictly monotonic-increasing in f.

An immediate consequence of this simple Lemma is the following:

Theorem 1 For fixed values of (b, c1, ..., cm−1) and (λ1, ..., λm), and for i = 1, ...,m+
1, each of the functions fi(q) : R+ → Ri is strictly monotonic-increasing in q.The
relationship between q and any root fi of ψ(f) = 0 - i.e., any branch of the function
f(q) - is therefore one-to-one.

In Figure 1 we illustrate these results for the case m = 2. The two solid horizontal
lines are the roots f21 and f22 of ψ2(f) = 0, the two dashed lines λ1 and λ2. The
functions were plotted using the ImplicitPlot facility in Maple, and each branch is
clearly monotonic-increasing in q. Figure 2 shows why this monotonicity arises: we
show the fixed cubic fψ1(f), and several members of the family of quadratics ̥ψ2

=
{qψ2(f) : q > 0} generated by varying q. The solid quadratic corresponds to a small
value of q, the dotted to a larger value, and the dashed to a larger value still. The
monotonicity arises because each of the functions qψ2(f) must cross the axis at the
same points f21 and f22.

We now focus on the branch where f ∈ R1. Theorem 1 means that, for fixed
values of all other variables, we may regard T = q − f1 as a function of f1 alone:
T (f1) = q(f1) − f1. This function T (f1) is monotonic increasing, and it is easy to
see that T (f1) → +∞ as f1 → f21. Thus, for any z > 0, the inequality T (f1) < z
corresponds to an inequality f1 < T−1(z), with f1 ∈ R1. But this in turn corresponds
to an inequality for q, because f1(q) is monotonic-increasing. We thus have:

Proposition 3 For any z > 0 the inequality T < z corresponds to the inequality

q < z + e1, (18)

where e1 is the smallest root of the equation

τ(e) = zψ1(e) + (z + e)(1 − b)
m
∑

i=1

ciλi

[

∏

j 6=i
(e− λj)

]

= 0. (19)
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Note that part of the proof of Proposition 3 entails showing that e1 is the smallest
root of the equation τ(e) = 0. Note also that τ(e) is a polynomial of degree m in e,
not m+ 1.

3.1 The conditional distribution of T

Now, let
Pk,m(z;λ1, ..., λm) = Pr {T < z|λ1, ..., λm} , (20)

denote the conditional cdf of T, given (λ1, ..., λm). Also let Ex[h(x)] denote the expec-
tation of any function of x (which may be a vector) with respect to the distribution
of x. Since, under H0, q is independent of the remaining variables, and q ∼ χ2(k),
the following Theorem follows at once from Proposition 3 and Theorem 1:

Theorem 2 For all m < k,

Pr {T < z|b, c1, ..., cm−1;λ1, ..., λm} = Gk(z + e1). (21)

Hence,
Pk,m(z;λ1, ..., λm) = Eb,c1,...,cm−1

[Gk(z + e1)]. (22)

Equation (22) generalizes equation (19) in Hillier (2006). Note that it expresses
the conditional cdf Pk,m(z;λ1, ..., λm) as the expectation of a relatively simple function
of the m variates (b, c1, ..., cm−1).

Example 1 The case m = 1.

When m = 1 the c′s are missing and ψ(f) is the quadratic

ψ(f) = f 2 − f(q + w) + qwb = f(f − w) − q(f − wb), (23)

where w = W22 replaces the roots λi of W22. So, ψ1(f) = f −w and ψ2(f) = f −wb.
Hence e1 is the solution to the linear equation

T (e) =
eψ1(e)

ψ2(e)
− e =

ew(b− 1)

e− wb
= z,

so e1 = zwb/(z + w − wb) and

z + e1 =
z(z + w)

(z + w − wb)
= z(1 − ab)−1,

with a = w/(z + w). This is the result used in Hillier (2006), and is equivalent to
the result used in Andrews, Moreira, and Stock (2007). In this case the expectation
Eb[Gk(z(1 − ab)−1)] can be evaluated explicitly.
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Example 2 The case m = 2.

In this case ψ(f) is the cubic

ψ(f) = f 3 − f 2s2 + fs1 − s0 = 0, (24)

where
s2 = trace[W̃ ],

s1 = trace[adj(W̃ )],

s0 = det[W̃ ].







(25)

This becomes, in terms of the new variables (q, b, c),

ψ(f) = (f − q)(f − λ1)(f − λ2) − q(1 − b)[cλ1(f − λ2) + (1 − c)λ2(f − λ1)], (26)

and in this case c ∼ Beta(1
2
, 1

2
). Thus,

ψ1(f) = (f − λ1)(f − λ2),

ψ2(f) = ψ1(f) + (1 − b)[cλ1(f − λ2) + (1 − c)λ2(f − λ1)],

and e1 is the smaller root of the quadratic equation

τ(e) = z(e− λ1)(e− λ2) + (1 − b)(e+ z)[cλ1(e− λ2) + (1 − c)λ2(e− λ1)] = 0.

Remaining details for this case are given in Section 4.2 below.

Example 3 The case of equal λi.

If λi = λ for i = 1, ...,m then

τ(e) = (e− λ)m−1{z(e− λ) + λ(z + e)(1 − b)},

which does not depend on the ci. The smallest root of τ(e) = 0 is thus seen to be
e1 = zλb/(z + λ(1 − b)), and so

z + e1 =
z(z + λ)

(z + λ− λb)
= z(1 − ab)−1,

with a = λ/(z + λ), and b ∼ Beta(k−m
2
, m

2
). The unconditional cdf is, in this case,

Qk,m(z;λ) = Pr {T < z|λ} = Eb
[

Gk(z(1 − ab)−1)
]

, (27)

with b ∼ Beta(k−m
2
, m

2
). The expectation here is given (in different notation) in Hillier

(2006), Section 4, in the form:

Qk,m(z;λ) = (1 − a)
m

2

∞
∑

j=0

aj(m
2
)j

j!
Gk+2j(z + λ). (28)

See Kleibergen (2007) for a related discussion.
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4 Evaluating the Expectation

In order to complete the calculation of the conditional cdf Pk,m(z;λ1, ..., λm) when the
λi are not all equal we need to evaluate the expectation in equation (22) with respect
to the joint distribution of the variates (b, c1, ..., cm−1). In principle this can be done
analytically, or it can be done by numerical integration, generalizing the approach
taken for the case m = 1 by Andrews, Moreira, and Stock (2007). However, the
variables (b, c1, ..., cm−1) enter the problem only through e1, which is itself the smallest
root of a polynomial of degree m, so the problem still seems analytically complex. In
fact, as noted in the Introduction, we can eliminate this difficulty (whichever approach
is adopted) by iterating the argument used so far, as we explain in this Section.

In the equation defining e1 we may set u = z + e, and rewrite the equation as
an equation defining u1 = z + e1, which of course is a random variable - a function
of (b, c1, ..., cm−1). Equation (22) then has the form of an expectation with respect to
the distribution of u1 :

Pk,m(z;λ1, ..., λm) = Eu1
[Gk(u1)]. (29)

As before, we may first evaluate this with respect to the conditional distribution of u1

given (c1, ..., cm−1) (and (λ1, ..., λm)), but it will be convenient to write the expectation
in terms of the conditional cdf of u1, rather than its density. The means of doing so
is provided by the following Lemma:

Lemma 3 Suppose that u1 is supported on the interval [u
¯

1,ū1] with conditional den-
sity pu1

(v|c, λ), given c = (c1, ..., cm−1) and λ = (λ1, ..., λm), and conditional cdf

Fu1
(v|c, λ) = Pr{u1 < v|c, λ) (30)

for u
¯

1 ≤ v ≤ū1, with Fu1
(u
¯ 1|c, λ) = 0 and Fu1

(ū1|c, λ) = 1. Then

Pk,m(z;λ) = EcEu1|c[Gk(u1)]

= Ec

[

Gk(ū1) −
∫

ū1

u
¯

1

gk(v)Fu1
(v|c, λ)dv

]

, (31)

where gk(v) = exp{−1
2
v}v k

2
−1/[2

k

2 Γ(k
2
)] is the density function of the χ2(k) distribu-

tion, Ec[·] denotes expectation with respect to the joint distribution of (c1, ..., cm−1),
and Eu1|c[·] conditional expectation with respect to u1 given (c1, ..., cm−1).

We now use methods exactly analogous to those used above to evaluate the (con-
ditional) cdf Fu1

(v|c, λ), in this case by showing that, for fixed c and λ, the equation
defining the relation between b and e is, when restricted to suitable intervals for e,
monotonic. To do so we shall establish a second monotonicity property - analogous
to Theorem 1 above - but in this case dealing with the roots of τ(e) = 0 as functions
of b.
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4.1 A Second Monotonicity Property

Since the argument imitates that given above for ψ(f), we shall be somewhat briefer.
The argument rests on the fact that we can write

τ(e) = τ 1(e) − bτ 2(e), (32)

with

τ 1(e) = zΠm
i=1(e− λi) + (z + e)

m
∑

i=1

ciλi[Πj 6=i(e− λj)], (33)

and

τ 2(e) = (z + e)
m
∑

i=1

ciλi[Πj 6=i(e− λj)]. (34)

Note that both τ 1 and τ 2 are of degree m in e, and that τ 1(0) = 0 (i.e., the term of
degree zero in τ 1(e) vanishes).

In this case we have the following analogue of the Cauchy interlacing inequalities
(15):

Lemma 4 The polynomial τ(e) has exactly m real, non-negative, roots e1, ..., em (la-
belled in increasing order), and these satisfy the interlacing inequalities

λi−1 ≤ ei ≤ λi, i = 1, ...,m, (35)

where λ0 = 0. The ei are not otherwise restricted.

As before, this result enables us to partition the domain of e in such a way that the
relationship between b and e has a single branch in each interval [λi−1, λi), i = 1, ...,m.
Next, using the above representation for τ(e), we may express b as a function of e :

b(e) =
τ 1(e)

τ 2(e)
= 1 − zh(e), (36)

where

h(e) =

[

Πm
i=1(λi − e)

(z + e)
∑m

i=1 ciλi[Πj 6=i(λj − e)]

]

. (37)

However, as before there is a problem in the direction b → e, because the equation
τ(e) = 0 has m real roots. But, using Lemma 4, we partition the domain of e, the
interval [0, λm), into a union of intervals Li = [λi−1, λi), i = 1, ...,m, (λ0 ≡ 0), and
consider the m distinct branches of the relationship seperately. In this case it is
straightforward to check that b′(e) > 0, so, writing ei for the restriction of e to Li,
and bi(ei) for the branch with ei ∈ Li, we have the following analogue of Theorem 1:

Theorem 3 On each interval Li the function bi(ei) is well-defined and monotonic-
increasing in ei, and is therefore invertible on Li.

14



It follows from Lemma 4 that, in Lemma 3, u
¯

1 = z and ū1 = z + λ1. And, for
v in the interval (z, z + λ1), the inequality u1 < v corresponds to the inequality
b < 1 − zh(v − z). Thus, we can now state:

Theorem 4 Let

Fu1
(v|c, λ) = Pr{u1 < v|c1, ..., cm−1;λ1, ..., λm) (38)

denote the conditional cdf of u1, given c = (c1, ..., cm−1) and λ = (λ1, ..., λm), where
u1 = z+e1, with e1 the smallest root of τ(e) = 0. Then, for v in the interval (z, z+λ1),

Fu1
(v|c, λ) = Pr{b < 1 − zh(v − z)|c, λ}, (39)

and Fu1
(v|c, λ) = 0 otherwise. Here, b ∼ Beta

(

k−m
2
, m

2

)

.

An explicit form for the incomplete Beta function integral is well-known, and
is given in the following Proposition (see Abramowitz and Stegun (1972), Equation
6.6.8, together with Gauss’s transformation formula, 15.3.3):

Proposition 4 For b ∼ Beta(s, t), and 0 < ε < 1,

Pr{b < ε} =
Γ(s+ t)εs(1 − ε)t

Γ(t)Γ(s+ 1)
2F1(s+ t, 1, s+ 1; ε). (40)

It can easily be checked that 1− zh(0) = 0 and 1− zh(λ1) = 1, which imply that
Fu1

(z|c, λ) = 0 and Fu1
(z+ λ1|c, λ) = 1. Thus, combining Lemma 3, Theorem 4, and

Proposition 4, we may state:

Theorem 5 The conditional cdf of the likelihood ratio statistic T, given (c1, ..., cm−1)
and (λ1, ..., λm), is given by:

Pr{T < z|c1, ..., cm−1;λ1, ..., λm) = Gk(z + λ1) −
∫ z+λ1

z

gk(v)Fu1
(v|c, λ)dv, (41)

and so

Pk,m(z;λ1, ..., λm) = Gk(z + λ1) − Ec

[∫ z+λ1

z

gk(v)Fu1
(v|c, λ)dv

]

, (42)

with

Fu1
(v|c, λ) =

Γ(k
2
)(1 − zh(v − z))

k−m

2 (zh(v − z))
m

2

Γ(m
2
)Γ(k−m+2

2
)

×2F1

(

k

2
, 1,

k −m+ 2

2
; 1 − zh(v − z)

)

. (43)
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Remark 2 The function Fu1
(v|c, λ) that appears in this expression is an explicit

function of the random variables involved, c1, ..., cm−1. This contrasts with the earlier
cases where both f1 and e1 were, in general, only implicitly defined. Thus, after this
second step in the iterative process, no further complications arise from the fact that
we were initially dealing with a characteristic root.

Remark 3 When λi = λ for all i then

Fu1
(v|c, λ) = Pr

{

b <
(v − z)(z + λ)

λv

}

does not depend on the ci. Thus,

Pk,m(z;λ, ..., λ) = Gk(z + λ) −
∫ z+λ

z

gk(v)B 1

2
(k−m), 1

2
m

(

(v − z)(z + λ)

λv

)

dv,

where Bs,t(·) denotes the cdf of the Beta(s, t) distribution. The result is the function
Qk,m(z;λ) given in equation (28) above.

In principle the integral remaining in equation (42) can be evaluated analytically,
but that is likely to be a formidable task for general m. Alternatively, it can be
evaluated by numerical integration, or by a simulation approach which we discuss in
the next Section. In the case m = 2, however, it turns out that the cdf Fu1

(v|c, λ)
is particularly simple, and only one variable c = c1 is involved. This permits a fairly
simple analytical evaluation of the result, which we turn to next. Before doing so we
note the following bounds on Pk,m(z;λ1, ..., λm) that follow from the results above:

Proposition 5 For all z > 0, the cdf Pk,m(z;λ1, ..., λm) is bounded below by

Pk,m(z;λ1, ..., λm) ≥ Qk,m(z;λ1). (44)

where Qk,m(z;λ1 is as defined in Equation (28) with λ = λ1 and a = λ1/(z+λ1), and
b ∼ Beta

(

k−m
2
, m

2

)

, and, since Gk(·) is non-decreasing and 0 < e1 < λ1, is bounded
above by Gk(z + λ1).

Remark 4 The bounds on the cdf ,

Qk,m(z;λ1) ≤ Pk,m(z;λ1, ..., λm) ≤ Gk(z + λ1) (45)

may be enough to provide the inference required : for an observed value, t, of T, the
conditional p−value that can be assigned to t under the null hypothesis is between
1−Gk(t+ λ1) and 1−Qk,m(t;λ1). Thus, if the nominal (conditional) size of the test
sought for H0 is α, H0 can be rejected without further calculation if Qk,m(t;λ1) > 1−α,
and can be accepted if Gk(t+ λ1) < 1 − α. These bounding p− values are quite easy
to compute (see Section 5 below for discussion of computational issues). More precise
calculations are really needed only for intermediate cases.
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In Figure 3 we give some examples of these bounds for the case m = 3, various
values of k, and, in each case, a small and large (relative to k) value of λ1. It can
be seen that, in each case, the bounds are tighter (for given k and m) when λ1 is
small, and the p−values implied by the bounds will be considerably smaller for larger
values of λ1. Thus, the indecisive region (i.e., the region between the curves) based
on these bounds will, for a given size of test, be quite small when λ1 is small, but can
be substantial when λ1 is larger.

4.2 Analytic evaluation for the case m = 2

When m = 2 there is only one variable c1 = c, and c ∼ Beta(1
2
, 1

2
). And, using the

above result for the incomplete Beta function with m = 2, we obtain the remarkably
simple result that, when m = 2,

Fu1
(v|c, λ) = (1 − zh(v − z))

k−2

2 , z < v < z + λ1. (46)

Thus

Pr{T < z|c, λ1, λ2} = Gk(z + λ1) −
∫ z+λ1

z

gk(v)(1 − zh(v − z))
k−2

2 dv

= Gk(z + λ1) −
∫ z+λ1

z

exp{−1
2
v}

2
k

2 Γ(k
2
)

[v(1 − zh(v − z))]
k−2

2 dv. (47)

Before considering the general case, the following result for the special case in which
λ1 = λ2 = λ is easily obtained:

Proposition 6 For m = 2, and in the special case where λ1 = λ2 = λ,

Pk,2(z;λ, λ) = Gk(z + λ) − a−
k−2

2 exp{−1

2
z}Gk(λ), (48)

where a = λ/(z + λ).

This result for the case m = 2 is slightly simpler than the expression given in
equation (28) for general m, but the two versions can easily be shown to agree. In
the general case with m = 2 and λ1 < λ2, the lower bound given in Proposition 5 has
the form:

Pk,2(z;λ1, λ2) ≥ Gk(z + λ1) − a
− k−2

2

1 exp{−1

2
z}Gk(λ1) (49)

where a1 = λ1/(z + λ1). It is easy to check that the lower bound on Pk,2(z;λ1, λ2)
approaches G2(z) for all k as λ1 → ∞ (cf. Hillier (2006), Section 4).

In the general case the following explicit form for the conditional cdf

Pk,2(z;λ1, λ2) = Ec [Pr{T < z|c;λ1, λ2}] (50)

with c ∼ Beta(1
2
, 1

2
), is derived in the Appendix:
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Theorem 6 In the case m = 2 the conditional cdf of T given (λ1, λ2) (or, equiva-
lently, given W22) is given by:

Pr{T < z|λ1, λ2} = Gk(z + λ1) − (a1a2)
− k−2

2 exp{−1

2
z}

×
∞
∑

j,l=0

(−k−2
2

)j(
k−2
2

)l

j!l!
Hj,l(z;λ1)Wj,l(z;λ1, λ2), (51)

where ai = λi/(z + λi), i = 1, 2,

Hj,l(z;λ1) =

(

z

z + λ1

)j (
2

λ1

)l j
∑

s=0

(

j

s

)(

2

z

)s(
k

2

)

s+l

Gk+2(s+l)(λ1), (52)

and

Wj,l(z;λ1, λ2) =

j
∑

s=0

l
∑

t=0

(

j

s

)(

l

t

)

(−1)s+t(1
2
)s+t

(1)s+t

(

∆

z + λ2

)s(
∆

λ2

)t

, (53)

where ∆ = λ2 − λ1.

In principle this result can be used to produce, for each combination of values of
k, λ1, and λ2, a set of tables, or graphs, of the critical values, zα(k;λ1, λ2) say, needed
to give a test of size exactly α. However, such tables would obviously be extremely
cumbersome, so the result is probably more useful as a means of computing the
p−value associated with the given values (k, λ1, λ2), and the observed value, t, of the
statistic T.

In Figure 4 we show (for the upper tail of the distribution) the bounds in equation
(45) (shown as the solid and dashed lines), together with the exact cdf computed using
the formula in Theorem 6 (crosses), for the case k = 18, λ1 = 18, λ2 = 20. It turns out
that the exact cdf is sensitive to the value of λ1, but fairly insensitive to the value of
λ2. Even the detailed calculations needed to plot the functions shown here take only
a few seconds, so the exact formula is extremely efficient as a means of computing
the single p−value needed to implement the test when m = 2.

5 Implementation and Computation of p−values

5.1 Implementation - Preliminaries

From the point of view of a practitioner two issues need to be addressed before the
results presented above can be implemented. These are: the fact that the model in
equations (1) - (2) is overly simplistic, and the fact that in practice the covariance
matrix Ω will be unknown.
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On the first point, the structural/IV equation (1) would typically involve an ad-
ditional matrix of exogenous variables, X, of dimension n× k1, say, which would also
appear in equation (2). Thus, a more realistic model would be:

y1 = Y2β +Xγ + u, (1a)

Y2 = ZΠ +XΨ + V. (2a)

The only effects of this extension of the model on the formulae for the various statis-
tics that have been introduced above are these: the vectors and matrices y1, Y2,
and Z should be interpreted as the residuals after the original variables (with these
names) are regressed on X. That is, if we denote, for any matrix A of full col-
umn rank, the idempotent matrix I − A(A′A)−1A′ by MA, (y1, Y2, Z) are actually
(MXy1,MXY2,MXZ).

Next, the assumption that Ω is known is, of course, unrealistic. In practice the
matrix Ω needs to be replaced by an estimator, and there are various possible esti-
mators that could be used. Probably the simplest choice is to use the unconstrained
estimator in the reduced form, which, when we use the extended model (1a) - (2a),
is a multiple of the matrix

S = (y1, Y2)
′MZ,X(y1, Y2). (54)

The estimator Ω̂ = (n− k − k1)
−1S is easily seen to be unbiased.

The matrix UΩ may be defined in terms of Ω̂ exactly as UΩ was in terms of Ω.
However, if (in contrast to the text above) we do not assume that variables have
previously been scaled by their standard deviations, then UΩ has the form

UΩ =





1√
ω11

−ω′

21
Ω

−
1
2

22.1√
ω11

0 Ω
− 1

2

22.1



 . (55)

Here, Ω22.1 = Ω22−ω21ω
′
21/ω11, and Ω

− 1

2

22.1 is any matrix satisfying Ω
− 1

2

22.1Ω22.1Ω
− 1

2

22.1 = Im.
After both of these modifications, the matrix W in equation (6) will in practice

be:
W = U ′

Ω̂
(y1, Y2)

′MXZ(Z ′MXZ)−1Z ′MX(y1, Y2)UΩ̂. (56)

The key variables q and f1 that define the LR statistic, as well as the other variables
introduced above, are defined in terms of this matrix3. Here, if the original sample
size were, say, N, then n in the earlier part of the paper corresponds to N − k1, the
rank of MX .

Of course, transformation by UΩ̂ does not produce the independence properties
that are used to obtain the main results in the paper, nor do the distributional re-
sults employed in the argument hold exactly when Ω is replaced by an estimator.
Nevertheless, the simulation results in Moreira (2003) suggest that, at least in mod-
erate sized samples, the above procedure should produce a test which is very close to
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being exact. In a separate, as yet unfinished, paper I am studying this aspect of the
testing problem analytically, rather than by simulations, and will report those results
elsewhere when they are available.

5.2 Implementation - Computation

It remains to consider the computational aspects of implementing the results. Several
methods are suggested by the results in the body of the paper, and we discuss these
in turn.

First, according to Remark 4, the conditional p−value associated with an observed
value t of T, given the roots (λ1, ..., λm), 1 − Pk,m(t;λ1, ..., λm), satisfies

1 −Gk(t+ λ1) ≤ 1 − Pk,m(t;λ1, ..., λm) ≤ 1 −Qk,m(t;λ1), (57)

and it is natural to begin by checking whether this, by itself, implies that H0 can be
either accepted or rejected. This would be so if either Gk(t + λ1) < 1 − α (which
would imply acceptance of H0, because the conditional p−value must then be greater
than the nominal size, α), or if Qk,m(t;λ1) > 1 − α (which would imply rejection of
H0, because the conditional p−value must then be less than α). We need to discuss
the evaluation of Qk,m(t;λ1) for this part of the procedure.

Three methods for computing Qk,m(t;λ1) are available. First, we have the exact,
infinite series, representation of the function in equation (28). Second, we have a
representation of the function as the expectation of Gk(z(1− a1b)

−1) with respect to
b ∼ Beta(k−m

2
, m

2
) given in equation (27). And, third, we may observe that (cf. Hillier

(2006), Kleibergen (2007)) Qk,m(z;λ1) = Pr{T ∗ < z|λ1}, where T ∗ is the statistic

T ∗ =
1

2

{

q − λ1 +
√

(q + λ1)2 − 4qbλ1

}

, (58)

q and b are independent, q ∼ χ2(k), and b ∼ Beta
(

k−m
2
, m

2

)

, and λ1 is fixed. These
yield the following possible computational procedures, respectively:

1. Truncate the infinite series at a point designed to produce the required accuracy,

2. Estimate the mean Eb[Gk(z(1 − a1b)
−1)] by simulation, using the mean of a

sequence of values Gk(z(1−a1bi)
−1), with the bi i.i.d draws from the distribution

of b, and

3. Estimate Pr{T ∗ < z|λ1} directly by simulation, using i.i.d. draws from the joint
distribution of (q, b) to compute values of T ∗ (this is essentially the method
suggested by Kleibergen (2007) in discussing the statistic T ∗).

We show in the Appendix that the third of these methods is unequivocally inferior
to the second. Of the other two, the first method is more efficient than the second,
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in the sense that far fewer terms in the infinite series are needed, relative to the
size of the simulation sample, to achieve a given level of accuracy. For example,
one can show (see Appendix) that the error incurred by truncating the series in
equation (28) at the r− th term is no greater than ar+1

1 (m
2
)r+1/(r+1)!. So, for m = 3

and a1 = λ1/(t + λ1) = .5, say, less than 15 terms are needed to give third-figure
accuracy - much lower than the sample size required to simulate the expected value
to this accuracy (in a confidence interval sense). Thus, of these three methods for
computing Qk,m(t;λ1), direct evaluation is preferred, and is extremely quick and easy.

Now if, after evaluating both Gk(t + λ1) and Qk,m(t;λ1), it turns out that no
decision can be made, a more precise calculation of the p−value 1−Pk,m(t;λ1, ..., λm)
is needed. For m = 2 this can be done using the exact formula for Pk,m(t;λ1, ..., λm)
given in Theorem 6, which, like Qk,m(t;λ1), is extremely efficient. For m > 2, however,
we do not have an equivalent analytical expression, so in this case the p−value must
be evaluated by simulation.4 We now describe this procedure in more detail.

The probability Pr{T < t|λ1, ..., λm}, where t is the observed value of T, is given
by the expectation

Pr{T < t|λ1, ..., λm} = Eu1
[Gk(u1)], (59)

where u1 = t+ e1, and e1 is the smallest root of the m−th degree polynomial:

τ(e) = t
m
∏

i=1

(e− λi) + (z + e)(1 − b)
m
∑

i=1

ciλi

[

∏

j 6=i
(e− λj)

]

. (60)

In this formula for τ(e) the notation is as follows: (i) The λi are the characteristic
roots of W22. These remain fixed at their observed values. (ii) b is a random variable
distributed as Beta(k−m

2
, m

2
), and (iii) c1, ..., cm are random variables independent of

b (and the λi); cm = 1 − Σm−1
i=1 ci, and the remaining ci are defined as follows. Let gi,

i = 1, ...,m, be m independent χ2(1) random variables. For i = 1, ...,m− 1, define ci
by

ci =
gi

Σm
i=1gi

, (61)

and for i = m set cm = 1 − Σm−1
i=1 ci. The ci constructed by this procedure have a

Dirichlet distribution with parameters (1
2
, ..., 1

2
; 1

2
).

The value of e1 is a random variable because it is a function of b and c1, ..., cm−1,
and hence so also is the value of Gk(t+ e1). But, what we require is simply the mean
of Gk(t + e1), and this is easy to simulate with relatively few repetitions. Thus, we
take, say, M independent draws from the distributions of b and c1, ..., cm−1. Each of
these yields a polynomial τ i(e), say, and from each we compute the smallest root, e1i,
of the equation τ i(e) = 0. From these we obtain a sequence of values Gk(t+ e1i), and
the estimate of the required expectation is simply

p(t;λ1, ..., λm) =
1

M

M
∑

i=1

Gk(t+ e1i). (62)
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The hypothesis is rejected at size α if p(t;λ1, ..., λm) > 1−α, and accepted otherwise.
The chief difficulty is the need to compute, at each repetition, the smallest root of
the degree-m polynomial equation τ(e) = 0, but as long as m is not large - and it is
unlikely to be in practice - this is not a major problem.

6 Concluding Comments

The ability to compute conditional p−values efficiently evidently provides a complete
solution to the problem of obtaining an exact test for the problem we have considered.
However, for completeness it is worth mentioning that the critical value function
required to implement the CLR test with exact size α is the solution, zmα (k;λ1, ..., λm)
say, to the equation:

Pk,m(z;λ1, ..., λm) = 1 − α. (63)

In general this equation cannot be solved explicitly, and in any case its tabulation
would be an extremely cumbersome affair, because one needs a critical value for
each possible value of the conditioning vector (λ1, ..., λm). Hillier (2006) gives some
graphs of the required function for the case m = 1, where it is a function of a single
characteristic root, but this is the only case where graphical tabulation is reasonably
easy. Nevertheless, figures such as those presented here can be used to obtain the
value needed - for the observed values of (λ1, .., λm) - reasonably easily, and do provide
an alternative to using p−values.

The results in this paper relate entirely to the conditional size of the LR test.
However, the decomposition of the characteristic polynomial given in equation (12)
can also be used to generalize these results in two directions. First, one can use similar
arguments to those used here to obtain expressions for the power function of the
CLR test. The main difficulty is that the variates involved are no longer independent
under the alternative hypothesis, nor are their distribution properties so simple. For
instance, at the first step in the process, the variate q is no longer independent of
the remaining variates, and distributed as χ2(k). Its conditional distribution given
the remaining variates is non-central χ2(k), with noncentrality parameter that is a
function of the other variates. Nevertheless, the conditional distribution of T can be
obtained, and subsequent steps carried out in a manner similar to those above, but
with much more complex results. Calculations of this type are carried out for the
power function in the case m = 1 in Hillier (2006). Here, analytic results can be
obtained, but for m > 1 a simulation approach after the first step is almost certainly
essential.

A second direction of generalization based on (12) is to the more realistic case
in which the error covariance matrix is unknown. Here, too, the transformations
we have used to produce the independence properties that the argument depends on
are unavailable, nor are the distributions involved so simple. Again, though, initial
conditioning can be productive, and the argument used here can be generalized.
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These matters are the subject of ongoing research.

Notes

1Throughout the paper, whenever we use the term monotonic we mean strictly
monotonic.

2There is a large literature on the unconditional distribution theory for the char-
acteristic roots of a Wishart matrix (the case we are dealing with). See, for instance,
Muirhead (1982) for some of this theory, and many references. However, the meth-
ods used in that theory depend upon the spectral decomposition for positive definite
symmetric matrices, and hence cannot be used to develop the conditional properties
that we are concerned with here.

3The statistic T produced by this procedure is not, in fact, the likelihood ratio
statistic in a model with an unknown covariance matrix. However, the two statistics
will coincide in large samples.

4An alternative would be to use numerical integration in equation (42). I have not
compared the efficiency of this approach with that of a direct simulation approach.
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7 Appendix: Proofs.

Proof of Lemma 1.

First observe that ψ2(0) = b[Πm
i=1λi](−1)m and ψ1(0) = (−1)m[Πm

i=1λi], so that
sign[ψ2(0)] = sign[ψ1(0)] = (−1)m. Next, consider

ψ2(λr) = (1 − b)crλr

(

∏

i6=r
(λr − λi)

)

. (64)

Clearly, sign[ψ2(λr)] is determined by the sign of the last term. It is (−1)m−1 for
r = 1, and alternates with r because the products

∏

i6=r(λr−λi) contain odd and even
numbers of negative terms. Since ψ2(f) is continuous in f, these properties imply
that there is precisely one real root of ψ2(f) = 0 in each interval Li, establishing part
(i) of the Lemma.

Now, ψ2(f) changes sign at the f2i, and ψ1(f) at the λi, which we know from part
(i) satisfy λi > f2i (the inequality is strict with probability 1). On the other hand,
the roots fi of ψ(f) = 0 occur where the functions fψ1(f) and qψ2(f) cross. Consider
the interval L1. Since sign[ψ2(λ1)] = (−1)m−1, but sign ψ1(f) = (−1)m for f ≤ λ1,
ψ1 and ψ2 have opposite signs on the interval f21 < f < λ1, so fψ1 and qψ2 cannot
cross there. Hence, if fψ1(f) and qψ2(f) cross at all in the interval L1, and we know
that they do, they must do so for f < f21. This argument can be repeated for each
interval Li, proving part (ii) of the Lemma. Part (iii) follows from the fact that the
signs of ψ1 and ψ2 are the same on the sub-intervals λi−1 < fi < f2i, i = 1, ...,m, and
ψ2 does not vanish there.

Proof of Lemma 2.

Let

g(f) =
m
∑

i=1

ciλi
λi − f

,

so that ψ2(f) = ψ1(f) {1 − (1 − b)g(f)} . Consider first

T (f) =
fψ1(f)

ψ2(f)
− f =

(1 − b)fg(f)

1 − (1 − b)g(f)
.

Then,

T ′(f) =
(1 − b)[g(f) + fg′(f) − (1 − b)g(f)2]

(1 − (1 − b)g(f))2
.
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But,

g(f) + fg′(f) − (1 − b)g(f)2 =
m
∑

i=1

ciλ
2
i

(λi − f)2
− (1 − b)

[

m
∑

i=1

ciλi
(λi − f)

]2

>

m
∑

i=1

ciλ
2
i

(λi − f)2
−
[

m
∑

i=1

ciλi
(λi − f)

]2

=
m
∑

i=1

ci

[

λi
λi − f

−
m
∑

i=1

ciλi
(λi − f)

]2

≥ 0,

the third line following since Σm
i=1ci = 1. This establishes that T ′(f) > 0. Since

q(f) = T (f)+ f, this in turn implies q′(f) > 0. Note that, if the λi are all equal to λ,
the first line here reduces to bλ2/(λ−f)2 > 0, so the property also holds in that case.
This can also be shown more directly using the results in Hillier (2006), Section 4.1.

Proof of Proposition 3.

From Theorem 1, for any z > 0 the inequality T (f1) < z corresponds to the inequality
f1 < T−1(z) = e1, with e1 ∈ R1, and this also corresponds to the inequality q(f1) <
q(e1). But q(e1) = T (e1) + e1 = z + e1, which establishes the result. The equation
T (e) = z is easily seen to correspond to the equation τ(e) = 0. To see that e1 is the
smallest root of this equation, first observe that τ(0) = zb[Πm

i=1λ1](−1)m. But also,
τ(f21) = −f21ψ1(f21), and we know from Lemma 1 that sign[ψ1(f21)] = (−1)m, so
that sign[τ(f21)] is opposite to that of τ(0). Hence, τ(·) changes sign between the
origin and f21, which implies that e1 ∈ R1.

Proof of Lemma 3.

The expectation required is:

Pr{T < z|c, λ) =

∫ ū1

u
¯1

pu1
(v|c, λ)Gk(v)dv. (65)

Integrating by parts we obtain

Pr{T < z|c, λ) = Gk(v)Fu1
(v|c, λ)|ū1

u
¯1
−
∫ ū1

u
¯1

Fu1
(v|c, λ)gk(v)dv. (66)

This yields the formula given if Fu1
(u
¯

1|c, λ) = 0 and Fu1
(ū1|c, λ) = 1.

Proof of Lemma 4.

The details are almost identical to those for the proof of Lemma 1. It is first es-
tablished that sign[τ(0)] = (−1)m, and that sign[τ(λr)] = (−1)m−r, r = 1, ...,m.
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Continuity then implies that there is a real root in each interval [λi−1, λi], i = 1, ...,m.
To see that a given root can be arbitrarily close to the upper limit of its respective
interval, simply observe that as b → 1, τ(e) → zΠm

i=1(e− λi), the roots of which are
the λi.

Proof of Proposition 5.

The term
∑m

i=1
ciλi

λi−e that arises in the expression for h(e) is a convex combination of
the λi/(λi − e), and therefore satisfies, for 0 < e < λ1,

λm/(λm − e) ≤
m
∑

i=1

ciλi
λi − e

≤ λ1/(λ1 − e)

for all c. Therefore, for all c, and all 0 < e < λ1,

1 − zh(e) ≤ 1 − z(λ1 − e)

λ1(z + e)
=
e(z + λ1)

λ1(z + e)
.

But, from this it also follows that, for all c, and v satisfying z < v < z + λ1,

Fu1
(v|c, λ) = Pr{b < 1 − zh(v − z)|c, λ} ≤ Pr{b < e(z + λ1)

λ1(z + e)
|λ}, (67)

and so

Pk,m(z;λ1, ..., λm) ≥ Gk(z+λ1)−
∫ z+λ1

z

gk(v)B 1

2
(k−m), 1

2
m

(

(v − z)(z + λ1)

λ1v

)

dv. (68)

But the right-hand-side is Qk,m(z;λ1) in equation (28) with λ = λ1.

Proof of Proposition 6.

When λ1 = λ2 = λ we have

v(1 − zh(v − z)) = x/a, (69)

where x = v− z and a = λ/(z+λ). Since this does not depend on c, we have at once:

Pk,2(z;λ1, λ2) = Gk(z + λ) − a−
k−2

2 exp{−1

2
z}
∫ λ

0

gk(x)dx, (70)

which is the stated result.

Proof of Theorem 6.

Setting x = v − z (0 < x < λ1) we have, when m = 2,

h(v − z) =
(λ1 − x)(λ2 − x)

(x+ z)[cλ1(λ2 − x) + (1 − c)λ2(λ1 − x)]
. (71)

26



Thus, in terms of x,

v(1 − zh(v − z)) =

[

x+ z − z(λ1 − x)(λ2 − x)

[λ1λ2 − cλ1x− (1 − c)λ2x]

]

= x

[

1 +
z(λ1 − x+ c∆)

λ2(λ1 − x) + c∆x)

]

= x

[

(z + λ2)(λ1 − x) + c∆(z + x)

λ2(λ1 − x) + c∆x

]

=
x

a1a2





1 − z+x
z+λ1

(

1 − c∆
z+λ2

)

1 − x
λ1

(1 − c∆
λ2

)



 , (72)

where ∆ = λ2 −λ1 and ai = λi/(z+λi), i = 1, 2. This obviously reduces to x/a, with
a = λ/(z + λ), when λ1 = λ2 = λ (so ∆ = 0), which then produces Proposition 6.

We thus have, for the integral

∫ z+λ1

z

gk(v)(1 − zh(v − z))
k−2

2 dv,

the expression

(a1a2)
− k−2

2 exp{−1

2
z}
∫ λ1

0

gk(x)





1 − z+x
z+λ1

(

1 − c∆
z+λ2

)

1 − x
λ1

(1 − c∆
λ2

)





k−2

2

dx. (73)

The term
[

1 + z(λ1−x+c∆)
λ2(λ1−x)+c∆x)

]
k−2

2

that arises in the second line of the development

above is, for all c ∈ (0, 1), bounded above by a
− k−2

2

1 on the interval 0 < x < λ1. This
implies the lower bound for Pk,2(z;λ1, λ2) given in Equation (49):

Pk,2(z;λ1, λ2) ≥ Gk(z + λ1) − a
− k−2

2

1 exp{−1

2
z}Gk(λ1). (74)

It follows that the conditional p−value Pr{T > t|λ1, λ2} is bounded above by:

1 −Gk(t+ λ1) + a
− k−2

2

1 exp{−1

2
t}Gk(λ1), (75)

where a1 = λ1/(t+ λ1). Rejecting H0 when this is less than α clearly corresponds to
using a test that is conservative at level α.

In the general case, note that, on the region of integration 0 < x < λ1, 0 < c < 1,
both

0 <
x

λ1

(

1 − c∆

λ2

)

< 1,
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and

0 <
z + x

z + λ1

(

1 − c∆

z + λ2

)

< 1,

so we may expand both numerator and denominator terms in the expression





1 − z+x
z+λ1

(

1 − c∆
z+λ2

)

1 − x
λ1

(1 − c∆
λ2

)





k−2

2

in power series, both converging uniformly on the region of integration. This gives

∞
∑

j,l=0

(−k−2
2

)j(
k−2
2

)l

j!l!

(

z + x

z + λ1

)j (
x

λ1

)l(

1 − c∆

z + λ2

)j (

1 − c∆

λ2

)l

(76)

Note that the series indexed by j terminates if k − 2 is an even integer.
Assuming, for the moment, that term-by-term integration with respect to c is

legitimate we thereby obtain:

∞
∑

j,l=0

(−k−2
2

)j(
k−2
2

)l

j!l!

(

z + x

z + λ1

)j (
x

λ1

)l

Wj,l(λ1, λ2), (77)

with

Wj,l(z;λ1, λ2) = Ec

[

(

1 − c∆

z + λ2

)j (

1 − c∆

λ2

)l
]

, c ∼ Beta(
1

2
,
1

2
). (78)

The expectation required in (78) is easily evaluated in the form:

Wj,l(z;λ1, λ2) =

j
∑

s=0

l
∑

t=0

(

j

s

)(

l

t

)

(−1)s+t(1
2
)s+t

(1)s+t

(

∆

z + λ2

)s(
∆

λ2

)t

. (79)

Finally, we need to evaluate also the integrals

Hj,l(z;λ1) =

∫ λ1

0

gk(x)

(

z + x

z + λ1

)j (
x

λ1

)l

dx. (80)

This is straightforward, and gives

Hj,l(z;λ1) =

(

z

z + λ1

)j (
2

λ1

)l j
∑

s=0

(

j

s

)(

2

z

)s(
k

2

)

s+l

Gk+2(s+l)(λ1). (81)

To confirm that these two term-by-term integrations of the multiple series are
legitimate, first observe that, for all (j, l),

Wj,l(z;λ1, λ2) <

(

z + λ1

z + λ2

)j (
λ1

λ2

)l

. (82)
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Also, it is clear that Hj,l(z;λ1) < Gk(λ1) for all (j, l) and (z, λ1), so the resulting
series is dominated termwise by

Gk(λ1)
∞
∑

j,l=0

(−k−2
2

)j(
k−2
2

)l

j!l!

(

z + λ1

z + λ2

)j (
λ1

λ2

)l

, (83)

which certainly converges (to Gk(λ1)
(

∆
z+λ2

)
k−2

2
(

∆
λ2

)− k−2

2

), justifying the term-by-

term integrations.
We therefore have, finally,

Pr{T < z|λ1, λ2} = Gk(z + λ1) − (a1a2)
− k−2

2 exp{−1

2
z} (84)

×
∞
∑

j,l=0

(−k−2
2

)j(
k−2
2

)l

j!l!
Hj,l(z;λ1)Wj,l(λ1, λ2), (85)

as stated.

Proofs of the results in Section 5

The second of the methods listed is a problem of estimating a mean, the third
that of estimating a Binomial probability, and associated with each is a confidence
interval whose width is determined by the relevant variance. But, it is easy to see
that the variance involved for the second method, namely

V ar
[

Gk(z(1 − a1b)
−1)
]

= Eb
[

[Gk(z(1 − a1b)
−1)]2

]

−
[

Eb[Gk(z(1 − a1b)
−1)]

]2
, (86)

is (very considerably) less than that involved for the third,

Eb[Gk(z(1 − a1b)
−1)] −

[

Eb[Gk(z(1 − a1b)
−1)]

]2
, (87)

simply because Eb [[Gk(z(1 − a1b)
−1)]2] is very much less than Eb[Gk(z(1 − a1b)

−1)].
Thus, the second of these methods is (very much) more efficient than the third, as
claimed.

Finally, we shall show that, when using equation (28) to compute a p−value,
trucation of the series component in equation (28) leads to an error in the p−value
that is smaller than the coefficient of the first term in the series that is ignored. This
effectively bounds the truncation error involved.
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The remainder after truncating the series in equation (28) at the r−th term is

Rr =
∞
∑

j=r+1

aj(m
2
)j

j!
Gk+2j(z + λ)

<

∞
∑

j=r+1

aj(m
2
)j

j!

=
ar+1(m

2
)r+1

(r + 1)!
2F1(1, r + 1 +

m

2
; r + 2; a)

= (1 − a)−
m

2

ar+1(m
2
)r+1

(r + 1)!
2F1(r + 1,−(

m− 2

2
); r + 2; a). (88)

The term 2F1(r + 1,−(m−2
2

); r + 2; a) is less than 1 on the interval 0 < a < 1, so
that the error in the value of the cdf due to series truncation is bounded above by
an+1(m

2
)n+1

(n+1)!
, the coefficient in the first ignored term in the series.
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Figure 1: The three branches of the relation between f and q when m = 2. The
dashed horizontal lines are λ1 and λ2, the solid horizontal lines are f21 and f22.
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Figure 2: The Two Components of the Characteristic Polynomial, m=2 : The cubic
(dark line) is fψ1(f), intersecting the axis at 0, λ1, and λ2.; the quadratics shown
are members of the family qψ2(f) for three values of q, all intersecting the axis at f21

and f22.
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Figure 3: Bounds on the cdf of the LR statistic, m = 3: (a) k = 8, λ1 = 2 and λ1 = 8;
(b) k = 18, λ1 = 4 and λ1 = 18; (c) k = 40, λ1 = 12 and λ1 = 40. The lower pair of
bounds corresponds, in each case, to the smaller value of λ1. The horizontal line is
at .95. 34
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Figure 4: Bounds (solid and dashed lines) and exact (crosses) cdf of the LR statistic:
m = 2, k = 18, λ1 = 18, λ2 = 20, computed using the exact formula in Theorem 6.
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