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Abstract

The existence of a uniformly consistent estimator for a particular param-
eter is well-known to depend on the uniform continuity of the functional that
defines the parameter in terms of the model. Recently, Pötscher (Econo-

metrica, 70, pp 1035 - 1065) showed that estimator risk may be bounded
below by a term that depends on the oscillation (osc) of the functional, thus
making the connection between continuity and risk quite explicit. However,
osc has no direct statistical interpretation. In this paper we slightly mod-
ify the definition of osc so that it reflects a (generalized) derivative (der)
of the functional. We show that der can be directly related to the famil-
iar statistical concepts of Fisher information and identification, and also to
the condition numbers that are used to measure ‘distance from an ill-posed
problem’ in other branches of applied mathematics. We begin the analysis
assuming a fully parametric setting, but then generalize to the nonpara-
metric case, where the inverse of the Fisher information matrix is replaced
by the covariance matrix of the efficient influence function. The results are
applied to a number of examples, including the structural equation model,
spectral density estimation, and estimation of variance and precision.
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1 Introduction

It has been well understood for many years that the possibility of ‘successful in-
ference’ on a parameter of interest requires that the mapping defining the in-
terest parameter as a functional on the space of distributions should be suffi-
ciently smooth. Early contributors to this understanding were (Bahadur and
Savage 1956), (Singh 1963), and (LeCam and Schwartz 1960). These papers
showed that the existence of uniformly consistent estimators and bounded confi-
dence sets both require that (with some appropriate topology on the space of dis-
tributions) the map {set of distributions} → {interest parameter} be uniformly
continuous. The subject continues to attract attention from both statisticians
generally, and econometricians - see (Koschat 1987), (Gleser and Hwang 1987),
(Pfanzagl 1998), (Dufour 1997), (Pötscher 2002), for instance.

To be more precise, if η is a parameter of interest, defined as a functional on
the family (P) of model densities under consideration, and we endow P with the
topology induced by, say, the total variation distance (see equation (1) below), the
continuity or otherwise of the map defining η essentially determines the properties
of inferential procedures for η. For uniformly consistent estimators of η, and con-
fidence sets of bounded size for η, to exist, the map η : P → R

q must be uniformly
continuous, or must be rendered so by either imposing primitive conditions on the
parameter space for P , or otherwise restricting the set of probability measures P
on which η is defined. In parametric models, this is usually done by imposing
identification conditions (e.g., in instrumental variable models), or nonredundancy
conditions (in time series models). In nonparametric models, further conditions
are usually required (see Sections 4 and 5 of (Pötscher 2002) and Section 5 below).
(Pötscher 2002) calls a problem ill-posed if the usual indicator of continuity, the
oscillation of the functional (osc), does not vanish everywhere on the parameter
space. In that case, no uniformly consistent estimator for η can exist.

The problem is intimately related to the identification problem familiar to
econometricians, and (Rothenberg 1971), and (Sargan 1983) both discuss the iden-
tification problem from a closely related point of view. Note, though, that in con-
trast to much of the discussion that has taken place in the econometric literature,
ill-posedness is a property of the functional of interest, not just of the model, and
thus depends on the properties of both η and P , and the way they interact. This
aspect of the problem will become quite clear in what follows.

Although (Pötscher 2002) does succeed in relating the statistical properties of
the problem (e.g., estimator risk) to the properties of the functional (osc), there
are two difficulties that arise with those results. First, osc is an ‘all-or-nothing’
property of a function, whereas one suspects from the recent “weak instruments”
literature in econometrics that being close to an ill-posed problem might lead to
inferential difficulties, albeit not to the impossibility results that characterise the
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extreme case. The other is that osc seems to have no direct relation to other
familiar statistical concepts.

In this paper we attempt to remedy both of those deficiencies. We propose a
measure of the properties of the functional η that is essentially a generalisation
of the derivative - and we therefore denoted it by der. This is a measure of the
sensitivity of the interest parameter η to perturbations in the underlying density.
It can take any positive value, and takes the value +∞ when the problem is ill-
posed. Smaller values indicate that inference should be relatively easy. It turns
out (see Theorem 3 and Corollary 1 below) that der is essentially determined by
the familiar Fisher Information matrix - in particular, the minimum eigenvalue of
that matrix (modified by terms reflecting the properties of η). As we shall see, the
measure we propose also has close connections with both numerical analysis and
convex optimisation theory, where condition numbers are used to measure distance
from a critical point, in the first case, and problem difficulty in the second. An
ill-posed problem in these contexts is the extreme case, and the condition number
measures “distance from ill-posedness” (see, e.g., (Zolezzi 2002)). In fact, our der
could well be called instead the condition number for the problem of inference on
η. In an instrumental variables context it provides a direct measure of instrument
weakness (see Section 5.1 below), but also extends that idea to much more general
inference problems.

The plan of the paper is as follows. In Section 2 we discuss the definition of der
and derive its properties in the context of a fully parametric family of densities.
In this case η is regarded as an ordinary function of the model parameters. In
Section 4 we extend the analysis to a nonparametric setting, arriving at analogous
results that are expressed in terms of the covariance matrix of the efficient influence
function - the analogue of Fisher information for nonparametric inference.

The phrase ‘successful inference’ is used above to reflect the fact that every
inferential procedure has two components: the procedure itself (e.g., construction
of a point estimate, or a confidence set), and a measure of the precision that can be
attached to that procedure (e.g., risk, mean squared error, asymptotic variance, or
expected size of the confidence set). We shall show (Theorem 2) that der provides
a direct measure of how difficult it is to assess the accuracy of inferences on η.
Since measures of precision are themselves typically functionals on the space of
distributions, in Section 3 we apply the earlier results to the problem of assessing
the variance and/or precision of an estimator, again in a fully parametric setting.
Section 5 contains a number of examples that illustrate the usefulness of the earlier
analysis.
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2 Fully Parametric problems

Let P be a family of probability measures on a common measurable space (X ,A) .
Throughout the paper we assume that the distributions in P possess densities
(with respect to some common dominating measure), and largely ignore technical
measurability issues. Further, we assume that the family of densities P is param-
eterised by θ ∈ Ω, with Ω an open subset of R

q. We denote the densities in P
by pθ, for the most part suppressing the data x, say, from the notation. Thus,
P = {pθ : θ ∈ Ω} becomes a q−dimensional manifold.

To measure distance in P we use the notion of divergence between distributions
((Amari 1985) p. 84). This is a function δ : P × P → R

+, denoted by δ (p0, p1)
for p0 = pθ0

, p1 = pθ1
∈ P, with the following properties:

(1) δ (p0, p1) ≥ 0, and δ (p0, p1) = 0 if and only if p0 = p1;

(2) D θ0
δ (p0, p1)|θ0=θ1

= D θ1
δ (p0, p1)|θ1=θ0

= 0, and

(3) D 2
θ1

δ (p0, p1)
∣∣
θ1=θ0

= G (θ0) , a positive (semi)-definite matrix,

where D θ denotes differentiation with respect to θ.

Remark 1 We assume throughout that the matrix G(θ) is non-singular for all θ.
If that is not the case the statements and proofs of some of the results to follow
must be modified. If there were a θ0 for which rank[G (θ0)] < q, the parameter
θ itself (and therefore also any one-to-one function of it) would be unidentified.
This would not rule out the existence of identified functions of θ, in the manner
of (Phillips 1989) concept of “partially identified models”, but would considerably
complicate the discussion that follows. An example occurs in Section 5.2, where
we outline a possible procedure to deal with such situations.

The choice of δ determines the matrix G, and the discussion that follows
can be cast in terms of any relevant divergence function. However, for pur-
poses of exposition we assume that G is the Fisher Information matrix G(θ0) =
−Eθ0

[
D 2

θ ln (pθ)|θ=θ0

]
. Thus, we assume that the divergence of interest is what

(Blyth 1994) calls “locally Rao”. See also (Gibbs and Su 2002) for a survey of
divergence measures and the relationships among them. The total variation dis-
tance

δ (p0, p1) = sup
A∈A

{|P0 (A) − P1 (A)|} , P0, P1 ∈ P. (1)

used in the statistical literature mentioned in the Introduction, and the Hellinger
distance, an example of a divergence that is locally Rao, induce the same topology
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on the set of probability measures (see, for example, (LeCam and Yang 1990) and
(Gibbs and Su 2002)). Here, P0 (P1) denotes the distribution corresponding to the
density pθ0

(pθ1
). Note that, in general, G would depend on the sample size n, but

again we suppress this in the notation.
A fundamental property of the divergence is that it behaves locally as half the

square of a Euclidean distance, as shown by the following Lemma.

Lemma 1 (i) The divergence δ (p0, p1) between two neighbouring points p0 = pθ0

and p1 = pθ1
has the form:

δ (p0, p1) =
1

2
(θ1 − θ0)

′ G (θ0) (θ1 − θ0) + O
(
|θ1 − θ0|

3) .

(ii) (Morse’s Lemma) There is a neighbourhood N (θ0) of θ0, and a diffeomorphism
ψ, such that ψ (0) = 0 and for every θ ∈ N (θ0) ,

δ
(
pθ0

, pθ0+ψ(τ)

)
= τ ′τ .

For a discussion of, and background on, Morse’s lemma see (Milnor 1963) and
(Castrigiano and Hayes 1993).

Next, an interest parameter is, in general, defined as a map η : P → R
m

(m ≤ q). However, we shall here confine attention to interest parameters that are
ordinary functions of θ, so that η = η(θ) can also be regarded as a function from
R

q → R
m. Nevertheless, it is still the properties of η as a function in the first

sense that will prove decisive for inference. We assume that η(·) is differentiable
everywhere in Ω, and denote the differential of η, Dθη(θ) (an m × q matrix), by
η̇(θ). In addition, we assume throughout that rank[η̇(θ)] = m for all θ. This
assumption on the rank of η̇(θ) is not essential, but simplifies the presentation of
the results.

In the statements of the results to follow we use the following notation: a ball
in R

q of radius ε and centre at the point θ0 in R
q will be the set

BRq (θ0, ε) =
{
θ ∈ R

q : (θ − θ0)
′ G (θ0) (θ − θ0) < ε2

}
.

By definition, this depends on the matrix G, so is adapted to a particular di-
vergence measure (or family of measures sharing the same G). Similarly, a ball
of radius ε centred at the point p0 ∈ P in the manifold of densities is the set
BP (p0, ε) = {p ∈ P : δ (p0, p) < ε2} . In view of Lemma 1, for sufficiently small ε
we may identify BP (p0, ε) with the set

BP (θ0, ε) = {θ ∈ BRq (θ0, ε)} ⊂ R
q. (2)

Now, just as for ordinary functions (cf. (Spivak 1965, p. 13)), the continuity
properties of the map η : P → R

m can be captured by the oscillation of η at p0,
defined as follows:
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Definition 1 For p0 ∈ P, η : P → R
m, and BP (θ0, ε) defined as above,

osc (η, p0) = lim
ε→0

sup
θ∈BP (θ0,ε)

|η (θ) − η (θ0)| . (3)

Then, if η̂ is an estimator of η (θ), we have the following result from (Pötscher
2002). (Strictly speaking (Pötscher 2002) considers more general risk functions
than we do, and a topology on the set of probability measures based on the total
variation distance. As noted above, this induces the same topology on the set of
probability measures as the Hellinger distance.)

Theorem 1 ((Pötscher 2002)) The risk of any estimator η̂ of η (θ0) satisfies the
inequality

lim
ε→0

sup
θ∈BP (θ0,ε)

Eθ

(
|η̂ − η (θ)|2

)
≥

1

4
[osc (η, p0)]

2 ,

where Eθ denotes the expectation taken with respect to the density pθ.

Since osc (η, p0) = 0 if and only if the function η is continuous at θ0, Theorem
1 establishes the link between the risk of an estimator and the continuity of η: if
η is discontinuous at some point θ0, then the risk of any estimator for η must be
positive (and may be infinite) in a neighbourhood of p0, even when the sample
size tends to infinity. It follows from this result that there can be no uniformly
consistent estimator for η if there is a θ0 ∈ Ω for which osc (η, p0) > 0. Intuitively,
this is because a small perturbation of the density (i.e, θ) can, if osc is positive,
induce an arbitrarily large change in η.

If we say that an interest parameter η(θ0) is identified if and only if pθ → pθ0

implies that η(θ) → η(θ0), Lemma 1 implies that (provided G(θ) has full rank q),
η(θ0) is identified if and only if osc (η, p0) = 0. So, osc (η, p0) > 0, implies that
η(θ0) is unidentified. Note here that θ0 is not (necessarily) the true value of θ,
merely some fixed value.

Now, although Theorem 1 does provide a key connection between the properties
of the interest parameter η and the possibility of inference for it, the result, like
osc(·, ·) itself, is essentially “all or nothing”: either a uniformly consistent estimator
for η exists, or not. Thus, situations where osc (η, p0) > 0 are usually ruled out
by assumption, in the sense that conditions are imposed on either P or η to
guarantee that the map η : R

q → R
m is continuous. However, recent literature on

“weak identification” (e.g., (Staiger and Stock 1997), (Dufour 1997)) has made it
clear that there can be problems for inference about an interest parameter that is
technically identified (osc = 0 everywhere), but for which the map η : P → R

m is
close to being discontinuous. In particular, there can be real difficulty in assessing
the precision that can be assigned to inferential procedures for such a parameter
(see (Staiger and Stock 1997), and (Forchini and Hillier 2003)).
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The situation may be illustrated by the function η (θ) = 1/ (1 + exp {−κθ}) .
It is easy to see that η is everywhere continuous for all finite κ (i.e., osc(η, θ) = 0
for all θ), but tends to the step function η∗ (θ) = 0 for θ < 0, η∗ (θ) = 1 for θ > 0
(with a discontinuity at the origin), as κ → ∞. On the other hand, for κ large, η is
“almost” a step function at the origin, and small changes in θ lead to huge changes
in η. Of course, what we are now talking about is the derivative of η at the origin
(= κ/4). It seems clear intuitively that for interest functionals exhibiting this kind
of behaviour inference is likely to be extremely difficult, but not impossible.

Our purpose now will be to formalise this intuition, to show that it is essentially
correct, and to explore its connections with the more familiar arguments outlined
above. It turns out that the measure we define as the analogue of the derivative
has a second advantage: it is intimately related to the properties of the matrix G
implicit in the divergence measure used, and therefore, in a wide variety of cases,
to the Fisher information matrix. It is also closely related to the definition of the
condition number (cond(·, ·)) that arises in other branches of applied mathematics
(see (Zolezzi 2002), and (Demmel 1987)). In that context, an extreme (infinite)
value of cond(·, ·) indicates an ill-posed problem, and finite values calibrate the
difficulty of the problem. Because of our more statistical context, and the link
with the derivative of the interest-functional, we shall use a different notation,
der (η, p0) , defined as follows:

Definition 2 For fixed p0 ∈ P and η : P → R
m, and BP (θ0, ε) defined as above,

define

der (η, p0) = lim
ε→0

sup
θ∈BP (θ0,ε)

|η (θ) − η (θ0)|

ε
, (4)

Correspondingly, we now consider not the risk Eθ

(
|η̂ − η (θ)|2

)
itself, but how

the risk behaves in a shrinking neighbourhood BP (θ0, ε) of θ0, relative to the size
ε of that neighbourhood. The following Theorem gives the result analogous to
Theorem 1 for der (η, p0):

Theorem 2 For any estimator η̂ of η (θ0)

lim
ε→0

sup
θ∈BP (θ0,ε)

Eθ

([
|η̂ − η (θ)|

ε

]2
)

≥
1

4
[der (η, p0)]

2

where Eθ denotes the expectation taken with respect to the density pθ.

Remark 2 If der (η, p0) is large, the Theorem says that the risk of any estimator
η̂ for η can be changing rapidly in some regions of the parameter space. This
implies that it will be difficult to accurately assess the precision of any estimator
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for η. Thus, whereas Theorem 1 concerns the possible accuracy with which η can be
estimated, Theorem 2 concerns the possible accuracy with which that accuracy

can be assessed. This theme is developed further in Section 3 below.

As noted above, one of the advantages of der (η, p0) over osc (η, p0) is that
der (η, p0) is directly related to the properties of the model since it depends on the
Fisher information for η, a quantity having a familiar statistical interpretation.
This relationship is given in the following result:

Theorem 3

der (η, p0) =
[
λM

(
[η̇ (θ0)]G

−1 (θ0) [η̇ (θ0)]
′)] 1

2 , (5)

where λM (A) denotes the largest eigenvalue of the matrix A, and η̇ (θ0) = Dθ η (θ)|θ=θ0
.

Moreover, for a fixed interest parameter η, der (η, p0) does not depend on the pa-
rameterization of P.

Remark 3 The expression for der (η, p0) in Theorem 2 involves both the informa-
tion on θ itself (through G(·)), the properties of the function η(·) (through η̇ (·)),
and how they interact to produce the matrix [η̇ (θ0)]G

−1 (θ0) [η̇ (θ0)]
′. This makes

sense since the data provides information on η only indirectly though θ.

Remark 4 The matrix [η̇ (θ0)]G
−1 (θ0) [η̇ (θ0)]

′ is the (asymptotic) covariance ma-

trix for a consistent and efficient estimator of η, so that
(
[η̇ (θ0)]G

−1 (θ0) [η̇ (θ0)]
′)−1

is the (asymptotic) Fisher information for the parameter η. Evidently, der (η, p0)
will be large when the Fisher information matrix is ‘almost singular’.

Corollary 1 Let λM (A) and λm (A) denote the largest and the smallest eigenval-
ues of the matrix A.
(i) For η = θ,

der (θ, p0) = [λM

(
G (θ0)

−1)] 1

2 = [λm(G (θ0))]
− 1

2 . (6)

(ii) For η = θ1, where θ is partitioned as θ = (θ′1, θ
′
2)

′
,

der (θ1, p0) = [λM

(
G11.2 (θ0)

−1)] 1

2 = [λm (G11.2 (θ0))]
− 1

2 , (7)

where, with G partitioned conformably to θ as

G (θ0) =

(
G11 (θ0) G12 (θ0)
G21 (θ0) G22 (θ0)

)
,

G11.2 (θ0) denotes the matrix

G11.2 (θ0) = G11 (θ0) − G12 (θ0) [G22 (θ0)]
−1 G21 (θ0) . (8)

Moreover, der (θ1, p0) does not depend on the parameterization of the submanifold
involving θ2.
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Remark 5 In some situations the parameter of interest may be only implicitly
defined by a relationship of the form f (θ, η) = 0, where f : R

q × R
m → R

m is a
smooth function with smooth first derivatives. In such a case, the implicit function
theorem allows one to write η̇ (θ0) in terms of the partial derivatives of f (provided
the matrix of partial derivatives of f with respect to η has full rank). Thus, the
formulae above can be applied to functions η that are only implicitly defined.

The relationship between osc (η, p0) and der (η, p0) is given by the following
Theorem, and the link between der (η, p0) and uniform consistency is given in the
Corollary that follows it.

Theorem 4 Assume that G(θ) has rank q for all θ ∈ Ω. Then: (i) der (η, p0) >
osc (η, p0) for every η and p0; (ii) if der (η, p0) < +∞ then osc (η, p0) = 0; (iii) if
osc (η, p0) > 0 then der (η, p0) = +∞.

Remark 6 When, as we have done, η is assumed to be differentiable at θ0, der (η, p0) <
+∞, and, since differentiability at θ0 implies continuity at θ0, osc (η, p0) = 0.
Hence, if η is differentiable in a compact subset Θ ⊂ R

q, then it is uniformly contin-
uous in Θ, and also uniformly continuous in the set {pθ : θ ∈ Θ ⊂ R

q, Θ compact} ⊂
P. We may state:

Corollary 2 If der (η, pθ) < +∞ for all θ ∈ Θ, where Θ is a compact subset of
R

q, then uniformly consistent estimators for η (θ) exist for θ ∈ Θ.

Although we have ruled this out by assumption, part (iii) of Theorem 4 says
that if the inference problem is ill-posed in Pötscher’s ((Pötscher 2002)) sense
(osc (η, p0) > 0), then der (η, p0) = +∞. However, since non-differentiability
(der (η, p0) = +∞) does not imply non-continuity, the converse is not true. Let
us therefore call a problem for which der (η, p0) = +∞ for at least some point(s)
in the parameter space an ill-conditioned problem, to distinguish this case from
that of an ill-posed problem in Pötscher’s sense. In practice, a problem that is
ill-conditioned will typically also be ill-posed - see section 5 below for examples.

If der(η, pθ) is everywhere near zero, η is insensitive to perturbations of the
underlying density, and one does not need to know pθ very precisely to learn η:
inference on η is easy in that case (the problem is well-conditioned). On the other
hand, if der (η, p0) can be large at some points in the parameter space, small
perturbations of θ can generate large changes in η (θ) , and one needs to learn pθ

very precisely to learn the value of η (the problem is ill-conditioned).
The next two results establish more concretely the relationship between der (η, p0)

as we define it, and condition numbers used elsewhere:
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Theorem 5 Let BRm(η0, ε) = {η ∈ R
m : (η − η0)

′(η − η0) < ε2} denote a ball of
radius ε in R

m (with the ordinary Euclidean metric). Then:

der (η, p0) = lim
ε→0

inf {φ : η (BP (θ0, ε)) ⊂ BRm (η (θ0) , φε)}

This Theorem confirms that der actually reflects the behaviour it is designed
for. The set η (BP (θ0, ε)) is the image of the set of perturbed densities BP (θ0, ε) , a
ball of radius ε. Roughly speaking, the Theorem says that, for small ε, the radius of
the smallest ball around η (θ0) that contains η (BP (θ0, ε)) is ε× der (η, p0). Thus,
der (η, p0) measures how seriously a perturbation of p0 can affect η (θ0).

Theorem 6 Let ‖A‖2 denote the spectral norm of the square matrix A. Then

min
A:|A|=0

∥∥∥
(
[η̇ (θ0)]G

−1 (θ0) [η̇ (θ0)]
′)−1

− A
∥∥∥

2
= (der (η, p0))

−1

Thus, (der (η, p0))
−1 measures how far the problem of inference on η is from

being from an ill-conditioned problem. And, Theorem 6 links ill-posed problems
to lack of local identification: it is well known that a sufficient (although not
necessary) condition for identification is that the Fisher information matrix is
non-singular (see, for instance, Theorem 1 in (Rothenberg 1971), Section 3 of
(Bowden 1973), or (Sargan 1983)).

For reasons explained earlier, an issue that has been attracting attention in
the econometric literature recently is that of measuring how ‘strongly a parameter
is identified’, or, what amounts to the same thing in an instrumental variables
setting, measuring the ‘strength of the instruments’ used or available. A little
reflection shows that what is at issue here is the question of how to capture those
features of the inferential problem that affect one’s ability to accurately assess the
actual (as opposed to asymptotic) inferential precision that can be claimed for a
procedure. In view of the results above, we suggest that (der (η, p0))

−1 provides
just such a measure: a small value of (der (η, p0))

−1 indicates that inference for
η is close to being an ill-conditioned problem, and it will be impossible to know
whether any reported precision measure is accurate. A large value indicates that
inference for η is likely to be straightforward, and assessments of precision should
be reasonably reliable. The results in the next section, and the examples discussed
in Section 5 below, both support this suggestion.

Although we shall not discuss confidence sets in detail here, in constructing
a confidence set, say C (x; η) , for η, one would like C (x; η) to be bounded with
probability one. If osc (η, p0) > 0 at some point θ0 (so der (η, p0) = +∞) this is
not possible. Heuristically, by perturbing θ0 slightly to θ0 +∆, the change in η (θ0)
is so large that no bounded confidence set can contain η (θ0 + ∆). In this case, to
be able to make precise inference about η one needs to exclude neighbourhoods of
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points like θ0 from the admissible parameter space. This is the heuristic behind
the impossibility theorems of (Bahadur and Savage 1956), (Singh 1963), (Koschat
1987), (Gleser and Hwang 1987), (Dufour 1997), (Pfanzagl 1998) and (Pötscher
2002).

3 Variance and Precision

Given an asymptotically efficient estimator η̂ for η, its (usually, asymptotic) vari-
ance v(θ), and its precision v(θ)−1, become new interest parameters, and the ques-
tion arises, can these be estimated accurately? For simplicity we consider only
the case η = θ1 (scalar), with θ̂1 an asymptotically efficient estimator for θ1. The
asymptotic Fisher Information (precision) matrix for θ̂1 is G11.2(θ), and its asymp-
totic covariance matrix is G−1

11.2(θ) (Amari (1985), Theorem 8.1). From our earlier
results we have the following:
For interest parameter η = G11.2(θ) (precision),

der(G11.2, pθ) = [Ġ11.2(θ)G(θ)−1Ġ11.2(θ)
′]

1

2 ,

and, for interest parameter η = G−1
11.2(θ) (variance),

der(G−1
11.2, pθ) = der(G11.2, pθ)/G11.2(θ).

= der(G11.2, pθ)[der(θ1, pθ)]
2. (9)

where Ġ11.2(θ) is the 1 × q vector DθG11.2(θ).
This, of course, is simply a version of the familiar formula for the derivative of

an inverse. However, it does have the interesting consequences stated in:

Proposition 1 (i) If der(θ1, pθ) is large, so that inference on θ1 is close to being
an ill-conditioned problem, estimation of the (asymptotic) variance of an efficient
estimator for θ1 will also be an ill-conditioned problem, but inference on its preci-
sion will be well-conditioned. (ii) Conversely, when der(θ1, pθ) is small, estimation
of the variance will be well-conditioned, but estimation of precision will be close to
ill-conditioned.

The first part of this proposition says that, if a parameter is very sensitive to
the underlying density, the variance of an asymptotically efficient estimator for
it will also be sensitive, but estimation precision - which will necessarily be near
zero, of course - will not be. In the opposite situation, estimation of variance
will be well-conditioned, but - precisely because the parameter is insensitive to the
underlying density - inference on precision will be difficult. These results evidently
generalise in the obvious way.
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4 Semiparametric ill-posed problems

We now extend the analysis above to a semi/non-parametric set-up. We consider
a random sample X1, X2, ..., Xn from a distribution P belonging to a family P
of probability measures on a common measurable space (X ,A). We assume that
there exists a “carrier” measure µ on (X ,A) such that all the measures in P
are absolutely continuous with respect to it. It follows from the Radon-Nikodym
theorem that each probability measure in P has a density. The density of P is
denoted by p.

Let P0 be a one-dimensional family of probability measures on (X ,A) which
pass through P0 ∈ P (with probability density function p0) and are differentiable
in quadratic mean at P0. That is, one considers differentiable paths t → Pt from
[0, ε), for some ε > 0, to P such that, as t → 0,

∫

X

[
p

1/2
t − p

1/2
0

t
−

1

2
gp

1/2
0

]2

dµ → 0 (10)

for some measurable function g : X → R. The function g can be called the score
function for the model Pt. By letting t → Pt range over a collection of submodels,
we obtain a collection of score functions called the tangent set to P at P0, and
denoted by ṖP0

. In the sequel we will make enough assumptions to guarantee that
the tangent set is a Hilbert space, as is common in the literature on semi/non-
parametric efficiency bounds (e.g. (Newey 1990), (Severini and Tripathi 2001),
(Van der Vaart 2000)).

Define an inner product in ṖP0
by

〈h, g〉P0
= 4

∫

X

(
hp

1/2
0 /2

) (
gp

1/2
0 /2

)
dµ =

∫

X

hgdP0 = EP0
(hg) ,

i.e. 〈h, g〉P0
is the covariance between h and g. The covariance matrix of g is the

analogue of the Fisher information matrix in a parametric problem.
The distance of Pt from P0 (along the differentiable path t → Pt) is defined to

be t 〈g, g〉1/2
P0

where 〈g, g〉1/2
P0

is the norm induced by the inner product on ṖP0
. So,

for example, a ball of radius ε and centre at P0 is the set of all one dimensional
probability measures passing through P0 :

BP (P0, ε) =
{

Pt ∈ P0 : g ∈ lin ṖP0
, 〈g, g〉1/2

P0
< ε

}
. (11)

where lin ṖP0
is the closure of the linear span of the tangent set ṖP0

. The reason

for the use of lin ṖP0
rather than ṖP0

, is that ṖP0
is a subset of the set of square

integrable functions but does not span the whole space, and may not even be a
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subspace. Note that t does not appear in (11) because lin ṖP0
is a linear space, so

that t 〈g, g〉1/2
P0

= 〈g′, g′〉1/2
P0

for g′ = tg.
Consider a map η : P → R

m defining the parameter of interest as before, and
assume that η is differentiable at P0 relative to the tangent set ṖP0

. That is, there
exists a continuous linear map η̇ : L2 (X ) → R

m such that, for every g ∈ ṖP0
and

submodel t → Pt with score function g, one has

η (Pt) − η (P0)

t
= η̇P0

g + o (t) (12)

as t → 0. Note that this requires the derivative of t → η (Pt) to exist, and also to
have the special form of equation (12). Moreover, since η̇ is continuous, it follows
from the Riesz-Fréchet Theorem (e.g. (Severini and Tripathi 2001) Theorem A.1),
applied to each component of η̇P0

g separately, that one can write the derivative of
t → η (Pt) as

η̇P0
g =

∫

X

η̃P0
gdP0 =

〈
η̃P0

, g
〉

P0

. (13)

The function η̃P0
is uniquely defined in lin ṖP0

(but is not unique in ṖP0
), and is

called the efficient influence function ( (Van der Vaart 2000) p. 363). Note that
here we have used η̇P0

instead of η̇ (P0) , which would be closer to our notation for
the parametric case, to keep the notation consistent with that currently used in
the literature on non/semi-parametric efficiency bounds.

We may define, in analogy with the parametric case considered in Definition
2, the following measure:

Definition 3 For fixed P0 ∈ P and η : P →R
m, and with BP (P0, ε) defined as in

(11), define

d̃er (η, P0) = sup
c′c=1

lim
ε→0

sup
P∈BP (P0,ε)

|c′(η (P ) − η (P0))|

ε
. (14)

Remark 7 The definition here differs from the earlier Definition 2 in that we
have introduced the vector c, and the corresponding operation supc′c=1, into the

definition of d̃er (η, P0). This is necessary in order to be able to use the Riesz-
Fréchet Theorem in Theorem 8.

Theorem 7 For any estimator η̂ of η (P0)

lim
ε→0

sup
P∈BP (P0,ε)

EP

([
|c′(η̂ − η (P ))|

ε

]2
)

≥
1

4

[
d̃er (η, P0)

]2

where EP denotes the expectation taken with respect to the probability measure P .
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Results similar to Theorems 3, 5 and 6 follow:

Theorem 8

d̃er (η, P0) = λ
1/2
M

(
EP0

[
η̃P0

η̃′
P0

])
(15)

where EP0

[
η̃P0

η̃′
P0

]
is the covariance matrix of the efficient influence function η̃P0

.

Theorem 9

d̃er (η, P0) = sup
c′c=1

lim
ε→0

inf {φ : c′η (BP (P0, ε)) ⊂ B′
R

(c′η (p0) , φt) , t < ε}

where B′
R

(c′η (P0) , φt) is an interval of the real line,

B′
R

(c′η (p0) , φt) = {b ∈ R : |b − c′η (P0)| < φt} .

Theorem 10 Let ‖A‖2 denote the spectral norm of the square matrix A. Then

min
A:|A|=0

∥∥∥
(
EP0

[
η̃P0

η̃′
P0

])−1
− A

∥∥∥
2

= (d̃er (η, P0))
−1.

An important special case in the class of models considered above is a semi-
parametric model for which each member of P can be written as Pη,φ where η ∈ R

q

and φ belongs to an arbitrary set H (a subset of a Hilbert space). The map of
interest is η : P → R

m defined by η (P ) = η. In this case the covariance matrix of

the efficient influence function (and thus d̃er (η, P0)) takes on a particular form.
Consider a one-dimensional parameterization of the form

t → Pη+ta,φt

where t → φt is in H. In this case one shows ((Van der Vaart 2000) Section 25.4)
that

∂ ln dPη+ta,φt

∂t

∣∣∣∣
t=0

= a′l̇η,φ
0
+ g (16)

where l̇η,φ
0

is the score function for η in the model for which φ is fixed at φ0. The
function g is the score function for φ if η is fixed. The infinite-dimensional set over
which g runs is called the tangent set for φ and is denoted by φṖPη,φ0

.
The efficient influence function η̃P0

must be orthogonal to the tangent set for the

nuisance parameters, φṖPη,φ0
, so one can let Πη,φ

0
be the the orthogonal projection

onto the closure of the linear span of φṖPη,φ0
, and define

l̃η,φ
0

= l̇η,φ
0
− Πη,φ

0
l̇η,φ

0
. (17)
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The quantity l̃η,φ0
is called the efficient score function for η, and its covariance

matrix
Σηη = EPη,φ0

[
l̃η,φ

0
l̃′η,φ

0

]
(18)

is called the efficient information matrix. Lemma 25.25 in (Van der Vaart 2000)
says that if Σηη is nonsingular, then η has efficient influence function

η̃P0
= Σ−1

ηη l̃η,φ0
. (19)

Thus, for this case we have the following corollary to Theorem 8:

Corollary 3 For η (P ) defined as above, d̃er (η, P0) = λ
1/2
M

(
Σ−1

ηη

)
, where Σηη is

the covariance matrix of the efficient score function l̃η,φ0
for η.

A few remarks are in order. Firstly, the results given in this section generalize
those for parametric models given earlier. The structure is unchanged, and the
key factor is the covariance matrix of the efficient influence function. Secondly, the
analysis of this section is limited to the i.i.d. case, but it may easily be extended
to the non i.i.d. case by considering P as the probability of the sample rather than
that of a single observation. All the results would go through, but the terminology
and the available theory to calculate “efficient influence functions” does not seem
to have been developed.

Finally, we note that d̃er (η, P0) for non/semi-parametric models cannot be
smaller than the value of der (η, p0) for any parametric model that it embeds. That
is, a non/semi-parametric inference problem must be at least as ill-conditioned as
any parametric version of itself. Hence, the results for parametric models given in
Section 2 can identify classes of ill-conditioned, or poorly-conditioned, nonpara-
metric problems as well.

5 Examples

5.1 Structural equation models and weak instruments

Consider a single structural equation

y1 = Y2β + Z1γ + u, (20)

where y1 and Y2 are respectively a T × 1 vector and a T ×n matrix of endogenous
variables, Z1 is a T×k1 matrix of exogenous variables, and β and γ are, respectively,
n× 1 and k1 × 1 vectors of parameters. The reduced form - the process generating
the data - corresponding to (20) is:

(y1, Y2) = Z1 (φ1, Φ2) + Z2 (π1, Π2) + (v1, V2) , (21)
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where Z2 is a T × k2 matrix of exogenous variables not included in the structural
equation, (φ1, Φ2) and (π1, Π2) are matrices of parameters of dimension k1×(n + 1),
k2 × (n + 1) respectively. We assume throughout that k2 ≥ n. The rows of V =
(v1, V2) are assumed to be independent normal vectors with mean zero and common
(n + 1) × (n + 1) covariance matrix

Ω =

(
ω11 ω′

21

ω21 Ω22

)
,

where ω11, ω21 and Ω22 are respectively (1 × 1), (n × 1) and (n × n) matrices of
parameters (i.e., V ∼ N (0, IT ⊗ Ω)). The structural equation (20) is embedded in
the reduced form (21) through the relations γ = φ1 − Φ2β, u = v1 − V2β, and

π1 − Π2β = 0. (22)

This last equation (implicitly) defines β (one of the interest parameters) in terms
of (π1, Π2) , and the equation γ = φ1 − Φ2β then defines γ (the other) in terms of
β and (φ1, Φ2) . We have:

Theorem 11 Let ω2 = ω11 − ω′
21Ω

−1
22 ω21, β̃ = Ω

1

2

22

(
β − Ω−1

22 ω21

)
/ω, and

σ2 = var (ut) = ω2
(
1 + β̃

′
β̃
)

.

Then

der (β, γ, p0) = σλ−1/2
m

(
Π′

2Z
′
2Z2Π2 Π′

2Z
′
2Z1

Z ′
1Z2Π2 Z ′

1Z1

)
,

and
der (β, p0) = σλ−1/2

m (Π′
2Z

′
2MZ1

Z2Π2) .

If Π2 can have reduced rank the problem of inference about β and/or γ is ill-
conditioned since supp∈P {der (η, p)} = +∞. Moreover, in this case the problem is
also ill-posed and no uniformly consistent estimator for β and/or γ exists.

The density p0 here is that induced by the reduced form (21) with fixed pa-
rameters. One may note the similarity between der (β, p0) and the concentration
parameter considered by (Stock, Wright, and Yogo 2002). The difference is that
der (β, p0) depends on σ2 = var (ut) (rather than on the covariance matrix of the
rows of V ), and therefore on the degree of endogeneity. In fact, if we let ρ2 denote
the multiple correlation coefficient between ut and V2t - an obvious measure of

the degree of endogeneity - it easy to verify that ρ2 = β̃
′
β̃/

(
1 + β̃

′
β̃
)

, so that

σ2 = ω2/(1 − ρ2), and we have the important result that:
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Proposition 2 Since

der (β, p0) = ω[
(
1 − ρ2

)
λm (Π′

2Z
′
2MZ1

Z2Π2)]
− 1

2 ,

inferential problems arise when either Π2 is close to a rank-deficient matrix, or
when ρ2 is close to one.

If T−1Z ′Z
P
→ Q, and Π2 is fixed and of full rank n, then it is easy to see that

der (β, p0) → 0 as T → ∞. If the instruments are weak in the sense of (Staiger
and Stock 1997), i.e. Π2 = T−1/2Π̄ for a fixed Π̄, then der (β, p0) converges to a
constant that depends on Π̄, which is large when Π̄ is close to zero.

5.2 Spectral density estimation

Consider an ARMA(p, q) process

φ (L) Xt = θ (L) εt (23)

εt ∼ NID
(
0, σ2

)

t = 1, 2, ..., T , where φ (L) = 1 −
∑p

i=1 φiL
i, θ (L) = 1 −

∑q
j=1 θjL

j and L is the
lag operator. It is assumed that the process is not redundant (i.e. φ (L) and θ (L)
have no common zeros), and that φ (L) has all roots outside the unit circle. Then
{Xt} has spectral density

f (λ) =
σ2

2π

∣∣θ
(
e−iλ

)∣∣2

|φ (e−iλ)|2

for −π ≤ λ ≤ π. Any interest parameter η will be defined in terms of the under-
lying parameters (φi, θj, σ

2). For example, one may be interested in the spectral
density at frequency zero, f (0) , i.e.,

η = f (0) =
σ2

2π

|1 −
∑p

i=1 φi|
2

∣∣∣1 −
∑q

j=1 θj

∣∣∣
2 ,

This is related to the problem of the estimation of the persistence of the process
(e.g., in macroeconomics, see (Pötscher 2002)). In general, for any η : P → R

q

defined on the set of ARMA(p, q) processes P with values in R
q, we have:

Theorem 12 Let IT (φ, θ, σ2) be the information matrix of an ARMA(p, q) pro-
cess, with p ≥ 1 and q ≥ 1. Then

der (η, p0) = λ
1/2
M

(
[η̇

(
φ, θ, σ2

)
]I−1

T

(
φ, θ, σ2

) [
η̇

(
φ, θ, σ2

)]′)
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may be unbounded (supp∈P {der (η, p)} = +∞) if the model can be arbitrarily close
to one which is redundant. Moreover if supp∈P {der (η, p)} = +∞ the problem is
ill-posed and no uniformly consistent estimator of η exists.

The information matrix IT (φ, θ, σ2) is known in very special cases, but nu-
merical algorithms are needed to evaluate it in general (e.g. (Klein, Mélard, and
Zahaf 1998)).

Theorem 12 applies to any function η : P → R
q for which the partial derivatives

exist. The behaviour der (η, p0) in a region close to the points where IT (φ, θ, σ2)
is rank deficient depends in a complicated way on η̇ (φ, θ, σ2). When IT is rank-
deficient it may be possible to reparameterize the model in terms of parameters ξ1

and ξ2 in such a way that the information matrix, in this new coordinates system,
has the form (

IT (ξ1, ξ2) 0
0 0

)

where IT (ξ1, ξ2) is a square matrix having as many rows as the components of ξ1. If
so, and if η depends only on ξ1, then der (η, p0) will be finite, and uniformly consis-
tent estimators of η will exist. On the other hand, whenever η depends on both ξ1

and ξ2, der (η, p0) = +∞ and the inferential problem will be ill-conditioned. Once
again, since ξ2 is not identified, there will be no uniformly consistent estimator for
such a parameter η.

Since the spectral density at zero, f (0) , depends on all φ’s and θ’s, we may
state:

Corollary 4 The problem of estimating f (0) is ill-conditioned as well as ill-posed
when P is the family of ARMA(p, q) with p ≥ 1 and q ≥ 1.

This corresponds to Theorem 4.2 (d) of (Pötscher 2002).

5.3 Estimation of long memory parameter

Consider a Gaussian stationary process with zero mean and spectral density func-
tion

f (λ) = λ−2dg (λ)

where g (λ) is the spectral density for an ARMA(p, q) process as in equation (23).
(Li and McLeod 1986) have shown that the large-sample Fisher information matrix
per observation for a fractional time series model in which σ2 = 1 is

(
Ip,q J
J ′ c

)
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where c = π2/6 is a constant, Ip,q is the information matrix for the ARMA(p, q)
process with σ2 = 1,

J = [γXd (0) , ..., γXd (p − 1) , γεd (0) , ..., γεd (q − 1)]′

and

γXd (s) =
∞∑

i=0

φ
′

i

s + i + 1

γεd (s) =
∞∑

i=0

θ
′

i

s + i + 1

where φ−1 (L) =
∑∞

i=0 φ
′

iL
i and θ−1 (L) =

∑∞
i=0 θ

′

iL
i. We then have, for interest-

parameter η = d :

Proposition 3 Let the ARMA(p, q) component be nonredundant. Then,

der (d, p0) =
(
c − J ′I−1

p,q J
)− 1

2 , (24)

and this is finite and positive for all processes with finite p and q. So, for processes
with finite ARMA(p, q) component, the problem is well-conditioned, and uniformly
consistent estimators of d exist.

Note that, even though G11.2 = (c − J ′I−1
p,q J) is positive, it can become very

small when p and/or q are large, because an ARMA(p, q) process of sufficiently
high order can approximate any stationary time series. For example, der (d, p0) can
be as large as 7.38342 in an AR(1) model, and can reach 50.3292 in an ARMA(1, 1)
model. The following Theorem formalizes this

Theorem 13 Suppose that the ARMA(p, q) component is not redundant (i.e. it
has nonsingular Fisher information matrix). Then, the estimation problem of
estimating d is ill-conditioned (i.e. supp∈P {der (η, p)} = +∞) if p or q tend
to infinity. The estimation problem is also ill-posed and no uniformly consistent
estimator of d exists if the model allows either the MA or AR component to be
infinite.

5.4 Data Reduction

We return now to the fully parametric setting of Section 2. Consider a statistic
defined on the sample space X , y = t(x), say, taking values in R

p, p ≤ n. Let P
be the family of underlying model densities, as in Section 2, and assume that the
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matrix Dx t (x) is everywhere of full rank p. For example, y may be an estimator
for some parameter of interest η, or a test statistic for testing an hypothesis about
θ.

Any such function t : R
n → R

p induces a mapping from P , the space of
densities pθ for x, to Q, a space of densities fψ, say, for y, via the formula:

fψ =

∫

t−1(y)

(det
[
[Dxt (x)] [Dxt (x)]′

]
)−

1

2 pθ(dx), (25)

where t−1 (y) = {x ∈ X : t (x) = y} denotes the manifold in X on which t is fixed
at y (see, for instance, Proposition 8.1.2 in (Tjur 1980), or (Hillier and Armstrong
1999)), and ψ = ψ(θ) denotes a parameter indexing the densities in Q. Denote
this map by t(pθ), the image of pθ induced by t.

Hence, if ψ = ψ(θ) ∈ Ψ has dimension m (m ≤ q), t also induces a map
ψ : Ω → Ψ ⊂ R

m, as in the following diagram:

P
fψ=t(pθ)

→ Q
l l

R
q ψ=ψ(θ)

→ R
m

In general, ψ will not be the identity map, and m will be less than q. That is,
the manifold {fψ : ψ ∈ Ψ} will be of lower dimension than that of {pθ : θ ∈ Ω}.
When m < q the statistic t may not preserve all of the information in x about
θ, but may convey information about certain characteristics of θ. [For example,
if x ∼ N(µ, Iq), and y = t(x) = x′x ∼ χ′2(q, µ′µ), so y can convey information
about the length of µ, but not its direction.] Thus, after reduction to t, we must,
of necessity, focus on those functions of θ - represented here by ψ - for which y is
informative.

As before, let G (θ) = −Eθ [D2
θpθ] be the information matrix for pθ, and H (ψ) =

−Eψ

[
D2

ψfψ

]
be the information matrix for fψ. It is of interest to measure the

sensitivity of the induced density fψ to perturbations of the underlying density pθ.
To measure this, define:

der (f, p0) = lim
ε→0

sup
θ∈BP (θ0,ε)

[(ψ (θ) − ψ (θ0))
′ H (ψ(θ0)) (ψ (θ) − ψ (θ0))]

1

2

ε
. (26)

A result analogous to Theorem 3 holds.

Theorem 14 If ψ (θ) is differentiable at θ = θ0, then

der (f, p0) = [λM

(
[ψ̇ (θ0)]G (θ0)

−1 [ψ̇ (θ0)
′]H(ψ0)

)
]
1

2 . (27)

Moreover, this does not depend on the parameterization of P or Q.
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The matrix [ψ̇ (θ0)]G (θ0)
−1 [ψ̇ (θ0)

′] is the covariance matrix of a consistent and
efficient estimator for ψ (when θ0 is the true value of θ). So, der (f, p0) compares
the Fisher information for ψ0 based on the statistic y with the asymptotic Fisher
information of a consistent and efficient estimator for ψ0 based on the full data x.
That is:

Proposition 4 der (f, p0) is a measure of the (asymptotic) relative efficiency of
the statistic y - relative to the data x - in providing information about ψ0.

Since [H(ψ0)− ([ψ̇ (θ0)]G (θ0)
−1 [ψ̇ (θ0)

′])−1] must be positive semi-definite (the
information on ψ cannot increase when we reduce x to y), der (f, p0) ≥ 1 for all
θ. The reduction to y is justified if ψ is a parameter of interest, and der (f, p0) is
everywhere close to one. If y is a sufficient statistic (for θ), der (f, p0) = 1 for all θ.
Otherwise, if der (f, p0) can be close to 1 for some values of θ, y is locally sufficient
for ψ in at least some regions of the parameter space.

6 Discussion and Conclusions

The possibility that a statistical problem may be ill-posed has been known for
many years from the work of (Bahadur and Savage 1956), (Singh 1963), (LeCam
and Schwartz 1960), and others. More recently it has come to be realised - particu-
larly in the econometrics literature (e.g. (Dufour 1997), (Staiger and Stock 1997),
and (Pötscher 2002)) - that problems that are close to being ill-posed may also
present serious inferential difficulties. In particular, there are difficulties in re-
liably assessing the precision that can be attributed to inferential procedures in
such cases. Thus, to assess how reliable statistical inference is, one needs to find
ways to measure how far from ill-posed the problem under consideration actually
is. That has been our purpose in this paper.

Although uniform continuity of the interest functional - the criterion discussed
in most of the literature to date - is useful for identifying the extreme version of
the problem, it does not seem to capture the “distance from ill-posed” quality of
the problem. We have suggested a measure more akin to the derivative of the
functional, and shown that it does indeed have the properties one wants. Our
suggested measure has much in common with the condition number used in nu-
merical analysis and optimisation theory to measure “distance from ill-posedness”.
In parametric models it is determined the Fisher information matrix, and in non-
parametric models by the covariance matrix of the efficient influence function.
The examples considered in Section 5 demonstrate the usefulness of our suggested
measure.

Measures of the variance and precision of estimators are also of interest in
any inference problem. We have shown that there is a direct link between the
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properties of the three interest functionals {parameter, precision, variance}. This
has been discussed briefly here, but deserves further investigation. Finally, we
show that our suggested measure provides useful information on the sensitivity
of the induced properties of a statistic, such as an estimator or test statistic, to
perturbations of the underlying model density. This too deserves further study.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Part (i) is a standard result (see (Blyth 1994)). To prove part (ii) regard δ (pθ0
, pθ)

as a function of θ, and note that it has a critical point at θ = θ0 (from (2) of the
definition of divergence) where the matrix of second derivatives is nonsingular (from (3)
of the definition of divergence). Then apply Morse’s Lemma (e.g. (Milnor 1963) and
(Castrigiano and Hayes 1993)).

A.2 Proof of Theorem 1

The argument follows the proof of Theorem 2.1 of (Pötscher 2002). We just need to
note that (i) the sets BRq (θ0, 1/i) for i ∈ N sufficiently large generate a neighbourhood
basis as in Theorem 2.1 of (Pötscher 2002); (ii) |·|2 is a proper loss function in the sense
of (Pötscher 2002); the map p → Pp =

∫
pdµ is continous when the set of all probability
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measures is endowed with the total variation distance (this follows from the fact that
locally the divergence and the total variation distance induce the same topology). Thus
Corollary 2.2 of (Pötscher 2002) applies.

A.3 Proof of Theorem 2

It follows from Theorem 1 that for sufficiently small ε > 0 one has

sup
θ∈B

Rq (θ0,ε)
Ep

(
|η̂ − η (p)|2

)
≥ 2−2

[
sup

θ∈B
Rq (θ0,ε)

|η (p) − η (p0)|

]2

.

Thereom 2 follows by divinding by ε2 both sides of the above inequality and taking the
limit as ε goes to zero.

A.4 Proof of Theorem 3

Let

derε (η, p0) = sup
θ∈B

Rq (θ0,ε)

|η (p) − η (p0)|

ε

so that der (η, p0) = limε→0 derε(η, p0). Expand η (θ) as a Taylor series,

η (θ) − η (θ0) = η̇ (θ0) [θ − θ0] + O
(
ε2

)

in BRq (θ0, ε) , and note that

[η (θ) − η (θ0)]
′ [η (θ) − η (θ0)] = [θ − θ0]

′ η̇ (θ0)
′ η̇ (θ0) [θ − θ0] + O

(
ε3

)
.

Thus one can write

derε (η, p0) = sup
θ∈B

Rq (θ0,ε)

√
[θ − θ0]

′ η̇ (θ0)
′ η̇ (θ0) [θ − θ0]

ε2
+ O (ε) .

Since η̇ (θ0)
′ η̇ (θ0) is positive semidefinite, the supremum must occur at the boundary

as a maximum, so

derε (η, p0) = sup
[θ−θ0]′G(θ)[θ−θ0]=ε2

√
[θ − θ0]

′ η̇ (θ)′ η̇ (θ) [θ − θ0]

ε2
+ O (ε)

= sup
v′v=1

√
v′G (θ)−1/2 η̇ (θ)′ η̇ (θ) G (θ)−1/2 v + O (ε)

=

√
λM

[
η̇ (θ)′ η̇ (θ)G (θ)−1

]
+ O (ε) .

The first part of the theorem follows by noting that λM

[
η̇ (θ)′ η̇ (θ)G (θ)−1

]
=

λM

[
η̇ (θ)G (θ)−1 η̇ (θ)′

]
, and by taking the limit at ε goes to zero.
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To show invariance to reparameterizations of P, define θ = φ (τ) so that θ0 = φ (τ0)
and note that

G (θ0) → φ̇ (τ0)
′ G (θ0) φ̇ (τ0)

η̇ (θ) → Dτη (φ (τ))|τ=τ0
= η̇ (θ0) φ̇ (τ0)

where φ̇ (τ0) = Dτφ (τ)|τ=τ0
is a q × q non-singular matrix.

A.5 Proof of Corollary 1

This is a simple consequence of Theorem 3.

A.6 Proof of Theorem 4

(i) Choose any 0 < ε < 1, then

sup
θ∈B

Rq (θ0,ε)

|η (p) − η (p0)|

ε
≥ sup

θ∈B
Rq (θ0,ε)

|η (p) − η (p0)|

The first part is proved by taking the limit as ε → 0.
(ii) If der (η, p0) ≤ M < +∞, then for ε > 0 sufficiently small,

sup
θ∈B

Rq (θ0,ε)

|η (p) − η (p0)|

ε
≤ M.

Multiplying right and left hand sides by ε one has

sup
θ∈B

Rq (θ0,ε)
|η (p) − η (p0)| ≤ εM

so the result follows by taking the limit as ε goes to zero.
Part (iii) If osc (η, p0) ≥ δ > 0, then for ε > 0 sufficiently small one has

supθ∈B
Rq (θ0,ε) |η (p) − η (p0)| ≥ δ. Dividing both sides by ε and taking the limit as ε

goes to zero we obtain der (η, p0) = +∞.

A.7 Proof of Corollary 2

It follows from Remark 6 that η is continuous in R
q. Let F denote the family of compact

subsets of R
q. (LeCam and Schwartz 1960) p. 148 show that η is F-consistently estimable

if and only if η is uniformly continuous in R
q. This implies that η can be uniformly

consistently estimated in any compact subset of R
q.

A.8 Proof of Theorem 5

This result follows directly from the definition of der (η, p0).
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A.9 Proof of Theorem 6

This result follows from the Gastinel Theorem ((Kahan 1966), p 775) and Theorem A5.3
of (Muirhead 1982).

A.10 Proof of Theorem 7

As in the proof of Theorems 1 and 2 one can show that

sup
P∈BP (P0,ε)

EP

([
|η̂ − η (p)|

ε

]2
)

≥ 2−2

(
sup

P∈BP (P0,ε)

|η (P ) − η (P0)|

ε

)2

. (28)

In order to check this (i) the sets BP (P0, 1/i) for i ∈ N sufficiently large generate a
neighbourhood basis as in Theorem 2.1 of (Pötscher 2002); (ii) |·|2 is a proper loss
function in the sense of (Pötscher 2002); (iii) follows from the fact that we have restricted
our attention to the set of one-dimensional probability measures which are differentiable
in quadratic mean at P0 (so that a sequence of densities pt converges to p0 as t → 0
along a differentiable path in the Hellinger distance, which induces the same topology
as the total variation distance).

Note that

|η (P ) − η (P0)| =

√
[η (P ) − η (P0)]

′ [η (P ) − η (P0)]

≥
√

[η (P ) − η (P0)]
′ cc′ [η (P ) − η (P0)]

for any m × 1 vector c such that c′c = 1. Thus,

|η (P ) − η (P0)| ≥ max
c′c=1

∣∣c′η (P ) − c′η (P0)
∣∣ . (29)

The result follows from the inequalities (28) and (29).

A.11 Proof of Theorem 8

For any P ∈ BP (P0, ε) we have

c′(η (P ) − η (P0)) = tc′η̇P0
g + O

(
ε2

)

and [
c′ (η (P ) − η (P0))

]2
= t2

(
c′η̇P0

g
)2

+ O
(
ε3

)
.
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So

d̃er (η, P0) = sup
c′c=1

lim
ε→0

sup
P∈BP (P0,ε)

√(
c′η̇P0

g
)2

ε2
+ O (ε)

= sup
c′c=1

lim
ε→0

sup
g∈lin ṖP0

:〈g,g〉
1/2

P0
≤ε

√(
c′η̇P0

g
)2

ε2
+ O (ε)

= sup
c′c=1

lim
ε→0

sup
g∈lin ṖP0

:〈g,g〉
1/2

P0
≤1

√(
c′η̇P0

g
)2

+ O (ε)

The last line follows from the linearity of 〈g, g〉P0
in both arguments, and the fact that

ṖP0
is a linear space. Then,

d̃er (η, P0) = sup
c′c=1

sup
g∈lin ṖP0

:〈g,g〉
1/2

P0
≤1

√(
c′η̇P0

g
)2

.

The Riesz-Fréchet Theorem (e.g. (Severini and Tripathi 2001) Theorem A.1) allows us
to write

c′η̇P0
g =

∫

X
c′η̃P0

gdP0

with η̃P0
in lin ṖP0

, and the Cauchy-Schwarz inequality implies that

(
c′η̇P0

g
)2

≤

[∫

X

[
c′η̃P0

]2
dP0

] [∫

X
g2dP0

]
.

Using these two results we can rewrite

d̃er (η, P0) = sup
c′c=1

√∫

X

[
c′η̃P0

]2
dP0.

Finally, note that
∫

X

[
c′η̃P0

]2
dP0 = EP0

(
c′η̃P0

)2
= EP0

[
c′η̃P0

η̃′P0
c
]

= c′
(
EP0

[
η̃P0

η̃′P0

])
c

so that

d̃er (η, P0) = sup
c′c=1

√
c′

(
EP0

[
η̃P0

η̃′P0

])
c

= λ
1/2
M

(
EP0

[
η̃P0

η̃′P0

])
,

and the theorem is proved.

A.12 Proof of Theorem 9

The result follows directly from the definition of d̃er (η, P0).
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A.13 Proof of Theorem 10

The proof is the same as that of Theorem 6 with the obvious change of notation.

A.14 Proof of Corollary 3

The result follows from Theorem 9 above and Lemma 25.25 of (Van der Vaart 2000).

A.15 Proof of Theorem 11

The partial information matrix for the structural equation model specified in the text is
Π′

2Z
′
2MZ1

Z2Π2/σ2 for β and

σ−2

(
Π′

2Z2Z2Π2 Π′
2Z

′
2Z1

Z ′
1Z2Π2 Z1Z1

)

for (β, γ). The fact the problem is ill-conditioned follows easily. The fact that the
problem is ill-posed follows from the fact that der (β, p0) = +∞ implies that Π2 is rank
deficient and thus β and (β, γ) are unidentified.

A.16 Proof of Theorem 12

The result follows from Theorem 1 of (McLeod 1999) according to which the informa-
tion matrix of an ARMA(p, q) model is singular if and only if the model is redundant.
Since redundancy implies lack of identification, the nonexistence of uniformly consistent
estimators follows.

A.17 Proof of Corollary 4

This result follows from Theorem 12 and the fact that η = f (0) has continuous partial
derivatives. This implies that η is differentiable.

A.18 Proof of Proposition 3

The result follows from the discussion preceding the proposition.

A.19 Proof of Theorem 13

It will suffice to prove the theorem for p = 0 and q tending to infinity. In this case the
model (23) has the form

Xt = θ (L) εt, εt ∼ NID
(
0, σ2

)
.

The asymptotic Fisher information matrix is I (d, θ) = E (AtA
′
t) where At =

(wt, ut−1, ut−2, ..., ut−q) , θ (L)ut−1 = εt−1 and wt−1 = −
∑∞

j=1 j−1εt−j
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=
[
−

∑∞
j=0 (j + 1)−1 Lj

]
εt−1 (e.g. (Li and McLeod 1986) and (McLeod 1999)). Fol-

lowing (McLeod 1999), we observe that the matrix I (d, θ) is singular if and only if
l′I (d, θ) l = 0 for some vector l =

(
δ, β0, ..., βq−1

)
. Moreover,

l′I (d, θ) l = var

(
δwt−1 +

q−1∑

i=0

βiut−1−i

)
.

Since the information matrix corresponding to the MA component is nonsingular we have
δ 6= 0, and without loss of generality we can set δ equal to 1. Let θ−1 (L) =

∑∞
i=0 θ

′

iL
i,

and write ut−1 as ut−1 =
(∑∞

i=0 θ
′

iL
i
)

εt−1 and
∑q−1

i=0 βiut−1−i =
(∑q−1

i=0 βiL
i
)

ut−1 so

that

l′I (d, θ) l = var





−

∞∑

j=0

(j + 1)−1 Lj


 εt−1 +

(
q−1∑

i=0

βiL
i

)(
∞∑

i=0

θ
′

iL
i

)
εt−1




= var







∞∑

j=0


− (j + 1)−1 +

min{q−1,j}∑

k=0

βkθ
′
j−k


Lj


 εt−1


 .

One may note that l′I (d, θ) l vanishes only if all the coefficients of

∞∑

j=0


− (j + 1)−1 +

min{q−1,j}∑

k=0

βkθ
′
j−k


Lj

are zero. We can certainly find q values of β0, ..., βq−1 to make the first q coefficients of
the series above vanish. However, to make all of them vanish we need to allow q to be
infinity. The theorem follows from the fact that the determinant of

I (d, θ) =

(
Iq J
J ′ π2/6

)
,

where J is as defined in Section 5.3, can be written as

|I (d, θ)| = |Iq|
∣∣π2/6 − J ′I−1

q J
∣∣ .

As q goes to infinity the left-hand side goes to zero, but |Iq| 6= 0 because the MA
component cannot be redundant. Thus

∣∣π2/6 − J ′I−1
q J

∣∣ → 0 as q → ∞. Thus the
problem is ill-conditioned.

It follows from (McLeod 1999) Theorem 2 that the information matrix of the frac-
tional ARIMA model is nonsingular if and only if the model is non redundant. Since
redundancy implies lack of identification, it follows that no uniformly consistent estima-
tor of d exists.
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A.20 Proof of Theorem 14

As in the proof of Theorem 3, we let

derε (f, p0) = sup
(θ−θ0)′G(θ)(θ−θ0)≤ε2

√
(ψ (θ) − ψ (θ0))

′ H (ψ (θ0)) (ψ (θ) − ψ (θ0))

ε2
.

Since θ ∈ BP (θ0, ε), and ψ is differentiable

ψ (θ) − ψ (θ0) = [Dθ ψ (θ)]θ=θ0
(θ − θ0) + O

(
ε2

)

= ψ̇ (θ0) (θ − θ0) + O
(
ε2

)
,

so that

derε (f, p0) = sup
(θ−θ0)′G(θ0)(θ−θ0)≤ε2

√
(θ − θ0)

′ ψ̇ (θ0)
′ H (ψ0) ψ̇ (θ0) (θ − θ0)

ε2
+ O (ε)

= max
τ ′τ=1

√
τ ′G (θ0)

−1/2 ψ̇ (θ0)
′ H (ψ) ψ̇ (θ0) G (θ0)

−1/2 τ + O (ε)

where ψ0 = ψ (θ0) and we again use the fact that the supremum occurs on the boundary.
Thus,

derε (f, p0) =
[
λM

(
G (θ0)

−1/2 ψ̇ (θ0)
′ H (ψ0) ψ̇ (θ0) G (θ0)

−1/2
)]1/2

+ O (ε)

=
[
λM

(
G (θ0)

−1 ψ̇ (θ0)
′ H (ψ0) ψ̇ (θ0)

)]1/2
+ O (ε)

The result follows by taking the limit as ε goes to zero. Invariance to reparameterizations

follows from arguments similar to those of Theorem 3.
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