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Abstract

In this paper, we construct a nonparametric estimator of the distributions of latent factors
in linear independent multi-factor models under the assumption that factor loadings are
known. Our approach allows to estimate the distributions of up to L (L + 1) /2 factors
given L measurements. The estimator works through empirical characteristic functions.
We show that it is consistent, and derive asymptotic convergence rates. Monte-Carlo
simulations show good finite-sample performance, less so if distributions are highly skewed
or leptokurtic. We finally apply the generalized deconvolution procedure to decompose
individual log earnings from the PSID into permanent and transitory components.

JEL codes: C13, C14.

Keywords: Factor models, nonparametric estimation, deconvolution, Fourier trans-
formation, earnings dynamics.



1 Introduction

In this paper, we consider linear multi-factor models of the form: Y = AX, where Y
is a vector of L observed measurements, X is a vector of K unobserved and mutually
independent latent factors, and A is a L-by-K matrix of parameters. Throughout the
analysis, we assume that a root-/NV consistent estimator of the matrix of factor loadings
A is available and that the number of factors is known. The contribution of this paper
is to provide a nonparametric estimator of the distribution function of X for up to
K = L(L +1)/2 factors.

Applications of factor models are numerous in social sciences, and economics in par-
ticular. For example, standard models of individual earnings dynamics write log earnings
as the sum of a fixed effect and several independent shocks, modelled as ARMA processes
with different persistence. Then, it is useful to estimate the full distribution of factor
components— as opposed to their first two moments— as an input to life-cycle consumption
models (e.g., Guvenen, 2007a, 2007b), or to forecast transitions into and out of poverty
(Lillard and Willis, 1978).

In the absence of general nonparametric deconvolution techniques, the usual approach
is to specify flexible parametric distributions.! We are aware of the existence of non-
parametric estimators of factor densities in two special cases. Classical nonparametric
deconvolution focuses on the case where L = 1, K = 2 and the distribution function of
the second factor (X3) is known. The density of X; can then be consistently estimated by
inverse Fourier transformation with trimming, the estimator showing slow convergence
rates (e.g., Carroll and Hall, 1988, Fan, 1991, and Carroll et al., 1995 for a survey).

The second case has L = 2 and K = 3. Repeated measurements allow the three
factor distributions to be nonparametrically identified, as shown in Kotlarski (1967, see
also Rao, 1992, p.21). Horowitz and Markatou (1996) provide a consistent estimator,
assuming that factors are symmetrically distributed. Li and Vuong (1998) relax the
symmetry assumption. Their estimator is based on first derivatives of the empirical
characteristic function of the data and trimmed inverse Fourier transformation. Li and
Vuong’s estimator has been used in Li et al. (2000) in the context of a structural auction

model, and in Li (2002) in a nonlinear errors-in-variables model.?

'Recent examples are Chamberlain and Hirano (1999), Hirano (2002), Geweke and Keane (2000,
2007), and Alvarez, Browning and Ejrnaes (2007).
2Hall and Yao’s (2003) estimator is closely related to Li and Vuong’s (1998). Related methods



To our knowledge, no nonparametric estimator of factor densities is available in gen-
eral linear multi-factor models.®> In this paper, we generalize Li and Vuong’s (1998)
estimator to allow for any number of measurements L, and up to K = L(L + 1)/2
factors. The application to data from the Panel Study of Income Dynamics (PSID) il-
lustrates the benefits of this generalization in a model of earnings dynamics, allowing
for permanent and transitory shocks to log-earnings (as in Hall and Mishkin, 1982, and
Abowd and Card, 1989).

To construct the estimator we use a result due to Székely and Rao (2000), who show
the nonparametric identification of factor distributions in the general case. Partial deriv-
atives of the logarithms of the empirical characteristic functions of measurements identify
second derivatives of the characteristic functions of factors. Then, the inverse Fourier
transforms of integrated derivatives allow to recover factor densities. Our estimator is
the empirical analog of this theoretical solution. It requires no optimization, unlike para-
metric approaches. To choose the amount of trimming that is necessary for the estimator
to be well-defined, we use the “plug-in” method proposed in Delaigle and Gijbels (2004).

We show that the estimator is consistent and provide asymptotic convergence rates,
allowing for unbounded factors. As in previous work on nonparametric deconvolution, the
rates we obtain are slow, especially if the characteristic function of the factor to be esti-
mated has fatter tails than the characteristic functions of the other factors. Nevertheless,
Monte Carlo simulations are encouraging. When the true factor distributions are normal,
we find moderate biases and tight confidence bands. Interestingly, our generalized de-
convolution estimator has the same finite-sample bias and variance as the deconvolution
estimator that assumes that all factor densities are known except the one to be estimated.
This simulation evidence mitigates the negative conclusions of the asymptotic analysis,
and suggests that the estimator may work well in practice. We also find that the shape of
factor distributions strongly influences the finite-sample performances of the estimator.
In particular, estimating factor distributions is more difficult when these distributions
are skewed or leptokurtic.

We apply our methodology to individual earnings data from the PSID. We model

have been used by Schennach (2004a, 2004b) in the context of nonlinear regression and nonparametric
regression, respectively, when the regressors are measured with error; and by Hu and Ridder (2007) in
order to deal with measurement error when marginal information is available.

3The present problem is also more general than the measurement error model with multiple regressors
considered in Li (2002), where at least two proxies are available for each latent regressor.



log earnings as the sum of an individual effect, a random walk and a white noise, and
estimate the distributions of innovations from first differences. This model generalizes
Horowitz and Markatou’s (1996) by allowing for permanent shocks and non symmetric
distributions. Our results show that both shocks exhibit more kurtosis than the normal
distribution. We use the model to analyze the respective roles of permanent and tran-
sitory shocks in earnings mobility, and to correlate the variance of earnings shocks to
job mobility. In particular, we find that frequent job changers face more permanent and
more transitory earnings shocks than job stayers.

The outline of the paper is as follows. In section 2, we derive identifying restrictions on
factor characteristic functions, that we use in section 3 to construct an estimator of factor
densities. In section 4, we prove the consistency of the estimator and discuss convergence
speed. Sections 5 and 6 present some simulations and the application. Lastly, section 7

concludes.

2 Identifying restrictions

In this section, we derive the identifying restrictions that will be used for estimation in
the next section. These restrictions can also be found in Székely and Rao (2000, remark
6 p. 200).

2.1 Model and assumptions

The main elements of the model are defined as follows:

1. Y = (Y, ...,YL)T is a vector of L > 2 zero-mean real-valued random variables

(where * denotes the matrix transpose operator).

2. X =(Xq,...y XK)T is a random vector of K real valued, mutually independent and

non degenerate random variables, with zero mean and finite variances.

3. A = [a;;] is a known L x K matrix of scalar parameters.

In this paper, we assume that factor loadings are known to the researcher. Alterna-
tively, one may assume that a root-N consistent estimator of A is available. The asymp-
totic results derived in this paper would remain unchanged, as we find convergence rates

of density estimators that are slower than root-NNV.



We make the following assumption.

Assumption A1 The characteristic functions of factor variables X1,...,Xg have no real

zeros, and are twice differentiable.

The assumption that characteristic functions have no real zeros is standard in the de-
convolution literature. The characteristic functions can have complex zeros if factors have
bounded support. Real zeros arise in the case of symmetric, bounded distributions, such
as the symmetrically truncated normal (Hu and Ridder, 2007). A class of distributions
that has no real zeros is the class of asymmetrically distributed, “range-restricted” dis-
tributions introduced in Hu and Ridder (2006), who argue that most economic variables
belong to this class.

Assuming characteristic functions differentiable simplifies the construction of the es-
timator, although it is not a necessary condition for identification, as shown by Székely
and Rao (2000).

Then, define @ as the L(L + 1)/2-by-K matrix which generic (i,j) row, i < j, is
(a1, ..., aikajx). This matrix naturally appears when one writes the system of linear

restrictions on factor variances:
Var (Y) = A Var (X) A7, (1)

that is equivalent to

vec (Var (Y)) = [A ® A] vec (Var (X)) . (2)
Matrix @ corresponds to the L (L + 1) /2-by-K matrix that selects the non redundant
rows of A ® A arranged in lexicographic order, and the columns that correspond to the
nonzero entries of vec (Var (X)).

Given A, factor variances are obviously identifiable only if ) has full column rank.

We thus make this assumption.*
Assumption A2 Matriz (Q has rank K.

With rank(A) = K, the distribution of X is trivially identified as that of A7Y,
where A~ is a generalized inverse of A. In contrast, rank condition A2 allows for up to
K = L(L + 1)/2 factors.

Tf factor variances are known, Assumption A2 may not be required for identification (see Székely
and Rao, 2000).



Note that () cannot have full rank if some columns of A are proportional. In this
case, any linear combination of the corresponding factors is observationally equivalent.

We then say that these factors are observationally identical.

Example 1 The classical measurement error model:

Yi = aXl + X27 (3)
}/2 = Xl + X37

has )
a1 0
Al:(?é?) and le a 00
1 01

So Q7 has rank 3 unless o = 0. Clearly, if = 0, X; and X3 are observationally identical.

Example 2 The following simple spatial model:

Yi = X1 + pXo + pXz + Xy
Yo = pX1 + Xo + pXz + X, (4)
Ys = pXi + pXo + X3 + X,
has

1 p2 p> 1 00

2
1 pp 100 p%pggg
A=[p1 p010 andQQ:/)@’)l/)’;Olo
2 p®P 1 00 1

One verifies that (), has rank 6 unless p € {—2,0,1}. Model (4) is clearly underidentified
if p=0or p=1. If p =0, X; and X, are observationally identical, and if p = 1
the three factors X1, Xy, X3 are observationally identical. To interpret the case p = —2,
assume that the variances of X;, Xo, X3 are equal (to 02, say). Then covariances between

measurements are zero for all values of 02, so factor variances are not identified.

2.2 Restrictions on cumulant generating functions

Under Assumption Al, cumulant generating functions (c.g.f.), i.e. the logarithm of the
characteristic functions (c.f.), are well defined and everywhere two times differentiable.
Let us denote the characteristic functions of ¥ and Xj as ¢, and ¢y, and their c.g.f.’s

=

as ky = Ingy and kx, = Inpy, . Let also Ay denote the kth column of matrix A,



for k € {1, ..., K}. The independence assumptions and the linear factor structure imply

that, for all ¢t = (¢1,...,t1) € RF,
Ky (t) =In [Eexp (it"Y)] ZK)Xk (t" AL (5)

Equation (5) expresses the c.g.f. of the data as a linear function of the c.g.f’s of Xj.

We then take second derivatives in (5), to obtain an explicit expression for kx,. To
proceed, let us denote as Opky (t) the £th partial derivative of ky (t) and as 03 ky (t)
the second-order partial derivative of ky (t) with respect to ¢, and t,,.We also denote as
Vky (t) the L-dimensional gradient vector and as VZky () the vector of all L (L + 1) /2
non redundant second-order partial derivatives arranged in lexicographic order of (¢, m) €
{1,...,L}, £ < m. Lastly, for any 7 = (71,...,7x) € RE, let

Kx (T) = (K’Xl (Tl) 7o KX (TK))Tﬂ
l{fX (T) = (’ile (Tl) AR KZX'K (TK))T )
&y (1) = (K%, (1), Ky (TK))T .

First-differentiating equation (5) yields
Viky (t) = Arly (A"t) = Z K’ Xk (t"Apxg) Al

In general, K > L as there are L errors and at least one common factor. So there are
more functions r'y, than dpxy. To obtain an invertible system, we differentiate once
more:
Vky (t) = Qrx (A™t), (6)
where @ is the L(L + 1)/2-by-K matrix defined at the beginning of this section.
Evaluated at ¢ = 0, equation (6) yields covariance restrictions (2). Generally, the
equation shows that, if Assumption A2 holds, the second derivatives of the c.g.f.’s of
factor variables are identified. As factors have zero mean, factor c.g.f.’s are thus identified
by integration.
First, invert (6) as
Y (ATH) = Q VPky (1),

where Q~ is a generalized inverse of ), for instance: Q~ = (QTQ)_l Qr.



Second, let 7}, = {t € RL|tTA[.,k] = 1}. Tr is not empty as there is at least one non
zero element in Ap ;). Let (Q_)[k’_] denote the kth row of Q. Then, for all t € T; and
Tr € R

K, (Tk) = (Q_)[k,-] V2ky (Tyt).
Integrating with respect to 7, using the constants of integration: 'y, (0) = iEX} = 0

and Ky, (0) = 0, yields
Tk u
Kx, (Tk) :/ / (Q_)[k,_] V2ky (vt) dvdu. (7)
o Jo

Equation (7) can directly be used for estimation of factor characteristic functions and

densities, as we shall explain in the next section.

Example 1 (continued) In the case of model (3), we have:

Ky (t1,t2) = kx, (ot + to) + kx, (t1) + Kx, (t2)

and
1/£y (t1,t2) a2 1 0 K%, (oty +t3)
12"6Y (t1,t2) = a 00 "3’)1(2 (t1)
22"6Y (1, ) 1 01 "3’)/(3 (t2)
v2 :(t) @ K (Zth)
This yields:
K, (aty +t3) 0 o' 0 0% Ky (t1,t)
K, (t1) =1 —-a 0 0% ky (t1,12)
K)I),(e‘ (tg) 0 —(1_1 1 8221€Y (tl, tg)

i (A7) Qr 2k (1)
Let us focus on the first factor X;. Let 71 = {(ti,t2) € R*|at; +t, = 1} and let

(t1,1 — aty) € T;. Then, for all v € R:

1
K, (v) = 53%2"6}/ (vty,v — awty),

SO
Kx, ( / / 0% ky (vt1,v — avty) dvdu,

which is equation (7) for factor Xy, in the particular case of model (3).

Note that if we set ¢t; = 0, the double integral simplifies into a simple integral:

kx, (T1) = é/on 016y (0,u) du. (8)

This is the equation used in Li and Vuong (1998) and Schennach (2004a, 2004b).°

5Note that Schennach (2004a, 2004b) shows that full independence is not necessary for (8) to hold.

7



Example 2 (continued) We then reconsider the case of the simple spatial model. Set

p=1/2in (4). We obtain, for the first factor:

1 1 8 8 12
K,I)I(l (tl + 5752 + 5753) = ga%QK/Y (tl, t2, t3) + gaiﬂiy (tl, tz, tg) — E §3I€Y (tl, t2, t3) .

Let (t1,t2, (1 —t1)/p —t2) € Ti. We have, after integrating twice:

8 v(l—t
KX, (Tl) = / / {ga%QK:Y (’Utl,?}tz, g - vt?)
o Jo p

8 1—1¢ 12 1—1¢
+ gafyfy (Utl, vig, u - vt2> — 3833/@1/ (Utl,’l)tg, Lpl) — vt2> }dvdu.
P

Note that, if t; = t5 = 0, the last two terms on the right-hand side simplify into simple

integrals, but the first term does not.

3 The estimator

We here introduce our estimator of factor densities. In the next section, we shall discuss
its asymptotic properties.
3.1 Characteristic functions

Estimator. Given an i.i.d. sample of size N, Yi,...,Yy, we first estimate xy and

its derivatives by empirical analogs, replacing mathematical expectations by arithmetic

means:
Ry (t) = In (]EN [eitTYD ,
o Ey [neitTY]
ag/ﬁy(t) = ’LW = aglﬁy(t),
and
. Ey [}QYmeitTY] Ey [}/geitTY] Ey [YmeitTYi| )
02 t) =— . . ; = 0, Ky (t),
ZmKY( ) Ex [ethy} + Ey [e”TY] Ey [ethy} Zml{Y( )

where Eyn denotes the empirical expectation operator.
Then, as the choice of t in 7, = {t € RL\tTA[.,k] = 1}, along which to perform the

integration yielding kx, (7x), is arbitrary, one can estimate kx, by averaging (7) over a



distribution of points in 7, that is,

/0” /0“ (@), ( / V*Ry (vt) dW (t)> dvdu
B /oTk /0“ (@), (Zﬁ; w; V*Ry (Utj)) dvdu,

where W = Z?Zl w;dy; is a discrete probability distribution on 7.

RXk (Tk)

The characteristic function of X}, is then estimated as

Dx, (Tk) = exp (/OTk /Ou (Q_)[k’_] (Z w;V>Ry (vtj)> dvdu) . 9)

Choice of W. Empirical characteristic functions are typically well estimated around
the origin and badly estimated in the tails (e.g., Diggle and Hall, 1993). It thus makes
sense to choose ¢ such that V?ky (7,t) is well estimated on a maximal interval. A natural

choice is to minimize the Euclidian norm of tTA#

o which yields, by Cauchy-Schwarz

inequality:
ALk

a AT,]C A[’k] .

[-,k]
For instance, in example 1, this choice yields:

~ ( ) ]- /7 1 /u 2 A~ (0% ].
K T = — () K v v dvdu.
X1 1 o 0 12 Y 1 27 1 2

In our simulations we found that choosing W = §;« works well in practice. It is worth

t*

noting that the many overidentifying restrictions that the model provides could be used
to improve the efficiency of the estimator. This question is very interesting, but seems

also very difficult to answer. We do not address efficiency issues in this paper.

3.2 Density functions

The probability distribution function (p.d.f.) of Xy, say fx,, is obtained from its char-

acteristic function using an inverse Fourier transformation:

1

Fralon) = o= [ e o, (ri)dr.

It is well-known that the integral does not converge when the characteristic function
is replaced by its empirical analog (e.g., Horowitz, 1998). To ensure convergence we

truncate the integral on a compact interval [—Ty,Tx]|, where T tends to infinity with

9



the sample size N at a rate that will be discussed in the next section. The p.d.f. of X}

is then estimated as

N 1 — TR TR
ka(ka) = %/@H (E) e kSOXk(Tk)dia (10)

where Qy, (71) is given by (9). In equation (10), ¢y is a function supported on [—-1,1]
that is the Fourier transform of a kernel H of even order: ¢ (u) = [ €™ H(v)dv.®

The kernel H allows to smooth the estimation of the density, especially in the tails.
We shall use the second-order kernel

Hy(v) = 48;(;82(1‘) <1 B g) B 144;;1;(33) (2 B E) ’
that corresponds to:
e, (u) = (1- u2)3 -1{u € [-1,1]}.

The second-order kernel Hs has often been used in the deconvolution literature (see,

e.g., Delaigle and Gijbels, 2002, and references therein). Higher-order kernels may also

be used in place of H,, such as the fourth-order kernel H, given by

(PH4(U) = (1 - ’U,4) : 1{u € [_L 1]}?

or the infinite-order kernel H(v) = sin(v)/v, that yields ¢y (u) = 1{u € [-1,1]}.
Higher-order kernels reduce the bias of the density estimate at the cost of higher variance.

For instance, Li and Vuong (1998) use the infinite-order kernel H..

4 Asymptotic properties

In this section, we study the asymptotic properties of the estimator and show that ka is
a uniformly consistent estimator of fx,, for all k =1, ..., K, provided that Assumptions
Al and A2 hold. All mathematical proofs are in the appendix.

We shall prove the result for any support of factor distributions. So the analysis
contains the case of bounded support, assumed e.g. in Li and Vuong (1998) and Hall and
Yao (2003), as well as the “range-restricted” distributions considered in Hu and Ridder
(2006, 2007). An important assumption is that factor characteristic functions have no

real zeros.

6 A kernel of order q is a function H, not necessarily nonnegative, such that v* H(v) is integrable for
all k <gq, [v*H(v)dv=0for all k < ¢q—1, and [v9H(v)dv # 0. See, e.g., Rao (1983), p. 40.

10



4.1 Characteristic functions

To prove the consistency of the estimator in the case of not necessarily bounded support,
we first prove a uniform consistency result for the derivatives of empirical characteristic

functions. For any vector ¢t € R® (S > 0), we denote the sup norm: || = max; |t,].

Lemma 1 Let X be a scalar random variable and let Y be a vector of L scalar random
variables. Let Z = (X, YT)T. Let F denote the c.d.f. of Z (E denotes the corresponding
expectation operator) and let Fy (resp. Ey ) denote the empirical c.d.f. (resp. mean)
corresponding to a sample Zy = (71, ..., Zy) of N i.i.d. draws from F. Assume that the
first J moments of X? and | XY| are finite (J > 2). Lastly, define fi(x,y) = zexp(it"y),
fort € R,

For any 0 < v < (1 —1)/2, let Ty tend to infinity at (at most) a polynomial rate.
Then:
sup |Exnf, — Ef;| = O (N—%(l—%)ﬂ) a.s.

[t|<Tn

Lemma 1 shows that the rate of convergence of the empirical mean of f; is at most
N-(-1/1)/2 on an interval that grows with N at a polynomial rate. So, allowing for
unbounded X slowers the rate of convergence. However, in the particular case where
all the moments of X and |XY| exist, Lemma 1 delivers a rate of N~Y/2%7 for any
0 <y <1/2. When X =1 and L is either 1 or 2, the result coincides with Lemma 6 in
Hu and Ridder (2007).

Applying Lemma 1 to E (Y,exp(itTY)) and E (Y;Y;, exp(it"Y)), for £,m = 1,..., L,
then yields the following uniform consistency result for the characteristic functions of

factors.

Theorem 2 Suppose that there exists an integrable, decreasing function gy : Rt — [0, 1],
such that |py(t)] > gy (|t]) as [t| — oo. Suppose also that the first 2J moments of |Y|
are finite.

For any 0 < v < (1 - l) /2, let Ty tend to infinity at (at most) a polynomial rate,
and be such that T TF =0 (]\72(1 _)*7>. Then:

9y (T
T]% _1(_1
su (1 TL)| = ——=——=0 (N 3 ( J)+7) a.s. 11

11



Theorem 2 shows that the rate of convergence of the e.c.f. of factors is governed by
the tails of the characteristic functions, i.e. the smoothness of factor distribution func-
tions. In the deconvolution problem where one factor distribution is known, Fan (1991)
distinguished two classes of distributions: ordinary smooth, for which the c.f. converges
to zero at a polynomial rate (e.g., Laplace or Gamma), and supersmooth distributions,
for which the c.f. converges to zero at an exponential rate (e.g., normal). Theorem 2
implies that the intervals on which uniform convergence holds are very different in these
two cases.

Let us consider the result in Theorem 2 in the case where all factor distributions
are ordinary smooth with gy (|t|) = |¢|~?, where 8 > 0. Then, if Ty = N?, for any § <
%, the e.c.f. converges uniformly on [—Ty, T|. If instead factor distributions are
supersmooth, one needs to restrict 7 to a logarithmic function of N in order to ensure

uniform convergence. The next paragraph shows that this weaker uniform convergence

result implies a slower rate of convergence of density estimates, as in Fan (1991).

4.2 Density functions

The following theorem gives conditions under which ka converges uniformly to fx, when

the sample size tends to infinity.

Theorem 3 Suppose that there exists an integrable, decreasing function gx : Rt — [0, 1]
such that |px(T)| > gx(|7|) as |7| — oo. Suppose also that there exist K integrable
functions hx, : RY — [0,1] such that hx, (|Tk]) > |ox, (7x)| as || — co. Lastly,
suppose that the first 2J moments of |Y| are finite.

For any 0 < v < (1 — %) /2, let Ty tend to infinity at (at most) a polynomial rate,

and be such that —X~5 = o (N%(l_%)”). Then:
9y (T )

T}
gx (Tn)3

)
+0 (/ ‘1 ~ o (T” )‘hka)du) as. (12)

Assume in addition that % f_TJTVN v?hx, (|v])dv = 0(1), a.s, and that H is a kernel of order

ka(ﬂfk) - ka(l“k)‘ 0 (N_%

sup
Tp

q > 2. Then we have:

sup | fx, (zx) — ka(xk)‘ —o(1) as.

T

12



The two terms on the right-hand side of (12) are the variance and the bias of ka,
respectively. Both terms depend on the smoothness of factor distributions, though in an
opposite way. The variance term is larger when factor distributions are smoother. In the
deconvolution problem Y; = X; + Xy, with fx, known, it is well-known that estimation
is more difficult when the distribution of X5 is supersmooth. This is because the c.f. of
X, appears in the denominator in the Fourier inversion. A similar argument applies here.
In contrast, the bias term in (12) decreases when the smoothness of factor X} increases.

To better understand Theorem 3, let us consider the polar case when all factors are
ordinary smooth. Let us take gx(|t|) = |¢|® and hx,(|t|) = [t|™®, B > a > 1. We can
take

Ty = N° with0<5<M (13)
’ 24+38+a ’

so that the rate of convergence of the density estimator is at most N @1

. In the case
where we characterize exactly the degree of smoothness of factor variables (o = ) the

rate becomes:

. (-3(1-%)++) -1
sup | fx, (zx) — fx, (zx)| = O | N 2Fp : (14)
Tg,
Another case of interest is when X} is ordinary smooth, so hx,(|t|) = [t/ and

other factors are supersmooth, so one has to take gx(|t|) = exp (—[t|?). In that case one
obtains a logarithmic convergence rate.

Equation (14) shows that, even if we restrict our attention to ordinary smooth distri-
butions, the convergence rate is never faster than N -= So, even in the case where all
moments of |Y'| exist, the rate is never faster than N ~%. This convergence rate is slower
than the one in Li and Vuong (1998), N~ s*7 (for v > 0) in the ordinary smooth case.
This difference is due to the fact that our estimator relies on a double integral, instead
of a single integral. This is the price to pay for dealing with more general models. The
convergence rate we obtain is also slower than in the classical deconvolution problem
Y1 = Xi + X, with fx, known. In this case, Hu and Ridder (2007, page 10) obtain a
rate of NV ’%J’"’, when the smoothness of X; increases while that of X, stays constant. In
the case where X; and X have the same degree of smoothness 3, their results imply a
rate of N~ 117 when B gets large.

Convergence speed is an important issue when dealing with two-stage estimation
problems in which the estimation of factor densities is the first stage. For instance,

the distributions of permanent/transitory components can be inputs of an intertemporal
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consumption problem. The convergence rate of the first stage factor density estimators
is likely to be too slow to obtain root-/N consistent estimates in the second stage. For
this same reason Li (2002), using Li and Vuong’s (1998) nonparametric estimator in the
first stage of a nonlinear error-in-variables models, does not get root-N consistency.”
Lastly, it is worth noting that in spite of the different theoretical convergence rates,
these various deconvolution estimators generated very similar biases and variances in our

finite-sample experiments (see the simulation section below).

4.3 Practical choice of the trimming parameter Ty

It is tempting to use (13) as a guideline to choose Ty in practice, at least in the case where
all factor distributions are smooth. However, our experiments suggest that by doing so
one underestimates 7. The reason could be that 7y maximizes an upper bound for the
convergence rate, which can be very conservative, especially so in finite samples.

Instead, we use a method recently developed in deconvolution kernel density estima-
tion to choose the trimming parameter 7. In the context of the deconvolution problem
with known error distribution, Delaigle and Gijbels (2002, 2004) propose to base the
choice of the bandwidth on an approximation to the Mean Integrated Squared Error of
the kernel density estimator. Comparing different approaches they find that a “plug-
in” method works well in many simulation designs. We use the “plug-in” method, and
provide a presentation of the method in Appendix.

To adapt Delaigle and Gijbels’ method to the case of a multi-factor model Y = AX|

we proceed as follows. For k € {1,..., K}, let t* = ATA['i’X]. Then
[.,k]“ k]
1Y = tTAX = X+ ) T A X, (15)

m#£k

We treat the distribution of 37, #*TAp Xy, in (15) as if it were known. In this case,
the problem of estimating the density of factor X boils down to a deconvolution problem
with known error distribution, and the approach in Delaigle and Gijbels (2004) can be
applied.

"An alternative has been considered by Schennach (2004a), expressing the moments necessary to
perform the second-stage nonlinear regression directly in terms of characteristic functions, without trim-
ming. This method requires rather strong regularity conditions (e.g., existence of moments), but yields
root-N consistency and asymptotic normality.
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5 Monte-Carlo simulations

In this section, we study the finite-sample behavior of our density estimator.

5.1 Measurement error model

We start with the estimation of the density of X; in the measurement error model (3)
with a = 1, namely:

Yo = X1 + X,

where X, Xy and X3 are mutually independent, and have mean zero and variance one.
We first consider the case of normal errors X, and X3, and various choices of dis-
tribution for X;. In Figure 1 we report the outcomes of 100 simulations of samples of
size N = 1000. In the first column we estimate the density of X; using the method of
this paper, assuming that all three distributions are unknown. In the second column we

estimate the density of X; from:

Y + Y- X X
1;‘ 2:X1—|— 2‘;‘ 3,

assuming that 223X has known c.f. Pxaix (u) = exp (—3u?). We use kernel deconvolu-
tion for estimation, with the second-order kernel H, for smoothing, and choose the trim-
ming parameter Ty using the “plug-in” method of Delaigle and Gijbels (2004). Lastly,
in the third column we show the Gaussian kernel density estimator of X; for comparison,
using Silverman’s rule of thumb for choosing the bandwidth. On each graph, the thin
solid line represents the population density of X7, and the thick solid line is the point-
wise median of simulations. The dashed lines delimit the 10%-90% pointwise confidence
bands.

Both nonparametric deconvolution methods estimate normal factor distributions well.
However, the density at the mode is biased—the true value being outside the confidence
band. They both display very similar biases, and the same confidence bands, only mod-
erately wider than when X, is observed without error. This suggests that repeated
measurements can be very effective at providing information on the distributions of un-
known latent variables. Also, the informal choice of bandwidth that we use appears
to give very good results, as good as for the deconvolution problem with known error

distribution for which it was initially devised.
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Figure 1: Monte Carlo estimates of fx, in the measurement error model (16) with normal
errors

Normal

Gamma(5,1)

Gamma(2,1)

5

= = = 1 l H s

©Vx,, Px, unknown ©x,, Px, known X, observed

Note: Thin line=true; thick=median of 100 simulations; dashed=10%-90% confidence bands.
“Normal mixture, unimodal” is %N’ (0, %) + %/\/’ (0,%), “Normal mizture, bimodal” is

IN(=2,1) + LN (2,1). N = 1000.
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Figure 2: Monte Carlo estimates of fx, in the measurement error model (16) with Laplace
erTors

Normal

= = s

©x,s Px,; Unknown P x50 Px, known

Note: Thin line=true; thick=median of 100 simulations; dashed=10%-90% confidence bands.

“Normal mizture, unimodal” is 2QN(0,1) + 2. N (0, 206 “Normal mizture, bimodal” is
) 403 ) 103 » 76 /s )

sN(=2,1) + 1N (2,1). N = 1000.
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Figure 3: Monte Carlo estimates of fx, in the measurement error model (16) with normal
errors, using a fourth-order kernel

Normal

= =3 = 1 H s = = = l H s

©x,,Px, unknown ©x,,Px, known

Note: Thin line=true; thick=median of 100 simulations; dashed=10%-90% confidence bands.
“Normal mizture, unimodal” is %N(O, )+ %N(O,%), “Normal mizture, bimodal” is

sN(=2,1) + IN(2,1). N = 1000.
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For non Gaussian factor distributions, we observe that the deconvolution estima-
tors have some difficulty to capture skewness and kurtosis. The Gamma(5,1) and
Gamma/(2, 1) distributions have skewness .9 and 1.4, and kurtosis 4.2 and 6, respectively.
We see that the bias is larger in the second case. Note that the Gamma distribution is
smooth, while X, and X3 follow supersmooth normal distributions. In this case, theory
suggests that the deconvolution problem is especially difficult.

To further study the impact of factor kurtosis on estimation we consider for X; a
two-components normal mixture that has excess kurtosis equal to 100, that is: X; ~
%N(O, %) + %N(O, 4%6). The bias is also larger than in the case where X; is normal,
although the estimator does a good job at capturing the peak of the density.

Lastly, we generate a bimodal distribution as a two-component mixture of normals
with different means: X; ~ SN(—2,1) + 3N(2,1). The estimator fails to capture the
bimodality.

It is worth noting that in these various designs, we experimented increasing the sample
size to N = 10000, and still obtained a sizeable bias (although reduced compared to the
case N = 1000).

Figure 2 presents simulation results for Laplace-distributed errors. Theory suggests
that the deconvolution estimator should behave better, and the bias is indeed slightly
lower than in the case of normal errors, especially in the most difficult case where the den-
sity of X is bimodal. Still, the differences between the cases of smooth and supersmooth
errors do not seem as large as theory suggests.

In a last experiment, we let again X, and Xj3 follow standard normal distributions,
but use the fourth-order kernel H, for estimation rather than the second-order kernel
H, (see section 3). We also use Delaigle and Gijbels’ (2004) plug-in method to choose
Tn. The results displayed in Figure 3 show that the bias is reduced compared to the
estimator using a second-order kernel. We simultaneously observe a slight widening of

the confidence bands, especially in the tails.®

8We also tried a sixth-order kernel, and obtained a sharp reduction in the bias but a large increase
in the variance.
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5.2 Spatial model

We then consider the spatial model with L = 3 and K = 6:

K=2X1+X2+X3+X4
Y, = X1 + 2X; + X5 + X; (17)
Y = X1 + Xo 4+ 2X3 + X,

where Xy, k = 1,...,6, are mutually independent. This corresponds to model (4) with
p=1/2.

All factor densities belong to the same parametric family. We only let their variances
differ: the variances of X7, Xy and X3 are equal to 1, while X4, X5 and X¢ have either
variance 1 (first column in the figure), 4 (second column), or 16 (third column). The
sample size is N = 1000, and the number of simulations and the conventions used in the
graphs are the same as for the measurement error model.

Figure 4 presents the results. We see that when errors X, X5 and X¢ have moderate
variance (1 or 4) the density of X; is well estimated. The results are comparable to the
ones obtained in Figure 1, with a slightly larger bias. When error variances increase to
16, the density of X; becomes badly estimated.

For other distributions, namely Gamma or mixture of normals, we generally obtain
worse results than for the measurement error model (16). This is consistent with the
fact that trying to estimate 6 factor densities using 3 measurements is more difficult than
estimating 3 factor densities using 2 measurements. Yet, in the case of moderate error
variances the shapes of the densities are reasonably well reproduced. This suggests that
nonparametric deconvolution techniques can be successfully applied to difficult problems,
where the number of factors one is trying to extract is large relative to the number of

available measurements.

6 Application to earnings dynamics

In this section, we apply our methodology to estimate the distributions of permanent

and transitory shocks in a simple model of earnings dynamics.

6.1 The data

We use PSID data, between 1978 to 1987. Let w;; denote the logarithm of annual

earnings, and let z;; be a vector of regressors, namely: education dummies, a quadratic
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Figure 4: Monte Carlo estimates of fx, in model (17)

Normal

Gamma(5,1)

Gamma(2,1)

= = =l T 3 s 5 = = 1 3 s = = =l T 3 s

Note: Density of X1 and Xy in model (17). Xy, k = 1,2,3, are drawn from the same
distribution with mean zero and variance 1. X, k = 4,5,6, are drawn from the same dis-

tribution as X1, Xo, X3 with mean zero and variance o?. “Normal mizture, unimodal” is

SON(0, 3) + 755N (0, 228 “Normal mizture, bimodal” is SN'(—2,1) + AN(2,1). N = 1000.
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polynomial in age, a race dummy, geographic indicators and year dummies. We compute
the residuals of the OLS regression of Aw;; = w; — wy_1 on Axy = Ty — Ti—1, and
denote them as Ay;;. In the sequel we shall refer to Ay;; as wage growth residuals,
while keeping in mind that they reflect changes in wage rates and hours worked. We
select employed male workers who have non missing observations of Ay, for the whole
period, and for whom wage growth does not exceed 150% in absolute value. We obtain
a balanced panel of 624 individuals, for whom we have 9 observations of wage growth.
Descriptive statistics are presented in the first column of Table 1.

Wage growth residuals Ay;; are the measurements that we use in this application.

We shall also consider moving sums of wage growth residuals, defined as

S
AsYit = Yir — Yit—s = Z Ayi,t—k—i—la fors=1,2,..
k=1

Table 2 shows the marginal moments of these variables, as well as their first three au-
tocorrelation coefficients. Focusing on the first row, we see that the variance of Ay,
increases with s. This indicates that wage differences between two points in time are
more dispersed the longer the lag.

Another feature of Table 2 is the high kurtosis of wage growth residuals. Figure 5
confirms that the distribution of Ay, is very different from the normal. On panel a),
the solid line is a kernel density estimate, and the dashed line is the density of a normal
distribution with the same mean and variance. An alternative way of presenting the
evidence of non-normality is to draw the normal probability plot of Ay;,. If the data are
normally distributed, then ®~!(Fy(Ay;)), where Fy(Ay;;) denotes the empirical c.d.f.
of Ay, is a straight line up to sampling error. Panel b) in Figure 5 shows that this is
not the case, as the c.d.f. of Ay;; has fatter tails than the normal. This evidence on the
non-normality of wage growth residuals is consistent with previous findings on U.S. data,

e.g. Horowitz and Markatou (1996) who use data from the Current Population Survey.

6.2 The model

We consider the following model:

Ay = Api + Ary,
= Sit—{—’r‘it—’r‘it,l, Z: 1,...,N, t:2,...,T, (18)

22



Table 1: Means of variables

Job changes | Al None One/two Three/more
Annual earnings (/1000) || 36.4 35.3 36.7 37.0
Age 374 39.6 37.3 36.1
High school dropout 21 22 23 16
High school graduate .04 .59 bl .54
Hours 2194 2191 2199 2191
Married .85 .84 .84 .85
White 70 .63 .69 75
North east 15 15 13 A7
North central .26 .30 .24 27
South 43 44 51 .36
SMSA 59 .60 .5 61
Number 624 150 234 240

Note: Balanced subsample of 624 individuals extracted from the PSID, 1978-1987. “None”=no
job change; “One/two”= one or two job changes; “Three/more”= more than three job changes.

Table 2: Moments of wage growth residuals

Wage growth

| t/t+1 t/t+2 t/t+3 t/t+T

Variance
Skewness
Kurtosis
Autocorrelation 1
Autocorrelation 2
Autocorrelation 3

055
-.077
10.3
-.33
-.06
-.02

073 .086 137
.062 -.073 457
11.2 8.0 4.8
21 .35 -
-.34 .08 -
-.06 -.34 -

Note: Balanced subsample of 624 individuals extracted from the PSID, 1978-1987. Wage growth

residuals are the OLS residuals of first-differenced log earnings on regressors.

Wage growth

between t and t + s is obtained as the sum of s consecutive wage growth residuals.
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Figure 5: Non normality of wage growth residuals

4.0

3.5

3.0 |

25}

20}

density
normal transformation

. . ! . .
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
wage growth, t/t+1 wage growth, t/t+1

a) Density b) Normal probability plot

Note: See the note to Table 2. a): density estimate of wage growth residuals (solid), and density
of normal with same mean and variance (dashed); b): normal probability plot of wage growth
residuals (solid), and for normal with same mean and variance (dashed).

where p;; follows a random walk: p; = pii—1 + €;, where ¢; and r; are white noise
innovations with variances o2 and o?. We shall refer to p;; as the permanent component
and to r; as the transitory component.

Permanent-transitory decompositions are very popular in the earnings dynamics lit-
erature, see among others Hall and Mishkin (1982) and Abowd and Card (1989). There
is a growing concern that the distributions of wage shocks might be non normal (e.g.,
Geweke and Keane, 2000). To assess this issue, Horowitz and Markatou (1996) estimate
a model of earnings levels with an individual fixed effect and a transitory i.i.d. shock.
There is no permanent shock in their model. Their estimation procedure is fully non-
parametric. However, one particular implication of their model is that Ay;;, Asyir, -
are identically distributed. This is clearly at odds with the evidence presented in Table
2. The introduction of a permanent component easily permits to capture the increase
in Var(A,y;;) when s increases.” The generalized deconvolution technique of this paper
allows to conduct the same fully nonparametric analysis as in Horowitz and Markatou

(1996) while allowing for a permanent component in wages.

9Notice that model (18) implies that: Var (Ay;;) — Var (Ay;;) = (s — 1) 02. The marginal distribu-
tions of Ay;; and Asy;; thus contain all the necessary information to identify o2 and o2.
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For estimation we proceed as follows. As the first and last permanent/transitory
shocks are not separately identified, we treat ;o — r;; and ;7 + ;7 as additional factors.
We end up with K = 2T — 3 factors. Then we estimate different variances for all shocks,
using Equally Weighted Minimum Distance. We also estimate the density of each shock.
For this purpose, we use the second-order kernel Hs, and Delaigle and Gijbels’ (2004)
method to pick up the trimming parameter Ty. Lastly, we obtain 5> and 5~ in (18) as the
means of the estimated permanent and transitory variances, respectively, and similarly

average the estimated densities to obtain the final density estimates ﬁ and ﬁ

6.3 Estimation results

The estimated variance of permanent shocks is Ef = .0208, and the estimated transitory
variance is 33 = .0185, with standard errors of .0029 and .0017, respectively.!® According
to these estimates, permanent shocks account for 36% of the total variance of wage growth
residuals.

Figure 6 presents the density estimates. The permanent and transitory components
are shown in panels a) and b), respectively. In each panel, the thick solid line represents
the density of the shock, standardized to have unit variance, and the thin solid line
represents the standard normal density, that we draw for comparison. The dashed lines
delimit the bootstrapped 10%-90% confidence band.!!

Figure 6 shows that none of the two distributions is Gaussian. Both permanent and
transitory shocks appear strongly leptokurtic. In particular, they have high modes and
fatter tails than the normal. Moreover, the transitory part seems to have higher kurtosis

than the permanent component.'? Lastly, both densities are approximately symmetric.

6.4 Fit

Figure 7 compares the predicted densities of A,y;;, s = 1,2, 3, using the model and the
estimated densities of permanent and transitory shocks, to kernel density estimates. In

panels al) to c1), the thin line is a kernel estimator of the actual distribution’s density.

10Gtandard errors were computed by 1000 iterations of individual block bootstrap.

1 Remark that, as we do not derive the asymptotic distribution of the nonparametric estimator, the
validity of the bootstrap in our context is difficult to verify.

?We checked that varying the trimming parameter T around the valuethat we obtained using Delaigle
and Gijbels’ (2004) method had little effect on the estimate f¢, but a stronger effect on f,., tail oscillations
increasing with Ty.
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Figure 6: Nonparametric estimates of the densities of standardized permanent and tran-
sitory shocks.

density
density

Q.5 0.5

Q.0

permanent shock transitory shock

a) Permanent shock b) Transitory shock

Note: Density estimates of €5z and 1, both standardized to have unit variance. Density estimate
(thick); 10%-90% confidence bands of 100 bootstrap simulations (dashed); standard normal
density (thin).

The thick line is the predicted density. The dashed line shows the density that is predicted
under the assumption that shocks are normally distributed. The predicted densities of
Agyir, s = 1,2, 3, where calculated analytically by convolution of the estimated densities
of ¢;; and ry.

Figure 7 shows that our specification reproduces two features apparent in Table 2:
the high kurtosis of wage growth residuals, and the decreasing kurtosis when the time
lag increases. Note that the high mode of the density is remarkably well captured by our
nonparametric method, even in the case of Asy;;. In contrast, the normal specification
gives a rather poor fit.

We then present in Table 3 the moments of wage growth residuals, as in the data and
as predicted under normality and nonparametrically. We see that variances are severely
underestimated, reflecting a rather bad estimation of the density in the tails. Moreover,
the estimated kurtosis is 5.6, that is significantly non-normal but very different from the
kurtosis of the distribution to be fitted (10.3). Overall, our method captures the shapes

of the densities of wage growth variables very well, but fails at fitting the tails, which
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Figure 7: Fit of the model, densities of wage growth residuals.
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wage growth, t/t+1 wage growth, t/t+1
al) wage growth ¢/t + 1 a2) wage growth ¢/t + 1, normal mixture
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wage growth, t/t+2 wage growth, t/t+2
bl) wage growth ¢/t + 2 b2) wage growth ¢/t + 2, normal mixture
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wage growth, t/t+3 wage growth, t/t+3
cl) wage growth ¢/t + 3 c2) wage growth ¢/t 4+ 3, normal mixture

Note: Graphs al), bl) and c1) show the fit of wage growth residuals calculated over one, two
and three years, respectively, using the generalized deconvolution estimator. Graphs a2), b2)
and c2): densities are estimated by Mazimum Likelihood, where shocks follow two-component
miztures of zero mean normals. Predicted density (thick); kernel density estimate (thin); normal

(dashed).
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Table 3: Fit of the model, moments of wage growth residuals

Wage growth | t/t+1 ¢/t+2 ¢/t+3

| Data
Variance .055 .073 .086
Skewness -.08 .06 -.07
Kurtosis 10.3 11.2 8.0
Predicted, nonparametric
Variance .037 .053 .069
Skewness -.02 -.02 -.02
Kurtosis 5.6 4.6 4.2
Predicted, normal
Variance .057 .076 .096
Skewness 0 0 0
Kurtosis 3 3 3
Predicted, normal mixture
Variance .058 072 .086
Skewness 0 0 0
Kurtosis 6.3 5.3 4.8

Note: See the note to Figure 7. Moments are predicted using the predicted densities shown in
Figure 7, by computing the integrals numerically.

leads to underestimating higher moments.

To fit the moments better, we use the nonparametric estimates ﬁ and ﬁ as a guide to
find a convenient parametric form for factor densities. Figure 6 suggests that a mixture
of two normals centered at zero may work well in practice. We thus estimate model (18)
under this parametric specification for both ¢;; and r;. Parameters are estimated by
Maximum Likelihood, using the EM algorithm of Dempster, Laird and Rubin (1977).
Panels a2) to ¢2) in Figure 7 show the fit of the model. The shape of the densities is very
well reproduced. Moreover, the last three rows of Table 3 show that the normal mixture
specification yields much better estimates of the variance and kurtosis of wage growth
residuals.

Notice that the normal mixture model was already used by Geweke and Keane (2000)

to model earnings dynamics. Our results strongly support this modelling choice.
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Figure 8: Conditional expectations of shocks given wage growth residuals
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a) Wage growth, ¢/t + 1 b) Wage growth, ¢/t + 2 c) Wage growth, ¢/t + 3

Note: See the note to Figure 7. a): conditional expectation of e (thick) and riy — 1341 (thin)
given Ayi; b): eip + €ig—1 (thick) and riy — ri4—2 (thin) given Aoyir; ¢): €t + €ip—1 + €ip—2
(thick) and ry — ;3 (thin) given Asy;.

6.5 Wage mobility

We then use the model to weight the respective influence of permanent and transitory
shocks in wage mobility. To this end, we compute the conditional expectations of the
permanent and transitory components of Agy;, s = 1,2,3: ]E(ZT (1)8,75 T\Asy,t) and
E(rit — Tit—s| Asit)-

To do so, we first compute the conditional distribution of permanent and transitory
shocks using Bayes rule. For instance the conditional density of the permanent shock
given wage observations is given by:

fe(e)f(Ayle) (&) [ fr(r) fr(Ay — e +1)dr
ffgg Ay‘ )dN ffagffr fr Ay—c‘:'f‘T')dTC[V

where f. is the p.d.f. of € and f,. is the p.d.f. of r. We proceed similarly for transitory

flelay) =

shocks 1 — r4—1.

Figure 8 plots these conditional expectations. We verify that the volatility of earnings
is more likely to have a permanent origin if s is large. In panel a), we see for example
that a log wage growth of £100% has a transitory origin for more than +60% and a
permanent origin for less that +30%. In panel c), we see that a change Azy;; of +100%

is almost twice more likely to be permanent than transitory.
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Table 4: Variances of the shocks by categories of job changers

Job changes || None One/two Three/more
| wage growth, ¢/t + 1

total .034 .039 .068
permanent .014 .016 .022
transitory .020 .023 .046
| wage growth, ¢/t + 2
total .041 .053 .089
permanent .025 .032 .053
transitory .016 .021 .036
| wage growth, t/t + 3
total .054 .063 108
permanent .037 .044 .076
transitory 017 .019 .032

Note: See the note to Figure 7. “None”=no job change in the observation period; “One/two”=
one or two job changes; “Three/more”= more than three job changes. Variances of wage
growth residuals (“Total”) and the variances of the permanent and transitory parts, conditional
on having experienced a given number of job changes.

6.6 Job changes

Finally, we address the issue of the link between the degree of permanence of wage shocks
and job-to-job mobility. It is notoriously difficult to identify job changes precisely in the
PSID (see Brown and Light, 1992), so we tend to think of this exercise as tentative. We
adopt the simplest criteria to identify job changes, setting the job change dummy equal
to one if tenure is less than 12 months.'®> We then classify individuals into job stayers
(no job change during the period), infrequent job changers (one or two job changes) and
frequent job changers (more than three job changes). The last three columns of Table 1
in Appendix give descriptive statistics for these three groups of individuals.

Then we compute the densities of permanent and transitory shocks given wage growth
residuals, separately for each category of job changers by averaging within each group
the conditional densities that we have already calculated. Table 4 presents the variances

of permanent and transitory shocks for each mobility group. Focusing on the first three

13Note that there were two “tenure” variables before 1987 in the PSID: time in position and time with
employer. We take the former as our definition of tenure.
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rows we see that wage volatility, as measured by the variance, is higher for frequent job
changers. Moreover, these individuals are more likely to experience both permanent and
transitory wage changes. The transitory variance is about 15% higher for infrequent job
movers than for job stayers (.023 versus .020), and about 2.3 times higher for frequent
job movers (.046). At the same time, the permanent variance is about 15% higher for
infrequent job movers than for job stayers (.016 versus .014), and about 60% higher for
frequent job movers (.022). As permanent shocks accumulate over time while transitory
shocks do not, the difference in wage growth volatility increases with the length of time
over which wage growth is computed. For example, the variance of wage growth over ten
years is .16 (= .020 + 10 % .014) for an individual who stayed with the same employer
over the whole period, while it is about .27 (= .046 + 10 % .022) for an individual who
has changed job three times or more.

These results give some basis to the interpretation of permanent shocks to log earnings
as resulting for a large part from job changes.!* Nevertheless, identifying permanent
shocks with job changes is likely to be wrong for two reasons. First, part of the shocks
faced by job stayers is permanent. Indeed, the share of permanent variance in total
variance is higher for job stayers (40%) than for frequent job changers (30%). This finding
suggests that there might be other permanent wage movements, caused for instance by
within-job promotions. Second, job changers also face more transitory shocks. Describing

precisely these effects requires modelling job change decisions together with wage profiles.

7 Conclusion

This paper provides a generalization of the nonparametric estimator of Li and Vuong
(1998) to linear independent factor models, allowing for any number of measurements,
L, and at most K = @ latent factors. On the theoretical side, the main lessons
of the standard deconvolution literature carry over to the more general context that we
consider in this paper. In particular, asymptotic convergence rates are slow, and it is
more difficult to estimate the distribution of one factor if the characteristic functions of
the other factors have thinner tails.

Our Monte Carlo results yield interesting insights. The finite-sample performance of

4Note that we do not identify the part of the wage growth variance that comes from differences in
hours worked from the one coming from differences in wage rates. Nor are we able to tell whether job
or individual-specific components are mostly responsible for the results.
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our estimator seems rather good, remarkably similar to the performance of the kernel
deconvolution estimator that assumes that the distributions of all factors but one are
known. Moreover, the performance critically depends on the shape of the distributions
to be estimated, as we find that it is easier to estimate distributions with little skewness
or excess kurtosis.!®

In any case, identifying the distributions of more factors than measurements should
be viewed as considerably more difficult than the classical nonparametric deconvolu-
tion problem. Given the difficulty of the problem at hand, we view the results of our
simulations and the application as a confirmation that the generalized nonparametric
deconvolution approach that we propose can be successfully applied to a wide range of
distributions.

The empirical application shows that the permanent and transitory components of
individual earnings dynamics are clearly non normal. Predicting transitory and perma-
nent shocks for the individuals in the sample, we see that frequent job changers face
more permanent and transitory earnings shocks than job stayers. These results have
important consequences for welfare analysis. For instance, savings and insurance could
be very different if the risk of large deviations is much higher than is usually assumed
with normal shocks. Of course, the model of earnings dynamics that we have considered
is very limited. One might want to add non i.i.d. transitory shocks and yet allow for
measurement error (as in Abowd and Card, 1989). We experimented with a MA(1) tran-
sitory shock without much success. It seems very difficult to nonparametrically identify
the MA(1) component from the PSID data. Thus, maybe the sample is not appropriate,
or a single non normal MA(0) transitory shock/measurement error is enough to describe
the PSID data.

Another interesting issue is the assumption of independence between factors that
we maintain throughout this analysis. Meghir and Pistaferri (2004) shows evidence of
autoregressive conditional heteroskedasticity in permanent and transitory components.

It is not straightforward at all to extend the study of the nonparametric identification

15Tn Bonhomme and Robin (2007), we show that skewness and peakedness are required for the matrix
of factor loadings to be identified from higher-order moments. There is thus a tension between obtaining
a precise estimate of factor loadings and a precise estimate of the distribution of factors in models where
second-order information is not sufficient to ensure the identification of the factor loadings.
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and estimation of factor densities in conditionally heteroskedastic factor models like:
Yir = Agi, 52613 = U(ﬁit_ﬂnft, k=1,.,K,

where n;, = (0}, ...,n5)T is a K x 1 vector of i.i.d. random variables. But this is a very

interesting problem for future research.
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APPENDIX

A Proof of Lemma 1

For any T, let G = {fi(z,y),|t| < T}. The first step of the proof is to find the L; covering
number of G. We need to cover: G = {zcos (tTy),|t| < T}, and G = {zsin (tTy),|t| < T}
Now, for any couple (t1,t2),

|z cos(t{y) —zcos(tyy)| < |a(tly —t3y)|
< ) lmye (te — tae)|
¢
< Z |zye| - [t1 — 22
¢

< Llzy|-|t1 —tof.

It follows that the L; covering number of G; satisfies
TEN | XY\
% (5pv6r) < o (T

where Py is the probability measure obtained by independent sampling from F', and C > 0 is
a constant independent of N. We obtain a similar expression for Go; hence:

T]EN|XY|)L
8 7

Nl(&,PN,g) SC(

Equation (31) in Pollard (p. 31) then implies, for a given sample Zy:

zN} §C<M>Lexp[—N—82/ENX2], (D1)

— >
Pr{ sup [En ft —Eft| > ¢ c 128

jt<T

provided that N > %;ft. Moreover, Var f; = Var [X cos (tTY)] < EX? + (IE|X|)2 = M, is
finite. So inequality (D1) is true for N > %.
Then, bounding some probabilities by one, we obtain, for all k£ > 0:

Exy X? < k,Ex|XY| < k}

Pr{sup |Ex ft — Efe] > e} = Pr{ sup |En fr —Ef| > €

t<T |t <T
x Pr{Exy X2 < k,Ex|XY| < k}

+Pr{ sup |Ey f; — Eft| > e|Ex X% > k or Ey |XY]| > k}

[t|<T

x Pr{ExyX? >k or Ey|XY| >k}

IN

Pr{ sup |En f; — Efi| > e| En X% < k,Ex | XY | < k}

[tI<T

+Pr{EnX* >k or Ey|XY| > k}.
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To obtain a final inequality, apply Markov inequality as follows:
Pr{EyX’?>kor Ey|XY| >k} < Pr{EyX”>k}+Pr{En|XY|>k}
_ Pr{(]ENXQ)J > kJ} +Pr{(]EN|XY|)J > kJ}

E ( (]ENX2)J> +E ((]EN|XY|)J)
< - .

(D2)

As X? and | XY| have finite moments up to the Jth order by assumption, the numerator in

(D2) is bounded, say by a constant My < oo.
Therefore,

TE\ L Ne2| M
P E — E > < — T 1ol 1.J
r{??;' N [t ft|—5}—0(5> exp[ 128k}+k‘],

for any € such that 2 > %.
Now, index &,7 and k on N. For any 0 < v < (1 — %)/2, let ky = N%+7, and let

ex = N~2(1=7)+7_ Then
1
— < 00,
PR

N

and

Tnkn Nej | 11y N
;exp{Lln( )_128k1v —;exp Lln(TNN2 J) 198 < 00,

EN

if Ty tends to infinity at (at most) a polynomial rate.
The Borel-Cantelli Lemma then implies that only a finite number of events are such that

sup |En fi —Efi| >en.
[t|<Tn

Hence,

sup [Exfy—Efil = Olen),  as.
[t <Tn

This achieves to prove Lemma, 1.

B Proof of Theorem 2

In this proof and the next, all convergence statements are implicitly understood to hold almost
surely.
(i) Fix any t € RE, let o(t) = oy (t) = ]E[eitTY], b(t) = E[neitTY] and ¢, () =

E[nymeitTY], for any £,m = 1,...,L. Then, for all ¥ > 0, Lemma 1 implies that, for all
fe{oAvete {6mtem}:

sup |F(t) = £(1)] = O en),

[t|<Tn
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where T tends to infinity at (at most) a polynomial rate and ey = N —3(=7)+7

(ii) Removing the subscript ¥ from ¢y and gy to simplify the notation, as |¢(t)| > g(|t|)
when |t| — oo, and as ¢ is nonvanishing everywhere, then for T large enough

f > ¢(T
ml?T lo()| > g(Tn),

and

sup
[tI<Tw

=o(l).

B(t) — () ‘ _ Olew)
o | oTw)

The last equality follows from the fact that (N 51;’ > ( 0 for N large enough, and that, by
assumption, ﬁ,—;];:,, = o(1).

(iii) We have

and

One can bound 1//35(15) as follows:

sup [Bo0) < sup [B® =)+ sup [y, (0)

[t|<Tn [t|I<Tn te[-Tn,Tn]
< sup [Bul) = elt)] +E|Yel = O(V),
[t <Tn
as the first moments of Y are finite by assumption.
It follows that N
t t 0]
p |20 0| Oen)
<ty | P() o) | g(Tn)
The same argument applies to show that
sup ££m(t) N €Zm(t) O(‘C:N)2 — 0(1)
<ty | P(t) ot) | g(Tw)

for all £, m.

(iv) It is easy to extend these results to second derivatives of cumulant generating functions:

82
Conld) = ()

E [nymeitTY] E I:YfeitTY] E [YmeitTY]
E [ez’tTY] + E [eitTY] E [ez’tTY]
(), Y ()
e@) o) »)
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Let Cgpn(t) = — @ 4 U0 e,
Conlt) ~ Cenl®) = — | Sz —fg'gg)]
20 b0 ] 9 | [ Bt dt) | $elt)
20 e | v | B0 ) | el0)
2 9] [9n®) v
20 o) | [20)  el0)
Since bt E|Yy
4 £
o [ < s

for all ¢, it follows that

_ Ofen) | Ofen) O(en) 2: O(en)
| + ()

sup [Com(t) — Coml(t)

t<Tw 9(Tn)? * g(Tn)? 9(Tn)? 9(Tn)?
because )
EN EN EN
> 1>
9(Tn)® = g(Tn)* 9(Tn)

for N large enough.

(v) For any vector ¢t = (1,...,t7)" € RE and 7 € R, then

By(t)= sup
TE[—TN,TN]

™y (ut) [ pe(ut) "
St w(ut)d‘

)

Yelt) _ hult)

< sup (ITI sup

T€[-TN,TN] [t|<Tn a(t) (ip(t)
pe(t)  1h(t)
<Tn sup |= —
Yty |80 ()
Tn
= 0
g(TN)2 (E:N)
Similarly,
Cim (t) = sup //ng(vt)dvdu—/ / Com (vt)dvdu
re[-Tn,Tx] /0 Jo 0o Jo

7_2

< sup (7 sup ‘Zém(t) _Cﬁm(t)‘)
TE[—TN,TN] MSTN

<T% sup [Cmlt) = Com ()]
t<Tn

_ T

= g(TN)3O(eN).
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Moreover, for any distribution W on 7,

T
[Bewaw @ < swp B0 [aW (@)= N0Gw)
[t <Tn 9(Tw)
and
T2
[ Conttyaw ()< sup Con ) [ aW (1) = ¥ 0(en)
[tI<Ty 9(Tn)
(vi) It easily follows from the previous step that:
T
sup |kx, (7)) — kx, (T)| = —=——=0(en) = o(1).
TE[_TN,TN]I x; (1) = £x, (7)] PME (en) = o(1)

In particular, sup,ci_g, 1y |%x, (7) — 6x, (7)| < 1 for N large enough. Therefore, for N
large enough

sup  [Px, (1) —ex, (1) = sup  lexp (kx, (1)) — exp (Kx, (7))],
TE[-TNn,TN] T€[-TN,TN]
< sup |/K\:Xk (T) — KXy (T)| )
TE[—TN,TN]

from which it follows that

T2
sup  |@x, (1) — ¢x, ()] = =5 0(en).
T€[~Tx Tw] [P, x, (7)] g(Tn)3
This ends the proof of Theorem 2.

C Proof of Theorem 3
For all z;, in the support of Xj:

N _ 1 v —fvxg (2 d

Ixi (zk) — ka(CUk) = or YH E € (‘ka (v) — X, (U)) v

So:
~ 1 In v\~
Pt = | < 5o ([ o (1) 1wt = el dor [ low (75) =1| mduban)
Tn ~ 1 v
< 2w [, () -, O]+ 52 o () -1 prloban
Note that
oy = [E[e]] = [E[4¥]| = lox(4"0)] 2 gx(|A"H]) 2 gx(E14] 1),
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where |A| = max; ; (|ai;j|). Moreover, function gy inherits gx’s properties: it maps R* onto
[0, 1], it is decreasing and it is integrable, so that in particular gy (|t|) — 0 when [t| — co. We

can thus apply Theorem 2 and obtain:
v
0) +0 ([ |ow (7) =1 et )
N
where g ([t]) = gx (L || [¢]).

If H is a higher-order kernel of order ¢ > 2, then there exists a function m such that
og(v) =14+ m(v)v? for all v € [-1,1], and g (v) = 0 for v ¢ [~1,1], where m is continuous

on [—1,1]. So the bias term is:
o[ fon () - |ptrin) = o [ (7)) st
+00
+0 (/TN th(|’U|)d’U>

_ 0 (% /ZVV UQth(|U|)dv) +0 (/T:)o th(|v\)dv>

= o),

~ Tjif[
S;lp ka(xk) _ka(q"k:) = g(TN)

as sup m(v) = O(1). This ends the proof of Theorem 3.
ve[—1,1]

D “Plug-in” bandwidth selection

We here present the “plug-in” method of Delaigle and Gijbels (2004) to choose the bandwidth in
deconvolution kernel density estimation. We focus on second-order kernels in the presentation.
Extension to higher-order kernels of even order is direct.

To present the method, let us consider the deconvolution problem with known error distri-
bution Y = X; + Xy, where fx,, or equivalently ¢, , is known. Based on a random sample
Yi,..., Yy, the deconvolution kernel density estimator of fx, is given by:

ra _ 1 v —ivT) @Y(U)
fx,(z1) = E/(PH (ﬁ) € mdva

where 3y (v) = Eye®Y is the empirical characteristic function of Y.
Let the Mean Integrated Squared Error (MISE) of fx, be:

MISE(Ty) = E ( / (Fra(e) — fx(a) dw1> .

The choice of Ty relies on the following approximation of the MISE:

1 2 _R("
MISE(Tx) ~ %—N/ ‘(PH (%) M

2
—2

|<,0X2 (v)| dv + 4T§,

In this expression: pp o = [v?H(v)dv, so for instance py, o = 6. Moreover:

R(%) = [ ko] don
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This is an unknown quantity. The plug-in method estimates R( }'(1) by the following algo-
rithm.

1. Estimate R ( ot ) as if X1 was normally distributed:
8!
2941/ [Var(Xl)]

R -

[S]le}

2. Minimize the following quantity with respect to T

Ky, 2R ”" ~24
This quantlty can be interpreted as the squared asymptotic bias of R( u ) This step
yields T.
3. Compute:
(fm) 1 / 6 <U>‘2 Py (v) 2d
= v = T2 dv.
2ar ) ° [PT\T)| lox, @)

4. Tterate one more time steps 2 and 3. This yields R ( f}él)

Finally, once R ( ) has been estimated, TN is obtained as the minimizer of the approxi-
mated MISE given by the right-hand side of (D3).
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