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Abstract

We provide nonparametric estimators of derivative ratio-based average marginal
e¤ects of an endogenous cause, X, on a response of interest, Y , for a system of
recursive structural equations. The system need not exhibit linearity, separability, or
monotonicity. Our estimators are local indirect least squares estimators analogous to
those of Heckman and Vytlacil (1999, 2001) who treat a latent index model involving
a binary X:We treat the traditional case of an observed exogenous instrument (OXI)
and the case where one observes error-laden proxies for an unobserved exogenous
instrument (PXI). For PXI, we develop and apply new results for estimating densities
and expectations conditional on mismeasured variables. For both OXI and PXI, we
use in�nite order �at-top kernels to obtain uniformly convergent and asymptotically
normal nonparametric estimators of instrument-conditioned e¤ects, as well as root-n
consistent and asymptotically normal estimators of average e¤ects.
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1 Introduction

This paper studies identi�cation and estimation of measures of the marginal e¤ect of an

endogenous cause in a system of structural equations with exogenous instruments. As

in Altonji and Matzkin (2005), Hoderlein (20051), and Hoderlein and Mammen (2007),

1A more recent version of this working paper is available as Hoderlein (2007).
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our structural equations involve general measurable functions: we do not impose linearity,

monotonicity, or separability. Our estimators are correspondingly nonparametric. Our re-

sults complement the work of these authors, and they complement and extend prior work on

nonparametric instrumental variables (IV) methods imposing separability or monotonicity,

such as that of Angrist and Imbens (1994), Angrist, Imbens, and Rubin (1996), Heckman

(1997), Heckman and Vytlacil (1999, 2001, 2005), Blundell and Powell (2000), Chesher

(2003), Darolles, Florens, and Renault (2003), Imbens and Newey (2003), Matzkin (2003,

2004), Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2006), Heck-

man, Urzua, and Vytlacil (2006), Santos (2006), and Hahn and Ridder (2007) among others.

As Darolles, Florens, and Renault (2003, p.1-2) note, several di¤erent notions of instru-

mental variables appear in the nonlinear IV literature. Chalak and White (2007a) (CW)

propose a taxonomy of instruments based on their role in identifying structural e¤ects of

interest. Although CW�s taxonomy is developed in the linear parametric context, it applies

generally, as they explicitly note. Among the various possibilities, we focus here on the

use of classical exogenous instruments to study e¤ect measures constructed as ratios of

certain derivatives, derivative ratio (DR) e¤ect measures, for short. The motivations for

considering DR e¤ects are several: First, in classical linear structural systems with exoge-

nous instruments, these e¤ects motivate and underlie Haavelmo�s (1943) classical method

of indirect least squares (ILS). In more general systems, Heckman (1997) and Heckman and

Vytlacil (1999, 2001, 2005) show that DR e¤ects correspond to a variety of structurally

meaningful weighted averages of e¤ects of interest; the corresponding estimators are "local

IV," or, more aptly, local ILS (LILS) estimators (as suggested by Heckman and Vytlacil,

2007). The intuitive appeal of DR e¤ect measures in these cases and the computational

ease of the associated LILS estimators make DR e¤ect measures a natural candidate for

application to the general case.

Alternatives to the use of exogenous instruments include the use of conditioning instru-
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ments, which deliver a conditional independence relation central to structural identi�ca-

tion. This gives a di¤erent class of e¤ect measures, precisely those considered by Altonji

and Matzkin (2005), Hoderlein (2005), White and Chalak (2006), Hoderlein and Mammen

(2007), and Chalak and White (2007b), among others, for general nonseparable systems.

We pay particular attention to the structural content and interpretation of DR e¤ect

measures. As we discuss, their relative ease of interpretation hinges crucially on whether

or not the structural equation determining the endogenous cause of interest, say X, is

separable, regardless of the separability of the structural equation relating the response

of interest, say Y; to X. When X is separably determined, the structural content of the

derivative ratio as a measure of average marginal e¤ect is easily appreciated, even for

nonseparably determined Y .

In the fully nonseparable case, the DR e¤ect is still a measure of a well-de�ned weighted

average marginal e¤ect. Nonseparability for X leads only to changes in the weighting

functions employed in constructing the average derivatives of interest. Interestingly, these

weight changes typically do not preclude the use of DR e¤ects to test the hypothesis that

an endogenous cause X has an e¤ect on the response Y . Knowing how DR e¤ect measures

behave in the general case also provides the necessary foundation for formal tests of the

properties of the underlying structure, such as whether X is separably determined or not.

We study two cases elucidated by CW: the traditional observed exogenous instrument

(OXI) case, where the exogenous instrument is observed without error; and the proxies

for unobserved exogenous instrument (PXI) case, where the exogenous instrument is not

directly observable, but error-contaminated measurements are available to serve as proxy

instruments, as in Butcher and Case (1994). In the linear parametric case treated by CW,

estimation methods for the OXI and PXI cases are identical, despite the interesting fact that

in the PXI case, the (error-laden) proxy instruments are correlated with the reduced form

errors, yielding inconsistent reduced form estimators. As CW explain, ILS and standard
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IV methods generally yield consistent estimators of the e¤ects of interest nevertheless.

Once one goes beyond the linear parametric case, however, the OXI and PXI cases

require fundamentally di¤erent estimation methods. We can treat the OXI case using any

of a variety of familiar nonparametric methods, such as kernel or sieve methods. The PXI

case demands an innovative approach, however. In fact, our PXI results are the �rst to

cover nonparametric generalizations of the linear parametric case using instrument proxies.

For the OXI case, we apply in�nite order ("�at-top") kernels (Politis and Romano,

1999) to estimate functionals of the distributions of the observable variables that we then

combine to obtain new estimators of the average marginal e¤ect represented by the DR

e¤ect measure. We obtain uniform convergence rates and asymptotic normality for estima-

tors of instrument-conditioned average marginal e¤ects as well as root-n consistency and

asymptotic normality for estimators of their weighted averages.

For the PXI case, we build on recent results of Schennach (2004a, 2004b) to obtain a

variety of new results. Speci�cally, we show that two error-contaminated measurements

of the unobserved exogenous instrument are su¢ cient to identify objects of interest and

to deliver consistent estimators. Our general estimation theory covers densities of mis-

measured variables and expectations conditional on mismeasured variables, as well as their

derivatives with respect to the mismeasured variable. We provide uniform convergence

rates over expanding intervals (and, in some cases, over the whole real line) as well as

asymptotic normality results in fully nonparametric settings. We also consider nonlinear

functionals of such nonparametric quantities and establish their root-n consistency and

asymptotic normality. This analysis thus provides numerous general-purpose asymptotic

results of independent interest, beyond the PXI case.

The plan of the paper is as follows. In Section 2 we specify a recursive structural system

that generates the data and de�ne the DR e¤ect measures of interest. We provide formal

conditions ensuring the identi�cation of the DR e¤ect measures, that is, the equality of the
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counterfactually based e¤ects of interest with well-de�ned standard stochastic objects. We

devote particular attention to the interpretation of these DR e¤ect measures in a range of

special cases. As mentioned above, DR e¤ect measures are naturally estimated by nonpara-

metric local ILS methods. Section 3 treats the OXI case. We provide results establishing

consistency and asymptotic normality for our nonparametric estimators. Section 4 develops

new general results for estimation of densities and functionals of densities of mismeasured

variables. As an application, we treat the PXI case, ensuring the identi�cation of the ob-

jects of interest and providing estimation results analogous to those of Section 3. Section

5 contains a discussion of the results, and Section 6 provides a summary and discussion of

directions for future research. All proofs are gathered into the Mathematical Appendix.

2 Data Generation and Structural Identi�cation

2.1 Data Generation

We begin by specifying a recursive structural system that generates the data. In such

systems, there is an inherent ordering of the system variables: "predecessor" variables may

determine "successor" variables, but not vice versa. For example, when X determines Y ,

then Y cannot determine X. In such cases, we say for convenience that Y succeeds X, and

we write Y ( X as a shorthand notation.

Assumption 2.1 Let a recursive structural system generate random variables fU;X; Y; Zg

such that Y ( (U;X;Z), X ( (U;Z), and Z ( U . In addition: (i) Let �x; �y; and �z be

measurable functions such that Ux � �x(U); Uy � �y(U); Uz � �z(U) are random vectors of

countable dimensions `x, `y, and `z respectively; (ii) (X; Y; Z) is generated as

Z
c
= p(Uz)

X
c
= q(Z;Ux)

Y
c
= r(X;Uy);
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where p; q; and r are unknown measurable scalar-valued functions; (iii) E(X) and E(Y ) are

�nite; (iv) The realizations of X and Y are observed; those of U are not.

We consider scalar X; Y; and Z for simplicity; extensions are straightforward. We

explicitly assume observability of X and Y and unobservability of U . We separately treat

cases in which Z is observable (Section 3) or unobservable (Section 4). An important feature

here is that the unobserved causes Ux; Uy; and Uz may be multi-dimensional. Indeed, the

unobserved causes need not even be �nite dimensional.

The response functions p; q; and r embody the structural (causal) relations between the

system variables. (In what follows we use "structural" and "causal" synonymously.) We

use the c
= notation to emphasize the causal structure of these relations, as in CW. Assuming

only measurability for p; q; and r permits but does not require linearity, monotonicity in

variables, or separability between observables and unobservables.

The structure of Assumption 2.1 can arise in numerous economic applications. For

example, this structural system can correspond to a nonparametric demand system with a

heterogeneous population, as in Hoderlein (2005).

Our interest attaches to the e¤ect of X on Y . Speci�cally, when the derivative exists,

consider the marginal e¤ect of continuously distributed X on Y , Dxr(X;Uy), where Dx �

(@=@x). If r were linear and separable, say,

r(X;Uy) = X�0 + U 0y�y;

thenDxr(X;Uy) = �0. Generally we will not require linearity or separability, soDxr(X;Uy)

is no longer constant but generally depends on both X and Uy. To handle dependence on

the unobservable Uy, we consider certain average marginal e¤ects, de�ned below.

Generally, X and Uy may be correlated or otherwise dependent, in which case X is

�endogenous.�Just as in the linear separable case, when X is endogenous, the availability

of suitable instrumental variables permits identi�cation and estimation of e¤ects of interest.
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The structure above permits Z to play this instrumental role, given a suitable exogeneity

condition. To specify this, we follow Dawid (1979) and writeX ? Y when random variables

X and Y are independent and X 6? Y otherwise.

Assumption 2.2 Uz ? (Ux; Uy).

As we make no assumption regarding the relation of Ux and Uy, we may have Ux 6? Uy,

which, given Assumption 2.1, implies that X is endogenous: X 6? Uy. On the other hand,

Assumptions 2.1 and 2.2 imply Z ? (Ux; Uy), so that Z is exogenous with respect to both

Ux and Uy in the classical sense.

As discussed in CW, a variety of di¤erent conditional independence relations and ex-

clusion restrictions can be employed to identify e¤ects of interest. For example, with the

structure of Assumption 2.1, certain structural e¤ects can be identi�ed using Hoderlein�s

(2005) assumption 2.3, which states that Z ? Uy j Ux; and where Ux is assumed to be iden-

ti�ed due to further structure, "e.g. monotonicity of [q] in [Ux] and [Z ? Ux]" (Hoderlein,

2005, p. 5). But this implies that X ? Uy j Ux; a conditional independence assump-

tion similar to that imposed in Altonji and Matzkin (2005), White and Chalak (2006),

and Hoderlein and Mammen (2007). Such conditional independence conditions are neither

necessary nor su¢ cient for Assumption 2.2, and, as is apparent by inspection, the struc-

tural e¤ects identi�ed under the various exogeneity conditions can easily di¤er. Which

exogeneity condition is appropriate in any particular instance depends on the speci�cs of

the economic structure, as extensively discussed by CW.

2.2 Identi�cation

In classical linear separable structural systems with exogenous instruments, the e¤ect of X

on Y can be recovered from the reduced form as the ratio of the e¤ect of Z on Y to that of

Z on X; the e¤ect of interest can then be estimated using Haavelmo�s (1943) ILS method.

In more general cases, information about the marginal e¤ect of X on Y can similarly be
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extracted, based on the ratio of the marginal e¤ect of Z on Y to that of Z on X, that is,

as a derivative ratio.

To see how this works, consider �rst the e¤ect of Z on X. The starting point for a

study of this e¤ect is the conditional expectation of X given Z = z,

�X(z) � E(X j Z = z) (1)

=

Z
q(z; ux)dF (uxjz); (2)

where dF (uxjz) denotes the conditional density of Ux given Z = z: The existence of �X in

eq.(1) is guaranteed whenever E(X) < 1, regardless of any underlying structure. Thus,

�X is stochastically meaningful whenever it exists, as it is simply an aspect of the joint

distribution of X and Z.

If the structure provided by Assumptions 2.1(i-iii) holds and the conditional distribution

of Ux given Z is regular (e.g., Dudley, 2002, ch.10.2), then the integral representation of

eq.(2) also holds. (In what follows, we implicitly assume the regularity of all referenced

conditional distributions.) Eq.(2) provides �X with some structural content; speci�cally it

is an average response. As we discuss shortly, there is nevertheless not yet su¢ cient content

to use �X to identify e¤ects of interest.

When Z does not determine U (recall Assumption 2.1 ensures Z ( U), the structurally

meaningful average counterfactual response of X to Z is given by

�X(z) �
Z
q(z; ux) dF (ux); (3)

where dF (ux) denotes the unconditional density of Ux. Given di¤erentiability of q and an

interchange of integral and derivative (see, e.g., White and Chalak (2006, theorem 3.3(ii)),

Dz�X(z) =

Z
Dzq(z; ux) dF (ux); (4)

ensuring that Dz�X represents the average marginal e¤ect of Z on X.
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Our assumptions ensure that Z is exogenous with respect to Ux (Z ? Ux), so thatZ
q(z; ux) dF (uxjz) =

Z
q(z; ux) dF (ux);

as Z ? Ux implies dF (uxjz) = dF (ux). That is, �X = �X . Moreover, Dz�X = Dz�X ;

so �X is now fully informative about the structurally meaningful Dz�X . When, as is true

here, stochastic objects like �X are identi�ed with a structurally meaningful object, we

say that they are structurally identi�ed. Similarly, when structurally meaningful objects

like �X are identi�ed with stochastic objects, we say they are stochastically identi�ed. If

stochastic identi�cation holds uniquely with a representation solely in terms of observable

random variables, then we say that both the stochastic object and its structural counterpart

are fully identi�ed. Thus, with �X and Dz�X fully identi�ed, both �X and Dz�X can be

estimated from data under mild conditions.

Similarly, we can write

�Y (z) � E(Y j Z = z) (5)

=

Z
r(q(z; ux); uy) dF (ux; uyjz); (6)

where dF (ux; uyjz) denotes the conditional density of (Ux; Uy) given Z = z. The �niteness

of E(Y ) ensures that �Y exists. In the absence of further assumptions, �Y is also purely a

stochastic object. The integral representation of eq.(6) holds under Assumptions 2.1(i-iii).

The requirement that Z succeeds U and the exogeneity of Z with respect to (Ux; Uy); jointly

ensured by Assumptions 2.1 and 2.2, structurally identify �Y as the average counterfactual

response of Y to Z. That is, �Y = �Y , where

�Y (z) �
Z
r(q(z; ux); uy) dF (ux; uy); (7)

and dF (ux; uy) denotes the unconditional density of (Ux; Uy).

Further, given di¤erentiability, the derivative Dz�Y is structurally identi�ed as Dz�Y .

We can interpret this as an average marginal e¤ect of Z on Y . Speci�cally, given di¤eren-
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tiability of q and r and the interchange of derivative and integral, we have

Dz�Y (z) =

Z
Dz[r(q(z; ux); uy)] dF (ux; uy): (8)

This involves the marginal e¤ect of X on Y as a consequence of the chain rule:

Dz�Y (z) =

Z
Dxr(q(z; ux); uy) Dzq(z; ux) dF (ux; uy)

=

Z
[

Z
Dxr(q(z; ux); uy)dF (uyj ux)] Dzq(z; ux) dF (ux);

where dF (uyjux) denotes the conditional density of Uy given Ux = ux.

The analog of the ratio of reduced form coe¢ cients exploited by Haavelmo�s (1943) ILS

estimator is the derivative ratio

�(z) � Dz�Y (z) = Dz�X(z): (9)

This ratio is a population analog of the local ILS estimator, introduced by Heckman and

Vytlacil (1999, 2001) as a "local instrumental variable" for a case with X binary and

q(z; ux) = 1fq1(z)� ux � 0g: As de�ned, �(z) is purely a stochastic object.

Observe that �(z) is well de�ned only when the numerator and denominator are well de-

�ned and the denominator does not vanish. The latter condition is the analog of the classical

requirement that the instrumental variable Z must be "relevant." We thus de�ne the sup-

port of � to be the set on which �(z) is well de�ned, S� � fz : fZ(z) > 0; jDz�X(z)j > 0g;

where fZ (�) is the density of Z. The requirement that fZ(z) > 0 ensures that bothDz�Y (z)

and Dz�X(z) are well de�ned. When X; Y; and Z are observable, we may consistently es-

timate � on its support under mild conditions; this is the subject of Section 3. We show

in Section 4 that we can consistently estimate � even when Z is not observable.

2.3 Interpreting DR E¤ects

If both the numerator and denominator of �(z) are structurally identi�ed, then so is �(z):

In particular, when �(z) is structurally identi�ed, it represents a speci�c weighted average
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of the marginal e¤ect of interest, Dxr(X;Uy), as the expressions above imply � = ��, where

��(z) � Dz�Y (z) = Dz�X(z) (10)

=

Z
[

Z
Dxr(q(z; ux); uy) dF (uyj ux)] &(z; ux) dF (ux); (11)

for z 2 S�� � fz : fZ(z) > 0; jDz�X(z)j > 0g: The weights &(z; ux) are given by

&(z; ux) � Dzq(z; ux) =

Z
Dzq(z; ux) dF (ux);

and for each z 2 S�� ; Z
&(z; ux) dF (ux) = 1:

We can also represent ��(z) and &(z; Ux) in terms of certain conditional expectations.

Speci�cally, under our assumptions, we have

��(z) = E[ E(Dxr(X;Uy) j Z = z; Ux) &(z; Ux) ]

&(z; Ux) = Dzq(z; Ux) = E(Dzq(Z;Ux) j Z = z):

Thus, ��(z) provides a measure of average marginal e¤ect that emphasizes E(Dxr(X;Uy)

j Z = z; Ux) for values of Dzq(z; Ux) that are large relative to E(Dzq(Z;Ux) j Z = z).

Note that, while the weights &(z; Ux) can be negative, they are necessarily positive when

q(z; ux) is strictly monotone in z for almost all ux; with common sign for Dzq(z; ux). This is

often plausible given that Z is an instrument for X. In this case, an estimator of ��(z) can

clearly be used to test the null hypothesis that X has no e¤ect on Y , since then ��(z) = 0

if and only if
R
Dxr(q(z; ux); uy) dF (uyj ux) = 0 for almost every ux in the support of Ux.

To gain further insight, we consider the form taken by �� in some important special

cases. First, when r is linear, we have r(x; uy) = x�0 + uy: It is immediate that regardless

of the form of q, ��(z) = �0 for all z 2 S��.

Next, consider the case where X is separably determined: q(z; ux) = q1(z)+ux. (There

is no loss of generality in specifying scalar ux under separability.) In this case we have
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&(z; ux) � 1 for z 2 S��. When r is also separable, so that r(x; uy) = r1(x)+ uy (see, e.g.,

Newey and Powell, 2003; Darolles, Florens, and Renault, 2003), we have ��(z) = ��ss(z) for

z 2 S�� ; where

��ss(z) �
Z
Dxr1(q1(z) + ux) dF (ux)

= E(Dxr1(X) j Z = z):

In fact, separability for r does not play a critical role; when r is nonseparable we have

��(z) = ��ns(z) for z 2 S��, where

��ns(z) �
Z
Dxr(q(z; ux); uy) dF (uy; ux)

= E(Dxr(X;Uy) j Z = z):

Both ��ss and �
�
ns are easily interpretable quantities.

It remains to consider nonseparable q. First, when r is separable, we have ��(z) = ��sn(z)

for z 2 S��, where

��sn(z) �
Z
Dxr1(q(z; ux)) &(z; ux) dF (ux)

= E[ E(Dxr1(X) j Z = z) &(z; Ux) ]:

This is still a weighted average of an expected marginal e¤ect, namely E(Dxr1(X) j Z = z),

but now the nonseparability of q necessitates the presence of the weights &(z; Ux). When r

is nonseparable, we are back to the general case, with ��nn(z) � ��(z) for z 2 S��.

To gain additional insight for nonseparable q, we note that the independence imposed in

Assumption 2.2 ensures E[ E(Dxr(X;Uy) j Z = z; Ux) ] = E(Dxr(X;Uy) j Z = z): Adding

and subtracting this in the expression for ��nn(z), we get

��nn(z) = E(Dxr(X;Uy) j Z = z)� E[ E(Dxr(X;Uy) j Z = z; Ux) (1� &(z; Ux)) ]:

From the fact that E[&(z; Ux)] = 1 and (e.g.) Cauchy-Schwarz, it follows that when suitable

second moments exist,

j��nn(z)� E(Dxr(X;Uy) j Z = z)j � �(z) �&(z);
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where

�2(z) � E[ f E(Dxr(X;Uy) j Z = z; Ux)� E(Dxr(X;Uy)jZ = z) g2 ]

is a measure of the conditional variation of Dxr(X;Uy); and

�2& (z) � E[ (1� &(z; Ux))
2 ]

is a measure of the departure of q from separability. Thus, we see that the smaller are

either �(z) or �&(z); the closer �
�
nn(z) is to the simple average derivative

��ns(z) = E(Dxr(X;Uy) j Z = z):

From these results, we see that DR e¤ects generally deliver a measure of average mar-

ginal e¤ect. This is perfectly straightforward to interpret when X is separably determined.

The measure is more nuanced otherwise, due to the presence of the weights &(z; Ux): For all

the reasons discussed in the introduction, however, the less obvious interpretation of DR

e¤ects in the general case by no means renders them uninteresting.

Another interesting case arises when q is nonseparable but an �index monotonicity�

relation holds. Let X c
= q(Z;Ux), for vector-valued Ux. There always exist measurable

functions Vx and q2, scalar- and vector-valued respectively, such that Ux = q2(Vx) and

q2 is one-to-one, so that Vx = q�12 (Ux). Further, the independence of Z and Ux ensures

independence of Z and Vx (and vice versa). Let q1(Z; Vx) � q(Z; q2(Vx)). Then we also

have q(Z;Ux) = q1(Z; q
�1
2 (Ux)). In this representation, the unobservables enter as a scalar

index, Vx = q�12 (Ux). Thus, such a scalar index representation X
c
= q1(Z; Vx) always exists.

If in addition q1 is such that q1(z; vx) is monotone in vx for each z, we say that index

monotonicity holds for q. This special case parallels the assumption of �monotonicity of the

endogenous regressor in the unobserved component�in Imbens and Newey (2003) (see also

Chesher (2003) and Matzkin (2003), for example). In this case, an explicit expression for q1

can be given along the lines of Imbens and Newey (2003) or Hoderlein (2005). Speci�cally,

let Vx have the uniform distribution. (This can always be ensured. If ~Vx is non-uniform with
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distribution ~F , then Vx = ~F ( ~Vx) is uniform.) Let F (xj z) denote the conditional CDF of X

given Z = z. As Vx = F (XjZ) is uniform and F (� j z) is invertible, we have X = F�1(Vxj

Z), where F�1(� j z) is the inverse of F (� j z) with respect to its �rst argument. Further,

F�1(vxj z) is monotone in vx for each z: As q1 is monotone in vx for each z, it must be that

q1(z; vx) = F�1(vxj z):

Further, when X and Z are observable, Vx = F (X j Z) can be consistently estimated. The

same is true for q1 and Dzq1.

To examine the identi�cation of e¤ects of interest with index monotonicity, de�ne

~�Y (z; vx) � E(Y j Z = z; Vx = vx) =

Z
r(q1(z; vx); uy) dF (uyj z; vx) and

~�Y (z; vx) �
Z
r(q1(z; vx); uy) dF (uyj vx):

Under exogeneity, we have structural identi�cation: ~�Y = ~�Y : This suggests an alternative

average e¤ect measure when r and q are nonseparable and Dzq1(z; vx) 6= 0, namely

��m(z; vx) � Dz~�Y (z; vx) = Dzq1(z; vx) =

Z
Dxr(q1(z; vx); uy) dF (uyjvx):

Averaging this over Vx (equivalently Ux) gives

��
�
m(z) �

Z
��m(z; vx) dF (vx)

=

Z
Dxr(q1(z; vx); uy) dF (uy; vx) � ��ns(z):

Now let �m(z; vx) � Dz~�Y (z; vx) = Dzq1(z; vx), and de�ne

��m(z) �
Z
�m(z; vx) dF (vxjz):

Under mild conditions, exogeneity ensures structural identi�cation: ��m = ��
�
m: Thus, full

identi�cation of Dz�Y and index monotonicity for q ensure that we can fully identify and

estimate ���m = ��ns, even when q is nonseparable. (When q is separable, index monotonicity
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necessarily holds.) As ��ns and �
�
nn generally di¤er in the absence of index monotonicity for

q, it is possible to test this property by comparing estimators of ���m and �
�
nn. Here we leave

aside formal analysis of ��m, as index monotonicity is a strong assumption, as emphasized

in Hoderlein and Mammen (2007). This is especially so when the unobservables are vector-

valued; further, the estimation theory is much more involved than that for �. We also leave

formal treatment of tests for separability or index monotonicity to other work.

2.4 Formal Identi�cation Results

We now record our identi�cation results as formal statements. These succinctly summarize

our discussion above and serve as a later reference. For these results, we let supp(�) denote

the support of the indicated random variable, that is, the smallest Borel set that contains

the indicated random variable with probability one. Proposition 2.1 formalizes existence

of the relevant stochastic objects, Proposition 2.2 formalizes structural identi�cation, and

Proposition 2.3 formalizes possible forms for ��.

Proposition 2.1 Suppose that (X;Y; Z) are random variables such that E(X) and E(Y )

are �nite. (i) Then there exist measurable real-valued functions �X and �Y de�ned on

supp(Z) by eqs.(1) and (5). (ii) Suppose also that �X and �Y are di¤erentiable on supp(Z):

Then there exists a measurable real-valued function � de�ned on S� by eq.(9).

Proposition 2.2 Suppose Assumptions 2.1(i)-(iii) and Assumption 2.2 hold. (i) Then

there exist measurable real-valued functions �X and �Y de�ned on supp(Z) by eqs.(3) and

(7) respectively. Further, eqs.(2) and (6) hold, so that �X and �Y are structurally identi�ed

on supp(Z) as �X = �X and �Y = �Y . (ii) Suppose also that �X and �Y are di¤erentiable

on supp(Z): Then �X and �Y are di¤erentiable on supp(Z); and Dz�X and Dz�Y are

structurally identi�ed on supp(Z) as Dz�X = Dz�X and Dz�Y = Dz�Y . In addition, there

exists a measurable real-valued function �� de�ned on S�� by eq.(10), and � is structurally

identi�ed on S� = S�� as � = ��. (iii) If Assumption 2.1(iv) also holds and �X and �Y
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have representations in terms of observable random variables, then �X ; �Y ; Dz�X ; and Dz�Y

are fully identi�ed on supp(Z), and � and �� are fully identi�ed on S� = S�� :

Proposition 2.3 Suppose the conditions of Proposition 2.2 hold and that z ! q(z; ux) is

di¤erentiable on supp(Z) for each ux 2 supp(Ux) and x ! r(x; uy) is di¤erentiable on

supp(X) for each uy 2 supp(Uy): (i) If eqs.(4) and (8) hold for each z 2 supp(Z); then

eq.(11) holds, so ��(z) = ��nn(z) for all z 2 S��. (ii) Further, for all z 2 S�� : (a) if

r is linear, then ��(z) = �0; (b) if r and q are separable, then ��(z) = ��ss(z); (c) if

q is separable and r is nonseparable, then ��(z) = ��ns(z); (d) if q is nonseparable and

r is separable, then ��(z) = ��sn(z); and (e) if q and r are nonseparable and an index

monotonicity condition holds for q, then ���m(z) = ��ns(z):

Several remarks are in order. First, Proposition 2.1 makes no reference at all to any

underlying structure: it applies to any random variables. Next, note that the identi�cation

results of Propositions 2.1 and 2.2 do not require that X is continuously distributed or that

q or r are di¤erentiable, as these conditions are not necessary for the existence of Dz�X or

Dz�Y . In such cases, the speci�c representations of Proposition 2.3 do not necessarily hold,

as di¤erentiability for q and r is explicitly required there. Nevertheless, �� can still have a

useful interpretation as a generalized average marginal e¤ect, similar to that analyzed by

Heckman and Vytlacil (2007). For brevity and conciseness, we leave aside a more detailed

examination of these possibilities here. Finally, we need not require that Z is everywhere

continuously distributed; local versions of these results hold on open neighborhoods where

Z is continuously distributed.

2.5 Estimation Framework

In addition to �� (z), we are interested in weighted averages of �� (z) such as

��w �
Z
S��

�� (z)w (z) dz or ��wfZ �
Z
S��

�� (z)w (z) fZ (z) dz;
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where w (�) is a user-supplied weight function. Tables 1A and 1B in Heckman and Vytlacil

(2005) summarize the appropriate weights needed to generate policy parameters of interest,

such as the average treatment e¤ect or the e¤ect of treatment on the treated, in the context

of a latent index model. Under structural identi�cation, we have ��w = �w and �
�
wfZ

= �wfZ ;

where

�w �
Z
S�

� (z)w (z) dz and �wfZ �
Z
S�

� (z)w (z) fZ (z) dz: (12)

We thus focus on estimating stochastically identi�ed �; �w; and �wfZ :

To encompass these objects, we focus on estimating quantities of the general form

gV;� (z) � D�
z (E [V j Z = z] fZ (z)) ; (13)

where D�
z � (@�=@z�) denotes the derivative operator of degree �, and V is a generic

random variable that will stand for X; Y; or the constant (V � 1).

Note that special cases of eq.(13) include densities

fZ (z) = g1;0 (z) ;

conditional expectations

�Y (z) = gY;0 (z) = g1;0 (z) ;

and, when they exist, their derivatives

Dz�Y (z) =
gY;1 (z)

g1;0 (z)
� gY;0 (z)

g1;0 (z)

g1;1 (z)

g1;0 (z)
:

Once we know the asymptotic properties of estimators of gV;� (z), we easily obtain the

asymptotic properties of estimators of � (z), �w; or �wfZ .

As discussed above, we treat two distinct cases. In the �rst case (OXI), we observe Z,

ensuring that X; Y; and Z permit estimation of � and related objects of interest. In the

second case (PXI), we do not observe Z but instead observe a proxy Z1
c
= Z + U1 (with

U1 ? Z). In the absence of further information, � is no longer empirically accessible.
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The di¢ culty can be seen as follows. Under our assumptions, Z1 is a "valid" and "rele-

vant" standard instrument; thus, for linear r and q; we can structurally identify Dz�Y;1(z)

= Dz�X;1(z1) = cov(Y; Z1)=cov(X;Z1) = cov(Y; Z)=cov(X;Z) = Dz�Y (z) = Dz�X(z) as

Dz�Y (z) = Dz�X(z) = �0; where �Y;1(z) � E(Y j Z1 = z) and �X;1(z) � E(X j Z1 = z).

This fails without linearity, as Dz�Y;1(z) = Dz�X;1(z) generally di¤ers from Dz�Y (z) =

Dz�X(z): Thus, even with structural identi�cation of Dz�Y (z) = Dz�X(z), Dz�Y;1(z) =

Dz�X;1(z) does not generally have a structural meaning �it remains a stochastic object. In

other words, substituting a proxy for an instrument, while harmless in fully linear settings,

generally leads to inconsistent estimates of structural e¤ects in nonlinear settings.

As we show, however, � can be estimated if we can observe two error-contaminated

proxies for Z,

Z1
c
= Z + U1 Z2

c
= Z + U2;

where U1 and U2 are random variables satisfying assumptions given below.

3 Estimation with Observed Exogenous Instruments

3.1 Asymptotics: General Theory

We �rst state results for generic Z and V , with gV;� as de�ned above. Our �rst conditions

specify some relevant properties of Z and V . For notational convenience in what follows, we

may write "supz2R" or "infz2R" in place of "supz2supp(Z)" or "infz2supp(Z)". By convention,

we also take the value of any referenced function to be zero except when z 2 supp(Z).

Assumption 3.1 Z is a random variable with continuous density fZ such that supz2R

fZ (z) <1:

Among other things, this ensures that fZ (z) > 0 for all z 2 supp(Z):
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Assumption 3.2 V is a random variable such that (i) E(jV j) <1; (ii) E(V 2) <1 and

supz2RE [V
2jZ = z] <1; (iii) infz2RE [V 2jZ = z] > 0; (iv) for some � > 0; E

�
jV j2+�

�
<

1 and supz2RE
�
jV j2+�jZ = z

�
<1:

Assumptions 3.1(i) and 3.2(i) ensure that gV;0 (z) is well de�ned. Next, we impose

smoothness on gV;0. Let N � f0; 1; :::g and N � N [ f1g:

Assumption 3.3 gV;0 is continuously di¤erentiable of order � 2 N on R:

Given a sample of n independent and identically distributed (IID) observations fVi; Zig,

a natural kernel estimator for gV;� (z) is

ĝV;� (z; h) = D�
z Ê

�
V

h
k

�
Z � z

h

��
= (�1)� h�1��Ê

�
V k(�)

�
Z � z

h

��
;

where k (�) is a user-speci�ed kernel, k(�) (z) � D�
z k (z), h > 0 is the kernel bandwidth,

and the operator Ê [�] denotes a sample average: for any random variable W , Ê [W ] �

n�1
Pn

i=1Wi, where W1; : : : ;Wn is a sample of random variables, distributed identically as

W: We specify our choice of kernel as follows

Assumption 3.4 The real-valued kernel z ! k (z) is measurable and symmetric,
R
k(z)dz =

1; and its Fourier transform � ! � (�) is such that: (i) � has two bounded derivatives; (ii)

� is compactly supported (without loss of generality, we take the support to be [�1; 1]); and

(iii) there exists �� > 0 such that � (�) = 1 for j�j < �� .

Requiring that the kernel�s Fourier transform is compactly supported implies that the

kernel is continuously di¤erentiable to any order. Politis and Romano (1999) call a kernel

whose Fourier transform is constant in the neighborhood of the origin, as in (iii), a "�at-

top" kernel. When the derivatives of the Fourier transform vanish at the origin, all moments

of the kernel vanish, by the well-known Moment Theorem. Such kernels are thus also called

"in�nite order" kernels. These have the property that, if the function to be estimated is
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in�nitely many times di¤erentiable, the bias of the kernel estimator shrinks faster than any

positive power of h. The use of in�nite order kernels is not essential for the OXI case, but is

especially advantageous in the PXI case, where fast convergence rates are more di¢ cult to

achieve. We use in�nite order kernels in both cases to maintain a fully comparable analysis.

Our �rst result decomposes the kernel estimation error.

Lemma 3.1 Suppose that fVi; Zig is a sequence of identically distributed random variables

satisfying Assumptions 3.1, 3.2(i) and 3.3, and that Assumption 3.4 holds. Then for each

� = 0; :::;�; z 2 supp(Z); and h > 0

ĝV;� (z; h)� gV;� (z) = BV;� (z; h) + LV;� (z; h) ; (14)

where BV;� (z; h) is a nonrandom �bias term�de�ned as

BV;� (z; h) � gV;� (z; h)� gV;� (z) ;

with

gV;� (z; h) � D�
zE

�
V

h
k

�
Z � z

h

��
= (�1)�E

�
V h���1k(�)

�
Z � z

h

��
;

and LV;� (z; h) is a �variance term�admitting the linear representation

LV;� (z; h) = Ê [`V;� (z; h;V; Z)] ;

with

`V;� (z; h; v; ~z) � (�1)� h���1vk(�)
�
~z � z

h

�
� E

�
(�1)� h���1V k(�)

�
Z � z

h

��
:

Proofs can be found in the Mathematical Appendix.

To obtain rate of convergence results for our kernel estimators, we impose further

smoothness conditions on gV;0 and specify convergence rates for the bandwidth.

Assumption 3.5 For � 2 R; let �V (�) � E
�
V ei�Z

�
=
R
gV;0 (z) e

i�zdz: There exist con-

stants C� > 0; �� � 0, �� � 0; and � 2 R; such that �� � � 0 and

j�V (�)j � C� (1 + j�j)� exp
�
�� j�j��

�
: (15)
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Moreover, if �� = 0, then for given � 2 f0; :::;�g; � < ��� 1:

This Fourier transform bound directly relates to conditions on the derivatives of gV;0. If

for some � < 0; gV;0 admits � = �� derivatives that are absolutely integrable over R,

then Assumption 3.5 is satis�ed with �� = 0. The situation where �� < 0 corresponds to

the case where gV;0 is in�nitely many times di¤erentiable (� =1). This Fourier bound is

particularly advantageous when combined with an in�nite order kernel, because the order

of magnitude of the estimation bias is then directly related to the constants �� and ��. A

further advantage is that Assumption 3.5 exactly parallels the assumptions needed for the

PXI case, thus facilitating comparisons.

We choose the kernel bandwidth h according to the next condition.

Assumption 3.6 fhng is a sequence of positive numbers such that as n ! 1; hn ! 0;

and for given � 2 f0; :::;�g; nh2�+1n !1:

Taken together, our moment and bandwidth conditions are standard in the kernel estima-

tion literature (e.g. Haerdle and Linton, 1994; Andrews, 1995; Pagan and Ullah, 1999).

The decomposition of Lemma 3.1 and the assumptions just given enable us to state our

�rst main result. We give this in a form that somewhat departs from the usual asymptotics

for kernel estimators, but that facilitates the analysis for the various quantities of interest

and eases comparisons with the PXI case.

Theorem 3.2 Let the conditions of Lemma 3.1 hold with fVi; Zig IID.

(i) Suppose in addition that Assumption 3.5 holds for given � 2 f0; :::;�g. Then for

h > 0;

sup
z2R

jBV;� (z; h)j = O
��
h�1
��;B exp��B �h�1��B�� ;

where �B � ����
�� ; �B � ��; and �;B � � + 1 + �:
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(ii) For each z 2 supp(Z) and h > 0, E [LV;� (z; h)] = 0; and if Assumption 3.2(ii) also

holds then

E
�
L2V;� (z; h)

�
= n�1
V;� (z; h) ;

where


V;� (z; h) � E
�
(`V;� (z; h;V; Z))

2�
is �nite and satis�es r

sup
z2R


V;� (z; h) = O
�
h���1=2

�
: (16)

Further,

sup
z2R

jLV;� (z; h)j = Op
�
n�1=2h���1

�
: (17)

If in addition hn ! 0 as n!1, then for each z 2 supp(Z)

h2�+1n 
V;� (z; hn)! E
�
V 2jZ = z

�
fZ (z)

Z �
k(�) (z)

�2
dz (18)

and if Assumption 3.2(iii) also holds, then 
V;� (z; hn) > 0 for all n su¢ ciently large.

(iii) If in addition to the conditions of (ii); Assumptions 3.2(iv) and 3.6 for given

� 2 f0; :::;�g also hold, then for each z 2 supp(Z)

n1=2 (
V;� (z; hn))
�1=2 LV;� (z; hn)

d! N (0; 1) : (19)

As we use nonparametric estimators ĝV;� as building blocks for more complex quan-

tities of interest such as �w and �wfZ , we now consider a functional b of a k-vector g �

(gV1;�1 ; : : : ; gVk;�k). Speci�cally, we establish the asymptotic properties of b (ĝ (�; h))�b (g) �

b (ĝV1;�1 (�; h) ; : : : ; ĝVk;�k (�; h))�b (gV1;�1 ; : : : ; gVk;�k). We �rst impose minimum convergence

rates. For conciseness, we state these in a high-level form; primitive conditions obtain via

Theorem 3.2.

Assumption 3.7 For given � 2 f0; :::;�g; supz2R jBV;� (z; hn)j = o
�
n�1=2

�
and supz2R

jLV;� (z; hn)j = op
�
n�1=4

�
.
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The following theorem consists of two parts. The �rst part provides an asymptotically

linear representation, useful for analyzing a scalar estimator constructed as a functional of

a vector of estimators. The second part gives a convenient asymptotic normality and root-n

consistency result useful for analyzing �w and �wfZ . In this result we explicitly consider a

�nite family of random variables fV1; :::; VJg satisfying Assumptions 3.2, 3.3, and 3.5. We

require that these conditions hold uniformly, with the same constants �;�; C�; ��; ��; �

for all V in the family. As the family is �nite, this can always be ensured by taking the

constants �;�; C�; ��; ��; � to be the worst-case values among all V in the family.

Theorem 3.3 For �; J 2 N, let �1; : : : ; �J belong to f0; :::;�g, and suppose that fV1i; :::; VJi; Zig

is an IID sequence of random vectors such that fVji; Zig satis�es the conditions of Theorem

3.2 and Assumption 3.7 for j = 1; :::; J with identical choices of k and hn.

Let the real-valued functional b be such that for any ~g � (~gV1;�1 ; : : : ; ~gVJ ;�J ) in an L1

neighborhood of the J-vector g � (gV1;�1 ; :::; gVJ ;�J ),

b (~g)� b (g) =
JX
j=1

Z �
~gVj ;�j (z)� gVj ;�j (z)

�
sj (z) dz +

JX
j=1

O
�~gVj ;�j � gVj ;�j

2
1

�
(20)

for some real-valued functions sj; j = 1; :::; J . If sj is such that supz2R jsj (z)j < 1,R
jsj (z)j dz < 1; and E

��
Vjs

(�j)
j (Z)

�2�
< 1 (with s(�j)j (z) � D

�j
z sj (z)) for each j =

1; :::; J , then

b (ĝ (�; hn))� b (g) =
JX
j=1

Ê
h
 Vj ;�j (sj;Vj; Z)

i
+ op

�
n�1=2

�
;

where

 Vj ;�j (sj; vj; z) �
�
vjs

(�j)
j (z)� E

h
Vjs

(�j)
j (Z)

i�
; j = 1; :::; J:

Moreover,

n1=2 (b (ĝ (�; hn))� b (g))
d! N (0;
b) ;

where


b � E

24 JX
j=1

 Vj ;�j (sj;Vj; Z)

!235 <1:
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Interestingly, this result provides �nonparametric �rst step correction terms�,  Vj ;�j (sj; vj; z),

similar to the correction terms � (z) introduced in Newey (1994). Whereas Newey (1994)

provides correction terms for conditional expectations and densities (and derivatives thereof),

we provide correction terms for quantities of the form gV;� (z). Naturally, our correction

term for g1;0 (z) reduces to Newey�s correction term for densities. Also, applying Theorem

3.3 to a nonlinear functional of the ratio gV;0 (z) =g1;0 (z) recovers Newey�s correction term

for conditional expectations.

3.2 Asymptotics: OXI Case

We now apply our general asymptotic results to our main quantities of interest, eqs.(9) and

(12). First we treat the following nonparametric estimator of � (z):

�̂ (z; hn) � Dz�̂Y (z; hn) = Dz�̂X(z; hn) (21)

for z 2 supp(Z), where

Dz�̂Y (z; h) � ĝY;1 (z; h)

ĝ1;0 (z; h)
� ĝY;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
and

Dz�̂X(z; h) � ĝX;1 (z; h)

ĝ1;0 (z; h)
� ĝX;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
:

Applying Theorem 3.2 and a straightforward Taylor expansion, we obtain

Theorem 3.4 Suppose that fXi; Yi; Zig is an IID sequence of random variables satisfying

the conditions of Theorem 3.2 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical

choices of k and hn. Further, suppose maxV=1;X;Y max�=0;1 supz2R jgV;� (z)j < 1, and for

� > 0; de�ne

Z� � fz 2 R : fZ (z) � � and jDz�X(z)j � �g :

Then

sup
z2Z�

����̂ (z; hn)� �(z)
��� = O

�
��4

�
h�1n
�1;B exp��B �h�1n ��B��+Op

�
��4n�1=2

�
h�1n
�2�

;
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and there exists a sequence f�ng such that �n > 0; �n ! 0 as n!1; and

sup
z2Z�n

����̂ (z; hn)� �(z)
��� = op(1):

The delta method secures the next result.

Theorem 3.5 Suppose that fXi; Yi; Zig is an IID sequence satisfying the conditions of

Theorem 3.2 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical choices for k and

fhng: Further, suppose maxV=1;X;Y max�=0;1 jgV;� (z)j <1. Then for all z 2 supp(Z) such

that jDz�X(z)j > 0;

n1=2

�1=2
� (z; hn)

�
�̂ (z; hn)� � (z)

�
p! N (0; 1) ;

provided that
�
maxV=1;X;Y max�=0;1

�
n1=2h

�+1=2
n

�
jBV;� (z; hn)j

�
p! 0 and that


� (z; hn) � E
�
(`� (z; hn;X; Y; Z))

2�
is �nite and positive for all n su¢ ciently large, where

`� (z; h;x; y; z) �
X
�=0;1

(sX;1;� (z) `1;� (z; h; 1; z) + sX;X;� (z) `X;� (z; h;x; z)

+sY;1;� (z) `1;� (z; h; 1; z) + sY;Y;� (z) `Y;� (z; h; y; z)) (22)

sY;Y;1 (z) � 1

Dz�X(z)

1

g1;0 (z)

sY;Y;0 (z) � � 1

Dz�X(z)

g1;1 (z)

g1;0 (z)

1

g1;0 (z)

sY;1;1 (z) � � 1

Dz�X(z)

gY;0 (z)

g1;0 (z)

1

g1;0 (z)

sY;1;0 (z) � 1

Dz�X(z)

�
2
gY;0 (z)

g1;0 (z)

g1;1 (z)

g1;0 (z)
� gY;1 (z)

g1;0 (z)

�
1

g1;0 (z)

sX;Y;1 (z) � � (z)

Dz�X(z)

1

g1;0 (z)

sX;Y;0 (z) � � � (z)

Dz�X(z)

g1;1 (z)

g1;0 (z)

1

g1;0 (z)

sX;1;1 (z) � � � (z)

Dz�X(z)

gX;0 (z)

g1;0 (z)

1

g1;0 (z)

sX;1;0 (z) � � (z)

Dz�X(z)

�
2
gX;0 (z)

g1;0 (z)

g1;1 (z)

g1;0 (z)
� gX;1 (z)

g1;0 (z)

�
1

g1;0 (z)
:
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As described in Section 2, weighted functions of �; �w and �wfZ ; de�ned in eq.(12) are

also of interest. We now propose the following estimators for these:

�̂w �
Z
S�̂(�;hn )

�̂ (z; hn)w (z) dz

�̂wfZ �
Z
S�̂(�;hn)

�̂ (z; hn)w (z) ĝ1;0 (z; hn) dz;

where S�̂(�;hn) � fz : ĝ1;0 (z; hn) > 0; jDz�̂X(z; hn)j > 0g: We next restrict the weights.

Assumption 3.8 Let W be a bounded measurable subset of R: (i) The weighting function

w : R! R is measurable and supported onW ; (ii) infz2W fZ (z) > 0 and infz2W jDz�X(z)j >

0; (iii) maxV=1;X;Y max�=0;1 supz2W jgV;� (z)j <1.

The asymptotic distributions of these estimators follow by straightforward application

of Theorem 3.3, noting that, with probability approaching one, the integrals over the ran-

dom set S�̂(�;hn) equal the same integral over the set W, because under our assumptions

the denominators in the expression for �̂ (z; hn) converge uniformly to functions that are

bounded away from zero over W. Due to the weighted estimators�semiparametric nature,

root-n consistency and asymptotic normality hold.

Theorem 3.6 Suppose the conditions of Theorem 3.3 hold for V = 1; X; Y; and � = 0; 1;

and that Assumption 3.8 also holds. Then

n1=2
�1=2w

�
�̂w � �w

�
d! N (0; 1) ;

provided that


w � E
h�
 �w (X; Y; Z)

�2i
is �nite and positive for all n su¢ ciently large, where

 �w (x; y; z) �
X
�=0;1

( 1;� (wsX;1;�; 1; z) +  X;� (wsX;X;�;x; z)

+ 1;� (wsY;1;�; 1; z) +  Y;� (wsY;Y;�; y; z));
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wsA;V;� denotes the function mapping z to w (z) sA;V;� (z) ; and where  V;� (s; v; z) is de�ned

in Theorem 3.3.

Theorem 3.7 Suppose the conditions of Theorem 3.3 hold for V = 1; X; Y; and � = 0; 1;

and that Assumption 3.8 also holds. Then

n1=2

�1=2
�wfZ

�
�̂wfZ � �wfZ

�
d! N (0; 1) ;

provided that


wfZ � E

��
 �wfz (X; Y; Z)

�2�
is �nite and positive for all n su¢ ciently large, where

 �wfZ
(x; y; z) � f

X
�=0;1

( 1;� (wfZsX;1;�; 1; z) +  X;� (wfZsX;X;�;x; z)

+ 1;� (wfZsY;1;�; 1; z) +  Y;� (wfZsY;Y;�; y; z))g

+ 1;0 (w�; 1; z) ;

wsA;V;� denotes the function mapping z to w (z) fZ(z)sA;V;� (z) ; w� denotes the function

mapping z to w (z) �(z), and where  V;� (s; v; z) is de�ned in Theorem 3.3.

It is straightforward to show that the asymptotic variances in Theorems 3.2, 3.3, 3.5,

3.6, and 3.7 can be consistently estimated, although we do not provide explicit theorems

due to space limitations. In the cases of Theorems 3.2 or 3.5, this estimation can be

accomplished, respectively, by substituting conventional kernel nonparametric estimates

into eq.(18), or by calculating the variance of eq.(22) through a similar technique. In the

case of Theorems 3.3, 3.6, and 3.7, we directly provide an expression for the in�uence

function, from which the asymptotic variance is easy to calculate.

4 Estimation with Proxies for Unobserved Exogenous
Instruments

When Z cannot be observed, the estimators of Section 3 are not feasible. In this section we

consider estimators based on error-laden measurements of Z. This delivers nonparametric
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and semi-parametric analogs of the PXI estimators introduced by CW.

4.1 A General Representation Result

We begin by obtaining a representation in terms of observables for gV;� with generic V

when Z is unobserved, using two error-contaminated measurements of Z:

Z1 = Z + U1 Z2 = Z + U2:

We impose the following conditions on Z; V; U1; and U2. For succinctness, some conditions

may overlap those previously given.

Assumption 4.1 E [jZj] <1; E [jU1j] <1; and E [jV j] <1.

Assumption 4.2 E [U1jZ;U2] = 0; U2 ? Z; and E [V jZ;U2] = E [V jZ] :

The next assumption formalizes the measurement of Z.

Assumption 4.3 Z1 = Z + U1 and Z2 = Z + U2:

We now show that gV;� can be de�ned solely in terms of the joint distribution of V; Z1;

and Z2: Thus, if these are observable, then gV;� is empirically accessible. This result gen-

eralizes Schennach (2004b), which focused on the � = 0 case.

Lemma 4.1 Suppose Assumptions 3.1, 4.1 - 4.3, and 3.3 hold. Then for each � 2

f0; :::;�g and z 2 supp(Z)

gV;� (z) =
1

2�

Z
(�i�)� �V (�) exp (�i�z) d�;

where for each real �;

�V (�) � E
�
V ei�Z

�
=
E
�
V ei�Z2

�
E [ei�Z2 ]

exp

 Z �

0

iE
�
Z1e

i�Z2
�

E [ei�Z2 ]
d�

!
:
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4.2 Estimation

Our estimator is motivated by a smoothed version of gV;� (z).

Lemma 4.2 Suppose Assumptions 3.1, 4.1, and 3.3 hold, and let k satisfy Assumption

3.4. For h > 0 and for each � 2 f0; :::;�g and z 2 supp(Z) now let

gV;� (z; h) �
Z
1

h
k

�
~z � z

h

�
gV;� (~z) d~z:

Then

gV;� (z; h) =
1

2�

Z
(�i�)� � (h�)�V (�) exp (�i�z) d�:

By lemma 1 of the appendix of Pagan and Ullah (1999, p.362), we have limh!0 gV;� (z; h) =

gV;� (z) ; so we also de�ne gV;� (z; 0) � gV;� (z) : Motivated by Lemma 4.2, we now propose

the estimator

ĝV;� (z; hn) �
1

2�

Z
(�i�)� � (hn�) �̂V (�) exp (�i�z) d�; (23)

with hn ! 0 as n!1, where, motivated by Lemma 4.1,

�̂V (�) �
Ê
�
V ei�Z2

�
Ê [ei�Z2 ]

exp

 Z �

0

iÊ
�
Z1e

i�Z2
�

Ê [ei�Z2 ]
d�

!
; (24)

and Ê [�] denotes a sample average, as above.

4.3 Asymptotics: General Theory

The results of this section extensively generalize those of Schennach (2004a, 2004b), to

include (i) the � 6= 0 case (ii) uniform convergence results and (iii) general semiparametric

functionals of gV;�, and hence will be applicable beyond our PXI case. Parallel to Lemma 3.1,

we �rst decompose the estimation error into components that will be further characterized

in subsequent results.
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Lemma 4.3 Suppose that fVi; Zi; U1i; U2ig is a sequence of identically distributed random

variables satisfying Assumptions 3.1, 4.1 - 4.3, and 3.3, and that Assumption 3.4 holds.

Then for each � = 0; :::;�; z 2 supp(Z); and h > 0;

ĝV;� (z; h)� gV;� (z) = BV;� (z; h) + LV;� (z; h) +RV;� (z; h) ; (25)

where BV;� (z; h) is a nonrandom �bias term�de�ned as

BV;� (z; h) � gV;� (z; h)� gV;� (z) ;

LV;� (z; h) is a �variance term�admitting the linear representation

LV;� (z; h) = Ê [`V;� (z; h;V; Z1; Z2)] ;

with

`V;� (z; h; v; z1; z2) �
Z
	V;�;1 (�; z; h)

�
ei�z2 � E

�
ei�Z2

��
d�

+

Z
	V;�;Z1 (�; z; h)

�
z1e

i�z2 � E
�
Z1e

i�Z2
��
d�

+

Z
	V;�;V (�; z; h)

�
vei�z2 � E

�
V ei�Z2

��
d�;

where, for A = 1; Z1; and V; we let �A (�) � E
�
Aei�Z2

�
and de�ne

	V;�;1 (�; z; h) � � 1

2�

�V (�)

�1 (�)
exp (�i�z) (�i�)� � (h�)

� 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

exp (�i�z) (�i�)� � (h�)�V (�) d�

	V;�;Z1 (�; z; h) � 1

2�

i

�1 (�)

Z �1

�

exp (�i�z) (�i�)� � (h�)�V (�) d�

	V;�;V (�; z; h) � 1

2�

�1 (�)

�1 (�)
exp (�i�z) (�i�)� � (h�) ;

where for a given function � ! f(�), we write
R �1
�

f(�)d� � limc!+1
R c�
�
f(�)d�; and

RV;� (z; h) is an (implicitly de�ned) nonlinear �remainder term.�

We already have conditions su¢ cient to describe the asymptotic properties of the bias

term de�ned in Lemma 4.3.
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Theorem 4.4 Let the conditions of Lemma 4.3 hold with fVi; Zi; U1i; U2ig IID, and suppose

in addition that Assumption 3.5 holds for given � 2 f0; :::;�g. Then for h > 0;

sup
z2R

jBV;� (z; h)j = O
��
h�1
��;B exp��B �h�1��B�� ;

where �B � ����
�� ; �B � ��; and �;B � � + 1 + �:

This result is closely parallel to Theorem 3.2(i). Our next result parallels Theorem

3.2(ii) and (iii). For this, we �rst ensure that LV;� (z; h) has �nite variance.

Assumption 4.4 E [Z21 ] <1; E [V 2] <1.

To obtain the rate for 
V;� (z; h) = var(n1=2LV;� (z; h)), we impose bounds on the tail

behavior of the Fourier transforms involved, as is common in the deconvolution literature

(e.g. Fan, 1991; Fan and Truong, 1993). These rates are analogous to Assumption 3.5.

Assumption 4.5 (i) For each � 2 R, let �1 (�) � E
�
ei�Z

�
satisfy����D��1 (�)

�1 (�)

���� � C1 (1 + j�j)1 (26)

for some C1 > 0 and 1 � 0; and for C�; ��; ��; and �; as in Assumption 3.5;

j�1 (�)j � C� (1 + j�j)� exp
�
�� j�j��

�
;

(ii) For each � 2 R, let �1 (�) � E
�
ei�Z2

�
satisfy

j�1 (�)j � C� (1 + j�j)� exp
�
�� j�j��

�
(27)

for some C� > 0 and �� � 0; �� � �� � 0; and � 2 R; such that ��� � 0.

For conciseness, we express our bounds in the form (1 + j�j) exp
�
� j�j�

�
, thereby si-

multaneously covering the ordinarily smooth (� = 0, � = 0) and supersmooth (� 6= 0,

� 6= 0) cases. Note that the lack of a term exp
�
�1 j�j�1

�
in eq.(26) results in a negligible
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loss of generality, asD��1 (�) =�1 (�) = D� ln�1 (�) ; and ln�1 (�) is typically a power of � for

large �; even if �1 (�) is associated with a supersmooth distribution. The tail behaviors of

�1 (�) and �V (�) have the same e¤ect on the convergence rate; we may thus impose the same

bound without loss of generality. The lower bound on �1 (�) is implied by separate lower

bounds on E
�
ei�Z

�
and E

�
ei�U2

�
, as independence ensures E

�
ei�Z2

�
= E

�
ei�Z

�
E
�
ei�U2

�
.

By using the in�nite order kernels of Assumption 3.4, we ensure that the rate of conver-

gence of the estimator is never limited by the order of the kernel but only by the smoothness

of the data generating process. This can be especially helpful when the densities of Z2 and

Z are both supersmooth, in which case an in�nite order kernel can often deliver a conver-

gence rate n�r for some r > 0: In contrast a traditional �nite-order kernel only achieves a

(lnn)�r rate. Although our theory can easily be adapted to cover �nite-order kernels, as

in (Schennach, 2004b), we focus on in�nite order kernels to exploit their better rates.

The next bounds parallel Assumption 3.2(iv) and help to establish asymptotic normality

of the kernel regression estimators.

Assumption 4.6 For some � > 0; E
�
jZ1j2+�

�
<1; supz2RE

�
Z2+�1 jZ2 = z

�
<1; E

�
jV j2+�

�
<

1; and supz2RE
�
V 2+�jZ2 = z

�
<1:

The next assumption imposes a lower bound on the bandwidth that will be used when

establishing asymptotic normality.

Assumption 4.7 If �� = 0 in Assumption 4.5, then for given � 2 f0; :::;�g; h�1n =

O
�
n��n(3=2)=(3��+�+1+�)

�
for some � > 0; otherwise h�1n = O

�
(lnn)�

�1
� ��

�
for some

� > 0.

Theorem 4.5 Let the conditions of Lemma 4.3 hold with fVi; Zi; U1i; U2ig IID. (i) Then

for each z 2 supp(Z) and h > 0; E [LV;� (z; h)] = 0; and if Assumption 4.4 also holds, then

E
�
L2V;� (z; h)

�
= n�1
V;� (z; h) ;
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where


V;� (z; h) � E
�
(`V;� (z; h;V; Z1; Z2))

2� <1:

Further, if Assumption 4.5 holds thenr
sup
z2R


V;� (z; h) = O
��
h�1
��;L exp��L �h�1��L�� ; (28)

with �L � ��1(��=��) � ��; �L � ��, and �;L � 2 + � � � + 1 + �: We also have

sup
z2R

jLV;� (z; h)j = Op

�
n�1=2

�
h�1
��;L exp��L �h�1��L�� ;

(ii) If Assumptions 4.6 and 4.7 also hold, and if for each z 2 R; 
V;� (z; hn) > 0 for all

n su¢ ciently large, then for each z 2 supp(Z)

n1=2(
V;� (z; hn))
�1=2LV;� (z; hn)

d! N (0; 1) :

Finally, we establish a bound on the remainder RV;� (z; hn) : For this, we introduce

restrictions on the moments of Z2.

Assumption 4.8 E [jZ2j] <1; E [jZ1Z2j] <1; and E [jV Z2j] <1:

We provide two bounds for RV;� (z; hn). The �rst is relevant when one requires a limiting

distribution. When instead we only need a convergence rate, a lower bandwidth bound

slightly di¤erent than that of Assumption 4.7 applies.

Assumption 4.9 If �� = 0 in Assumption 4.5, then h�1n = O
�
n��n(2+21�2�)

�1
�
for

some � > 0; otherwise h�1n = O
�
(lnn)�

�1
� ��

�
for some � > 0.

Note that neither of Assumption 4.7 or 4.9 is necessarily stronger than the other.

Theorem 4.6 (i) Suppose the conditions of Theorem 4.5 hold, together with Assumption

4.8. Then

sup
z2R

jRV;� (z; hn)j = Op

�
n(�1=2)+�

�
1 + h�1n

�1+1�� exp���� �h�1n �����
� Op

�
n�1=2

�
h�1n
��;L exp��L �h�1n ��L��
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for some " > 0. (ii) If Assumption 4.9 holds in place of Assumption 4.7, then

sup
z2R

jRV;� (z; hn)j = op

�
n�1=2

�
h�1n
��;L exp��L �h�1n ��L�� :

We can now collect Theorems 4.4-4.6 into two straightforward corollaries, one estab-

lishing a convergence rate and one establishing asymptotic normality.

Corollary 4.7 If the conditions of Theorem 4.6(ii) hold, then

sup
z2R

jĝV;� (z; hn)� gV;� (z; 0)j = O
��
h�1n
��;B exp��B �h�1n ��B��+

+ Op

�
n�1=2

�
h�1n
��;L exp��L �h�1n ��L�� :

The following assumption ensures that the bias and higher-order terms will never dom-

inate the asymptotically linear terms.

Assumption 4.10 For given � 2 f0; :::;�g; hn ! 0 at a rate such that for each z 2

supp(Z) such that 
V;� (z; hn) > 0 for all n su¢ ciently large, we have n1=2 (
V;� (z; hn))
�1=2

jBV;� (z; hn) j
p! 0 and n1=2 (
V;� (z; hn))

�1=2 jRV;� (z; hn)j
p! 0.

For our next result, it is not su¢ cient to require that BV;� (z; h) and RV;� (z; h) are small

relative to the bound given in eq.(28), because the latter is an upper bound. Instead,

Assumption 4.10 ensures a lower bound on 
V;� (z; hn). While we give this assumption in a

fairly high-level form for clarity, one can state more primitive (but also more cumbersome)

su¢ cient conditions using techniques given in Schennach (2004b).

Corollary 4.8 If the conditions of Theorem 4.6(i) and Assumption 4.10 hold, then for

each z 2 supp(Z) such that 
V;� (z; hn) > 0 for all n su¢ ciently large, we have

n1=2 (
V;� (z; hn))
�1=2 (ĝV;� (z; hn)� gV;� (z; 0))

d! N (0; 1) :
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Just as in the OXI case, we now consider the case of a functional b of a �nite vector

g � (gV1;�1 ; : : : ; gVJ ;�J ) of quantities of the general form of eq.(13) and seek the asymptotic

properties of b (ĝ (�; h))� b (g) � b ((ĝV1;�1 (�; h) ; : : : ; ĝVJ ;�J (�; h)))� b ((gV1;�1 ; : : : ; gVJ ;�J )).

We �rst require minimum convergence rates, which we state here in a high-level form

for conciseness � primitive conditions can be obtained via Theorems 4.4-4.6.

Assumption 4.11 For given � 2 f0; :::;�g; supz2R jBV;� (z; hn)j = o
�
n�1=2

�
; supz2R

jLV;� (z; hn)j = op
�
n�1=4

�
; and supz2R jRV;� (z; hn)j = op

�
n�1=2

�
.

The following theorem consists of two parts, one establishing the validity of an as-

ymptotically linear representation, useful for analyzing a scalar estimator constructed as

a functional of a vector of estimators. The second part gives a convenient asymptotic

normality and root-n consistency result useful for analyzing �w and �wfZ .

Theorem 4.9 For given �; J 2 N, let �1; : : : ; �J belong to f0; :::;�g, and suppose that

fV1i; :::; VJi; Zi; U1i; U2ig is an IID sequence of random vectors such that fVji; Zi; U1i; U2ig

satis�es the conditions of Corollary 4.8 and Assumption 4.11 for j = 1; :::; J , with identical

choices of k and hn.

Let the real-valued functional b satisfy, for any ~g � (~gV1;�1 ; : : : ; ~gVJ ;�J ) in an L1 neigh-

borhood of the k�vector g � (gV1;�1 ; :::; gVJ ;�J ),

b (~g)� b (g) =

JX
j=1

Z �
~gVj ;�j (z)� gVj ;�j (z)

�
sj (z) dz +

JX
j=1

O
�~gVj ;�j � gVj ;�j

2
1

�
(29)

for some real-valued functions sj; j = 1; :::; J . If sj is such that
R
jsj (z)j dz < 1 andR

�	sj ;Vj ;�j (�) d� <1, where

�	s;V;� (�) � 1

j�1 (�)j

�
1 +

j�Z1 (�)j
j�1 (�)j

��
f
Z 1

j�j
j�s (�)j j�j� j�V (�)j d�g+ j�s (�)j j�j

� j�1 (�)j
�

�Z1 (�) � E
�
Z1e

i�Z2
�

�s (�) �
Z
s (z) ei�zdz;
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for each j = 1; :::; J; then

b (ĝ (�; hn))� b (g) =
JX
j=1

Ê
h
 Vj ;�j (sj;Vj; Z1; Z2)

i
+ op

�
n�1=2

�
;

where

 V;� (s; v; z1; z2) �
Z
	s;V;�;1 (�)

�
ei�z2 � E

�
ei�Z2

��
d�

+

Z
	s;V;�;Z1 (�)

�
z1e

i�z2 � E
�
Z1e

i�Z2
��
d�

+

Z
	s;V;�;V (�)

�
vei�z2 � E

�
V ei�Z2

��
d�;

with

	s;V;�;1 (�) � � 1

2�

�V (�)

�1 (�)
�ys (�) (�i�)

� � 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

�ys (�) (�i�)
� �V (�) d�

	s;V;�;Z1 (�) � 1

2�

i

�1 (�)

Z �1

�

�ys (�) (�i�)
� �V (�) d�

	s;V;�;V (�) � 1

2�

�1 (�)

�1 (�)
�ys (�) (�i�)

� ;

where y denotes the complex conjugate. Moreover,

n1=2 (b (ĝ (�; hn))� b (g))
d! N (0;
b) ;

where


b = E

24 kX
j=1

 Vj ;�j (sj;Vj; Z1; Z2)

!235 <1:

4.4 Asymptotics: PXI Case

Having derived general asymptotic results, we now apply them to the main quantities of

interest (eqs.(9) and (12)). Consider the following nonparametric estimator of � (z):

�̂ (z; h) � Dz�̂Y (z; h) = Dz�̂X(z; h) (30)

for z 2 supp(Z), where, using the kernel estimators ĝ of the preceding section, we have

Dz�̂Y (z; h) � ĝY;1 (z; h)

ĝ1;0 (z; h)
� ĝY;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
and

Dz�̂X(z; h) � ĝX;1 (z; h)

ĝ1;0 (z; h)
� ĝX;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
:
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Combining the results from the previous section with a straightforward Taylor expansion

yields the following result.

Theorem 4.10 Suppose that fXi; Yi; Zi; U1i; U2ig is an IID sequence satisfying the condi-

tions of Corollary 4.7 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical choices

of k and hn. Further, suppose maxV=1;X;Y max�=0;1 supz2R jgV;� (z)j < 1, and for � > 0;

de�ne

Z� � fz 2 R : fZ (z) � � and jDz�X(z)j � �g :

Then

sup
z2Z�

����̂ (z; hn)� � (z)
��� = O

�
��4

�
h�1n
�1;B exp��B �h�1n ��B��+

+ Op

�
��4n�1=2

�
h�1n
�1;L exp��L �h�1��L�� ;

and there exists a sequence f�ng such that �n > 0; �n ! 0 as n!1; and

sup
z2Z�n

����̂ (z; hn)� � (z)
��� = op(1):

The delta method secures the next result.

Theorem 4.11 Suppose that fXi; Yi; Zi; U1i; U2ig is an IID sequence satisfying the condi-

tions of Corollary 4.8 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical choices

of k and hn. Further, suppose maxV=1;X;Y max�=0;1 supz2R jgV;� (z)j < 1: Then for all

z 2 supp(Z) such that jDz�X(z)j > 0;

n1=2

�1=2
� (z; hn)

�
�̂ (z; hn)� � (z)

�
p! N (0; 1) ;

provided that


� (z; h) = E
�
(`� (z; h;X; Y; Z1; Z2))

2�
is �nite and positive for all n su¢ ciently large, where

`� (z; h;x; y; z1; z2) =
X
�=0;1

(sX;1;� (z) `1;� (z; h; 1; z1; z2) + sX;X;� (z) `X;� (z; h;x; z1; z2)

+sY;1;� (z) `1;� (z; h; 1; z1; z2) + sY;Y;� (z) `Y;� (z; h; y; z1; z2));
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and where sX;1;� (z), sX;X;� (z), sY;1;� (z) ; and sY;Y;� (z) for � = 0; 1 are as de�ned in The-

orem 3.5.

We now consider semiparametric functionals taking the forms of eq.(12) and analyze

the estimators

�̂w =

Z
S�̂(�;hn )

�̂ (z; hn)w (z) dz

�̂wfZ =

Z
S�̂(�;hn )

�̂ (z; hn)w (z) ĝ1;0 (z; hn) dz;

where S�̂(�;hn) � fz : ĝ1;0 (z; hn) > 0; jDz�̂X(z; h)j > 0g.

The asymptotic distributions of these estimators follow by straightforward application

of Theorem 4.9, analogously to the OXI case. Thanks to their semiparametric nature,

root�n consistency and asymptotic normality is possible.

Theorem 4.12 Suppose the conditions of Theorem 4.9 hold for V = 1; X; Y and � = 0; 1;

and that Assumption 3.8 holds. Then

n1=2
�1=2w

�
�̂w � �w

�
d! N (0; 1) ;

provided that


w � E
h�
 �w (X; Y; Z1; Z2)

�2i
is �nite and positive for all n su¢ ciently large, where

 �w (x; y; z1; z2) �
X
�=0;1

( 1;� (wsX;1;�; 1; z1; z2) +  X;� (wsX;X;�;x; z1; z2)

+ 1;� (wsY;1;�; 1; z1; z2) +  Y;� (wsY;Y;�; y; z1; z2));

wsA;V;� denotes the function mapping z to w (z) sA;V;� (z), and where  V;� is de�ned in

Theorem 4.9.
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Theorem 4.13 Suppose the conditions of Theorem 4.9 hold for V = 1; X; Y and � = 0; 1;

and that Assumption 3.8 holds. Then

n1=2

�1=2
�wfZ

�
�̂wfZ � �wfZ

�
d! N (0; 1) ;

provided that


wfZ � E

��
 �wfz (X; Y; Z1; Z2)

�2�
is �nite and positive for all n su¢ ciently large, where

 �wfZ
(x; y; z1; z2) � f

X
�=0;1

( 1;� (wfZsX;1;�; 1; z1; z2) +  X;� (wfZsX;X;�;x; z1; z2)

+ 1;� (wfZsY;1;�; 1; z1; z2) +  Y;� (wfZsY;Y;�; y; z1; z2))g

+ 1;0 (w�; 1; z1; z2) ;

wfZsA;V;� denotes the function mapping z to w (z) fZ(z)sA;V;� (z) ; w� denotes the function

mapping z to w (z) �(z); and where  V;� is de�ned in Theorem 4.9.

Although we do not provide explicit theorems due to space limitations, it is straightfor-

ward to show that the asymptotic variances in Theorems 4.9, 4.12, 4.13 can be consistently

estimated, since we provide an explicit expression for the appropriate in�uence functions.

In the cases of Theorems 4.5, 4.8, and 4.11, the bandwidth-dependence of the variance is

nontrivial, and it is not guaranteed that the same bandwidth sequence used for the point es-

timators provides suitably consistent estimators of the asymptotic variance. Consequently,

it may be more convenient to rely on subsampling methods for purposes of inference. For-

tunately, powerful subsampling methods designed to handle generic convergence rates (such

as ours) are available from Bertail, Politis, Haefke, and White (2004). These require noth-

ing more than the existence of a limiting distribution for a suitably normalized estimator,

precisely as we have already established in our results above.

While the above treatment covers proxies for instruments whose measurement errors

satisfy conditional mean or independence assumptions, more general forms of proxies con-
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taminated by either �nonclassical�or �Berkson-type�2 measurement errors could be con-

sidered by adapting the techniques developed in Hu and Schennach (2007) or Schennach

(2007), respectively.

5 Discussion

The estimation results of Sections 3 and 4 apply to any random variables satisfying the

given regularity conditions, and these do not involve structural relations. Thus, in the

absence of further conditions, these estimators have no necessary structural meaning. To

interpret estimators of �(z) as measuring an average marginal e¤ect, Assumptions 2.1 and

2.2 su¢ ce, as Proposition 2.2 ensures. When Assumption 2.2 fails, analysis analogous to

that of White and Chalak (2006, section 5.1) shows that �(z) = (z)��(z) + �(z); where

(z) and �(z) are not stochastically identi�ed, but generally satisfy (z) 6= 1 and �(z) 6= 0:

When Assumption 2.1 fails, then ��(z) is no longer even de�ned. Thus, Assumptions 2.1

and 2.2 are crucial to giving a structural interpretation to an estimator of �(z).

In sharp contrast to the linear case, here we rely on Uz ? Ux to structurally identify

�(z). In the linear case, this assumption is not necessary, and in the PXI case, a convenient

simpli�cation renders even Dz�Y;1(z) = Dz�X;1(z) structurally identi�ed (see CW). The

simplicity of the linear case masks the fundamental di¤erences between OXI and PXI.

Inspecting the measurement assumptions of Section 4 (Assumptions 4.1, 4.2, 4.4, 4.6,

and 4.8) reveals an asymmetry in the properties assumed of Z1 and Z2 and/or U1 and

U2: Although this asymmetry may be present in some applications, in others symmetry

may be more plausible. In the latter situations, one can construct two estimators of �(z),

say �̂1(z; hn) and �̂2(z; hn); by interchanging the roles of Z1 and Z2: Using these, one can

construct a weighted estimator with superior asymptotic e¢ ciency, having the GLS form

[�0�̂(z; hn)
�1�]�1�0�̂(z; hn)

�1�̂(z; hn);

2A instrument proxy contaminated by a Berkson-type error can be directly used as an instrument,
unless we wish to identify e¤ects conditional on the true instrument instead of its proxy.
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where � � (1; 1)0; and �̂(z; hn) represents an estimator of the asymptotic covariance ma-

trix of �̂(z; hn) � (�̂1(z; hn); �̂2(z; hn))
0 (suitably scaled). The estimator �̂(z; hn) can be

constructed using subsampling, as in Section 4. The same approach applies to estimating

functionals of �:

More generally, one may have multiple error-laden measurements of an unobserved ex-

ogenous instrument Z, say (Z1; :::; Zk); k > 2. Depending on the measurement properties

plausible for these, one can construct a vector of consistent asymptotically normal estima-

tors �̂(z; hn) � (�̂1(z; hn); :::; �̂`(z; hn))
0; where ` � k. From these, one can construct a

relatively e¢ cient estimator as a GLS weighted combination of the elements of �̂(z; hn),

analogous to the case with ` = 2 given above.

6 Summary and Concluding Remarks

In this paper we provide consistent and asymptotically normal nonparametric estimators

of average marginal e¤ects of an endogenous cause, X; on a response of interest, Y , for a

general system of structural equations. The system is general in that we do not assume

linearity, separability, or monotonicity for the structural relations. Our estimators are local

indirect least squares (LILS) estimators analogous to those introduced by Heckman and

Vytlacil (1999, 2001) for an index model involving a binary X. We treat two cases, the

traditional OXI case and the PXI case, where the exogenous instrument cannot be observed,

but where as few as two error-laden proxies are available.

For the OXI case, we use the in�nite order ("�at-top") kernels of Politis and Romano

(1999), obtaining uniform convergence rates as well as asymptotic normality for estimators

of identi�ed instrument-conditioned average marginal e¤ects and root�n consistency of

their weighted averages. For the PXI case, we develop new results for estimating densities

and expectations conditional on mismeasured variables, as well as their derivatives with

respect to the mismeasured variable. We provide uniform convergence rates, as well as
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asymptotic normality results in fully nonparametric settings. We also consider nonlinear

functionals of such nonparametric quantities and use these to establish root-n consistency

and asymptotic normality for estimators applicable to the PXI case. Previously, only

results for the quite special linear PXI case were available (CW); by covering the general

nonseparable case, the present results necessarily also cover the widely applicable PXI cases

in which one or the other of q or r is separable: ��ss; �
�
sn; and �

�
ns.

There are a variety of interesting directions for further research. In particular, it is

of interest to develop the proposed tests of the separability of q based on our estimators.

It also appears relatively straightforward to develop estimators analogous to those given

here for average marginal e¤ects of endogenous causes in non-recursive ("simultaneous")

nonseparable systems. Finally, it appears feasible and is of considerable interest to extend

the methods developed here to provide nonparametric analogs of the various extended

instrumental variables estimators analyzed by CW.
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A Appendix

The proofs of Lemma 3.1, Theorem 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 are fairly standard and

can be found in the supplementary material.

Proof of Lemma 4.1. Assumption 4.1 ensures that all expectations below exist and are

�nite. Given Assumptions 4.2 and 4.3, we have

iE
�
Z1e

i�Z2
�

E [ei�Z2 ]
=

iE
�
Zei�(Z+U2)

�
+ iE

�
E [U1jZ;U2] ei�(Z+U2)

�
E [ei�(Z+U2)]

=
iE
�
Zei�(Z+U2)

�
E [ei�(Z+U2)]

=
iE
�
Zei�Z

�
E [ei�Z ]

E
�
ei�U2

�
E [ei�U2 ]

=
iE
�
Zei�Z

�
E [ei�Z ]

= D� ln
�
E
�
ei�Z

��
:

It follows that for each real �;

�V (�) � E
�
V ei�Z

�
=
E
�
V ei�Z

�
E
�
ei�U2

�
E [ei�Z ]E [ei�U2 ]

E
�
ei�Z

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

E
�
ei�Z

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

exp
�
ln
�
E
�
ei�Z

��
� ln 1

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

exp

�Z �

0

D� ln
�
E
�
ei�Z

��
d�

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

exp

 Z �

0

iE
�
Z1e

i�Z2
�

E [ei�Z2 ]
d�

!
:

For each � 2 f0; :::;�g and z 2 supp(Z), we have

1

2�

Z
(�i�)� �V (�) exp (�i�z) d� =

1

2�

Z
(�i�)�E

�
V ei�Z

�
exp (�i�z) d�:

The expression on the right is the inverse Fourier transform of (�i�)�E
�
V ei�Z

�
. Integration
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by parts, valid under Assumptions 3.1 and 3.3, gives

(�i�)�E
�
V ei�Z

�
= (�i�)�

Z
E [V jZ = z] fZ (z) e

i�zdz

= (�1)�
Z
E [V jZ = z] fZ (z)D

�
z e
i�zdz

=

Z �
D�
z (E [V jZ = z] fZ (z))

�
ei�zdz

=

Z
gV;� (z) e

i�zdz:

As the �nal expression is the Fourier transform of gV;� (z), the conclusion follows.

Proof of Lemma 4.2. Assumptions 3.1, 4.1, 3.3, and 3.4 ensure the existence of

gV;� (z; h) �
Z
1

h
k

�
~z � z

h

�
gV;� (~z) d~z

=

Z
1

h
k

�
~z � z

h

�
D�
~z (E [V jZ = ~z] fZ (~z)) d~z:

By the Convolution Theorem, the inverse Fourier Transform (FT) of the product of � (h�)

and (�i�)�E
�
V ei�Z

�
is the convolution between the inverse FT of � (h�) and the inverse

FT of (�i�)�E
�
V ei�Z

�
. The inverse FT of � (h�) is h�1k (z=h) ; and the inverse FT of

(�i�)�E
�
V ei�Z

�
is D�

z (E [V jZ = z] fZ (z)). It follows that

gV;� (z; h) =
1

2�

Z
� (h�)

�
(�i�)�E

�
V ei�Z

��
exp (�i�z) d�

=
1

2�

Z
� (h�) (�i�)� �V (�) exp (�i�z) d�:

Proof of Lemma 4.3. Assumptions 3.1, 4.1, 3.3, and 3.4 ensure the existence of gV;� (z)

and gV;� (z; h). Adding and subtracting appropriately gives eq.(25), where for any �gV;� (z; h)

BV;� (z; h) � gV;� (z; h)� gV;� (z)

LV;� (z; h) � �gV;� (z; h)� gV;� (z; h)

RV;� (z; h) � ĝV;� (z; h)� �gV;� (z; h) :
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We now derive the form that �gV;� (z; h)must have in order for LV;� (z; h) to be a linearization

of ĝV;� (z; h)� gV;� (z; h).

Recall that for A = 1; Z1; and V; we let �A (�) � E
�
Aei�Z2

�
: Also, write �̂A (�) �

Ê
�
Aei�Z2

�
and ��̂A (�) � �̂A (�)��A (�). We �rst state a useful representation for �̂V (�) =�̂1 (�):

�̂V (�)

�̂1 (�)
=
�V (�) + ��̂V (�)

�1 (�) + ��̂1 (�)
= qV (�) + �q̂V (�) ; (31)

where qV (�) � �V (�) =�1 (�) and where �q̂V (�) can be written as either

�q̂V (�) =

 
��̂V (�)

�1 (�)
� �V (�) ��̂1 (�)

(�1 (�))
2

! 
1 +

��̂1 (�)

�1 (�)

!�1
(32)

or

�q̂V (�) = �1q̂V (�) + �2q̂V (�) ; with (33)

�1q̂V (�) � ��̂V (�)

�1 (�)
� �V (�) ��̂1 (�)

(�1 (�))
2

�2q̂V (�) � �V (�)

�1 (�)

 
��̂1 (�)

�1 (�)

!2 
1 +

��̂1 (�)

�1 (�)

!�1
� ��̂V (�)

�1 (�)

��̂1 (�)

�1 (�)

 
1 +

��̂1 (�)

�1 (�)

!�1
:

Similarly, for Qz (�) �
R �
0
(i�z (�) =�1 (�))d�, �Q̂z (�) �

R �
0
(i�̂z (�) =�̂1 (�))d� � Qz (�) ; and

some random function � �Qz (�) such that
��� �Qz (�)�� � ����Q̂z (�)��� for all �,

exp
�
Qz (�) + �Q̂z (�)

�
= exp (Qz (�))

�
1 + �Q̂z (�) +

1

2
[exp

�
� �Qz (�)

�
]
�
�Q̂z (�)

�2�
: (34)

Substituting eqs.(31) and (34) into

ĝV;� (z; h)� gV;� (z; h)

=
1

2�

Z
� (h�) [

�̂V (�)

�̂1 (�)
exp

 Z �

0

i�̂Z1 (�)

�̂1 (�)
d�

!
� �V (�)

�1 (�)
exp

�Z �

0

i�Z1 (�)

�1 (�)
d�

�
]d�

and keeping the terms linear in ��̂1 (�) or ��̂Z1 (�) gives the linearization of ĝV;� (z; h),
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denoted �gV;� (z; h):

�gV;� (z; h)� gV;� (z; h)

=
1

2�

Z
exp (�i�z) (�i�)� � (h�)�V (�) [

Z �

0

 
i��̂Z1 (�)

�1 (�)
� i�Z1 (�) ��̂1 (�)

(�1 (�))
2

!
d�]d�

+
1

2�

Z
exp (�i�z) (�i�)� � (h�)

 
��̂V (�)

�1 (�)
�1 (�)�

��̂1 (�)

�1 (�)
�V (�)

!
d�:

Using the identityZ 1

�1

Z �

0

f (�; �) d�d� =

Z 1

0

Z 1

�

f (�; �) d�d�+

Z 0

�1

Z �1

�

f (�; �) d�d� �
Z Z �1

�

f (�; �) d�d�

for any absolutely integrable function f , we obtain

LV;� (z; h) � �gV;� (z; h)� gV;� (z; h)

=
1

2�

Z Z �1

�

exp (�i�z) (�i�)� � (h�)�V (�) d�
 
i��̂Z1 (�)

�1 (�)
� i�Z1 (�) ��̂1 (�)

(�1 (�))
2

!
d�

+
1

2�

Z
exp (�i�z) (�i�)� � (h�)

 
��̂V (�)

�1 (�)
�1 (�)�

��̂1 (�)

�1 (�)
�V (�)

!
d�

=
X

A=1;Z1;V

Z
	V;�;A (�; z; h) ��̂A (�) d�

=
X

A=1;Z1;V

Z
	V;�;A (�; z; h)

�
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d� (35)

= Ê

" X
A=1;Z1;V

Z
	V;�;A (�; z; h)

�
Aei�Z2 � E

�
Aei�Z2

��
d�

#
= Ê [`V;� (z; h;V; Z1; Z2)] ;

where 	V;�;A (�; z; h) and `V;� (z; h;V; Z1; Z2) are de�ned in the statement of the Lemma.

De�nition A.1 We write f (�) � g (�) for f; g : R 7! R when there exists a constant

C > 0, independent of �, such that f (�) � C g (�) for all � 2 R (and similarly for �).

Analogously, we write an � bn for two sequences an; bn when there exists a constant C

independent of n such that an � Cbn for all n 2 N.
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Proof of Theorem 4.4. By Parseval�s identity, we have

jB (z; h)j = jgV;� (z; h)� gV;� (z)j = jgV;� (z; h)� gV;� (z; 0)j

=

���� 12�
Z
(�i�)� � (h�)�V (�) exp (�i�z) d� �

1

2�

Z
(�i�)� �V (�) exp (�i�z) d�

����
=

���� 12�
Z
(�i�)� (� (h�)� 1)�V (�) exp (�i�z) d�

����
� 1

2�

Z
j�j� j� (h�)� 1j j�V (�)j d�

=
1

�

Z 1

��=h

j�j� j� (h�)� 1j j�V (�)j d�

�
Z 1

��=h

j�j� j�V (�)j d�;

where we use Assumption 3.4 to ensure � (�) = 1 for j�j � �� and sup� j� (�)j < 1. Thus,

Assumption 3.5 (eq.(15)) yields

jB (z; h)j �
Z 1

��=h

�� (1 + �)� exp
�
���

��
�
d�

= O
��
��=h
��+�+1 exp��� ���=h�����

= O
��
h�1
��;B exp��B �h�1��B�� :

Lemma A.1 Suppose the conditions of Lemma 4.3 hold. For each � and h, and for A =

1; Z1; V; let 	+V;�;A (�; h) � supz2R j	V;�;A (�; z; h)j ; and de�ne

	+V;� (h) =
X

A=1;Z1;V

Z
	+V;�;A (�; h) d�:

If Assumption 4.5 also holds, then for h > 0

	+V;� (h) = O
��
1 + h�1

�2��+�+�+1 exp����1 ��� = ��
�
� ��

� �
h�1
����� :
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Proof. We obtain rates for each term of 	+V;� (h). First,

	+V;�;1 (�; h) � sup
z2R

j	V;�;1 (�; z; h)j

� sup
z2R

j�V (�)j
j�1 (�)j

jexp (�i�z)j j�j� j� (h�)j

+sup
z2R

j�Z1 (�)j
j�1 (�)j2

Z �1

�

jexp (�i�z)j j�j� j� (h�)j j�V (�)j d�

� j�V (�)j
j�1 (�)j

j�j� j� (h�)j+ j�Z1 (�)j
j�1 (�)j2

Z �1

�

j�j� j� (h�)j j�V (�)j d�

=
1

j�1 (�)j

�
j�V (�)j j�j

� j� (h�)j+ j�Z1 (�)jj�1 (�)j

Z �1

�

j�j� j� (h�)j j�V (�)j d�
�

=
1

j�1 (�)j

�
j�V (�)j j�j

� j� (h�)j+ j�
0
1 (�)j

j�1 (�)j

Z �1

�

j�j� j� (h�)j j�V (�)j d�
�

where we use the fact that

�Z1 (�)

�1 (�)
=

E
�
Z1e

i�Z2
�

E [ei�Z2 ]
=
E
�
(Z + U1) e

i�(Z+U2)
�

E [ei�(Z+U2)]
=
E
�
Zei�(Z+U2)

�
+ E

�
E [U1jZ;U2] ei�(Z+U2)

�
E [ei�(Z+U2)]

=
E
�
Zei�(Z+U2)

�
E [ei�(Z+U2)]

=
E
�
Zei�Z

�
E [ei�Z ]

E
�
ei�U2

�
E [ei�U2 ]

=
�i(d=d�)E

�
ei�Z

�
E [ei�Z ]

= �i(d=d�)�1 (�)
�1 (�)

Integrating 	+V;�;1 (�; h) with respect to � and using Assumption 4.5 givesZ
	+V;�;1 (�; h) d�

�
Z

1

j�1 (�)j

 
j�V (�)j j�j

� 1
�
j�j � h�1

�
+
j�01 (�)j
j�1 (�)j

1
�
j�j � h�1

� Z h�1

j�j
j�j� j�V (�)j d�

!
d�

�
Z
(1 + j�j)�� exp

�
��� j�j��

�
1
�
j�j � h�1

�
�

�
 
(1 + j�j)� exp

�
�� j�j��

�
j�j� + (1 + j�j)1

Z h�1

0

j�j� (1 + j�j)� exp
�
�� j�j��

�
d�

!
d�

�
Z h�1

0

(1 + j�j)�� exp
�
��� j�j��

�
�

�
 
(1 + j�j)�+� exp

�
�� j�j��

�
+ (1 + j�j)1

Z h�1

0

j�j� (1 + j�j)� exp
�
�� j�j��

�
d�

!
d�
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�
�
1 + h�1

�1�� exp���� �h�1�����
�
��
1 + h�1

��+� exp��� �h�1����+ �1 + h�1�1 �1 + h�1��+�+1 exp��� �h�1�����
�

�
1 + h�1

�1�� �1 + h�1��+� exp���� �h�1���� exp��� �h�1�����1 + �1 + h�1�1+1�
�

�
1 + h�1

�2��+�+�+1 exp���� �h�1���� exp��� �h�1���� :
Next,

	+V;�;Z1 (�; h) � sup
z2R

j	V;�;Z1 (�; z; h)j

� sup
z2R

1

j�1 (�)j

Z �1

�

jexp (�i�z)j j�j� j� (h�)j j�V (�)j d�

� 1

j�1 (�)j

Z �1

�

j�j� j� (h�)j j�V (�)j d�;

so thatZ
	+V;�;Z1 (�; h) d� �

Z
[

1

j�1 (�)j
1
�
j�j � h�1

� Z h�1

�

j�j� j�V (�)j d�] d�

� h�1
�
1 + h�1

��� exp���� �h�1���� �1 + h�1��+�+1 exp��� �h�1����
�

�
1 + h�1

�2��+�+� exp���� �h�1���� exp��� �h�1���� :
Finally,

	+V;�;V (�; h) � sup
z2R

j	V;�;V (�; z; h)j

� sup
z2R

j�1 (�)j
j�1 (�)j

jexp (�i�z)j j�j� j� (h�)j

= sup
z2R

j�1 (�)j
j�1 (�)j

j�j� j� (h�)j

=
j�1 (�)j
j�1 (�)j

j�j� j� (h�)j ;
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so thatZ
	+V;�;V (�; h) d� �

Z h�1

0

j�1 (�)j
j�1 (�)j

j�j� d�

� h�1
�
1 + h�1

��� exp���� �h�1���� �1 + h�1��+� exp��� �h�1����
�

�
1 + h�1

�1��+�+� exp���� �h�1���� exp��� �h�1���� :
Collecting together these rates delivers the desired result.

Lemma A.2 For a �nite integer J , let fPn;j (z2)g de�ne a sequence of nonrandom real-

valued continuously di¤erentiable functions of a real variable z2; j = 1; :::; J . Let Aj and

Z2 be random variables satisfying E
�
A2+�j jZ2 = z2

�
� C for some C; � > 0 for all z2 2

supp(Z); j = 1; :::; J; such that supn�N �n < 1 and infn�N �n > 0 for some N 2 N+;

where

�n �
 
var[

JX
j=1

AjPn;j (Z2)]

!1=2
:

If supz22R jDz2Pn;j(z2)j = O
�
n(3=2)��

�
for some � > 0; j = 1; :::; J , then

��1n n1=2

 
Ê

"
JX
j=1

AjPn;j (Z2)

#
� E

"
JX
j=1

AjPn;j (Z2)

#!
d! N (0; 1) :

Proof. Apply the argument of Lemma 9 in Schennach (2004b) and the Lindeberg-Feller

central limit theorem.

Proof of Theorem 4.5. (i) The fact that E [LV;� (z; h)] = 0 follows directly from eq.(35).

Next, Assumption 4.4(i) ensures the existence and �niteness of

E
�
(LV;� (z; h))

2� = E

��
Ê [`V;� (z; h;V; Z1; Z2)]

�2�
= n�1E

�
(`V;� (z; h;V; Z1; Z2))

2� = n�1
V;� (z; h) .
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Speci�cally, from eq.(35), we have


V;� (z; h) � E
�
n (�gV;� (z; h)� gV;� (z; h))

2� = E

24 X
A=1;Z1;V

Z
	V;A (�; z; h)n

1=2��̂A (�) d�

!235
=

X
A1=1;Z1;V

X
A2=1;Z1;V

Z Z
	V;�;A1 (�; z; h)E

h
n��̂A1 (�) ��̂

y
A2
(�)
i
(	V;�;A2 (�; z; h))

y d�d�

=
X

A1=1;Z1;V

X
A2=1;Z1;V

Z Z
	V;�;A1 (�; z; h)VA1A2 (�; �) (	V;�;A2 (�; z; h))

y d�d�;

where

VA1A2 (�; �) � E
h
n��̂A1 (�) ��̂

y
A2
(�)
i
= E

h
n
�
�̂A1 (�)� �A1 (�)

��
�̂
y
A2
(�)� �yA2 (�)

�i
= E

h�
A1e

i�Z2 � �A1 (�)
� �
A2e

�i�Z2 � �yA2 (�)
�i

= E
�
A1e

i�Z2A2e
�i�Z2

�
� �A1 (�)E

�
A2e

�i�Z2
�
� E

�
A1e

i�Z2
�
�yA2 (�) + �A1 (�) �

y
A2
(�)

= E
�
A1e

i�Z2A2e
�i�Z2

�
� �A1 (�) �

y
A2
(�)� �A1 (�) �

y
A2
(�) + �A1 (�) �

y
A2
(�)

= E
�
A1A2e

i(���)Z2
�
� �A1 (�) �

y
A2
(�)

= �(A1A2) (� � �)� �A1 (�) �A2 (��) :

By Assumption 4.4(i),

jVA1A2 (�; �)j =
���(A1A2) (� � �)� �A1 (�) �A2 (��)

��
� E

�
jA1A2j

��ei(���)Z2���+ E
�
jA1j

��ei�z���E �jA2j ��e�i�Z2���
� E [jA1A2j] + E [jA1j]E [jA2j] � 1:

It follows that


V;� (z; h) �
X

A1=1;Z1;V

X
A2=1;Z1;V

Z Z
j	V;�;A1 (�; z; h)j jVA1A2 (�; �)j

���(	V;�;A2 (�; z; h))y��� d�d�
�

X
A1=1;Z1;V

X
A2=1;Z1;V

Z Z
j	V;�;A1 (�; z; h)j j(	V;�;A2 (�; z; h))j d�d�

=

 X
A=1;Z1;V

Z
j	V;�;A (�; z; h)j d�

!2
�
 X
A=1;Z1;V

Z
	+V;�;A (�; h) d�

!2
=
�
	+V;� (h)

�2
;
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where

	+V;�;A (�; h) = sup
z2R

j	V;�;A (�; z; h)j (36)

	+V;� (h) =
X

A=1;Z1;V

Z
	+V;�;A (�; h) d� (37)

= O
��
1 + h�1

�2��+�+�+1 exp����1 ��� = ��
�
� ��

� �
h�1
����� :

The last order of magnitude is shown in Lemma A.1. Hence, we have shown eq.(28).

Next, we turn to uniform convergence. From eq.(35), we have

sup
z2R

j�gV;� (z; h)� gV;� (z; h)j = sup
z2R

����� X
A=1;Z1;V

Z
	V;�;A (�; z; h)

�
Ê
�
V ei�Z2

�
� E

�
V ei�Z2

��
d�

�����
�

X
A=1;Z1;V

Z �
sup
z2R

j	V;�;A (�; z; h)j
� ���Ê �V ei�Z2�� E

�
V ei�Z2

���� d�
=

X
A=1;Z1;V

Z
	+V;�;A (�; h)

���Ê �V ei�Z2 � E
�
V ei�Z2

����� d�
where 	+V;�;A (�; h) is as de�ned above and where the integrals are �nite since jÊfV ei�Z2�

E
�
V ei�Z2

�
gj � 1 and since Lemma A.1 implies that

P
A=1;Z1;V

R
	+V;�;A (�; h) d� <1.

We then have:

E

�
sup
z2R

j�gV;� (z; h)� gV;� (z; h)j
�

�
X

A=1;Z1;V

Z
	+V;�;A (�; h)E

"����Ê �V ei�Z2 � E
�
V ei�Z2

�����2�1=2# d�
�

X
A=1;Z1;V

Z
	+V;�;A (�; h)

�
E

����Ê �V ei�Z2 � E
�
V ei�Z2

�����2��1=2 d�
=

X
A=1;Z1;V

Z
	+V;�;A (�; h)

�
n�1E

h��V ei�Z2 � E
�
V ei�Z2

���2i�1=2 d�
= n�1=2

X
A=1;Z1;V

Z
	+V;�;A (�; h)

�
E
h��V ei�Z2 � E

�
V ei�Z2

���2i�1=2 d�
� n�1=2

X
A=1;Z1;V

Z
	+V;�;A (�; h) d�

= n�1=2	+V;� (h) ;
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where	+V;� (h) = O
�
(1 + h�1)

2��+�+�+1 exp
��
��1

�
�� = ��

�
� ��

�
(h�1)

��
��
, as shown

in Lemma A.1. By Markov�s inequality it follows that

sup
z2R

jLV;� (z; h)j = sup
z2R

j�gV;� (z; h)� gV;� (z; h)j

= Op

�
n�1=2

�
1 + h�1

�2��+�+�+r exp����1 ��� = ��
�
� ��

� �
h�1
����� :

(ii) To show asymptotic normality, we apply Lemma A.2 to

`V;� (z; hn;V; Z1; Z2) =
X

A=1;Z1;V

Z
	V;�;A (�; z; hn) Ae

i�Z2 d�

with

Pn;A (z2) =

Z
	V;�;A (�; z; hn) e

i�z2d�;

for A = 1; Z1; V; where z is �xed.

Our previous conditions ensure that for some �nite N; supn>N 
V;� (z; hn) = supn>N

var[`V;� (z; hn;V; Z1; Z2)] <1, and we assume infn>N 
V;� (z; hn) > 0: It remains to verify

supz2R jDz2Pn;A (z2)j = O
�
n(3=2)��

�
: For this, we use Lemma A.1. Speci�cally,

sup
z22R

jDz2Pn;A (z2)j = sup
z22R

����Z i�	V;�;A (�; z; hn) e
i�z2d�

����
� sup

z22R

Z
j�j j	V;�;A (�; z; hn)j d�

= 2

Z h�1

0

j�j j	V;�;A (�; z; hn)j d�

� 2

Z h�1

0

j�j	+V;� (�; hn) d�

�
Z h�1

0

j�j
�
1 + h�1n

�2��+�+�+1 exp����1 ��� = ��
�
� ��

� �
h�1n
���� d�

�
�
1 + h�1n

�3��+�+�+1 exp����1 ��� = ��
�
� ��

� �
h�1n
����

Assumption 4.7 requires that if �� 6= 0, we have h�1n = O
�
(lnn)1=����

�
for some � > 0, so

that

sup
z22R

jDz2Pn;A (z2)j �
�
1 + (lnn)1=����

�3��+�+�+1
exp

��
��1

�
�� = ��

�
� ��

�
(lnn)1����

�
:
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The right-hand side grows more slowly than any power of n so we certainly have supz22R

jDz2Pn;A (z2)j = O
�
n(3=2)��

�
.

If �� = 0, Assumption 4.7 requires that h
�1
n = O

�
n��n(3=2)=(3��+�+�+1)

�
so that

sup
z22R

jDz2Pn;A (z2)j �
�
1 + n��n(3=2)=(3��+�+�+1)

�3��+�+�+1
�

�
1 + n��n3=2

�
= Op

�
n(3=2)��

�
:

Lemma A.3 Let A and Z2 be random variables satisfying E
�
jAj2

�
<1 and E [jAj jZ2j] <

1 and let (Ai; Z2;i)i=1;:::;n be a corresponding IID sample. Then, for any u; U � 0 and � > 0,

sup
�2[�Unu;Unu]

���Ê [A exp (i�Z2)]� E [A exp (i�Z2)]
��� = Op

�
n�1=2+�

�
: (38)

Proof. See Lemma 6 in Schennach (2004a).

Proof of Theorem 4.6. We substitute expansions (31) and (34) into

ĝV;� (z; h)� gV;� (z; h) =

Z
exp (�i�z) (�i�)� � (h�)

�
 
�̂V (�)

�̂1 (�)
exp

 Z �

0

i�̂Z1 (�)

�̂1 (�)
d�

!
� �V (�)

!
d�

and remove the terms linear in ��̂A (�) for A = 1; Z1; V . For notational simplicity, we write

h instead of hn here. We then �nd that jĝV;� (z; h)� �gV;� (z; h)j �
P7

j=1Rj; where

R1 =

Z 1

0

j�j� j� (h�)j j�1q̂V (�)j j�1 (�)j
�Z �

0

j�1q̂Z1 (�)j d�
�
d�

R2 =

Z 1

0

j�j� j� (h�)j j�2q̂V (�)j j�1 (�)j d�

R3 =

Z 1

0

j�j� j� (h�)j j�2q̂V (�)j j�1 (�)j
�Z �

0

j�1q̂Z1 (�)j d�
�
d�
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R4 =

Z 1

0

j�j� j� (h�)j jqV (�)j j�1 (�)j
�Z �

0

j�2q̂Z1 (�)j d�
�
d�

R5 =

Z 1

0

j�j� j� (h�)j j�q̂V (�)j j�1 (�)j
�Z �

0

j�2q̂Z1 (�)j d�
�
d�

R6 =

Z 1

0

j�j� j� (h�)j jqV (�)j j�1 (�)j
1

2
exp

���� �QZ1 (�)����Z �

0

j�q̂Z1 (�)j d�
�2

d�

R7 =

Z 1

0

j�j� j� (h�)j j�q̂V (�)j j�1 (�)j
1

2
exp

���� �QZ1 (�)����Z �

0

j�q̂Z1 (�)j d�
�2

d�:

These terms can then be bounded in terms of 	+V;� (h) ; de�ned in eq.(37), and

�(h) �
�
1 + h�1

� 
sup

�2[�h�1;h�1]

j�01 (�)j
j�1 (�)j

! 
sup

�2[�h�1;h�1]
j�1 (�)j�1

!
= O

��
1 + h�1

�1+1�� exp���� �h�1�����
�̂n � max

A=1;Z1;V
sup

�2[�h�1n ;h�1n ]

����̂A (�)� �A (�)
��� = Op

�
n�1=2+�

�
for any � > 0:

The latter order of magnitude follows from Lemma A.3, given Assumptions 4.7 and 4.8.

Also, we note that

sup
�2[�h�1n ;h�1n ]

�̂n= j�1 (�)j � �̂n�(hn)

= Op(n
�1=2+�)O

��
1 + h�1n

�1+1�� exp���� �h�1n �����
= op (1) :

Now, we have

R1 �
Z 1

0

j� (h�)j
�

1

j�1 (�)j
+
j�V (�)j
j�1 (�)j2

�
�̂n j�0 (�)j

�Z �

0

j�1q̂Z1 (�)j d�
�
d�

� �(h) �̂n

Z 1

0

j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�0 (�)j

�Z �

0

j�1q̂Z1 (�)j d�
�
d�

= �(h) �̂n

Z 1

0

f
Z 1

�

j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�0 (�)j d�g j�1q̂Z1 (�)j d�

= �(h) �̂n

Z 1

0

f
Z 1

�

j� (h�)j (j�0 (�)j+ j�V (�)j) d�g j�1q̂Z1 (�)j d�
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� �(h) �̂2n

Z 1

0

f
Z 1

�

j� (h�)j (j�0 (�)j+ j�V (�)j) d�g
�
1 +

j�Z1 (�)j
j�1 (�)j

�
1

j�1 (�)j
d�

� �(h) �̂2n	
+
V;� (h)

= Op

��
1 + h�1

�1+1�� exp���� �h�1����n�1+2� �h�1�L exp��L �h�1��L�� ;
as required for part (i). Below, we show that the remaining terms are similarly behaved.

For part (ii), we note that

�(h) �̂2n	
+
V;� (h) =

�
�(h) �̂2nn

1=2
�
n�1=2	+V;� (h) :

As Lemma A.1 implies that n�1=2	+V;� (h) is Op
�
n�1=2 (h�1)

L exp
�
�L (h

�1)
�L
��
, we only

need to show that
�
�(hn) �̂

2
nn

1=2
�
= op (1).

If �� 6= 0, the assumptions of the Theorem ensure that h�1n � (lnn)(1=��)��, so that

�(hn) �̂
2
nn

1=2 = �(hn)Op
�
n�1+2�

�
n1=2

= Op

��
1 + h�1n

�1+1�� exp���� �h�1n ����n�1=2+2��
= Op

��
1 + (lnn)(1=��)��

�1+1��
exp

�
��� (lnn)1����

�
n�1=2+2�

�
= Op(exp[��� (lnn)1����

+(�1=2 + 2�) lnn+ (1 + 1 � �) ((1=��)� �) ln (lnn)])

= Op(exp[��� (lnn)1����

+(�1=2 + 2�) lnn+ (1 + 1 � �) ((1=��)� �) ln (lnn)])

= op (1) ;

where the last line follows since lnn dominates (lnn)1��� and ln lnn and since�1=2+2� < 0.

If �� = 0, the assumptions of the Theorem ensure that h�1n � n(1+1��)
�1=2��, and

�(hn) �̂
2
nn

1=2 = Op

��
1 + h�1n

�1+r�� n�1=2+2��
= Op

��
1 + n(1+r��)

�1=2��
�1+r��

n�1=2+2�
�

= Op
��
1 + n1=2��

�
n�1=2+2�

�
= op (1) ;
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selecting � < �=2.

The remaining terms can be similarly bounded, as they all have the same�(h) �̂2n	
+
V;� (h)

leading term:

R2 �
Z 1

0

j� (h�)j
���� j�V (�)jj�1 (�)j2

1

j�1 (�)j
�̂2n j1 + op (1)j

�1 +
1

j�1 (�)j2
�̂2n j1 + op (1)j

�1
���� j�0 (�)j d�

� �(h) �̂2n j1 + op (1)j
�1
Z 1

0

j� (h�)j 1

j�1 (�)j

���� j�V (�)jj�1 (�)j
+ 1

���� j�0 (�)j d�
� �(h) �̂2n j1 + op (1)j

�1
�Z 1

0

j� (h�)j j�V (�)j
j�1 (�)j

d� +

Z 1

0

j� (h�)j j�0 (�)j
j�1 (�)j

d�

�
= �(h) �̂2n	

+
V;� (h) (1 + op (1)) ;

R3 � �(h) �̂n

Z 1

0

j� (h�)j j�2q̂V (�)j j�0 (�)j d�

= �(h) �̂nR2 = op (1)R2;

R4 =

Z 1

0

j� (h�)j j�V (�)j f
Z �

0

j�2q̂Z1 (�)j d�gd�

� �(h) �̂2n j1 + op (1)j
�1
Z 1

0

R1
�
j� (h�)j j�V (�)j d�

j�1 (�)j
d�

= �(h) �̂2n	
+
V;� (h) (1 + op (1)) ;

R5 �
Z 1

0

j� (h�)j
�

1

j�1 (�)j
+
j�V (�)j
j�1 (�)j2

�
�̂n j1 + op (1)j�1 j�0 (�)j f

Z �

0

j�2q̂Z1 (�)j d�gd�

= �(h) �̂n j1 + op (1)j�1
Z h�1

0

j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�0 (�)j f

Z �

0

j�2q̂Z1 (�)j d�gd�

= �(h) �̂n j1 + op (1)j�1

�[
Z 1

0

j� (h�)j j�0 (�)j f
Z �

0

j�2q̂Z1 (�)j d�gd�

+

Z 1

0

j� (h�)j j�V (�)j f
Z �

0

j�2q̂Z1 (�)j d�gd�]

= � (h) �̂n (1 + op (1))R4 = op (1)R4;
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R6 �
Z 1

0

j� (h�)j j�V (�)j
1

2
exp

�Z �

0

j�q̂Z1 (�)j d�
��Z �

0

j�q̂Z1 (�)j d�
�2

d�

� 1

2
exp (op (1))

Z 1

0

j� (h�)j j�V (�)j
�Z �

0

j�q̂Z1 (�)j d�
��Z �

0

j�q̂Z1 (�)j d�
�
d�

� 1

2
exp (op (1))� (h) �̂

2
n j1 + op (1)j

�1

�
Z 1

0

j� (h�)j j�V (�)j
�Z �

0

�
1

j�1 (�)j
+
j�Z1 (�)j
j�1 (�)j2

�
d�

�
d�

=
1

2
exp (op (1))� (h) �̂

2
n j1 + op (1)j

�1

�
Z 1

0

f
Z 1

�

j� (h�)j j�V (�)j d�g
�

1

j�1 (�)j
+
j�Z1 (�)j
j�1 (�)j2

�
d�

= Op (1)� (h) �̂
2
n	

+
V;� (h) ;

R7 �
Z 1

0

j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
�(h) �̂n j1 + op (1)j�1 j�0 (�)j

�1
2
exp

�Z �

0

j�q̂Z1 (�)j d�
��Z �

0

j�q̂Z1 (�)j d�
�2

d�

� �(h) �̂n j1 + op (1)j�1

�
Z 1

0

j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�0 (�)j

� exp
�Z �

0

j�q̂Z1 (�)j d�
��Z �

0

j�q̂Z1 (�)j d�
�2

d�

� �(h) �̂n j1 + op (1)j�1

�
Z 1

0

j� (h�)j j�0 (�)j exp
�Z �

0

j�q̂Z1 (�)j d�
��Z �

0

j�q̂Z1 (�)j d�
�2

d�

+A�(h) �̂n j1 + op (1)j�1

�
Z 1

0

j� (h�)j j�V (�)j exp
�Z �

0

j�q̂Z1 (�)j d�
��Z �

0

j�q̂Z1 (�)j d�
�2

d�

� �(h) �̂n j1 + op (1)j�1R6

= op (1)R6:
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Proof of Theorem 4.9. The given assumptions clearly ensure that

max
j=1;:::J

sup
z2R

��ĝVj ;�j (z; hn)� gVj ;�j (z)
��

= max
j=1;:::J

sup
z2R

��BVj ;�j (z; hn) + LVj ;�j (z; hn) +RVj ;�j (z; hn)
��

= op
�
n�1=2

�
+ op

�
n�1=4

�
= op

�
n�1=4

�
;

so that when ~gVj ;�j (z) = ĝVj ;�j (z; hn), the remainder term in eq.(29) is op
��
n�1=4

�2�
=

op
�
n�1=2

�
. Moreover, we have

JX
j=1

Z �
ĝVj ;�j (z; h)� gVj ;�j (z)

�
sj (z) dz

=
JX
j=1

Z
LVj ;�j (z; h) sj (z) dz +

JX
j=1

Z �
BVj ;�j (z; h) +RVj ;�j (z; h)

�
sj (z) dz;

where �����
JX
j=1

Z �
BVj ;�j (z; hn) +RVj ;�j (z; hn)

�
sj (z) dz

�����
�

�
max
j=1;:::;J

sup
z2R

��BVj ;�j (z; hn) +RVj ;�j (z; hn)
��� JX

j=1

Z
jsj (z)j dz

= op
�
n�1=2

�
;

since
R
jsj (z)j dz <1 andmaxj=1;:::J supz2Rmax

���BVj ;�j (z; hn)�� ; ��RVj ;�j (z; hn)��	 = op
�
n�1=2

�
by assumption. It follows that

b (ĝ (�; hn))� b (g) =

JX
j=1

Z
LVj ;�j (z; hn) sj (z) dz + op

�
n�1=2

�
:

Next, we note thatZ
LVj ;�j (z; hn) sj (z) dz

= lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz + lim

~h!0

Z �
LVj ;�j (z; hn)� LVj ;�j

�
z; ~h
��

sj (z) dz;

(39)
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where the �rst term will be shown to be a standard sample average while the second will

shown to be asymptotically negligible.

By the de�nition of LVj ;�j
�
z; ~h
�
(see Lemma 4.3), we have

lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz

= lim
~h!0

X
A=1;Z1;Vj

Z
f
Z
	Vj ;�j ;A

�
�; z; ~h

��
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d�gsj (z) dz:

Under the assumption that
R
�	sj ;Vj ;�j (�) d� < 1, the integrand is absolutely integrable

(for any given sample), thus enabling us to interchange integrals as well as limits in the

sequel:

lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz

= lim
~h!0

X
A=1;Z1;Vj

Z �Z
	Vj ;�j ;A

�
�; z; ~h

�
sj (z) dz

��
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d�:

The innermost integrals can be calculated explicitly:

lim
~h!0

Z
	V;�;1

�
�; z; ~h

�
s (z) dz

= � 1

2�

�V (�)

�1 (�)

�Z
exp (�i�z) s (z) dz

�
(�i�)� lim

~h!0
�
�
~h�
�

� 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

�Z
exp (�i�z) s (z) dz

�
(�i�)� lim

~h!0
�
�
~h�
�
�V (�) d�

= � 1

2�

�V (�)

�1 (�)
�ys (�) (�i�)

�

� 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

�ys (�) (�i�)
� �V (�) d�

� 	s;V;�;1 (�) ;

where 	s;V;�;1 (�) is de�ned in the statement of the theorem. Similarly,

lim
~h!0

Z
	V;�;Z1

�
�; z; ~h

�
s (z) dz =

1

2�

i

�1 (�)

Z �1

�

�ys (�) (�i�)
� �V (�) d� � 	s;V;�;Z1 (�)

lim
~h!0

Z
	V;�;V

�
�; z; ~h

�
s (z) dz =

1

2�

�1 (�)

�1 (�)
�ys (�) (�i�)

� � 	s;V;�;V (�) :
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It follows that

lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz =

X
A=1;Z1;Vj

Z
	sj ;Vj ;�j ;A (�)

�
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d�

= Ê
h
 sj ;Vj ;�j (Vj; Z1; Z2)

i
;

as de�ned in the statement of the theorem. The assumption that
R
�	sj ;Vj ;�j (�) d� < 1

also implies that��� sj ;Vj ;�j (v; z1; z2)��� � Cmax f1; jvj ; jz1jg
Z
�	sj ;Vj ;�j (�) d�

for some C <1. Since E
�
V 2
j

�
<1 and E [Z21 ] <1 by assumption, E[j sj ;Vj ;�j(Vj;

Z1; Z2)j2] <1; and it follows by the Lindeberg-Levy central limit theorem that Ê
h
 sj ;Vj ;�j (Vj; Z1; Z2)

i
is root�n consistent and asymptotically normal.

The second term of eq.(39) can be shown to be op
�
n�1=2

�
by noting that it can be written

as an hn-dependent sample average Ê
h
~ sj ;Vj ;�j (Vj; Z1; Z2; hn)

i
, where ~ sj ;Vj ;�j (Vj; Z1; Z2; h)

is such that limh!0E

����~ sj ;Vj ;�j (Vj; Z1; Z2; h)���2� = 0. The manipulations are similar to the
treatment of Ê

h
 sj ;Vj ;�j (Vj; Z1; Z2)

i
above, replacing �

�
~h�
�
by
�
� (hn�)� �

�
~h�
��

and

taking the limit as ~h! 0 and hn ! 0.

Proof of Theorem 4.10. Consider a Taylor expansion of �̂ (z; h)� � (z) in ĝV;� (z; h)�

gV;� (z) to �rst order:

�̂ (z; h)� � (z)

=
X
A=X;Y

X
V=1;A

X
�=0;1

sA;V;� (z) (ĝV;� (z; h)� gV;� (z)) +RA;V;� (�gV;� (z; h) ; (ĝV;� (z; h)� gV;� (z))) ;

(40)

where the sA;V;� (z) are given in the statement of Theorem 3.5 and where RA;V;�
[�gV;� (z; h) ;

(ĝV;� (z; h)� gV;� (z))] is a remainder term in which for every (z; h); �gV;� (z; h) lies between

ĝV;� (z; h) and gV;� (z). (We similarly use an overbar � to denote any function of gV;� (z) in

which gV;� (z) has been replaced by �gV;� (z; h).)

61



We �rst note that, by Corollary 4.7,

max
V=1;X;Y

max
�=0;1

sup
z2R

jĝV;� (z; hn)� gV;� (z)j = Op ("n) ;

where "n � (h�1n )
1;B exp

�
�B (h

�1
n )

�B
�
+ n�1=2 (h�1n )

1;L exp
�
�L (h

�1
n )

�L
�
! 0.

The �rst terms in the summation in eq.(40) can be shown to be Op ("n=� 4) uniformly

for z 2 Z� as follows. Each sA;V;� (z) term consists of products of functions of the form

gV;� (z) (which are uniformly bounded over R by assumption) divided by products of at

most 4 functions of the form g1;0 (z) or Dz�X(z), which are by construction bounded below

by � uniformly for z 2 Z� . It follows that supz2Z� jsA;V;� (z) (ĝV;� (z; hn)� gV;� (z))j =

O (1)Op (�
�4)Op ("n) = Op ("n=�

4).

The remainder terms in eq.(40) can be shown to be op ("n=� 4) uniformly for z 2 Z� as

follows. Without deriving their explicit form, it is clear that these involve a �nite sum of

(i) �nite products of the functions �gV;� (z; h) for V = 1; X; Y and � = 0; 1; (ii) division

by a product of at most 5 functions of the form �g1;0 (z; h) or Dz��X(z); and (iii) pairwise

products of functions of the form (ĝV;� (z; h)� gV;� (z)). The contribution of (i) is bounded

in probability uniformly for z 2 R since

j�gV;� (z; h)j � jgV;� (z)j+ j�gV;� (z; h)� gV;� (z)j

� jgV;� (z)j+ jĝV;� (z; h)� gV;� (z)j

where jgV;� (z)j is uniformly bounded over R by assumption and supz2R jĝV;� (z; hn)

�gV;� (z) j � Op ("n) = op(1). The contribution of (ii) is bounded by noting that for z 2 Z�

�g1;0 (z; hn) = g1;0 (z)

�
1 +

�g1;0 (z; hn)� g1;0 (z)

g1;0 (z)

�
= fZ (z)

�
1 +

�g1;0 (z; hn)� g1;0 (z)

fZ (z)

�
= fZ (z)

�
1 +Op

�"n
�

��
:
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Now choose f�ng such that �n > 0; �n ! 0 as n ! 1; and "n=� 4n ! 0. It follows that

"n=�n ! 0 as well. Hence for z 2 Z�n we have

�g1;0 (z; hn) = fZ (z) (1 + op (1)) :

Since fZ (z) � �n for z 2 Z�n by construction, we also have fZ (z) (1 + op (1)) � �n=2

with probability approaching one (w.p.a. 1). Similar reasoning holds for Dz��X(z). Hence,

the denominator is bounded below by (�n=2)
5 w.p.a. 1, where the power 5 arises from

the presence of up to 5 of such terms. Finally, the contribution of (iii) is simply Op ("2n).

Collecting all three orders of magnitudes, we obtain

Op (1)Op
�
��5n
�
Op
�
"2n
�
= Op

�
"2n
� 5n

�
= Op

�
"n
� 4n

�
Op

�
"n
�n

�
= Op

�
"n
� 4n

�
op (1) = op

�
"n
� 4n

�
;

so that

sup
z2Z�n

����̂ (z; hn)� � (z)
��� = op

�
"n
� 4n

�
= op(1):

Proof of Theorem 4.11. The delta method applies directly to show that the asymptotic

normality of ĝV;� (z; hn)�gV;� (z) provided by Corollary 4.8 carries over to �̂ (z; hn)�� (z),

as a �rst-order Taylor expansion of �̂ (z; hn)� � (z) in ĝV;� (z; hn)� gV;� (z) yields

�̂ (z; hn)� � (z) =
X
A=X;Y

X
V=1;A

X
�=0;1

sA;V;� (z) (ĝV;� (z; hn)� gV;� (z)) +Rn;

where the sA;V;� (z) terms are as de�ned in Theorem 3.5 and where the remainder termRn is

necessarily negligible since, under the assumptions thatmaxV=1;X;Y max�=0;1 jgV;� (z)j <1,

fZ (z) > 0 and jDz�X(z)j > 0, the �rst derivative terms sA;V;� (z) are continuous.

B Supplementary material

Proof of Lemma 3.1. This result holds by construction.
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Lemma B.1 Suppose Assumption 3.4 holds. Then supz2R
��k(�) (z)�� <1;

R ��k(�) (z)�� dz <
1, 0 <

R ��k(�) (z)��2 dz <1, R ��k(�) (z)��2+� dz <1, and jzj ��k(�) (z)��! 0 as jzj ! 1.

Proof. The Fourier transform of k(�) (z) is (�i�)� � (�), which is bounded by assumption

and therefore absolutely integrable, given the assumed compact support of � (�). Hence

k(�) (z) is bounded, since
��k(�) (z)�� = ���R (�i�)� � (�) e�i�zd���� � R j�j� j� (�)j d� < 1. Note

that
R ��k(�) (z)��2 dz > 0 unless k(�) (z) = 0 for all z 2 R, which would imply that k (z) is a

polynomial, making it impossible to satisfy
R
k(z)dz = 1. Hence,

R ��k(�) (z)��2 dz > 0.
The Fourier transform of z2k(�) (z) is�(d2=d�2)

�
(�i�)� � (�)

�
. By the compact support

of � (�), if � (�) has two bounded derivatives then so does (�i�)� � (�) ; and it follows that

�(d2=d�2)
�
(�i�)� � (�)

�
is absolutely integrable. By the Riemann-Lebesque Lemma, the

inverse Fourier transform of i(d2=d�2)
�
(�i�)� � (�)

�
is such that z2k(�) (z)! 0 as jzj ! 1.

Hence, we know that there exists C such that

��k(�) (z)�� � C

1 + z2
;

and the function on the right-hand side satis�es all the remaining properties stated in the

lemma.

Proof of Theorem 3.2. (i) The order of magnitude of the bias is derived in the proof of

Theorem 4.4 in the foregoing appendix. The convergence rate of BV;� (z; h) is also derived

in Theorem 4.4.

(ii) The facts that E [LV;� (z; h)] = 0 and E
�
L2V;� (z; h)

�
= n�1
V;� (z; h) hold by con-

struction. Next, Assumptions 3.2(ii) and 3.4 ensure that


V;� (z; h) = E

"�
(�1)� h���1V k(�)

�
Z � z

h

��2#
�
�
E

�
(�1)� h���1V k(�)

�
Z � z

h

���2
� E

"�
(�1)� h���1V k(�)

�
Z � z

h

��2#
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= h�2��1E

"
E
�
V 2jZ

�
h�1

�
k(�)

�
Z � z

h

��2#

� h�2��1E

"
h�1

�
k(�)

�
Z � z

h

��2#
(by Assumption 3.2(ii) and Jensen�s inequality)

= h�2��1
Z
h�1

�
k(�)

�
~z � z

h

��2
fZ (~z) d~z

= h�2��1
Z �

k(�) (u)
�2
fZ (z + hu) du

(after a change of variable from ~z to z + hu)

� h�2��1
Z �

k(�) (u)
�2
du (by Assumption 3.1(i)

� h�2��1 (by Lemma B.1)

and hence r
sup
z2R


V;� (z; h) = O
�
h���1=2

�
:

We now establish the uniform convergence rate. Using Parseval�s identity, we have

LV;� (z; h) = Ê

�
(�1)� h���1V k(�)

�
Z � z

h

��
� E

�
(�1)� h���1V k(�)

�
Z � z

h

��
=

1

2�

Z �
Ê
�
V ei�Z

�
� E

�
V ei�Z

��
(�i�)� � (h�) e�i�zd�;

so it follows that

jLV;� (z; h)j �
1

2�

Z ���Ê �V ei�Z�� E
�
V ei�Z

���� j�j� j� (h�)j d�;
and that

E [jLV;� (z; h)j] =
1

2�

Z
E
h���Ê �V ei�Z�� E

�
V ei�Z

����i j�j� j� (h�)j d�
� 1

2�

Z
(E[
�
Ê
�
V ei�Z

�
� E

�
V ei�Z

��
�
�
Ê
�
V ei�Z

�
� E

�
V ei�Z

��y
])1=2 j�j� j� (h�)j d�

� 1

2�

Z �
n�1E

�
V ei�ZV e�i�Z

��1=2 j�j� j� (h�)j d�
= n�1=2

1

2�

Z �
E
�
V 2
��1=2 j�j� j� (h�)j d�
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� n�1=2
Z
j�j� j� (h�)j d�

= n�1=2h�1��
Z
j�j� j� (�)j d�

� n�1=2h���1:

Hence, by the Markov inequality,

sup
z2R

jLV;� (z; h)j = Op
�
n�1=2h���1

�
:

When hn ! 0; lemma 1 in the appendix of Pagan and Ullah (1999, p.362) applies to yield:

h2�+1n 
V;� (z; hn) = E

"
h�1n

�
(�1)� V k(�)

�
Z � z

hn

��2#

� hn

�
E

�
(�1)� h�1n V k(�)

�
Z � z

hn

���2
= E

"
E
�
V 2jZ

�
h�1n

�
k(�)

�
Z � z

hn

��2#

� hn

�
E

�
E [V jZ]h�1k(�)

�
Z � z

hn

���2
! E

�
V 2jZ = z

�
fZ (z)

Z �
k(�) (z)

�2
dz:

By Assumptions 3.1 and 3.2(iii); E [V 2jZ = z] fZ (z) > 0 for z 2 supp(Z) and 3.4 ensuresR �
k(�) (z)

�2
dz > 0 by Lemma B.1, so that h2�+1n 
V;� (z; hn) > 0 for all n su¢ ciently large.

(iii) To show asymptotic normality, we verify that `V;� (z; hn;V; Z) satis�es the hypothe-

ses of the Lindeberg-Feller Central Limit Theorem for IID triangular arrays (indexed by

n). The Lindeberg condition is: For all " > 0,

lim
n!1

Qn;hn (z; ")! 0;

where

Qn;h (z; ") � (
V;� (z; h))�1E
h
1
�
j`V;� (z; h;V; Z)j � " (
V;� (z; h))

1=2 n1=2
�
j`V;� (z; h;V; Z)j2

i
:

Using the inequality E [1 [W � �]W 2] � ���E
�
W 2+�

�
for any � > 0, we have

Qn;h (z; ") � (
V;� (z; h))�1
�
" (
V;� (z; h))

1=2 n1=2
���

E
h
j`V;� (z; h;V; Z)j2+�

i
;
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where Assumption 3.2(iii) ensures that

E
h
j`V;� (z; h;V; Z)j2+�

i
= h��(2+�)h�1��E

"
h�1 jV j2+�

����k(�)�Z � z

h

�����2+�
#

= h��(2+�)h�1��E

"
h�1E

h
jV j2+� jZ

i ����k(�)�Z � z

h

�����2+�
#

� h��(2+�)h�1��E

"
h�1

����k(�)�Z � z

h

�����2+�
#

� h��(2+�)h�1��:

The results above and Assumption 3.2(iv) ensure that for any given z there exist 0 <

A1;z; A2;z < 1 such that A1;zh�2��1n < 
V;� (z; hn) < A2;zh
�2��1
n for all hn su¢ ciently

small. Hence, we have

Qn;hn (z; ") �
�
"h���1=2n n1=2

��� h��(2+�)n h�1��n

h�2��1n

=
�
"h���1=2n n1=2h�nhn

���
= "�� (nhn)

��=2 ! 0

provided nhn !1, which is implied by Assumption 3.6: hn ! 0; nh2�+1n !1.

Proof of Theorem 3.3. The O
�~gVj ;�j � gVj ;�j

2
1

�
remainder in eq.(20) can be dealt

with as in the proof above of Theorem 4.9. Next, we note thatZ
s (z) (ĝV;� (z; h)� gV (z)) dz = L+Bh +Rh;

where

L = Ê
�
V s(�) (Z)

�
� E

�
V s(�) (Z)

�
= Ê

�
 V;� (s;V; Z)

�
Bh =

Z
s (z) (gV;� (z; h)� gV;� (z)) dz

Rh =

Z
s (z) (ĝV;� (z; h)� gV;� (z; h)) dz �

�
Ê
�
V s(�) (Z)

�
� E

�
V s(�) (Z)

��
:
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We then have, by Assumption 3.7,

jBhnj �
����Z s (z) (gV;� (z; hn)� gV;� (z)) dz

���� � Z js (z)j jgV;� (z; hn)� gV;� (z)j dz

=

Z
js (z)j jBV;� (z; hn) jdz = op

�
n�1=2

� Z
js (z)j dz = op

�
n�1=2

�
:

Next,

Rh =

Z
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�
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�
� E

�
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�
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�
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�
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h

���
dz

�
�
Ê
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�
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Z
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Ê

�
V
1

h
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���
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�
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�
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Z
(Ê

�
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�
V
�
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�
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���
where

s(�) (~z; h) =

Z
s(�) (z; h)

1

h
k

�
~z � z

h

�
dz:

Hence, Rhn is a zero-mean sample average where the variance of each individual IID term

goes to zero, implying that Rhn = op
�
n�1=2

�
.

Proof of Theorem 3.4. This proof is virtually identical to the proof of Theorem 4.10

in the foregoing appendix, with "n = (h�1n )
1;B exp

�
�B (h

�1
n )

�B
�
+ n�1=2 (h�1n )

2 instead of

"n = (h
�1
n )

1;B exp
�
�B (h

�1
n )

�B
�
+ n�1=2 (h�1n )

1;L exp
�
�L (h

�1
n )

�L
�
.

Proof of Theorem 3.5. This proof is virtually identical to the proof of Theorem 4.11,

invoking Theorem 3.2 instead of Corollary 4.8.

68



References
Altonji, J. and R. Matzkin (2005), "Cross Section and Panel Data Estimators for Non-

separable Models with Endogenous Regressors," Econometrica, 73, 1053-1102.

Andrews, D.W.K. (1995), "Nonparametric Kernel Estimation for Semiparametric Mod-

els," Econometric Theory, 11, 560-596.

Angrist, J. and G. Imbens (1994), �Identi�cation and Estimation of Local Average

Treatment E¤ects,�Econometrica, 62, 467-476.

Angrist, J., G. Imbens, and D. Rubin (1996), �Identi�cation of Causal E¤ects Using

Instrumental Variables�(with Discussion), Journal of the American Statistical Association,

91, 444-455.

Bertail, P., D. Politis, C. Haefke, and H. White (2004), "Subsampling the Distribution of

Diverging Statistics with Applications to Finance," Journal of Econometrics, 120, 295-326.

Blundell R. and J. Powell (2000), "Endogeneity in Nonparametric and Semiparametric

Regression Models," University of California, Berkeley, Department of Economics Discus-

sion Paper.

Butcher, K. and A. Case (1994), "The E¤ects of Sibling Sex Composition on Women�s

Education and Earnings," The Quarterly Journal of Economics, 109, 531-563.

Chalak, K. and H. White (2007a), "An Extended Class of Instrumental Variables for

the Estimation of Causal E¤ects," UCSD Department of Economics Discussion Paper.

Chalak, K. and H. White (2007b), �Identi�cation with Conditioning Instruments in

Causal Systems,�UCSD Department of Economics Discussion Paper.

Chernozhukov, V. and C. Hansen (2005), "An IV Model of Quantile Treatment E¤ects,"

Econometrica, 73, 245�261.

Chernozhukov, V., G. Imbens, and W. Newey (2007), "Instrumental Variable Estima-

tion of Nonseparable Models," Journal of Econometrics, 139, 4-14.

69



Chesher, A., (2003), "Identi�cation in Nonseparable Models," Econometrica, 71, 1405-

1441.

Darolles, S., J. Florens, and E. Renault (2003), "Nonparametric Instrumental Regres-

sion," University of Tolouse GREMAQ Working Paper.

Dawid, P. (1979), "Conditional Independence and Statistical Theory," Journal of the

Royal Statistical Society, Series B, 41, 1-31.

Dudley, R. (2002). Real Analysis and Probability. New York: Cambridge University

Press.

Fan, J. (1991), "On the Optimal Rates of Convergence for Nonparametric Deconvolution

Problems," Annals of Statistics, 19, 1257-1272.

Fan, J. and Y.K. Truong (1993), �Nonparametric Regression with Errors in Variables,�

Annals of Statistics, 21, 1900-1925.

Haavelmo, T. (1943), "The Statistical Implications of a System of Simultaneous Equa-

tions," Econometrica, 11, 1-12.

Haerdle, W. and O. Linton (1994), �Applied Nonparametric Methods,�in R. Engle and

D. McFadden (eds.), Handbook of Econometrics, vol. IV. Amsterdam: Elsevier, ch.38.

Hahn, J. and G. Ridder (2007), "Conditional Moment Restrictions and Triangular Si-

multaneous Equations," IEPR Working Paper No. 07.3

Heckman, J. (1997), �Instrumental Variables: A Study of Implicit Behavioral Assump-

tions Used in Making Program Evaluations,�Journal of Human Resources, 32, 441-462.

Heckman J. and E. Vytlacil (1999), "Local Instrumental Variables and Latent Vari-

able Models for Identifying and Bounding Treatment E¤ects," Proceedings of the National

Academy of Sciences 96, 4730-4734.

Heckman, J. and E. Vytlacil (2001), "�Local Instrumental Variables,�in C. Hsiao, K.

Morimune, and J. Powell (eds.) in Nonlinear Statistical Inference: Essays in Honor of

Takeshi Amemiya. Cambridge: Cambridge University Press, pp. 1-46.

70



Heckman, J. and E. Vytlacil (2005), �Structural Equations, Treatment E¤ects, and

Econometric Policy Evaluation,�Econometrica, 73, 669-738.

Heckman, J. and E. Vytlacil (2007), "Evaluating Marginal Policy Changes and the Aver-

age E¤ect of Treatment for Individuals at the Margin," University of Chicago, Department

of Economics Discussion Paper.

Heckman, J., S. Urzua, and E. Vytlacil (2006), �Understanding Instrumental Variables

in Models with Essential Heterogeneity,�Review of Economics and Statistics, 88, 389-432.

Hoderlein, S. (2005), "Nonparametric Demand Systems, Instrumental Variables and

a Heterogeneous Population," Mannheim University, Department of Economics Working

Paper.

Hoderlein, S. (2007) "How Many Consumers are Rational?," Mannheim University,

Department of Economics Working Paper.

Hoderlein, S. and E. Mammen (2007), �Identi�cation of Marginal E¤ects in Nonsepa-

rable Models without Monotonicity,�Econometrica, 75, 1513-1518.

Hu, Y. and S. Schennach (2007), "Instrumental Variable Treatment of Nonclassical

Measurement Error Models," Econometrica, forthcoming.

Imbens, G. and W. Newey (2003), "Identi�cation and Estimation of Triangular Simul-

taneous Equations Models without Additivity," manuscript.

Matzkin, R. (2003), "Nonparametric Estimation of Nonadditive Random Functions,"

Econometrica, 71 1339-1375.

Matzkin, R. (2004), �Unobservable Instruments,�Northwestern University Department

of Economics Working Paper.

Newey, W. (1994), �The Asymptotic Variance of Semiparametric Estimators,�Econo-

metrica, 62, 1349-1382.

Newey, W. and J. Powell (2003), "Instrumental Variables Estimation of Nonparametric

Models," Econometrica, 71, 1565-1578.

71



Pagan, A. and A. Ullah (1999). Nonparametric Econometrics. Cambridge: Cambridge

University Press.

Politis, D.N. and J.P. Romano (1999), �Multivariate Density Estimation with General

Flat-Top Kernels of In�nite Order,�Journal of Multivariate Analysis, 68, 1-25.

Santos, A. (2006), "Instrumental Variables Methods for Recovering Continuous Linear

Functionals," Stanford University Department of Economics Working Paper.

Schennach, S.M. (2004a), �Estimation of Nonlinear Models with Measurement Error,�

Econometrica, 72, 33-75.

Schennach, S.M. (2004b), �Nonparametric Estimation in the Presence of Measurement

Error,�Econometric Theory, 20, 1046-1093.

Schennach, S.M. (2007), "Instrumental Variable Estimation of Nonlinear Errors-in-

Variables Models," Econometrica, 75, 201-239.

White, H. and K. Chalak (2006), "A Uni�ed Framework for De�ning and Identifying

Causal E¤ects," UCSD Department of Economics Discussion Paper.

72




