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Abstract

We study a mixed hitting-time (MHT) model that specifies durations as the first

time a Lévy process— a continuous-time process with stationary and independent

increments— crosses a heterogeneous threshold. Such models are of substantial

interest because they can be reduced from optimal-stopping models with heteroge-

neous agents that do not naturally produce a mixed proportional hazards (MPH)

structure. We show how strategies for analyzing the MPH model’s identifiability

can be adapted to prove identifiability of an MHT model with observed regressors

and unobserved heterogeneity. We discuss inference from censored data and exten-

sions to time-varying covariates and latent processes with more general time and

dependency structures. We conclude by discussing the relative merits of the MHT

and MPH models as complementary frameworks for econometric duration analysis.
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1 Introduction

Mixed hitting-time (MHT) models are mixture duration models that specify durations as

the first time a latent stochastic process crosses a heterogeneous threshold. Such models

are of substantial interest because they can be reduced from optimal-stopping models

with heterogeneous agents that do not naturally lead to a mixed proportional hazards

(MPH) structure.1 In this paper, we explore the empirical content of an MHT model in

which the latent process is a spectrally-negative Lévy process, a continuous-time process

with stationary and independent increments and no positive jumps, and the threshold is

proportional in the effects of observed regressors and unobserved heterogeneity. We show

that existing strategies for analyzing the identifiability of the MPH model can be adapted

to prove this model’s identifiability. In particular, we show that the latent Lévy process,

the regressor effect on the threshold, and the distribution of the unobserved heterogeneity

in the threshold are uniquely determined by data on durations and regressors. Some as-

sumptions on the long-run behavior of the latent process are required for full identification.

Some conditions for identification that may or may not be satisfied in the analogous MPH

problem here follow from the Lévy structure and do not require additional assumptions.

Continuous-time models involving latent processes crossing thresholds are common

in econometrics. They arise naturally from economic models in which heterogeneous

agents choose optimally from a discrete set of alternatives. Jovanovic’s (1979; 1984)

model of job tenure is an early example in labor economics and Alvarez and Shimer’s

(2007) model of search and rest unemployment is a recent one. They also appear in many

other fields in economics and finance. In his classic text book on econometric duration

analysis, Lancaster (1990, Sections 3.4.2, 5.7 and 6.5) reviews a canonical special case of

our model, a reduced-form marginal duration model that specifies durations as the first-

passage times of a Brownian motion with drift, and relates it to Jovanovic’s job tenure

1The MPH model is an extension of the Cox (1972) proportional hazards model by Lancaster (1979)
and Vaupel et al. (1979).
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model.2 In Lancaster (1972), he applies this model to strike durations, interpreting the

gap between the Brownian motion and the threshold as the level of disagreement.

Statisticians have increasingly been studying continuous-time duration models based

on latent processes, including MHT models that are special cases of this paper’s model

(e.g. Singpurwalla, 1995; Aalen and Gjessing, 2001).3 This literature is very informative

on the descriptive implications of such models, but is silent about their identifiability. Our

contribution to both the econometrics and the statistics literatures is a rigorous analysis

of the empirical content of a nonparametric class of MHT models with regressors.

Our analysis also complements recent work on dynamic discrete choice models. Heck-

man and Navarro (2007) discuss a general discrete-time mixture duration model based on

a latent process crossing thresholds.4 They emphasize the distinction between this model

and a discrete-time MPH model and its extensions, and study its identifiability and its

relation to dynamic discrete choice. This paper complements theirs with an analysis in

continuous time. The continuous-time setting facilitates a different approach to the iden-

tification analysis and connects our work to the popular continuous-time MPH model and

to continuous-time economic models.

The paper is organized as follows. Section 2 introduces the MHT model and Section

3 analyzes its empirical content. We first develop the well-understood, and therefore in-

structive, special case in which the latent Lévy process is a Brownian motion with drift.

Then, we present the general model’s implications for the data and the main identification

results. Section 4 discusses inference from censored data and an extension to time-varying

covariates. It also present ways to relax the Lévy assumptions of stationary and indepen-

dent increments. Finally, Section 5 concludes with some discussion of the relative merits

of the MHT and MPH models as complementary frameworks for econometric duration

2See also this paper’s Section 4.3.1.
3They have also been studying many specifications that are outside this paper’s class of models. See

Section 4.3 for discussion of some extensions, such as hitting-time models based on Ornstein-Uhlenbeck
processes (Aalen and Gjessing, 2004).

4See also Abbring and Heckman (2008a,b) for reviews.

2



analysis.

2 The Model

We model the distribution of a random duration T conditional on observed covariates X

by specifying T as the first time a real-valued Lévy process {Y } ≡ {Y (t); t ≥ 0} crosses

a threshold that depends on X and some unobservables V .

A Lévy process is the continuous-time equivalent of a random walk: It has stationary

and independent increments. Formally, we have5

Definition 1. A Lévy process is a stochastic process {Y } such that the increment Y (t+

∆) − Y (t) is independent of {Y (τ); 0 ≤ τ ≤ t} and has the same distribution as Y (∆),

for every t,∆ ≥ 0.

We take {Y } to have right-continuous sample paths with left limits. Note that Definition

1 implies that Y (0) = 0 almost surely.

An important example of a Lévy process is the scalar Brownian motion with drift,

in which case Y (∆) is normally distributed with mean µ∆ and variance σ2∆, for some

scalar parameters µ ∈ R and σ ∈ [0,∞). Brownian motion is the single Lévy process

with continuous sample paths. In general, Lévy processes may have jumps. Examples are

compound Poisson processes, which have independently and identically distributed jumps

at Poisson times. More generally, the jump process {∆Y } of a Lévy process {Y } is a

Poisson point process with characteristic measure Υ such that
∫

min{1, x2}Υ(dx) < ∞,

and any Lévy process {Y } can be written as the sum of a Brownian motion with drift and

an independent pure-jump process with jumps governed by such a point process (Bertoin,

1996, Chapter I. Theorem 1). The characteristic measure of {Y }’s jump process is called

its Lévy measure and, together with the drift and variance parameters of its Brownian

motion component, fully characterizes {Y }’s distributional properties.

5See Bertoin (1996) for a comprehensive exposition of Lévy processes and their analysis.
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Throughout the paper, we will focus on spectrally-negative Lévy processes. These are

Lévy processes of which the characteristic measure Υ has negative support, i.e. Lévy

processes without positive jumps. Let {Y } be such a process. Then, the (proportional)

mixed hitting-time (MHT) model specifies that T is the first time that Y (t) crosses φ(X)V ,

or

T = inf{t ≥ 0 : Y (t) > φ(X)V }, (1)

for some observed covariates X with support X ∈ Rk, measurable function φ : X 7→

(0,∞), and nonnegative random variable V , with (X,V ) independent of {Y }. We use

the convention that inf ∅ ≡ ∞; that is, we set T = ∞ if {Y } never crosses φ(X)V . The

assumption that there are no positive jumps greatly facilitates the analysis of hitting

times, because it excludes that the process jumps across the threshold.

The factor V is interpreted as an unobserved individual effect and is assumed to be

distributed independently of X with distribution G on [0,∞]. This explicitly allows for

an unobserved subpopulation {V = ∞} of stayers, on which T = ∞.6 In addition,

there may be defecting movers: For some specifications of {Y }, T = ∞ with positive

probability on {V <∞}. The distinction between stayers and defective movers can be of

substantial interest (see Abbring, 2002, for discussion). We exclude the two trivial cases

in which T = ∞ almost surely, the case in which the population consists of only stayers

(Pr(V < ∞) = 0) and the case in which all movers defect ({Y } is nonpositive).7 For

expositional convenience only, we also assume that Pr(V = 0) = 0.8

6We could extend the model by also allowing for an observed subpopulation of stayers by taking φ to
be a function into (0,∞]. Because such a subpopulation can be trivially identified from complete data,
this extension is of little interest for the purpose of this paper. The same is true for an extension with a
subpopulation with a zero threshold by including 0 in the range of φ; see also Footnote 8.

7If {Y } is nonpositive, then {−Y } is a subordinator and has increasing sample paths (Bertoin, 1996,
Chapter III).

8 The model allows for an unobserved subpopulation {V = 0} of agents using a zero threshold. On
this subpopulation, T = 0 almost surely, that is Pr(T = 0, V = 0) = Pr(V = 0), because the point 0 is
regular for (0,∞) (Bertoin, 1996, Chapter VII, Theorem 1). The case in which V , and therefore T , has a
mass point at 0 may be of interest in some applications, but even then data on immediate transitions may
not be available. In applications in which a mass point at 0 is relevant, our analysis under the assumption
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We will pay some specific attention to a version of this model without regressors, that is

φ ≡ 1. Such a model can be applied to strata defined by the regressors, without restrictions

across the strata, and can thus be interpreted as a more general, nonproportional MHT

model.

Because the increments of the Lévy process are independent of its history, in particular

its initial condition, an equivalent model arises if we take the initial condition Y (0) to be

heterogeneous and fix the threshold at a common value. In the Lévy-based MHT model,

all that matters is the distance between the threshold and the initial condition that needs

to be traveled, and we have specified this distance as φ(X)V . In different applications,

different interpretations in terms of heterogeneous initial conditions and/or heterogeneous

thresholds may be appropriate.

3 Empirical Content

3.1 Gaussian Example

We illustrate some of this paper’s key ideas with the canonical example in which {Y } is

a Brownian motion with upward drift. In this case, we can write

Y (t) = µt+ σW (t)

for some µ ∈ (0,∞) and σ ∈ [0,∞), with W (t) a standard Brownian motion, or Wiener

process, and W (0) = 0. Note that the Lévy measure Υ = 0 in this example. Recall

that the MHT model specifies T to be the first time that {Y } crosses a time-invariant

threshold φ(X)V .9 For expositional convenience, we also assume, for the purpose of this

that Pr(V = 0) = 0 can be applied to inference about the distribution of V |V > 0 and all other model
components. If data on immediate transitions are available, in addition Pr(V = 0) can be identified by
Pr(T = 0). Thus, our focus on the case in which Pr(V = 0) = 0 is without loss of generality.

9Equivalently, T is the first time that the driftless Brownian motion σW (t) crosses the affine threshold
φ(X)V − µt.
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Figure 1: Two Sample Paths of a Wiener Process with Unit Drift (Y (t) = t+W (t)) and
Three Possible Thresholds

example only, that V < ∞ almost surely. As we will shortly see, in this example this

ensures that T <∞ almost surely.

Figure 1 plots two sample paths for the case in which µ = σ = 1, with three possible

exit thresholds, 0.2, 0.7 and 1.2. For a given threshold, the time that each path first

crosses that threshold is a sample duration. The distribution of such times T for a given

threshold, that is conditional on (X,V ), can be most conveniently characterized by its

Laplace transform,

LT (s|X,V ) ≡ E [exp (−sT ) |X,V ] , s ∈ [0,∞).

From e.g. Ross (1983, Proposition 8.4.1), it follows that

LT (s|X,V ) = exp [−φ(X)V Λ(s)] , with Λ(s) ≡


√

µ2+2σ2s−µ

σ2 if σ > 0;

s/µ if σ = 0.
(2)

If σ > 0, this is the Laplace transform of an inverse Gaussian distribution with location
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parameter φ(X)V/µ and scale parameter [φ(X)V/σ]2. Consequently, by the uniqueness of

the Laplace transform, T |X,V has this inverse Gaussian distribution. This is the duration

model reviewed by Lancaster (1990, Sections 4.2 and 5.7), which we extend by allowing

for observed and unobserved heterogeneity in its parameters: Conditional on the observed

regressors X only, T is distributed as a mixture of inverse Gaussian distributions.

In the polar case with σ = 0, we have that Y (t) = µt and T = µ−1φ(X)V . Then, the

MHT model reduces to the accelerated failure time model for T |X: V takes the role of

a “baseline” duration variable, which is “accelerated” or “decelerated” by the regressor-

dependent factor µ−1φ(X).10 An interpretation of the accelerated failure time model

based on the MHT model is that it attributes all variation in durations for given X to ex

ante unobserved heterogeneity. The fact that the MHT model can capture situations in

which little or no uncertainty is resolved during the spell is appealing. Meyer (1990), for

example, entertains this possibility (using a model due to Moffitt and Nicholson, 1982)

as an alternative for a job-search model in his study of unemployment insurance and

durations.

Although the hazard rate of T |X,V is not a primitive of the MHT model, it is useful

to derive it for comparison with hazard-based models like the MPH model. Figure 2

plots the hazard-rate paths for the three threshold levels y plotted in the top graph,

0.2, 0.7 and 1.2, again for the case in which µ = σ = 1.11 The hazard paths have

a hump-shaped pattern: They start at 0, rise to a maximum that is attained between

y2/(3σ2) = y2/3 and 2y2/(3σ2) = 2y2/3, and then fall towards a limit µ2/(2σ2) = 1
2
.

The hazard rate corresponding to the lowest threshold (y = 0.2) is falling at most times,

whereas that corresponding to the highest threshold (y = 1.2) is increasing for all plotted

times. Clearly, the hazard rates are not proportional; in this sense, the MHT model is

substantially different from the MPH model.

10See Equation (45) and its discussion in Cox (1972, pp. 200–201).
11The density, cumulative distribution function, and hazard rate of the inverse Gaussian distribution

can be given explicitly (Lancaster, 1990, Section 5.7), but this not carry over to the general case and we
have no use for it in our analysis here.
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Figure 2: Hazard Rates Corresponding to Figure 1’s Three Thresholds y, for a Wiener
Process with Unit Drift (Y (t) = t+W (t))

By mixing over thresholds, a wide variety of distributions of T |X can be generated. In

the polar case with σ = 0, for example, for givenX each distribution of T can be generated

by picking the appropriate distribution G of V . Consequently, even in this special case

in which {Y } is degenerate upward drift, the model does not impose restrictions on the

duration data if no variation with the regressors X is available or used (that is, if φ = 1).

It does however restrict the effect of any regressors to rescaling T .

This takes us to the question whether the model’s structural determinants, µ, σ, φ

and G, can be uniquely determined (“identified”) from large-sample data, the distribu-

tion of T |X. The latter is uniquely characterized by its Laplace transform LT (s|X) ≡

E [LT (s|X,V )|X], which is given by

LT (s|X) = LG [φ(X)Λ(s)] , s ∈ [0,∞). (3)

Here, LG the Laplace transform of the distribution G of V .

One trivial identification problem requires our attention upfront. Take the time T

8



implied by (1) if {Y } is a Brownian motion with parameters µ and σ, for a threshold

φ(X)V . Clearly, the process {κνY }, a Brownian motion with parameters κνµ and κνσ,

and threshold (κφ(X))(νV ), with µ, ν ∈ (0,∞), produce the same time T and are ob-

servationally equivalent, in terms of the distribution of T |X or, equivalently, its Laplace

transform LT (·|X). Like the latent error and index in static discrete-choice models, the

latent process and threshold in the MHT model are only identified up to scale. At best,

we can hope for identifiability of the distribution of {Y }, φ, and G up to two innocuous

scale normalizations.

Key to this paper’s identifiability analysis is an analogy with the analysis of the

MPH model. To appreciate this, note that the right-hand side of (3) equals the sur-

vival function— rather than the Laplace transform— of T |X in an MPH model with

integrated baseline hazard Λ, regressor effect φ(X), and unobserved-heterogeneity distri-

bution G.12,13 We can therefore borrow insights from the MPH identification literature

pioneered by Elbers and Ridder (1982), Heckman and Singer (1984), and Ridder (1990),

exploiting the structure imposed by the MHT model on, in particular, Λ.

Consider the case that φ(X) = exp(X ′β) for some parameter vector β ∈ Rk. Note

that Λ is differentiable on (0,∞) and that 0 < lims↓0 Λ′(s) = µ−1 <∞. Thus, Ridder and

Woutersen’s (2003) Proposition 1 implies that µ, σ, β, and G are uniquely determined

from LT (·|X) under support conditions on the regressors X and up to the two innocuous

scale normalizations discussed earlier. In the next section, we extend this result to general

Lévy processes, with nonparametric Λ, and general G. Doing so, we exploit and address

various aspects of the more general MHT model.

Note that, even in this semi-parametric special case, regressor variation is crucial to

identifiability. For example, take again the polar case with σ = 0. Suppose that φ = 1

12It is easily checked that Λ is an increasing function such that lims→∞ Λ(s) = ∞ and that, in this
example, Λ(0) = 0.

13This analogy should not be mistaken for a substantial similarity between the two models. In the
MPH model, the (mixed) exponential form arises from the exponential formula for the survival function.
In the MHT model, it arises from the infinite divisibility of the law characterizing the latent Lévy process.
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and µ = 1, so that T = V . Clearly, if V has an inverse Gaussian distribution with

location parameter µ̃−1 and scale parameter σ̃−2, with µ̃, σ̃ ∈ (0,∞), then an alternative

specification with a latent process {Ỹ } such that Ỹ (t) = µ̃t+ σ̃W (t) and a homogeneous

unit threshold is observationally equivalent.

3.2 Characterization

We now return to the general framework of Section 2. So, suppose that {Y } is a spectrally-

negative Lévy process, but not necessarily a Brownian motion, and G is general, with

possibly Pr(V < ∞) < 1. The distribution of T conditional on (X,V ) is again fully

determined, up to almost-sure equivalence, by its Laplace transform, which we now define

as

LT (s|X,V ) ≡ E [exp (−sT ) I(T <∞)|X,V ] , s ∈ [0,∞),

with I(·) = 1 if · is true, and 0 otherwise. The factor I(T < ∞) makes explicit the

possibility that the distribution of T |X,V is defective. Note that the defect has mass

1− Pr(T <∞|X,V ) = 1− LT (0|X,V ).

Before we can derive LT (·|X,V ), we first have to introduce a common probabilistic

characterization of the latent Lévy process. Recall from Section 2 that a Lévy process {Y }

can be decomposed in a Brownian motion with drift and an independent pure-jump process

with jumps {∆Y } following a Poisson point process. Therefore, {Y } is fully characterized

by the drift and dispersion coefficients µ and σ of its Brownian motion component and the

characteristic (Lévy) measure Υ of {∆Y }. The latter satisfies
∫

min{1, x2}Υ(dx) < ∞

and, because we exclude positive jumps, has negative support. It follows (Bertoin, 1996,

Section VII.1) that E [exp (sY (t))] = exp [ψ(s)t], for s ∈ C : <(s) ≥ 0, with the Laplace

10



exponent ψ given by the Lévy-Khintchine formula,

ψ(s) = µs+
σ2

2
s2 +

∫
(−∞,0)

[esx − 1− sxI(x > −1)] Υ(dx).

The Laplace exponent, as a function on [0,∞), is continuous and convex, and satisfies

ψ(0) = 0 and lims→∞ ψ(s) = ∞. Therefore, there exists a largest solution Λ(0) ≥ 0 to

ψ(Λ(0)) = 0 and an inverse Λ : [0,∞) → [Λ(0),∞) of the restriction of ψ to [Λ(0),∞).

Theorem 1 of Bertoin (1996, Chapter VII) implies that

LT (s|X,V ) = exp [−Λ(s)φ(X)V ] . (4)

The Laplace transform of the distribution of T |X therefore is

LT (s|X) = LG [Λ(s)φ(X)] ,

with LG again the Laplace transform of the unobservable’s distribution G.

If, for example, {Y } is a Brownian motion with general drift coefficient µ ∈ R and

dispersion coefficient σ ∈ (0,∞), we have that ψ(s) = µs + σ2s2/2, so that Λ(0) =

min{0,−2µ/σ2} and Λ(s) =
[√

µ2 + 2σ2s− µ
]
/σ2. If µ ≥ 0, then Λ(0) = 0, T is

nondefective, and substituting in (4) gives the Laplace transform (2) of Section 3.1’s

Gaussian example. If µ < 0, on the other hand, Λ(0) = −2µ/σ2 > 0 and the distribution

of T |X,V has a defect of size 1 − exp(2φ(X)V µ/σ2). Note that in this case, σ = 0 is

excluded to avoid the trivial outcome that T = ∞ almost surely.

3.3 Identifiability

The distribution of T |X implied by the MHT model only depends on its primitives

(µ, σ2,Υ) and (φ,G) through the triplet (Λ, φ,LG). In this section, we study the fun-

damental question under what conditions the model triplet (Λ, φ,LG) can be uniquely
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determined from a “large” data set that gives the distribution of T |X.14,15 Because there

is a one-to-one relation between (Λ, φ,LG) and the MHT model’s primitives, this identi-

fication analysis applies without change to these primitives.16

We focus on the “two-sample” case that X = {0, 1} and φ(x) = βx, for some β ∈

(0,∞). This assumes minimal regressor variation and thus poses the hardest identification

problem.17 We assume that β 6= 1, so that there is actual variation with the regressors.

This assumption can be tested, because F0 6= F1 if and only if β 6= 1. Note that we

have also fixed φ(0) = 1, which is an innocuous normalization because the scale of V is

unrestricted at this point.

Denote the distribution of T |X = x by Fx. We have the following result on the

identifiability of (Λ, β,LG) from (F0, F1).

Proposition 1 (Identifiability of the MHT Model). If two MHT triplets (Λ, β,LG)

and (Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then

β̃ = βρ,

Λ̃ = cΛρ, and

L̃G(csρ) = LG(s) for all s ∈ [0,∞),

for some c, ρ ∈ (0,∞).

Proposition 1 establishes identification up to a power transformation, indexed by ρ, and

an innocuous normalization, indexed by c. Its proof, given in the Appendix, exploits an

analogy with the analysis of the two-sample MPH model. Recall that the right-hand side

of (3) equals the survival function— rather than the Laplace transform— of T |X in a

14That is, we abstract from sampling variation in the analysis of identifiability
15The marginal distribution of X is ancillary to the model.
16In particular, G can be uniquely determined from LG by the uniqueness of the Laplace transform

(Feller, 1971, Section XIII.1, Theorem 1). The parameters (µ, σ2,Υ) of the latent Lévy process can be
uniquely determined from Λ by the uniqueness of the Lévy-Khintchine representation (Bertoin, 1996,
Chapter I, Theorem 1).

17This is similar to the challenge accepted by Elbers and Ridder (1982) in their analysis of the identi-
fiability of the MPH model.
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two-sample MPH model with integrated baseline Λ, regressor effect βX , and unobserved-

heterogeneity distribution G. We can therefore follow a strategy of proof pioneered by

Elbers and Ridder (1982) and Ridder (1990). Doing so, we need to address the fact

that defective duration distributions naturally arise in the context of an MHT model.

Proposition 1 explicitly entertains the possibilities that there are stayers and defecting

movers. The latter, a defect in the distribution of T |X,V , arises if Λ(0) > 0 and creates

an identification problem similar to a left-censoring problem in the MPH model. To solve

it, we use the analyticity of the Laplace transform.

Proposition 1 implies that LG(0) = L̃G(0) for any two observationally equivalent

MHT triplets (Λ, β,LG) and (Λ̃, β̃, L̃G). Because Pr(V < ∞|X) = Pr(V < ∞) = LG(0),

Pr(T = ∞, V <∞|X) = LT (0|X)− LG(0), and LT (0|X) is data, this gives

Corollary 1 (Identifiability of the Mover-Stayer Structure). The conditional prob-

abilities Pr(V = ∞|X = x) of stayers and Pr(T = ∞, V <∞|X = x) of defecting movers,

x = 0, 1, are uniquely determined by (F0, F1).

Intuitively, the two types of defect can be distinguished because the share of defecting

movers, if positive, varies between the two samples and, by the assumed independence of

V and X, the share of stayers does not. Abbring (2002) proves a similar result for the

MPH model, but relying on an additional assumption on G.

Identification of the power transformation ρ requires further assumptions on either Λ or

LG. The MHT model facilitates a discussion of, in particular, assumptions on Λ in terms

of primitives. In particular, note that lims↓0 Λ′(s) > 0. So, we can achieve identification

for the (identified) case without defecting movers by requiring that lims↓0 Λ′(s) < ∞: If

Λ(0) = 0 and 0 < lims↓0 Λ′(s) < ∞, then 0 < lims↓0 dΛ(s)ρ/ds < ∞ if and only if ρ = 1.

The assumption that lims↓0 Λ′(s) < ∞ is equivalent to the assumption that {Y } does

not oscillate, that is that it either drifts to ∞ (limt→∞ Y (t) = ∞ almost surely) or to

−∞ (limt→∞ Y (t) = −∞ almost surely).18,19 For the case with defecting movers, that is

18See Bertoin (1996, Chapter VII, Corollary 2).
19Note that {W} oscillates.
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Λ(0) > 0, a similar argument can be developed. The latent process always drifts to −∞

in this case, but we need the additional assumption that E[Y (1)] > −∞.20 This involves

some analysis of the Laplace exponent ψ underlying Λ. We relegate this analysis to the

Appendix, where we prove

Proposition 2 (Identifiability of the MHT Model Based on Conditions on {Y }).

Assume that {Y } does not oscillate and that E[Y (1)] > −∞. If two MHT triplets

(Λ, β,LG) and (Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then β̃ = β,

Λ̃ = cΛ, and L̃G(cs) = LG(s) for all s ∈ [0,∞), for some c ∈ (0,∞).

We pin down the power transformation ρ in Proposition 1 by restricting the class of inverse

Laplace exponents so that it is not closed under power transformation. In their analysis

of the semiparametric identifiability of the MPH model, Ridder and Woutersen (2003)

use an analogous assumption on the baseline hazard. Unlike their assumption for the

MPH model, however, ours can be related to more primitive assumptions, on the latent

stochastic process {Y }. In particular, lims↓0 Λ′(s) > 0 follows without further assumptions

on the MHT model; Ridder and Woutersen’s analogous condition on the baseline hazard

in the MPH model is an arbitrary restriction on this hazard’s behavior near time 0.

By exploiting the Lévy structure on Λ, we avoid relying on a finite-mean assumption

on V for identification. In their pioneering work on the MPH model, Elbers and Ridder

(1982) have proved identifiability of the two-sample MPH model, up to scale, under the

assumption that the unobserved factor has a finite mean. Within the context of an

MPH model, this is an arbitrary normalization with substantive meaning (Ridder, 1990).

The corresponding assumption on the MHT model, E[V I(V < ∞)] < ∞, is a similarly

arbitrary normalization. It yields identification, up to scale and without conditions on Λ,

because two Laplace transforms L̃G and LG such that L̃G(s) = LG((s/c)1/ρ) for all s ∈

[0,∞) can only both correspond to positive random variables V with E[V I(V <∞)] <∞

if ρ = 1 (Ridder, 1990). For completeness, we summarize in

20Note that we also have that E[Y (1)] < ∞ by the assumption that {Y } has no positive jumps.
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Corollary 2 (Identifiability of the MHT Model Under a Finite-Mean Assump-

tion on G). Suppose that E[V I(V < ∞)] < ∞. If two MHT triplets (Λ, β,LG) and

(Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then β̃ = β, Λ̃ = cΛ, and

L̃G(cs) = LG(s) for all s ∈ [0,∞), for some c ∈ (0,∞).

Finally, we revisit Section 3.1’s Gaussian example Y (t) = µt+σW (t), but with µ ∈ R,

σ ∈ [0,∞), σ ∈ (0,∞) if µ ≤ 0, and general G.21 In this case,

Λ(s) =


√

µ2+2σ2s−µ

σ2 if σ > 0 and

s/µ if σ = 0

so that we have

Corollary 3 (Identifiability of the Gaussian MHT Model). If two Gaussian MHT

triplets (Λ, β,LG) and (Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then either

one of the following is true:

(i). β̃ = β, Λ̃ = cΛ, and L̃G(s) = LG(cs) for all s ∈ [0,∞), for some c ∈ (0,∞);

(ii). β̃ = β2 and, for all s ∈ [0,∞). Λ̃(s) = cΛ(s)2 = d s and L̃G(cs2) = LG(s), for some

c, d ∈ (0,∞); or

(iii). β̃ = β1/2 and, for all s ∈ [0,∞), Λ̃(s) = cΛ(s)1/2 = d
√
s and L̃G(cs1/2) = LG(s), for

some c, d ∈ (0,∞).

Thus, if two Gaussian MHT triplets are observationally equivalent, then they are either

the same, up to an innocuous scale normalization, or one triplet corresponds to a degen-

erate upward drift and the other to a driftless nondegenerate Brownian motion. Note

that identification was ensured in Section 3.1’s example by excluding the latter specifi-

cation. More generally, identification, up to scale, can be achieved by either requiring a

nondegenerate latent process (σ > 0) or drift (µ 6= 0).

21If µ ≤ 0 and σ = 0, then {Y } is nonincreasing, and T = ∞ almost surely. Because Pr(V < ∞) > 0,
this case is (set-)identified, so that we can exclude it without loss of generality.
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4 Extensions

4.1 Censoring

Our identification analysis takes the distribution of (T,X), or rather the Laplace trans-

form of T |X, as known. If complete data on this distribution are available, the MHT

model can be estimated in various ways. Because of the distribution’s characterization in

terms of its Laplace transform, empirical transform methods stand out as conceptually

straightforward.22

Duration data are often censored. With independent censoring (Andersen et al., 1993,

Section II.1), the distribution of T |X is identified, provided that obvious support condi-

tions are met. Then, this paper’s identification results carry over to the case of censored

data without change. A common example is right-censoring at times C that are indepen-

dent of T given X and that have unbounded support. In the two-sample case, empirical

transforms, and other statistics, can be readily adapted to such censoring patterns using

the Nelson-Aalen estimator (see e.g. Andersen et al., 1993, Section IV.1).

Our analysis does not immediately carry over to censoring mechanisms that obstruct

the identification of the distribution of T |X. However, the specific structure implied

by the Lévy assumption suggests that identifiability may continue to hold under similar

conditions with independent right-censoring, subject to some support qualifications. For

example, take the case that Y (t) = t and β = 1, so that T = V . From complete data

on the marginal distribution F of T , G = F is trivially identified. Now, suppose that all

durations are censored at some fixed C ∈ (0,∞), so that only the restriction of F to [0, C]

is known. Then, only the restriction of G to [0, C] is identified.

22See e.g. Yao and Morgan (1999) for a review and a list of references.
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4.2 Time-Varying Covariates

Following most of the duration-model identification literature, we have ignored time-

varying covariates. Time-varying covariates are most easily and directly introduced in

the MHT model as determinants of a time-varying threshold. It is well known that time-

variation in observed covariates can be exploited to relax some of the more controversial

identifying assumptions for the MPH model, such as Elbers and Ridder’s (1982) finite-

mean assumption (see e.g. Heckman and Taber, 1994). From this perspective, the case

of time-invariant regressors, and in fact a single binary one, can be seen as informing us

what can be learned with minimal regressor variation. Additional time-variation in the

regressors can only aid identification, as with the MPH model. A complication specific

to the MHT model is that the characterization of the duration distribution through its

Laplace transform for the time-invariant regressor case does not extend directly to time-

varying covariates. This complicates the identification analysis, but does not hamper

inference using e.g. simulation methods.

4.3 The Latent Process

Finally, we consider relaxing the assumptions that {Y } has stationary and independent

increments.

4.3.1 Nonstationary Increments

Aalen and Gjessing (2001) show that hitting-time models based on Brownian motions

exhibit quasi-stationarity: The distribution of Y (t)|T ≥ t converges to a gamma distribu-

tion and hazard rates corresponding to different thresholds converge to a common limit as

time t increases. Similar results hold for more general models. This both suggests that the

MHT model may be too restrictive in some applications and that models with richer time

effects may be identifiable. One such model specifies T ≡ ξ(U), for an increasing time

transformation ξ : [0,∞] 7→ [0,∞] and the distribution of U |X given by the MHT model.
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If ξ is linear, this simply gives the MHT model for T |X; any nonlinearities correspond to

additional duration dependence.

One structural source of nonstationarity that may be captured this way is Bayesian

learning, as in Jovanovic’s (1979; 1984) model of job tenure. Lancaster (1990, Section 6.5)

suggests that we approximate job tenure T predicted by Jovanovic’s theory by ξ(U), with

ξ(u) ≡


η2u

1−ηu
if u ∈ [0, η−1) and

∞ if u ∈ [η−1,∞],

and U the first time of Brownian motion crosses a threshold that decreases linearly from

a positive initial value.23 The probability Pr(U ≥ η−1) equals the defect Pr(T = ∞) that

arises because some agents will eventually learn that they are in a good match and never

leave it. We can extend this framework to include observed and unobserved covariates by

replacing the marginal specification of U by a Gaussian MHT model for the distribution

of U |X. The resulting model is a simple, one-parameter extension of the MHT model

that allows for nonstationary increments.

4.3.2 Ornstein-Uhlenbeck Processes

Lévy processes are a key component in many process-based duration models in economet-

rics and statistics. Another frequent choice is the Ornstein-Uhlenbeck process (e.g. Aalen

and Gjessing, 2004). This process allows for mean reversion and may be more appropriate

in some applications. A specification for {Y } that includes both as special cases is the

Ornstein-Uhlenbeck process driven by a Lévy process. Such a process satisfies

dY (t) = −αY (t)dt+ dZ(t),

23This is equivalent to the first time a Brownian motion with upward drift crosses a positive threshold—
this paper’s adopted standard formulation— but the alternative phrasing is more natural in this context.
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with α ∈ [0,∞) and {Z} a Lévy process. The usual Ornstein-Uhlenbeck process arises if

{Z} is a Brownian motion and α > 0. We explicitly include the boundary case α = 0, in

which {Y } is a Lévy process. The Laplace transform of the distribution of T |X in a MHT

model generalized this way can be derived from Novikov (2004), who provides explicit

expressions for the Laplace transform of the hitting-time distribution of an Ornstein-

Uhlenbeck process driven by a spectrally-negative Lévy process. However, even though

the generalized model adds only one parameter, α, Novikov’s results suggest that an

analysis of its identifiability requires more than just a simple variation of the present

paper’s analysis. This is left for future work.

5 Conclusion

This paper’s main contribution is to provide fundamental insight in the empirical content

of a framework for econometric duration analysis, the MHT model, that is connected to

an important class of dynamic economic models with heterogeneous agents. It does so by

highlighting and and exploiting an analogy with the identification analysis of the MPH

model, thus extending the relevance of the MPH literature to a wider class of models.

The MHT model studied in this paper complements the MPH model; it by no means

substitutes for it. The MPH model is arguably the most popular framework for economet-

ric duration analysis (Van den Berg, 2001). In labor economics, it is most often justified

as the reduced form of a job-search model. However, proportionality of the hazard rate

between a duration factor on the one hand and heterogeneity factors on the other hand is

hard to generate from nonstationary search models; for all we know, very special assump-

tions on agents’ expectations and functional forms are needed (Van den Berg, 2001). Our

analysis does not seek to resolve this issue; it rather offers a candidate reduced form for

a class of dynamic economic models that is distinct from the search models usually asso-

ciated with the MPH model. The MHT model’s convenient proportional structure arises

from assumptions on its primitives, notably the Lévy assumption on the latent process,

19



and may be easier to defend in applications.

The MHT model is also a rich descriptive framework, which imposes restrictions only

on the variation of durations with the regressors, not on marginal duration distributions. It

includes the accelerated failure time model as a special case, and interprets this as a polar

specification in which all variation in duration outcomes is due to ex ante heterogeneity.

More generally, the Lévy structure on the latent process to great extent fixes agent-

level time effects; heterogeneity is key to generating rich observed dynamics. We have

discussed extensions of the framework that allow for more direct control of agent-level

time effects, as through the baseline hazard in the MPH model. Justifying such time

effects from dynamic economic theory will, however, not be any easier than justifying the

MPH model’s proportional time effects.
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Appendix

Proof of Proposition 1. Denote Lx(·) ≡ LT (·|X = x) and note that L0 and L1 are

uniquely determined by F0 and F1. Without loss of generality, let β < 1.

First, note that observational equivalence implies that

LG ◦ (βL−1
G ) = L1 ◦ (L−1

0 ) = L̃G ◦ (β̃L̃G

−1
)

on (0,L0(0)]. Without loss of generality, let LG(0) ≤ L̃G(0). Because L0(0) > 0 and

LG ◦ (βL−1
G ) and L̃G ◦ (β̃L̃G

−1
) are analytic on (0,LG(0)) (Kortram et al., 1995), this

equality extends to (0,LG(0)). Iterating n times, this implies that

LG ◦ (βnL−1
G ) = L̃G ◦ (β̃nL̃G

−1
)

on (0,LG(0)). With K ≡ L̃G

−1
◦ LG, this gives K(βns) = β̃nK(s) and therefore

K ′(s)

K(s)
=

K ′(βns)

K(βns)/βn

for s ∈ (0,∞) and n ∈ N. This implies thatK ′(s)/K(s) = ρ/s for some ρ ∈ (0,∞), so that

K(s) = csρ and LG(s) = L̃G (csρ), for some c ∈ (0,∞). With observational equivalence,

in particular LG◦Λ = L̃G◦Λ̃, this implies that Λ̃ = cΛρ. And, with LG◦(βΛ) = L̃G◦(β̃Λ̃),

this implies β̃ = βρ.

Proof of Proposition 2. Let (Λ, β,LG) and (Λ̃, β̃, L̃G) be any two observationally-equivalent

MHT triplets. Without loss of generality, let Λ(0) ≥ Λ̃(0). Let ψ : [0,∞) → R and

ψ̃ : [0,∞) → R be the Laplace exponents corresponding to both MHT triplets. Note that

ψ = Λ−1 and ψ̃ = Λ̃−1 on [Λ(0),∞). By Proposition 1, we have that Λ̃ = cΛρ, so that

ψ̃(s) = ψ(c−1/ρs1/ρ), s ∈ [Λ(0),∞).
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Because ψ̃ and s 7→ ψ(c−1/ρs1/ρ) are analytic on (0,∞) and Λ(0) < ∞, this equality

extends to (0,∞). The assumptions that {Y } does not oscillate and E[Y (1)] > −∞

imply that 0 < lims↓0 |ψ′(s)| <∞ and 0 < lims↓0 |ψ̃′(s)| <∞. Because

lim
s↓0

|ψ̃′(s)| = ρ−1c−1/ρ lim
s↓0

s(1−ρ)/ρ|ψ′(c−1/ρs1/ρ)|,

these bounds only hold jointly if ρ = 1.
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