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ABSTRACT. We suggest two nonparametric approaches, based on kernel methods
and orthogonal series, respectively, to estimating regression functions in the presence
of instrumental variables. For the first time in this class of problems we derive
optimal convergence rates, and show that they are attained by particular estimators.
In the presence of instrumental variables the relation that identifies the regression
function also defines an ill-posed inverse problem, the “difficulty” of which depends
on eigenvalues of a certain integral operator which is determined by the joint density
of endogenous and instrumental variables. We delineate the role played by problem
difficulty in determining both the optimal convergence rate and the appropriate
choice of smoothing parameter.
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1. INTRODUCTION

Data (X;,Y;) are observed, the pairs being generated by the model
Y =g(Xi) + Ui, (1.1)

where ¢ is a function which we wish to estimate and the U;’s denote disturbances.
The U;’s are correlated with the explanatory variables X;, and in particular, E(U; |
X;) does not vanish. For example, this may occur if a third variable causes both

X; and Yj;, but is not included in the model.

This circumstance arises frequently in economics. To illustrate, suppose that
Y; denotes the hourly wage of individual ¢, and that X; includes the individual’s
level of education, among other variables. The “error” U; would generally include
personal characteristics, such as “ability,” which influence the individual’s wage
but are not observed by the analyst. If high-ability individuals tend to choose high
levels of education, then education is correlated with ability, thereby causing U; to

be correlated with at least some components of X;.

Suppose, however, that for each ¢ we have available another observed data

value, W; say (an instrumental variable), for which
EU; |W;)=0 (1.2)

and there is a “sufficiently strong” relationship between X; and W;. Then there is

an opportunity for estimating g from the data (X;, W;,Y;).

The formal definition of “sufficiently strong” will depend on the nature of the
problem. In a parametric setting, for example where g(X;) = X;3, X; isan m X k
matrix and [ is a k x 1 vector, “sufficiently strong” means simply that the matrix of
correlations between X and W is of full rank; this is sometimes expressed as “X and
W are fully correlated.” In a nonparametric setting the definition of “sufficiently

strong” is given by, for example, condition (2.1) below.

Estimation of g is difficult because, as explained in section 2, the relation that
identifies g is a Fredholm equation of the first kind, which leads to an ill-posed
inverse problem (O’Sullivan, 1986; Kress, 1999). We use a ridge-type regularisation
method to achieve boundedness of the relevant inverse integral operator, and de-
velop both kernel and series estimators of g. The resulting estimators have optimal

L rates of convergence.



Related research on this problem is mostly very recent. Blundell and Pow-
ell (2003) and Florens (2003) discussed the relationship between (1.1) and other
“structural” models in econometrics. Newey, Powell and Vella (1999) investigated
estimation and inference with a triangular-array version of (1.1). In that set-up,
equations relate X; and W;, and the disturbances of these equations are connected
to U;. Newey and Powell (2002) proposed a series estimator for g in (1.1), and gave
sufficient conditions for its consistency but did not obtain a rate of convergence.
Darolles, Florens and Renault (2002) developed a kernel estimator for a special
case of (1.1) and obtained its rate of convergence. This rate is slower than that

obtained here, and, therefore, suboptimal; see section 4.3 below.

Further, related work on inverse problems includes that of Wahba (1973),
Tikhonov and Arsenin (1977), Groetsch (1984), Nashed and Wahba (1984) and
Van Rooij and Ruymgaart 1999).

We shall give a relatively detailed treatment, together with proofs, of results in
the case where the instrumental variable is univariate. This setting is arguably of

greatest interest to statisticians. Extensions to multivariate cases will be outlined.

2. Model and estimators in bivariate case

2.1. Model. Let (U;,W;, X;,Y;), for i > 1, be independent and identically dis-
tributed 4-vectors, and assume they follow a model satisfying (1.1) and (1.2). We
shall suppose that (W;, X;,Y;), for 1 < i < n, are observed, and that the dis-
tribution of (X;, W;) is confined to the unit square; if it is not then a monotone

transformation will achieve this end.

Denote by fx, fiw and fxw the marginal densities of X and W, and the joint
density of X and W, respectively, and define the linear operator 7', on the space of

square-integrable functions on [0, 1], by

(Ty)(z) = / (e, 2) $(c) de,

where
t(z,z) = /fXW(x,w)fXW(z,w) dw .

The following assumption characterises the strength of association we require be-
tween X and W:
T is invertible. (2.1)
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To appreciate the nature of (2.1), observe that if X and W are independent then
T maps each function ¢ to a constant multiple of fx, and so (2.1) fails. However,

if (2.1) holds, then since it may be proved from (1.1) that

Ew{E(Y | W) fxw (2, W)} = (T9)(2), (2.2)
g may be recovered by inversion of T':
9() = Bw {E(Y | W) (T fxw)(2, W)} (2.3)

This property suggests an estimator, which we shall develop in section 2.2.

Observe that (2.2) is a Fredholm equation of the first kind, and generates
an ill-posed inverse problem if, as is usually the case, zero is a limit point of the
eigenvalues of T'. In that case, T~ is not a bounded, continuous operator. For the
purpose of estimation, we shall deal with this problem in section 2.2 by replacing
T~ by (T + a,)" !, where a,, is a positive ridge parameter converging to zero as

n — OQ.

2.2. Generalised kernel estimator. Let Kj(-,-) denote a generalised kernel function,
with the property:

1 ifj=0

0 ifj=1. (2.4)

t
for all t € [0,1], h—(j“)/ quh(u,t)du:{
t—1

Here, h > 0 denotes a bandwidth, and the kernel is considered in generalised form
only to overcome edge effects. In particular, if A is small and ¢ is not close to either
0 or 1 then we may take Kj(u,t) = K(u/h), where K is a bounded, compactly
supported, symmetric probability density. If ¢ is close to 1 then we may take
K (u,t) = L(u/h), where L is a bounded, compactly supported function satisfying

o 1 ifj=0
j
/OuL(u)du—{O =1

And if ¢ is close to 0 then we may take Kj(u,t) = L(—u/h). There are, of course,
other ways of overcoming the edge-effect problem, but the “boundary kernel” ap-

proach above is also appropriate.

We require two estimators of fxw, the second a leave-one-out estimator:
fXW x, w h2 ZKh Xi,x)Kh(w—Wi,w),

S 1
1<j<n:j#i
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We use fxw to construct the following estimators of ¢(x,z) and the transforma-

tion T

(e, 2) = / Frew (@, w) few (zw) dw,  (Tp)(z) = / (o, 2) () dor

Let a, > 0; we shall used it as a ridge parameter when inverting f, defining
T+ = (T + an)~'. Reflecting (2.3), our estimator of g is:

n
i) = - S (TG (W) Y.
i=1
2.3. Orthogonal series estimator. This technique is based on empirically transform-
ing the marginal distributions of W and X to uniform, and exploiting the relatively
simple character of the problem in that case. To appreciate this point, assume for
the time being that both marginals are in fact uniform on [0, 1], and let x1, X2, - . -
denote an orthonormal basis for L»[0,1]. In practice one would usually take {x;}

to be the cosine sequence, although there are many other options.

Let fxw(z,w) = >2; D7) ajk xj(x) Xx(w) denote the generalised Fourier ex-
pansion of fxw, and put @ = (q;x), p; = E{Y x;(W)}, v; = E{g9(X) x;(X)},
p = (pj) and v = (v;), the latter two quantities being column vectors. By (1.1)
and (1.2), QQTy = Qp, and therefore, v = (QQT)~1'Qp. (This is really another
way of writing (2.3); observe that the operator T takes g to a function of which the
jth Fourier coefficient is (QQTv);.) Hence, the problem of estimating the Fourier

coefficients 7; of g reduces to one of estimating p; and g;y.

Next we describe how to solve the latter problem in general cases, where
marginal distributions are not uniform. First transform the marginals, by com-
puting /I/IZ = ﬁW (W;) and )?z = ﬁW (X;), where ﬁW and ﬁX denote the empirical
distribution functions of the data Wy,..., W, and X4,...,X,,, respectively. Put
Gie = n7 Y, x; (W) xi(Xi) and p; = n=t 32, x;(W;)Yi. Let Q be the m x m

matrix that has ¢; in position (j, k), and set
~ AT -1 A
Y= (’YJ) = (QQ + CLnIm) Qpa

where a,, denotes a ridge parameter and I, is the m x m identity. Our estimator

of g is

g(r) = Z i x5 () .



In this estimator the number of terms, m, in the approximating Fourier series
is the main smoothing parameter. It is relatively awkward to derive theory for the
orthogonal series method, owing to the fact that the transformed data /WZ and )/5,
are not independent, and to the difficulty of dealing theoretically with the large
random matrix @ Nevertheless, we shall show in section 4 that, under restrictions,

the orthogonal series technique has optimal performance.

3. Model and estimators in multivariate case. In the model at (1.1) the
explanatory variable X is endogenous, i.e. determined within the model. When the
model is multivariate there is an opportunity for dividing the explanatory variable,
which is now a vector, into two parts, one endogenous and the other determined

outside the model, or exogenous.

We take (Y, X, Z,W,U) to be a vector, where Y and U are scalars, X and W
are supported on [0, 1]P, and Z is supported on [0, 1]2. Generalising (1.1) and (1.2),
the model is
Yi=9(Xi,Z)) + Ui, EU;|Zi,W;) =0,
where (Y;, X;, Z;, W;,U;), for i > 1, are independent and identically distributed
as (Y, X,Z,W,U). Thus, X and Z are endogenous and exogenous explanatory

variables, respectively. Data (Y;, X;, Z;, W;), for 1 < i < n, are observed.

Let fxzw denote the density of (X, Z, W), write fz for the density of Z, and
for each x1, x5 € [0, 1P, put

tz(xlyl'z):/fXZW(xlvzaw) fxzw (22,2, w)dw,

the analogue of ¢(z1,z2) in section 2. Define the operator T, on L]0, 1]? by

(T2 (x) = / (€, ) (€) de

Analogously to (2.3) it may be proved that, for each 2 for which T, ! exists,
9(w,2) = [2(2) Bwiz{ B(Y | Z = 2, W) (T fcaw) (0,2, W) | Z = 2}

where Fy 7 denotes the expectation operator with respect to the distribution of W
conditional on Z. In this formulation, (T ! fxzw)(z,z, W) denotes the result of
applying T, ! to the function fxzw (-, z, W), and evaluating the resulting function

at x.



To construct an estimator of g(z, z), given h > 0 and p-vectors x = (x(l), ey

‘T(p)) and € = (6(1)7 s ,g(p)), let Kp,h(xvé.) = H1<j<p Kh($(j),§(j))7 pU—t Kq,h(Z7 C)
analogously for g-vectors z and (, let h;, h, > 0, and define

n

A 1
fXZW(CU, Z’w) = m Z vahz (:E - Xi’l') anh'z (Z - Zi, Z) vahz (w - Wivw) )
z Nz
s 1
)((Z%/V(xv z,w) = (n— Dh2Phe Z Ky, (x— Xj,2) Kgn. (2 — Zj, 2)
(n = Dha"he ;7

X Kpn, (w—Wj,w),

fz($1,$2) :/fXZW(CUhZ,w) fXZW(l'Z,Zaw) dw

and

A~

(T (2, 2, w) = / B (€, ) (€, 2 w) dE

where ¢ is a function from IR*’*7 to the real line. Then the estimator of g(x, 2) is

n

. 1 ~1 (i
i(o.2) == > (T ficpw) (0.2 Wi) Yi Koz = Zi,2).

=1

4. Theoretical properties

4.1. Kernel method for bivariate case. The invertibility of T" is central to our ability
to successfully resolve g from data, and so it comes as no surprise to find that rates
of convergence of estimators of g hinge on the rate at which the eigenvalues of T',
say A\1 > Ay > ... > 0, converge to 0. Therefore, our regularity conditions will
be framed in terms of an eigen-expansion representation of T'. To this end, let ¢;
denote an eigenfunction of T with eigenvalue A;, normalised so that ¢1, ¢2,...is an
orthonormal basis for the space of square-integrable functions on the interval [0, 1].

Then we may write:

t(w,2) = Z Ajbi(x)di(2),  fxw(z, 2) = Z > dikdj(x) dr(2)
g(r) = Z bj dj(x),

where d;;, and b; denote generalised Fourier coefficients of fxw and g, respectively.

Next we state regularity conditions. Assumption A.l is equivalent to the in-

tersection of (1.1) and (1.2); A.3 gives smoothness conditions, expressed through
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the eigen-expansion of 7T; and A.4 describes the sizes of tuning parameters. The

invertibility condition, (2.1), follows from the fact that each A; > 0, implied by A.3.

Let C' > 0 be an arbitrary large, but fixed, constant, let o, 5 > 0, and denote
by G = G(C, «, B) the class of distributions G of (X, W, Y") that satisfy the following

conditions.

A.1. The data (X;, W;,Y;) are independent and identically distributed as (X, W,Y),
where (X, W) is supported on [0,1]?> and E{Y — g(X) | W = w} = 0.

A.2. The distribution of (X, W) has a density, fxw, with two derivatives (when
viewed as a function restricted to [0,1]?) bounded uniformly, in absolute value,
by C; and the functions E(Y? | W = w) and E(Y? | X = 2, W = w) are bounded
uniformly by C.

A.3. The constants «, 3 satisfy a > 1 and a < %B+ %, and moreover, |b;| < C 7P,
JTE<CN and Yo, || < C 572 for all j > 1.

A.4. The parameters a, and h satisfy a, =< n=®/Ft®) and b =< n—2A/{32F+a)}
as n — oo, where ¢, < d,, for positive constants ¢, and d,, means that ¢, /d, is

bounded away from zero and infinity.

A.5. The function Ky( -, -) satisfies (2.4); for each ¢ € [0, 1], Kp(h-,t) is supported
on [(t —1)/h,t/h]) N K, where K is a compact interval not depending on ¢; and

sup |Kp(hu,t)] < oo.
h>0, te[0,1], uek

Theorem 4.1. As n — oo,

sup /OlEG{Q(t) — g(t)}? dt = O(n~CP=D/G0Fa)),

More generally, it may be proved that if a particular distribution of (X, W,Y)
satisfies A.1, and if E(Y?) < co and the density fxw is continuous on [0, 1], then
an, and h can be chosen so that [Eg(§ — g)> — 0 as n — oo. Similar results,
guaranteeing consistent estimation but without a convergence rate, may be derived

in the settings of sections 4.2 and 4.3.

4.2.  Orthogonal series method for bivariate case. We shall simplify theory by
assuming the Fourier coefficients g;; satisfy a strong diagonality condition. Under

this assumption it is sufficient to work with a strongly diagonal form of @, where
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we redefine §;; = 0 if |j — k| > N (where N is permitted to increase slowly with n),
and leave ¢;;, unchanged otherwise. With this alteration to ¢z, let @ = (g;x) be

the indicated m x m matrix.

Recall from section 2.3 that x1, X2, ... is an orthonormal basis for L3[0, 1]. Let

Fyw and Fx denote the marginal distribution functions of W and X, put W =
Fy (W) and X = Fx(X), and let [ % denote the joint density of (/Wv,)?) Write
(W) = 320 >k ¢ikxs(®) xe(w) and g(z) = >, 75 x;j(x) for the generalised

Fourier transforms of these functions. Recall that we require the transformation

represented by QQT to be invertible, so we may define Q! = (qj(.,;l)) to be a

generalised inverse of ().
Given constants o > 2, # > % and C1,Cy > 0, let H = H(C1,Cs, a, 3) denote
the class of distributions G of (W, X,Y) for which:
E{Y —g(X)|W=w}=0, |g| < C1{max(j,k)}~*/* exp(~Ca |j — k|),
‘Qﬁ”‘ < Oy {max(j, k)}*/? exp(—=Ca |j — k|), |pj| <C1j7°, E(YY) <C,

where the bounds are assumed to hold uniformly in 1 < 7,k < oc.

Theorem 4.2. Let {x;} denote the orthonormalised version of the cosine series
on [0,1]. Takea > 2 and B > 1, and assume a,, < m=%, m < n'/F+®) N/logn —
oo and N = O(n®) for all ¢ > 0. Then, as n — oo,

1
sup / Eq(g — g)z = O(n—(25—1)/(25+a)) )
GeH

4.3. Kernel method for multivariate case. For each z € [0,1]9, let {p,1, dr2,...}
denote the orthonormalised sequence of eigenvectors, and A,; > A,o > ... > 0 the
respective eigenvalues, of the operator T,. Assume that {¢,;} forms an orthonormal

basis of L3[0,1]P. Analogously to (4.1),
t 331,1'2 Z Az] QSZ] 1'1) ¢zg($2) fXZW x,z, w Z Z zjk d)z] qszk( )

j=1 k=1
Z bz_] ¢Z_]

where the d;i’s and b,;’s are generalised Fourier coefficients.

Let » > 2p be an integer and put 7 = 2r/(2r + q). We make the follow-
ing assumptions, of which the first five are respectively analogous to A.1-A.5 in

section 4.1. Let C, a, 8 > 0.
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MV.1. The data (X;, W;, Z;,Y;) are independent and identically distributed as
(X, W, Z,Y), where X, W and Z are supported on [0, 1]?, [0, 1] and [0, 1]%, respec-
tively, and E{Y — ¢(X,2) | Z = 2, W = w} = 0.

MV.2. The distribution of (X, Z, W) has a density, fxzw, with r derivatives of all
types (when viewed as a function restricted to [0, 1]??*9), each derivative bounded
in absolute value by C; g(x, z) and b,; have r partial derivatives with respect to z,

bounded in absolute value by C, uniformly in x and z; and the functions F(Y? |

Z=z,W=w)and E(Y? | X =x,Z = 2, W = w) are bounded uniformly by C.

MV.3. The constants «,f satisfy & > 1 and a < B{(r — p)/(r +p)} + 3, and
moreover, |b,;| < Cj7P, j=* < C Ay and Yo |dajr| < C j~%/2 uniformly in

z €10,1]4, for all j > 1.
MV.4. The parameters a,, h, and h, satisfy

pmoT/@B+a) g o m2BTACE@B)} = 1/Crta)

Qp =<

as n — o0.

MV.5. The function Kj( -, -) satisfies A.6 with, in place of (2.4),
K 1 ifj=0

—(+1)
for allt € [0,1], h /t 0 if1<j<r—1.

—1

w! Kp,(u,t) du = {

MV.6. For each z € [0, 1]? the functions ¢,; form an orthonormal basis for L0, 1]?,
and sup,, sup, max; |¢,;(z)| < oo.

Let M = M(C,«a, ) denote the class of distributions of (X, W,Z,Y) that
satisfy MV.1-MV .6.

Theorem 4.3. Asn — oo,

sup  sup / Ec{j(z,2) — g(z,2)}? do = O(n—T(Zﬁ—l)/(Zﬁ+a)) )
GeM z¢[o,1]e Ji0,1]p

The convergence rates here can be compared with those obtained by Darolles,
Florens and Renault (2002), who treated the case ¢ = 0. In their Theorem 4.2 they

obtained:
/ E(G—9)*=0(n""),
[0,1]P
1

where u = % or 1 under the respective pairs of conditions 30 (Bi/X)? < o0 &

p < 2r/3, and ), (03/X}) < o0 & p < /2. In terms of our assumptions, these
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two pairs correspond to o < 3 — % and a < % B — %, respectively, which imply that
p=(28-1)/(28+«a) > % and p > 3, respectively. Therefore, under MV1-MV6 the
rate in given in our Theorem 4.3 is faster than that obtained by Darolles, Florens

and Renault (2002).

4.4. Optimality. The convergence rates expressed by Theorems 4.1-4.3 are optimal
in those contexts, in a minimax sense. Indeed, let g denote any measurable func-
tional of that data which is itself a measurable function on [0, 1] (in the cases of
Theorems 4.1 and 4.2) or on [0,1]? (in the setting of Theorem 4.3); let C denote
G, H or M in the cases of Theorems 4.1-4.3, respectively; and put 7 = 1 in the
contexts of Theorems 4.1 and 4.2, and 7 = 2r/(2r + q) for Theorem 4.3.

Theorem 4.4.

lim inf n7(2A=D/(26+) inf sup / Eq(G—g)?>0. (4.2)
n—00 9 GeC

In the multivariate setting of section 4.3 we interpret the integral at (4.2) as

EG{g(xv Z) o g(:L‘, Z)}z dx )
[0,1]

and interpret Theorem 4.4 as stating that, for this representation, (4.2) holds for
each z € [0,1]%.

5. Monte Carlo Experiments. This section reports the results of a Monte
Carlo investigation of the finite-sample performance of the kernel estimator for the
bivariate model. The estimator is described in section 2.3. Samples of size n = 200

were generated from the model determined by:

fxw(z,w)=2Cy Z (=1)7t1 71 sin(jmz) sin(jrw), 0<z,w<1;
j=1
g(x) =22 (=1)* 72 sin(jme), Y =E{g(X)|W =w}+V,
j=1

where C is a normalisation constant and V' is distributed as Normal N(0,0.01).
For computational purposes the infinite series were truncated at 7 = 100. Figure 1
shows a graph of the marginal distributions of X and Z, which are identical. The
solid line in Figure 2 depicts g(x). The kernel function is the Epanechnikov kernel,

K(x) =0.75 (1 — 2?) for |z| < 1.
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Each experiment consisted of estimating g at the 19 points, z = 0.05,0.10, ...,
0.95. The experiments were carried out in GAUSS using GAUSS pseudo-random

number generators. There were 1000 Monte Carlo replications in each experiment.

Table 1 shows the performance of the estimator, g, as a function of the band-
width, h, and the ridge parameter, a,,. The quantities Bias?, Var and MSE in
the table were calculated as the averages, over the 19 values of z, of Monte Carlo
approximations to pointwise squared bias, variance and mean squared error, respec-
tively, at those points; the pointwise values were computed by averaging over the

1000 Monte Carlo simulations.

Results are illustrated graphically in Figure 2, for the case h = 0.2 and a,, = 0.1.
The figure shows g(x) (solid line), the Monte Carlo approximation to E{g(x)}
(dashed line), and a 95% pointwise “estimation band.” The band connects the
points g(z;) &+ d;, for j = 1,...,19, where each 0; is chosen so that the interval
lg(zj) — 65,9(x;) + J;] contains 95% of the 1000 simulated values of g(x;). The
figure shows, not surprisingly, that ¢ is somewhat biased, but that the shape of Eg

is similar to that of g.

6. Technical arguments

6.1. Proof of Theorem 4.1. (The “big oh” bounds that we shall derive below
apply uniformly in G € G, although for the sake of simplicity we shall not make
this qualification.) Put TT = (T + a,)~ %, let || - || denote the usual Ly norm for
functions from the interval [0,1] to the real line, and, given a functional y from

L,[0,1] to itself, set

x| = sup Ix ()] -
YEL[0,1]: [[p]|=1

For future reference we note that A.3 and A.4 imply that

p{l/@B+a} =1 gt It 4 /20 =1 4 (nh) =85} a? = O (n~(FA=D/28+)) | (6.1)

Define

Dn(2) = [ g(x) fxw(z,w) T (fxw — fxw)(z,w) dedw,

n

Z (T fxw)(z,W))Y;

=1

3||—t\

Anl(Z) =
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Am(z) = Z (T (FGD = Fxw) } e W) Yi — D),
4%ﬁ@:%§:{ ~T) fxw Yz, Wi) Vi + Da(2),
Ana(e) = Z{ N (Few = fxw)}z W) Vi

Then, § = A1+ ...+ Ang, and so the theorem will follow if we prove that

E||Any — g[|* = O(n=GF=D/CoFe)) (6.2)
E||An;||> = O(n=@P=D/CE8+)) for j =234, (6.3)

To derive (6.2), note that FA,1 —g = —an Y5, bj (Aj +an) " ¢;. Therefore,

1EAm —glI> = a5 )

j=1 ()\] + a’n)z

-1/«

Divide the last-written series up into the sum over j < J = a, ', and the com-

plementary part, thereby bounding the right-hand side by a2 > i< (b /A2 +
disg b], and use A.3 and A.4 to bound each of these terms; hence proving that

|EA,: — g||? = O(n~(2F=D/@B+e)) (6.4)

Using A.2 we deduce that

nvar{A,1(2)} < E[{(T+fXW)(z, W) Y}Z] = E[{(T+fXW)(z, W)}? E’(Y2 ‘ W)]
< const. E[{(T" fxw)(z, W)}?] ,
where, here and below, “const.” will denote a positive constant, different at different
appearances. Let t+ denote the kernel of the transformation T, and write v,

for the function t,(21) = ¢t*(x1,2). Then, n [var{A,;(z)}dz is dominated by a

constant multiple of
/EHﬂfﬁWﬂaWﬂﬂw
= ///t+(a:1,z) tt (2o, 2) fxw (T, w) fxw(Te, w) fw(w) dw

< const. ///t+(a:1,z)t(xl,xz)t+(a:2,z) dxq 2o dz

= const. /(T+T7,bz)(z) dz
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where all integrals are over [0, 1]. Since T+ T is a bounded, positive-definite operator,
and since 0 < 9, (z) < const.a,! for all z and z, then [(TTT,)(z)dz = O(a;!)

as n — oo. Therefore, n [var{A,(z)}dz = O(a,'), and so,

E||A,1 — EA |2 = O(n_la_l) _ O(n—(2ﬂ—1)/(2g+a)) -

n

Result (6.2) is implied by this bound and (6.4).

Next we derive (6.3) in the case j = 2. Here and below, given a bivariate
function ¢(z,w), put ¢, (2) = ¢(z,w) and define THo(z,w) = (TTdy)(2). Let
D,i(2) :/ () fxw(z,w) T+(f( i) fXW)(z,w) dx dw ,

Aun(2) =+ ST (PG — Fxw) (2 W) Yi - Do)}

=1

Aua(2) = = 3" {Dui(2) =~ Du()},

in which notation A, = A,21 + A,29. Write f Ap21(2)? dz as a double series, and
take the expected values of the terms one by one. It may be shown by tedious cal-
culation that the total contribution of the terms equals O{h* (na2)=!+ (nha,)=2}.
Therefore,

E||Ana1||* = O{h* (naZ)~' + (nha,) 72} = O(n=(A-D/BFe)y (6.5)
where we used (6.1) to obtain the second identity. Furthermore,
Apaz(z) = —n~1 /g(r) Fxw (@, w) T fxw(z,w)de dw,
from which, noting (6.1), it may be deduced that
E||Anal]? < const. (nay)~ </‘ngW f‘)
= 0{(na,)?} =0(n —(28— 1)/(2ﬁ+a))

Property (6.3), in the case j = 2, follows from this result and (6.5).

Next we derive (6.3) for j = 3. Define
An31 = —([ + T+A)_1T+Ag + Dn s Angz = —(I + T+A)_1T+A(An1 — g) .

Noting that T+ — T+ = —(I+T*TA)"'T+tAT™, it can be seen that A,3 = A,31 +
An32-
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Let 6 = h* + (nh)™! and A = T - T, the latter an operator. Using standard,
but tedious, moment calculations it may be proved that E(f—t)2* = O(6¥) for each
integer k£ > 1, uniformly in the argument of £ — ¢. (The quantity § involves (nh)~!,
rather than (nh?)~!, since the integral in the definition of £ effectively removes one

of the factors h=1.) Therefore, since ||A[|2 = [(f — )2, then for each integer k > 1,
E||AP* = 0(6%). (6.6)
At the end of this proof we shall show that for each & > 1,
E{[|(T+T*A)7Y"} = 0(1) (6.7)
as n — o0o. Hence, using the Cauchy-Schwarz inequality,

{BI(I+T*2)T'THAI*}Y < B +T*2)7 B |7+ BA]®
=0(6*/al). (6.8)

From this result, and the Cauchy-Schwarz inequality again, we obtain:

Bl Ansa|)? < {BI|[(I + THA) ' THA|* B[ Any — g4}
= 0{(6/a2)? (E||Any — g|*)"/*} = O(n=@6-D/@8%a)) (6.9

the final identity following using an argument similar to that leading to (6.2).

Put

Bur(2) = [{Fxw(o,w) = faw (o, w)} frw (z10) (o) do do.

Busl2) = [ {Fxw(z.w) = Frw (s, 0)} frw (o) g(a) do o,

Bua(2) = [ {fxw ) = fw (o)} {Frw () = Frw (o,0)} (o) drdo,
Bur(2) = [{BFrw(e,w) = frw (@,0)} fxow () o) o do,

Buia() = [ L () = B (. 0)} w5 0) (o) o o,

Buai(2) = [{Efxw(zw) = fxw(zu)} frw(w) (o) do do,

Bhpaa(z) = / {fxw(z,w) — Efxw(z,w)} fxw(z, w)g(z)dedw.
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In this notation, Ag = By1 + Bp2 + Bps, Bpi = Bni1 + Bpi2, Bn2 = Bpai + Brao
and TTB,,» = D,,, whence
Apzi = —(I + TTA)"'TH(Bp11 + Bniz + Bps)
+ (T +THA) ' TTAT Y (Bha1 + Bnoz) -

From this property, (6.7) and the Cauchy-Schwarz inequality we deduce that
E||Ap31]|? < const. <||T+Bn11||4 + BTt Bpia||* + E||TTATT Boy ||*

1/2
4 BT AT Bpasl||* + E||T+Bn3||4) . (6.10)

Since || Bpi1|| + || Bnotl| = O(h?) and ||T*|| = O(a; ') then, by (6.1),

1T Braa | + 1T Bpa || < 177 (| Braall + [| Buza|l)
=0(h’a,') = O(n—(2ﬁ—1)/{2(25+a)}) _ (6.11)

Furthermore, with

Bje = [{wew) = Bfxew (. w)} 5(2) (o) dodo

we have
[e/e]

T% Bui2(z E Z Z ;\k Iif_ifk b;(2).

j=1 k=1 ¢=1

Now, E(Ajik Aoymy Djoks Deym,) = O(n™2), uniformly in the indicated indices;
>0 |be| < o0, since A.3 implies that B > 1; and >, |djx| = O(J —/2) again
by A.3. Therefore,

1/2
(BT Bpia|*)* =

1 0o 00 252
7(}\ o) <Zl Zl djkbzA£k> } ]
1 1 oo 00 2
:O{ﬁ 2 W (; ; | Jk| |b£|> }

Note too that

BT Buas||* < I T||° E||Buz||* = O(ay* El| Buaa||)

- o{a;4E< / 3522>4} — O{(nha®)™*},  (6.13)
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the last inequality following by moment calculations similar to those leading to

(6.6). In view of (6.1) and (6.6),
ETTAIF <IT*PENAI® = O(az® E|A[P) = O(6%/ay) = O(1) . (6.14)

By (6.11), (6.13), (6.14) and the Cauchy-Schwarz inequality,

(E|ITT AT Buoa|9)/? + (BT AT Bgo|[*)

< (BT A|* | T Buor|)? + (BT Al B||T Buz®)

— O(n@-0/ @Bty | 0{(s/a2) (nha2) ™"}

= O(n~A-D/@F+a)) (6.15)
we used (6.1) to obtain the last identity.

Define
n(w) = [ {Fsw(e,w) = fxw(e.0)} gla) do,
Jn - // {T+(fXW - fxw)(z,w)}z dwdz .

Moment calculations show that E||I,,[|® = O(6*) and E(J%) = O(6*/a8), and so by
the Cauchy-Schwarz inequality,

(B|T* Boas|)? < {E(|L|* 72)}2 < (B||L |8 BT
= 0(6%/a2) = O(n~B=-D/(@F+a)) (6.16)

Result (6.3), for j = 3, follows from (6.9)—(6.12), (6.15) and (6.16).

Next we derive (6.3) for j = 4. Since T+ — T+ = —(I + TTA)~!T+ATT and
I—T+T =—(I+T+A)"'T+A then

Aps = —(IT +TTA) ' TTA(A,, — TTB,2).
The arguments leading to (6.3) with j = 2, and (6.15), may be used to prove that
2, 4 1 Ny T ~(@6-1)/ (26 +a)
1= {(0%/a0)" BllAua||* + EIT*AT* Byal|'} " = O(n ).
Therefore, by (6.7), (6.8) and the Cauchy-Schwarz inequality,
A YL
Bl Ansl? < 2 {BJI(1 + T 2) T+ A1 B[ Ao}

1/2
+2{B|[(1 + T+2)7||* B|T* AT B |}
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This proves (6.3) for j = 4.
It remains to derive (6.7). Let ¢ € L2[0,1]. Then, for constants not depending
on ¢, if [TTA| < 1,
I(I +TFA)™9[| < const. [[¢],

and, without any constraint on ||[TTA||,
I +T*A) 7l = ITH(T + an)pll < NTFINIT + anll 9]l < const.az 4]l

Therefore,

(I +T*tA)~H| < const. {1+a, " I(|TTA[ > 1)} .

Hence, noting (6.6), and employing Markov’s inequality to bound P(||[TTA[ > 1),
we deduce that for each fixed k,Z > 0,

E{(I+TTA)7Y*} < const. {1+ a,* P(|TTA| > 1)}
< const. {1 + a;kE(||T+A||2e)}
< const. {1+ a;k_ME(“AHM)}

< const. (1 + a,*2¢ %) = const. {1 +a,* (6/a2)"}, (6.17)

where the constants depend on k£ and ¢ but not on n. If k is given then we may
choose £ = ((k) so large that a,* (§/a2)® — 0 as n — oo, and so (6.7) follows
from (6.17).

6.2. Proof of Theorem 4.2. Put p = (p1,...,pm)", where p; = Ec;{g()N() X](W)} =
Eg{ij(W)}. Let v = (7;) and p = (p;) denote infinite column vectors, and let @
be the m x m upper left-hand sub-matrix of ). Since p = Qv then p; = p;(G) =
O(j~@F+2)/2) ymiformly in G € H, as j — oco. Therefore, (QTp); = O(i~(@+A)),
uniformly in 1 <+ <m, n > 1 and G € H. This result will be used below without

further reference.

Put M = QQT + a,I,, and M = @@T + apl,;,. It may be deduced from the
definition of # that the bounds on |g;;| and |q§,;1)| in that definition apply too to
the (j, k)th elements of M and M~!, respectively, provided we replace a by 2« and
alter the constants Cy and Cy (retaining their positivity, of course). The bounds

are valid uniformly in 1 < 5,k <m and n > 1, and permit it to be proved that

(171 Q"p),; = {(Q"Q) T Q"p}; + O(m™*) =7+ O(m™).
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uniformly in 1 <7 <m, n > 1 and distributions of G € H. Note too that
M_lQTﬁ . M_lQTﬁ — {M—l + (
4 1

From these properties it may be shown that
m

ro{ 32 s~} =0{me( X 1w @ @) ))

uniformly in G € H.

It may be proved by Taylor expansion arguments, involving approximating
i

W, = ﬁW(WZ) by W; = Fw(W;), and analogously for X; and X;, that for each
r,e >0,

max sup Eglijr — qr]" = O (n~"/?). 6.19

L max s Bl — aiel” = O0(n™"") (6.19)
2

Ec(pj—pj)" =0(n7"). 6.20

lgjgl,?l);?)—e 2161% G(pj p]) (n ) ( )

Rather standard, but tedious, moment calculations, using (6.19) and (6.20), may be
employed to show that each of the expected values on the right-hand side of (6.18)

equals O(n=tm®*1), uniformly in G € H. Therefore,

sup Z Ec{(¥ — )%} = O0(n~tm**t + ml_zﬁ) = O(n_(zﬁ_l)/(zﬁ“m))) . (6.21)
GeM

It follows from the definition of #H that )
G € H. This result, and (6.21), imply that

j>m '7]2 = O(ml_zﬁ), uniformly in

/EG(g ~ 9= Eo( —w)’+ Y 72 =0(nCo-n/Cote),
j=1 j=m+1

uniformly in G € H, completing the proof of the theorem.
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6.3. Proof of Theorem 4.4. For simplicity we deal only with the kernel and or-
thogonal series settings, discussed in sections 4.1 and 4.2, respectively, where Z
is not present. We may assume the following: ¢; = xj, ¢1 = 1 and ¢j41(x) =
2-1/2 cos(jmx), for j > 1; the marginal distributions of X and W are uniform on

the unit interval; and

) 2m
Fxew (0, w) = Z jmo/? bi(x) pi(w), Y = Z gjj—(25+a)/2 $;(W)+V,
j=1 j=m+1
(6.22)

where m equals the integer part of n'/(2#+®) the 6;’s are all either 0 or 1, and V
is Normal N(0, 1), independent of (X, W).

The function g implied by (6.22) is g(z) = 3=, 1<j<om 0 =P ¢;(z). Note too

that if g is an estimator of g then
0; = j” /Mj (6.23)

may be viewed as an estimator of 6;.

A standard argument based on the Neyman-Pearson lemma shows that

liminf  inf  inf sup* E(f; —6;)® >0,
n—oo m+41<5<2m 9

where sup* denotes the supremum over all 2™ different distributions of (X, W,Y)
obtained by taking different choices of 6,11, ..., 02, in (6.22), and inféj represents
the infimum over all measurable functions éj of the data. Therefore, if g is given,
and §m+1, e 0, are the estimators of Om—+1, ..., 02m, respectively, derived from g

as suggested at (6.23), then

sup*/(g g)? = sup* Z E9 —0;)2572
j=m+1

2m
> const. Z 728 > const. j—(26—1D/(26+a)
j=m+1

where the constants do not depend on choice of g. This proves the theorem.
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Captions for table and figures.
Table 1. Results of Monte Carlo Experiments
Figure 1. Density of X and W used in Monte Carlo Experiments.

Figure 2. Graph of 95% Estimation Band. The solid, dashed and dotted lines show
g, E(g) and the 95% estimation band, respectively.



Table 1: Results of Monte Carlo Experiments

a, h Bias2 Var MSE
0.05 0.10 0.0039 0.0321 0.0361
0.20 0.0065 0.0162 0.0227
0.30 0.0262 0.0119 0.0381
0.40 0.0525 0.0087 0.0612
0.10 0.10 0.0118 0.0221 0.0339
0.20 0.0105 0.0115 0.0215
0.30 0.0141 0.0078 0.0219
0.40 0.0263 0.0062 0.0325
0.15 0.10 0.0224 0.0190 0.0414
0.20 0.0165 0.0098 0.0263
0.30 0.0149 0.0063 0.0212
0.40 0.0220 0.0049 0.0269
0.20 0.10 0.0335 0.0174 0.0508
0.20 0.0268 0.0081 0.0349
0.30 0.0214 0.0058 0.0272

0.40 0.0252 0.0044 0.0295
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Figure 1: Density of X and W Used in Monte Carlo Experiments
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Figure 2: Graph of 95% Estimation Band. The solid, dashed, and dotted lines show g, Eg, and

the 95% estimation band, respectively
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