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Abstract

Initially this discussion briefly reviews the contributions of Andrews and Stock and Kitamura,

henceforth AS and K respectively. Because the breadth of material covered by AS and K is so vast,

we concentrate only on a few topics. Generalized empirical likelihood (GEL) provides the focus for

the discussion. By defining an appropriate set of nonlinear moment conditions, GEL estimation

yields objects which mirror in an asymptotic sense those which form the basis of the exact theory in

AS allowing the definition of asymptotically pivotal test statistics appropriate for weakly identified

models, the acceptance regions of which may then be inverted to provide asymptotically valid con-

fidence interval estimators for the parameters of interest. The general minimum distance approach

of Corcoran (1998) which parallels the information theoretic development of EL in K is briefly re-

viewed. A new class of estimators mirroring Schennach (2004) is suggested which shares the same

asymptotic bias properties of EL and possess a well-defined limit distribution under misspecification.
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1 Introduction

These two papers represent the fruition of important and thorough investigations undertaken by the

authors of their respective fields of enquiry. I feel that they will add considerably to our understand-

ing of these topics. Before describing the contents of my discussion I initially and briefly outline the

contributions of both sets of authors.

Andrews and Stock (2005), henceforth referred to as AS, continues the programme of research initi-

ated with the papers by Moreira (2001, 2003) through Andrews, Moriera and Stock (2004), henceforth

AMS. Like those contributions, this paper is primarily concerned with the weak instrument problem

for the classical two variable linear simultaneous equations model with normally distributed reduced

form errors and known error variance matrix. The particular advantage of using a well-understood clas-

sical framework for analysis is that results here as elsewhere should have important implications and

conclusions for estimators and statistics in more general settings enabling specific recommendations for

practice. Apart from reviewing and detailing existing results, this paper provides a comprehensive treat-

ment of the many weak instrumental variables problem for this model. Generally speaking with weak

instruments standard point estimators such as 2SLS and LIML are no longer consistent and have non-

standard limiting distributions which cannot be consistently estimated. Therefore recourse is typically

made to tests based on unconditionally or conditionally pivotal statistics. Acceptance regions associated

with these tests may then be inverted to provide valid confidence interval estimators for the parameters

of interest. I now briefly summarise their findings and conclusions.

AMS obtains the power envelope for two-sided similar tests of the structural parameter via consider-

ation of point optimal tests. The power envelope changes little between similar and nonsimilar tests. A

new test class is obtained which maximises weighted average power. However, the conditional likelihood

ratio (CLR) test due to Moreira (2003), also a similar test, comes close to reaching the power envelope

as does the CLR test with estimated reduced form error variance matrix. Apart from surveying extant

results in the literature, AS again mostly confines attention to invariant similar tests and extends the

analysis of AMS for many weak instruments. Let λπ denote the concentration parameter, k the num-

ber of instruments and n the sample size. AS characterise the various situations under consideration

by the limit of the ratio λπ/k
τ → rτ , rτ ∈ [0,∞), τ ∈ (0,∞), where k → ∞, n → ∞. Briefly, (a)

τ ∈ (0, 1/2), there is no test with non-trivial power, (b) τ = 1/2, the Anderson-Rubin (AR), Lagrange
multiplier (LM) and likelihood ratio (LR) statistics all have non-trivial power, (c) τ > 1/2, the AR

statistic has trivial power whereas the LM and LR statistics are asymptotically equivalent and have

non-trivial power. AS also obtain the asymptotic power envelopes using a least favourable distribution

approach to circumvent the difficulty of the composite null hypothesis, thus, enabling the application of

classical Neyman-Pearson theory. They find that for τ = 1/2 the CLR test is close to the asymptotically

efficient power envelope and that for τ > 1/2 the LM and CLR tests are asymptotically equivalent. As

a consequence, tests based on the CLR statistic are to be recommended as a useful and powerful tool in

weakly identified models.

Kitamura (2005), henceforth K, provides an extensive overview of empirical likelihood (EL), see Owen

(2001). K demonstrates the well known result that EL is a nonparametric maximum likelihood estimator
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but, of particular note, also reinterprets EL as a generalized minimum contrast (GMC) estimator using

an information-theoretic treatment based on Fenchel duality, see Borwein and Lewis (1991). This GMC

interpretation of EL is particularly useful when considering issues of estimation and inference in the

presence of misspecification, allowing a generalization of the analysis of likelihood ratio test statistics of

Vuong (1989) to the nested and non-nested moment restrictions environment. Both unconditional and

conditional moment settings are treated.

A broader question concerns why the more computationally complex EL should be entertained instead

of GMM [Hansen (1982)]. It is now commonly appreciated that EL possesses some desirable higher

order properties. The asymptotic bias of EL is that of an infeasible GMM estimator when Jacobian

and moment indicator variance matrices are known. Furthermore, bias-corrected EL is higher order

efficient. See Newey and Smith (2004), henceforth NS. A particularly innovative approach taken by

K is the application of the theory of large deviations. Recent work co-authored with Otsu shows that

a minimax EL estimator achieves the asymptotic minimax lower bound. The EL criterion function

statistic also provides an asymptotically optimal test, see Kitamura (2001). This statistic has the

added advantage of Bartlett correctability. K provides some simulation evidence on the efficacy of

these procedures, minimax EL generally appearing superior and good coverage probabilities for the EL

criterion function statistics. It is worth noting that when heteroskedastic models are considered EL is

generally competitive, being internally self-studentised, as compared with homoskedastic environments.

A number of other applications of EL are also briefly surveyed by K including time series moment

condition models, conditional moment restrictions and weak instruments among many others.

Because the breadth of the topics covered by AS and K is so vast, I must necessarily confine my

discussion to a limited number of topics. To provide some focus, I use generalized empirical likelihood

(GEL) as an organisational tool. Section 2 briefly summarises the first order theory concerning GEL

and defines some objects needed later.

Weak identification is the subject of section 3. By considering a model specified by nonlinear moment

conditions, an appropriate GEL estimation problem allows consideration of objects which mirror in an

asymptotic sense those which form the basis of the exact theory in AMS and AS. As a consequence,

we define asymptotically pivotal statistics, the acceptance regions of which may then be inverted to

provide asymptotically valid confidence interval estimators for the parameters of interests. The resultant

statistics are compared and contrasted with those already extant in the literature and some new statistics

are also defined which may warrant further investigation.

Paralleling the information theoretic development of EL in K, section 4 briefly discusses the contri-

bution of Corcoran (1998) which provides a general minimum distance (MD) approach to estimation

and is the empirical counterpart to the analysis given by K. By comparing first order conditions as in

Newey and Smith (2001), similarly to K, it is immediately apparent that although the MD class has

many members in common with GEL they do not coincide.

Schennach (2004) casts some doubt on the efficacy of EL in misspecified situations and proves that an

alternative estimator which embeds exponential tilting (ET) empirical probabilities in the EL criterion

not only has desirable asymptotic properties under misspecification but when bias-corrected is also
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higher order efficient, sharing the higher order bias and variance properties of EL when the moment

restrictions are correct. Section 5 suggests an equivalent approach based on GEL rather than ET

empirical probabilities. We show that the resultant estimator has the same asymptotic bias as EL and

hazard that its higher order variance also coincides with that of EL. Furthermore, this estimator should

also have useful properties for misspecified moment conditions as discussed in section 6.

2 GEL

We consider a model defined by a finite number of non-linear moment restrictions. That is, the model

has a true parameter β0 satisfying the moment condition

E[g(z,β0)] = 0,

where g(z,β) an m-vector of functions of the data observation z and the parameter β, a p-vector of

parameters, where m ≥ p and E[.] denotes expectation taken with respect to the distribution of z. We
assume throughout this discussion that zi, (i = 1, ..., n), are i.i.d. observations on the data vector z.

Let gi(β) ≡ g(zi,β), ĝ(β) ≡ n−1
Pn
i=1 gi(β) and Ω̂(β) ≡ n−1

Pn
i=1 gi(β)gi(β)

0.

The class of GEL estimators, [NS, Smith (1997, 2001)], is based on ρ(v), a function of a scalar v that

is concave on its domain, an open interval V containing zero, and, without loss of generality, normalized
with ρ1 = ρ2 = −1 where ρj(v) = ∂jρ(v)/∂vj and ρj = ρj(0), (j = 0, 1, 2, ...). Let Λ̂n(β) = {λ :
λ0gi(β) ∈ V, i = 1, ..., n}. The GEL estimator is the solution to a saddle point problem

β̂ = argmin
β∈B

sup
λ∈Λ̂n(β)

nX
i=1

ρ(λ0gi(β)), (2.1)

where B denotes the parameter space. Both EL and exponential tilting (ET) estimators are special cases
of GEL with ρ(v) = ln(1 − v) and V = (−∞, 1), [Qin and Lawless (1994), Imbens (1997) and Smith
(1997)] and ρ(v) = − exp(v), [Kitamura and Stutzer (1997), Imbens, Spady and Johnson (1998) and
Smith (1997)], respectively, as is the continuous updating estimator (CUE), [Hansen, Heaton, and Yaron

(1996)], if ρ(v) is quadratic as shown by NS (2004, Theorem 2.1, p.223).1

We adopt the following assumptions from NS. Let G ≡ E[∂g(z,β0)/∂β0], Ω ≡ E[g(z,β0)g(z,β0)0]
and N denote a neighborhood of β0.

Assumption 2.1 (a) β0 ∈ B is the unique solution to E[g(z,β)] = 0; (b) B is compact; (c) g(z,β) is
continuous at each β ∈ B with probability one; (d) E £supβ∈B kg(z,β)kα¤ < ∞ for some α > 2; (e) Ω

is nonsingular; (f) ρ(v) is twice continuously differentiable in a neighborhood of zero.

Assumption 2.2 (a) β0 ∈ int(B); (b) g(z,β) is continuously differentiable in N and E[supβ∈N k∂g(z,β)/∂β0k] <
∞; (c) rank(G) = p.

1The CUE is analogous to GMM and is given by β̂CUE = argminβεB ĝ(β)0Ω̂(β)−ĝ(β), whereA− denotes any generalized
inverse of a matrix A satisfying AA−A = A. The two-step GMM estimator is β̂GMM = argminβ∈B ĝ(β)0Ω̂(β̃)−1ĝ(β),
where β̃ is some preliminary consistent estimator for β0.

[4]



Assumption 2.1 is sufficient for the consistency of β̂ for β0 whereas taken together with Assumption

2.2 the large sample normality of β̂ and λ̂ may be shown. See NS, Theorems 3.1 and 3.2.

Let λ̂ ≡ λ̂(β̂) where λ̂(β) ≡ arg supλ∈Λ̂n(β)
PT
t=1 ρ(λ

0gi(β))/n.

Theorem 2.1 If Assumptions 2.1 and 2.2 are satisfied then

n1/2

Ã
β̂ − β0

λ̂

!
d→ N(0, diag(Σ, P )), 2n[

nX
i=1

ρ(λ̂0gi(β̂))/n− ρ0]
d→ χ2(m− p),

where Σ ≡ (G0Ω−1G)−1 and P ≡ Ω−1 − Ω−1GΣG0Ω−1.

Given ρ(v), empirical probabilities for the observations may also be described

πi(β) ≡ ρ1(λ̂(β)
0gi(β))Pn

j=1 ρ1(λ̂(β)
0gj(β))

, (i = 1, ..., n); (2.2)

cf. Back and Brown (1993). The GEL empirical probabilities πi(β), (i = 1, ..., n), sum to one by

construction, satisfy the sample moment condition
Pn
i=1 πi(β)gi(β) = 0 when the first order conditions

for λ̂(β) hold, and are positive when λ̂(β̂)0ĝi(β̂) is small uniformly in i. From Brown and Newey (1998),Pn
i=1 πi(β̂)a(zi, β̂) is a semiparametrically efficient estimator of E[a(z,β0)].

3 Weak Identification

This section addresses weak identification when the moment indicators are nonlinear in β. The set-up

used here is based on Guggenberger and Smith (2005a), henceforth GS.

Assumption 2.1 (a) implies that β0 is strongly identified, a conclusion that Assumption 2.2 (c)

makes explicit. Therefore, we will need to revise these assumptions appropriately to address weak

identification of β0. As is now well documented, standard GMM and GEL estimators in the weakly

identified context are inconsistent and have limiting representations which depend on parameters which

cannot be consistently estimated rendering their use for estimation and inference purposes currently

infeasible. See Stock and Wright (2000) for results on GMM and GS for GEL. In particular, the limit

normal distributions of Theorem 2.1 will no longer hold. As a consequence, and similarly to AS, recent

research for the nonlinear case has sought acceptance regions of tests for β = β0 based on asymptotically

pivotal statistics which may then be inverted to provide well-defined interval estimates for β0.

We will require some additional notation. Let G(z,β) ≡ ∂g(z,β)/∂β0 and Gi(β) ≡ G(zi,β).
Our interest will concern tests for the hypothesis H0 : β = β0. To make transparent the relation

between the analysis in AS and that for GEL based procedures, we treat the Jacobian matrix G as mp

additional parameters to be estimated with associated moment conditions

E[G(z,β0)−G] = 0. (3.1)

The resultant GEL criterion which incorporates the hypothesis H0 : β = β0 is then
Pn
i=1 ρ(λ

0gi(β0) +

µ0vec(Gi(β0) − G)))/n with the mp-vector µ of auxiliary parameters associated with the additional
moment constraints (3.1). It is straightforward to see that the auxiliary parameter µ is estimated as
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identically zero. Thus, the auxiliary parameter estimator λ̃ = λ̂(β0). Moreover, the corresponding GEL

estimator for G is given by

G̃ =
nX
i=1

πi(β0)Gi(β0), (3.2)

where the empirical probabilities πi(β0), (i = 1, ..., n), are defined in (2.2).
2

To describe the weakly identified set-up and to detail the limiting properties of the estimators, we

adapt Assumptions Θ, ID, ρ and Mθ of GS.

Assumption 3.1 (a) β0 ∈ int(B); (b) B is compact.

Assumption 3.2 E[ĝ(β)] = n−1/2m(β), where m(β) is a continuous function of β ∈ B and m(β0) = 0.

Assumption 3.3 ρ(v) is twice continuously differentiable in a neighborhood of zero.

Assumption 3.2 encapsulates weak identification of β0 in the nonlinear moment restrictions setting.

Next we detail the necessary moment assumptions.

Assumption 3.4 (a) E
£
supβ∈B kg(z,β)kα

¤
< ∞ for some α > 2; (b) Ω(β) is nonsingular; (c)

g(z,β) is continuously differentiable in N and E[supβ∈N k∂gi(β)/∂β0kα] < ∞ for some α > 2; (d)

V (β) ≡ var[(g(z,β)0, (vecG(z,β))0)0] is positive definite.

Partition V (β) conformably with g(z,β) and vec(G(z,β)) as

V (β) ≡
Ã
Ω(β) ∆G(β)

0

∆G(β) ∆GG(β)

!
.

The hypotheses of GS Assumption Mθ are therefore satisfied. For example, from Assumptions 3.4

(a) and (c), by an i.i.d. WLLN, Ω̂(β)
p→ Ω(β) and n−1Pn

i=1 gi(β)(vecGi(β))
0 p→ ∆G(β). Furthermore,

by an i.i.d. CLT, on N , n−1/2 Pn
i=1 ((gi(β) − E[gi(β)])0, (vec(Gi(β) − E[Gi(β)]))0)0 d→ N(0, V (β)).

Assumption 3.4 (c) ensures that ∂E[ĝ(β)]/∂β0 = E[∂ĝ(β)/∂β0] on N and, thus, from Assumption 3.2,

E[Ĝ(β)] = n−1/2M(β) where M(β) ≡ ∂m(β)/∂β0.

The following theorem is the counterpart to Theorem 2.1 above for the weakly identified context.3

Theorem 3.1 Under Assumptions 3.1-3.4,

n1/2

Ã
λ̃

vec(G̃)

!
d→ N((00, (vec(M))0)0, diag(Ω−1,∆GG −∆0GΩ−1∆G)),

where M ≡M(β0), ∆GG ≡ ∆GG(β0) and ∆G ≡ ∆G(β0).
2When G is strongly identified, the Jacobian estimator G̃ is an efficient estimator for G under H0 : β = β0; see Brown

and Newey (1998).
3If Assumption 3.2 were modified as E[ĝ(β)] = n−τm(β), τ ∈ (0, 1], Theorem 3.1 would need to be altered appropriately,

cf. AS, Theorem 1. Thus, (a) τ ∈ (0, 1/2), n1/2vec(G̃) d→ N(0,∆GG −∆0
GΩ

−1∆G) and all of the tests discussed below

have trivial asymptotic power, (b) τ = 1/2, the results are as stated in Theorems 3.1 and 3.2, (c) τ > 1/2, n1−τ G̃
p→M(β0)

and the first order large sample properties of the tests are as in the strongly identified case when τ = 1.

[6]



To aid comparison with AMS and AS, we will assume that p = 1 in the remainder of this section

unless otherwise indicated. AS concentrated their search for optimal tests of the hypothesis H0 : β = β0

on invariant and similar tests. Invariance restricts attention to statistics based on the random matrix

Q whereas similarity requires consideration of tests defined in terms of Q conditional on QT . See AS,

sections 7.2 and 7.3.

First, note that n1/2λ̃ = −Ω−1n1/2ĝ + op(1). As a consequence, in large samples, it follows immedi-
ately from Theorem 3.1 that the normalised vectors

S̃ ≡ Ω−1/2n1/2ĝ d→ ZS ∼ N(0, Im),
T̃ ≡ (∆GG −∆0GΩ−1∆G)−1/2n1/2G̃ d→ ZT ∼ N(M, Im),

and are mutually asymptotically independent.4 Because they are constructed from analogous objects

apposite for the nonlinear setting, the random vectors S̃ and T̃ parallel S and T respectively in AS in the

construction of asymptotically pivotal statistics for tests of H0 : β = β0; cf. AS, eq. (7.13). Therefore,

to make the analogy with AS explicit, define the random matrix Q̃ as

Q̃ ≡ (S̃, T̃ )0(S̃, T̃ ) =
Ã
S̃0S̃ S̃0T̃

T̃ 0S̃ T̃ 0T̃

!
=

Ã
Q̃S Q̃ST

Q̃TS Q̃T

!
.

The matrices Q̃ and Q̃T thus mirror the maximal invariant Q and QT in AS, equation (7.14). It follows

from Theorem 3.1 that

Q̃
d→ (ZS , ZT )

0(ZS , ZT )

which is noncentral Wishart distributed with variance matrix I2 and noncentrality parameter (0,M)
0(0,M).

The asymptotic counterparts to Q and QT are thus (ZS , ZT )
0(ZS , ZT ) and Z0TZT .

5

Therefore, statistics corresponding to the Anderson-Rubin (AR), Lagrange multiplier (LM) and like-

lihood ratio (LR) statistics in AS, eq. (7.15), also see AMS, eq. (3.4), may likewise be defined as

gAR = Q̃S , LfM = Q̃2ST/Q̃T ,gLR =
1

2

µ
Q̃S − Q̃T +

q
(Q̃S − Q̃T )2 + 4Q̃2ST

¶
.

That is,

gAR ≡ nĝ0Ω−1ĝ,

LfM ≡ (nG̃0∆−1/2Ω−1/2ĝ)2/(nG̃0∆−1G̃),gLR =
n

2

³gAR− nG̃0∆−1G̃
+

q
(gAR− G̃0∆−1G̃)2 + 4LfM(G̃0∆−1G̃)¶ .

4For expositional purposes only we will assume that the variance matrices Ω and ∆GG −∆0
GΩ

−1∆G are known. As

noted above, their components may be consistently estimated using the outer product form.
5It is interesting to note that when G is strongly identified G̃0Ω−1G̃ is an estimator for the semiparametric counterpart

of the information matrix in fully parametric models. Conditioning on such objects or their asymptotic representations,

i.e. G̃ or ZT here, follows a long tradition in statistics. See, for example, Reid (1995).

[7]



Theorem 3.2 Let Assumptions 3.1-3.4 hold. Then, under H0 : β = β0, conditional on ZT ,gAR and LfM
converge in distribution to chi-square random variables with m and one degrees of freedom respectively

andgLR converges in distribution to a random variable whose distribution is characterised by

1

2

µ
χ2(1) + χ2(m− 1)− Z 0TZT +

q
(χ2(1) + χ2(m− 1)− Z0TZT )2 + 4χ2(1)(Z0TZT )

¶
,

where χ2(1) and χ2(m− 1) denote independent chi-square random variables with one and m− 1 degrees
of freedom respectively.

The various statistics suggested in the literature may be related to gAR, LfM andgLR. Asymptotic
equivalence, denoted by

a
=, is under H0 : β = β0.

First, analogues ofgARmay be constructed using the GEL criterion function statistic and the auxiliary
parameter estimator λ̃, viz.

GELR(β0) ≡ 2
nX
i=1

(ρ(λ̃0gi(β0))− ρ0)

a
= nλ̃0Ωλ̃
a
= nĝ0Ω−1ĝ.

Stock and Wright (2000) suggested the CUE version ofgAR. The quadratic form statistics in λ̃ and g̃ for
CUE are given in Kleibergen (2005) for CUE, in which case they coincide, and for GEL by GS. GS also

suggest the GEL criterion function statistic GELR(β0). Caner (2003) also describes similar statistics
based on ET.

Secondly, LM and score statistics that have appeared in the literature are adaptations of statistics

suggested in Newey and West (1987). These statistics use a slightly different normalisation to that for

LfM given above although their limiting distribution remains that of a chi-square random variable with

one degree of freedom, viz.

LM(β0) ≡ (nG̃0Ω−1ĝ)2/(nG̃0Ω−1G̃)
a
= (nG̃0λ̃)2/(nG̃0Ω−1G̃)

≡ S(β0).

Kleibergen (2005) details the Lagrange multiplier LM(β0) statistic for CUE, which again coincides with

the score statistic S(β0). GS describe LM(β0) and S(β0) for GEL whereas Caner (2003) gives their
ET counterparts. Otsu (2003) suggests an alternative statistic based on the GEL criterion which is

related and asymptotically equivalent to LM(β0) and S(β0). Let G̃i(β0) ≡ πi(β0)Gi(β0) and define ξ̃ ≡
argmaxξ∈Ξ̂n(β0)

Pn
i=1 ρ(ξ

0G̃i(β0)0Ω−1gi(β0))/n where Ξ̂n(β) ≡ {ξ : ξ0G̃i(β)0Ω−1gi(β) ∈ V, i = 1, ..., n}.
The statistic is then given by 2

Pn
i=1(ρ(ξ̃

0G̃i(β0)0Ω−1gi(β0))−ρ0) but requires two maximizations, one for
λ̃ in G̃i(β0) and the other for ξ̃. As noted in Guggenberger and Smith (2005b), the latter maximization

may be simply avoided by the substitution of either −(G̃0Ω−1G̃)−1G̃0Ω−1ĝ(β0) or (G̃0Ω−1G̃)−1G̃0λ̃ for
ξ̃. The function ρ(v) used to obtain λ̃ in G̃ may be different from that defining the statistic as long as

both satisfy Assumption 3.3.
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Finally, numerous analogues ofgLR may also be described. For example,
LR(β0) ≡ 1

2

³
GELR(β0)− nG̃0∆−1G̃

+

q
(GELR(β0)− nG̃0∆−1G̃)2 + 4gLM(nG̃0∆−1G̃)¶ ,

in whichgLR has been replaced by the GEL criterion function statistic GELR(β0) (or nλ̃0Ωλ̃). Similarly,gLM might be replaced by LM(β0) or S(β0) with ∆ substituted by Ω. A CUE version of LR(β0) was
proposed in Kleibergen (2005, eq. (31), p.1113) in which LM(β0) and Ω replace gLM and∆. The limiting

distribution of LR(β0) with GELR(β0) or nλ̃0Ωλ̃ substituted for nĝ0Ω−1ĝ remains that forgLR given in
Theorem 3.2 above. If gLM is replaced by LM(β0) or S(β0) and ∆ by Ω, then the limiting representation
must be altered by substituting likewise Z 0T∆

1/2Ω−1∆1/2ZT for Z0TZT . Note that if nG̃
0∆−1G̃

p→ ∞,
corresponding to the strong identification of G, then LR(β0)−LM(β0)

p→ 0, confirming the asymptotic

equivalence of these statistics in this circumstance, cf. AS, section 7.4.

The large sample representation forgLR, LR(β0) or any of its analogues may easily be consistently
estimated by simulation, thus enabling an asymptotically valid interval estimator for β0 to be obtained

by inversion of the acceptance region of the LR-type test for H0 : β = β0. Given G̃, realisations of

LR(β0) based on its limiting representation are given from simulation of independent chi-square random
variables with one andm−1 degrees of freedom respectively. An estimator of the asymptotic conditional
distribution function of LR(β0) given ZT may then be simply obtained. Cf. Kleibergen (2005, p.1114).
When p > 1, Kleibergen (2005, section 5.1, pp.1113-5) suggests replacing nG̃0Ω−1G̃ in the CUE

version of LR(β0), after substitution of Ω and LM(β0) for ∆ and LfM respectively, by a statistic which

incorporates H0 : β = β0 appropriate for testing rk[G] = p− 1 against rk[G] = p based on G̃. Examples
of such statistics are given in Cragg and Donald (1996, 1997), Kleibergen and Paap (2005) and Robin

and Smith (2000).

4 GMC and GEL

K provides an information-theoretic characterisation of GMC estimators which includes EL as a special

case. Corcoran (1998) formulated a general class of MD estimators which are the empirical counterparts

of those GMC estimators detailed in K. NS, see also Newey and Smith (2001), compared GEL with the

MD type of estimator discussed by Corcoran (1998) which helps explain the form of the probabilities in

equation (2.2) and connects their results with the existing literature.

Let h(π) be a convex function of a scalar π that measures the discrepancy between π and the empirical

probability 1/n of a single observation, that can depend on n. Consider the optimization problem

min
π1,...,πn,β

nX
i=1

h(πi), s.t.
nX
i=1

πigi(β) = 0,
nX
i=1

πi = 1. (4.3)

and the resultant MD estimator is defined by

β̂MD = arg min
β∈B,π1,...,πn

nX
i=1

h(πi), s.t.
nX
i=1

πigi(β) = 0,
nX
i=1

πi = 1.

[9]



Like GEL, this class also includes as special cases EL, ET and CUE, where h(π) is − ln(π), π ln(π)
and [(nπ)2 − 1]/2n respectively together with members of the Cressie-Read (1984) family of power
divergence criteria discussed below. When the solutions π̂1, ..., π̂n of this problem are nonnegative, they

can be interpreted as empirical probabilities that minimize the discrepancy with the empirical measure

subject to the moment conditions.

To relate MD and GEL estimators we compare their first-order conditions. For an m-vector of

Lagrange multipliers α̂MD associated with the first constraint and a scalar µ̂MD for the second in (4.3),

the MD first order conditions for π̂i are hπ(π̂i) = −α̂0MDgi(β̂MD) + µ̂MD which, if hπ(.) is one-to-one,

may be solved for π̂i, (i = 1, ..., n). Substituting into the first-order conditions for β̂MD, α̂MD and µ̂MD

gives

nX
i=1

h−1π (−α̂0MDgi(β̂MD) + µ̂MD)Gi(β̂MD)
0α̂MD = 0, (4.4)

nX
i=1

h−1π (−α̂0MDgi(β̂MD) + µ̂MD)gi(β̂MD) = 0,

and
Pn
i=1 h

−1
π (−α̂0MDgi(β̂MD) + µ̂MD) = 1. For comparison, the GEL first-order conditions are

nX
i=1

ρ1(λ̂
0gi(β̂))Gi(β̂)0λ̂ = 0, (4.5)

nX
i=1

ρ1(λ̂
0gi(β̂))gi(β̂) = 0.

In general, the first order conditions for GEL and MD are different, and hence so are the estimators

of β. However, if h−1π (·) is homogenous, the Lagrange multiplier µ̂MD can be factored out of (4.4). Then

the first-order conditions equations (4.4) and (4.5) coincide for

λ̂ = α̂MD/µ̂MD. (4.6)

In this case the GEL saddle point problem is a dual of the MD one, in the sense that λ̂ is a ratio of

Lagrange multipliers (4.6) from MD. If h−1π (·) is not homogenous, MD and GEL estimators are different.
In general, though, for large n, the GEL class is obtained from a much smaller dimensional optimization

problem that MD and is consequently computationally less complex. Duality also justifies the GEL

empirical probabilities πi(β) (2.2) as MD estimates which may thus be used to efficiently estimate the

distribution of the data by bP{z ≤ c} =Pn
i=1 πi(β̂)1(zi ≤ c).

A particular example of the relationship between MD and GEL occurs when h(·) is a member of the
Cressie-Read (1984) power divergence criteria in which h(π) = [γ(γ+1)]−1[(nπ)γ+1−1]/n. We interpret
expressions as limits for γ = 0 or γ = −1. In this case h−1π (·) is homogenous and, hence, for each MD
estimator there is a dual GEL estimator in this case. The following is Theorem 2.2, p.224, in NS.6

Theorem 4.1 If g(z,β) is continuously differentiable in β, for some scalar γ

ρ(v) = −(1 + γv)(γ+1)/γ/(γ + 1), (4.7)

6Duality between MD and GEL estimators occurs for EL when γ = −1, for ET when γ = 0 and for CUE when γ = 1

as well as for all the other members of the Cressie-Read (1984) family.
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the solutions to equation (4.3) and (2.1) occur in the interior of B, λ̂ exists, and Pn
i=1 ρ2(λ̂

0ĝi)ĝiĝ0i is

nonsingular, then the first order conditions for GEL and MD coincide for β̂ = β̂MD, πi(β̂) = π̂MD
i ,

(i = 1, ..., n), and λ̂ = α̂MD/(γµ̂MD) for γ 6= 0 and λ̂ = α̂MD for γ = 0.

5 Asymptotic Bias

Schennach (2004) recently reconsidered EL and examined an alternative estimator, exponentially tilted

empirical likelihood (ET EL), which embeds the ET implied probabilities in the EL criterion function.

ET EL has been considered elsewhere by Jing and Wood (1996) and Corcoran (1998, section 4, pp.971-

972). Although the ET EL criterion is not Bartlett correctable, see Jing and Wood (1996), Schennach

(2004) proves that ET EL possesses the same higher order bias and variance properties as EL and, hence,

like EL, is higher order efficient among bias-corrected estimators.

Rather than, as Schennach (2004) suggests, embedding the ET implied probabilities in the EL crite-

rion, we substitute the GEL implied probabilities. Given a suitable choice for ρ(v), even with unbounded

gi(β), the implied probabilities πi(β) (2.2) will always be positive, for example, members of the Cressie-

Read family for which γ ≤ 0.7 As a consequence, the GEL EL criterion is defined as

logLGEL EL(β) =
nX
i=1

log πi(β)/n

=
nX
i=1

log ρ1(λ̂(β)
0gi(β))/n− log

nX
j=1

ρ1(λ̂(β)
0gj(β)).

We show that GEL EL shares the same bias properties as EL.

The following assumption mirrors the hypotheses of Schennach (2004, Theorem 5).

Assumption 5.1 (a) E[supβ∈N kgi(β)k4] < ∞ and E[supβ∈N kGi(β)k2] < ∞; (b) for each β ∈ N ,
k∂g(z,β)/∂β0−∂g(z,β0)/∂β0k ≤ b(z)kβ−β0k such that E[b(z)] <∞; (d) ρ(v) is four times continuously
differentiable with Lipschitz fourth derivative in a neighborhood of zero.

The next theorem follows as a consequence.

Theorem 5.1 Let Assumptions 2.1, 2.2 and 5.1 hold. Then

β̂GEL EL − β̂EL = Op(n
−3/2).

An immediate consequence of Theorem 5.1 is that the GEL EL and EL estimators share the same

asymptotic bias. Hence, we adopt Assumption 3 in NS; viz.

Assumption 5.2 There is b(z) with E[b(zi)
6] < ∞ such that for 0 ≤ j ≤ 4 and all z, ∇jg(z,β)

exists on a neighborhood N of β0, supβ∈N k∇jg(z,β)k ≤ b(z), and for each β ∈ N , k∇4g(z,β) −
7Negative πi(β) may be avoided by incorporating a shrinkage factor; viz.

π∗i (β) =
1

1 + εn
πi(β) +

εn

1 + εn

1

n
,

where εn = min[min1≤i≤n πi(β), 0]. See Bonnal and Renault (2004).

[11]



∇4g(z,β0)k ≤ b(z)kβ−β0k, ρ(v) is four times continuously differentiable with Lipschitz fourth derivative
in a neighborhood of zero.

Let H ≡ ΣG0Ω−1 and a(β0) be an m-vector such that

aj(β0) ≡ tr(ΣE[∂2gij(β0)/∂β∂β0])/2, (j = 1, ...,m), (5.8)

where gij(β) denotes the jth element of gi(β), and ej the jth unit vector. Therefore,

Theorem 5.2 If Assumptions 2.1, 2.2 and 5.2 are satisfied, then to O(n−2)

Bias(β̂GEL EL) = H(−a(β0) +E[Gi(β0)Hgi(β0)])/n.

Cf. NS, Theorem 4.1, p.228, and Corollary 4.3, p.229.

Given the Op(n
−3/2) equivalence between EL and GEL EL estimators, an open question remains

concerning whether GEL EL is also higher order efficient, sharing the same higher order variance as EL

and ET EL.

6 Misspecification

Schennach (2004, Theorem 1) also proves that, when the moment condition model is misspecified, EL is

no longer root-n consistent for its pseudo true value (PTV). The difficulty for EL under misspecification

arises because its influence function is unbounded, a property shared by other members of the Cressie-

Read family for which γ < 0, whereas that for ET is, see Imbens, Spady and Johnson (1998, p.337).

Schennach (2004, Theorem 10) shows that ET EL is, however, root-n consistent for its PTV which may

be advantageous for the properties of ET vis-à-vis EL. We provide a similar result below for GEL EL

estimators defined for GEL criteria with bounded influence functions under misspecification, that is, if

there exists no β ∈ B such that E[g(z,β)] = 0.
Following Schennach (2004), we reformulate the estimation problem as a just-identified GMM system

to facilitate the derivation of the large sample properties of GEL EL by the introduction of the additional

auxiliary scalar and m-vector parameters ρ1 and µ. Computationally, of course, this reparameterisation

is unnecessary to obtain the GEL EL estimators.

For brevity, we write gi ≡ gi(β), Gi ≡ Gi(β), ρ1i ≡ ρ1i(λ
0gi) and ρ2i ≡ ρ2i(λ

0gi), (i = 1, ..., n).

The GEL EL and auxiliary parameter estimators may then be obtained via the following lemma; cf.

Schennach (2004, Lemma 9).

Lemma 6.1 The GEL EL and auxiliary parameter estimators β̂GEL EL and λ̂GEL EL are given as

appropriate subvectors of θ̂ = (ρ̂1, µ̂
0, λ̂, β̂)0 which is the solution to

nX
i=1

ψ(zi, θ̂)/n = 0,

[12]



where

ψ(zi, θ) ≡

⎛⎜⎜⎜⎜⎝
ρ1i − ρ1

ρ1igi

(ρ2igig
0
i)µ+ ((ρ1ρ2i/ρ1i)− ρ2i)gi

−ρ1iG0iµ− ρ2iG
0
iλg

0
iµ+ ((ρ1ρ2i/ρ1i)− ρ2i)G

0
iλ

⎞⎟⎟⎟⎟⎠ .

Likewise, see Schennach (2004, equation (30)), the structure of the moment indicator vector ψ(zi, θ)

becomes more transparent when re-expressed as

ψ(zi, θ) =

⎛⎜⎜⎜⎜⎝
ρ1i − ρ1

∂(ρ1ig
0
iµ+ ρ1 log(ρ1i exp(−ρ1i)))/∂κ

∂(ρ1ig
0
iµ+ ρ1 log(ρ1i exp(−ρ1i)))/∂λ

∂(ρ1ig
0
iµ+ ρ1 log(ρ1i exp(−ρ1i)))/∂β

⎞⎟⎟⎟⎟⎠ .

Let λ(β) be the unique solution of E[ρ1(λ
0g(z,β))g(z,β)] = 0 which exists by the concavity of ρ(·).

We also define N as a neighbourhood of the PTV β∗, see Assumption 6.1 (b) below, and P (β) ≡
E[ρ(λ(β)0(g(z,β)−E[g(z,β)]))]. The following assumption adapts Schennach (2004, Assumption 3) for
GEL EL. Let gj(z,β) be the jth element of g(z,β), (j = 1, ...,m).

Assumption 6.1 (a) B is compact; (b) P (β) is minimised at the unique PTV β∗ ∈ int(B); (c) g(z,β)
is continuous at each β ∈ B with probability one; (d) Λ(β) is a compact set such that λ(β) ∈ Λ(β) and
E[supβ∈B supλ∈Λ(β) |ρ(λ0g(z,β))|] < ∞; (e) g(z,β) is twice continuously differentiable on N ; (f) there
is b(z) with E[supβ∈N supλ∈Λ(β)

Q3
j=1 |ρj(λ0g(z,β))|kj b(z)k] < ∞ for 0 ≤ k ≤ 4 such that kg(z,β)k,

k∂g(z,β)/∂β0k, °°∂2gj(z,β)/∂β∂β0°° < b(z), (j = 1, ...,m), and k3 = 0 unless −1 ≤ k1 ≤ 0, when

k2 = 0, k3 = 1, if −2 ≤ k1 ≤ −1, k2 = 2 and if 0 ≤ k1, k2 ≤ 2, 1 ≤ k1 + k2 ≤ 2.

The just-identified GMM system based on the moment indicator vector ψ(z, θ) allows the use of

standard results on the large sample behaviour of GMM estimators to be employed, e.g. Newey and

McFadden (1994, Theorem 3.4, p.2148).

Theorem 6.1 Let G∗θ = E[∂ψ(z, θ∗)/∂θ0] and Ω∗θ = E[ψ(z, θ∗)ψ(z, θ∗)0]. If Assumption 6.1 satisfied

and G∗θ is nonsingular, then n
1/2(θ̂ − θ∗)

d→ N(0, (G∗θ)
−1Ω∗θ(G

∗
θ)
0−1).

Appendix: Proofs

Proof of Theorem 3.2: Given Theorem 3.1, it is straightforward to see that, under H0 : β =

β0, gAR converges in distribution to Z 0SZS and, thus, has a limiting χ2(m) distribution. Similarly,

nG̃0∆−1/2Ω−1/2ĝ converges in distribution to Z 0TZS . Given ZT , Z
0
TZS ∼ N(0, Z0TZT ) and, thus,

Z0TZS/(Z
0
TZT )

1/2 is standard normally distributed and independent of Z0TZT . Therefore, as nG̃
0∆−1G̃ d→

Z0TZT , LfM has a limiting χ2(1) distribution under H0 : β = β0. Finally,gLR converges in distribution
to (Z 0SZS − Z0TZT +

p
(Z0SZS − Z0TZT )2 + 4(Z 0TZS)2)/2. Write Z0SZS = (Z 0TZS)

2/Z0TZT + (Z
0
SZS −

(Z0TZS)
2/Z0TZT ) which are independent χ

2(1) and χ2(m− 1) random variates respectively independent
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of Z0TZT . Therefore, conditionally on ZT ,gLR has a limiting distribution described by
1

2

µ
χ2(1) + χ2(m− 1)− Z 0TZT +

q
(χ2(1) + χ2(m− 1)− Z0TZT )2 + 4χ2(1)(Z0TZT )

¶
.

Proof of Theorem 5.1: Let ĝi = gi(β̂), Ĝi = Gi(β̂), ρ̂1i = ρ1(λ̂
0ĝi) and ρ̂2i = ρ2(λ̂

0ĝi), (i = 1, ..., n).

The first order conditions defining the GEL EL estimator are

0 =
∂λ̂(β̂)0

∂β

nX
i=1

Ã
1

nρ̂1i
− 1Pn

j=1 ρ̂1j

!
ρ̂2iĝi (A.1)

+
nX
i=1

Ã
1

nρ̂1i
− 1Pn

j=1 ρ̂1j

!
ρ̂2iĜ

0
iλ̂,

cf. Schennach (2004, eq. (52)). As ρ(v) is continuously differentiable to the fourth order, a similar

argument to Schennach (2004, eq. (55)) yields

ρ̂ji = −1 + ρj+1λ̂
0ĝi +

1

2
ρj+2(λ̂

0ĝi)2 +Op(n−3/2) kĝik3 ,
nX
k=1

ρ̂jk/n = −1 +Op(n−1), (j = 1, 2).

Hence, noting ĝ = n−1
Pn

i=1 ĝi = Op(n
−1/2) and λ̂ = Op(n

−1/2),

ρ̂2i − ρ̂1i = (ρ3 + 1)λ̂
0ĝi +

1

2
(ρ4 − ρ3)(λ̂

0ĝi)2 +Op(n−3/2) kĝik3 ,
ρ̂2i − ρ̂1i

ρ̂1i
= −(ρ3 + 1)λ̂0ĝi − 1

2
(ρ4 − ρ3)(λ̂

0ĝi)2 + (ρ3 + 1)(λ̂0ĝi)2

+Op(n
−3/2) kĝik3 ,

n(ρ̂2i − ρ̂1i)Pn
k=1 ρ̂1k

= −(ρ3 + 1)λ̂0ĝi − 1
2
(ρ̂4 − ρ̂3)(λ̂

0ĝi)2

+Op(n
−3/2)(kĝik+ kĝik2 + kĝik3).

Therefore, after cancellation, substitution of these expressions in (A.1) yields

nX
i=1

Ã
1

nρ1i
− 1Pn

j=1 ρ1j

!
ρ2igi =

1

n

nX
i=1

(1− nπi)gi + (ρ3 + 1) 1
n

nX
i=1

(λ0gi)2gi (A.2)

+Op(n
−3/2)

1

n

nX
i=1

kĝik3 ĝi

= ĝ + (ρ3 + 1)
1

n

nX
i=1

(λ̂0ĝi)2ĝi +Op(n−3/2),

as
Pn
i=1 π̂iĝi = 0, where π̂i = πi(β̂), (i = 1, ..., n). Furthermore,

nX
i=1

Ã
1

nρ̂1i
− 1Pn

j=1 ρ̂1j

!
ρ̂2iĜ

0
iλ̂ =

1

n

nX
i=1

(1− nπ̂i +Op(n−1) kĝik2)Ĝ0iλ̂ (A.3)

=
1

n

nX
i=1

(1− nπ̂i)Ĝ0iλ̂+Op(n−3/2)

= − 1
n

nX
i=1

(λ̂0ĝi)Ĝ0iλ̂+Op(n
−3/2),
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as nπ̂i = 1 + λ̂0ĝi +Op(n−1) kĝik2, (i = 1, ..., n); cf. Schennach (2004, eq. (57)).
Now, similarly to Schennach (2004, eq. (56)), from the first order conditions determining λ̂(β),

substituting for nπ̂i, (i = 1, ..., n),

nX
i=1

π̂iĝi = ĝ +
1

n

nX
i=1

ĝiĝ
0
iλ̂+Op(n

−1)
1

n

nX
i=1

kĝik2 ĝi

= ĝ +
nX
i=1

π̂iĝiĝ
0
iλ̂+

1

n

nX
i=1

(1− nπ̂i)ĝiĝ0iλ̂+Op(n−1)

= ĝ + Ω̃λ+Op(n
−1),

where Ω̃ =
Pn

i=1 π̂iĝiĝ
0
i. Hence, as Ω̃ = Op(1) and is p.d. w.p.a.1,

λ̂ = −Ω̃−1ĝ +Op(n−1). (A.4)

Therefore, from (A.3),

nX
i=1

Ã
1

nρ̂1i
− 1Pn

j=1 ρ̂1j

!
ρ̂2iĜ

0
iλ̂ = ĝ

0Ω̃−1
1

n

nX
i=1

ĝiĜ
0
iλ̂+Op(n

−3/2), (A.5)

as n−1
Pn

i=1 ĝiĜ
0
iλ̂ = Op(n

−1/2).

The total differential of the first order conditions determining λ̂(β) at β̂ is

nX
i=1

ρ̂2iĝiĝ
0
idλ̂+

nX
i=1

[ρ̂1iIm + ρ̂2iĝiλ̂
0]Ĝidβ = 0.

Now,

nX
i=1

[
ρ̂1iPn
j=1 ρ̂1j

I +
ρ̂2iPn
j=1 ρ̂1j

ĝiλ̂
0]Ĝi =

nX
i=1

π̂iĜi +
nX
i=1

π̂iĝiλ̂
0Ĝi

− 1
n

nX
i=1

[(ρ3 + 1)λ̂
0ĝi +Op(n−1) kĝik2]ĝiλ̂0Ĝi

= G̃+
nX
i=1

π̂iĝiλ̂
0Ĝi − (ρ3 + 1) 1

n

nX
i=1

ĝiĝ
0
iλ̂λ̂

0Ĝi +Op(n−3/2)

= G̃+
nX
i=1

π̂iĝiλ̂
0Ĝi +Op(n−1),

where G̃ =
Pn
i=1 π̂iĜi. Therefore,

∂λ̂(β̂)

∂β0
= −Ω̃−1

nX
i=1

[
ρ̂1iPn
j=1 ρ̂1j

Im +
ρ̂2iPn
j=1 ρ̂1j

ĝiλ̂
0]Ĝi (A.6)

−Ω̃−1
nX
i=1

ρ̂2i − ρ̂1iPn
k=1 ρ̂1k

ĝiĝ
0
i

∂λ̂(β̂)

∂β0

= −Ω̃−1G̃− Ω̃−1
nX
i=1

π̂iĝiλ̂
0Ĝi +Op(n−1)

+(ρ3 + 1)Ω̃
−1 1
n

nX
i=1

(λ̂0ĝi +Op(n−1) kĝik2)ĝiĝ0i
∂λ̂(β̂)

∂β0
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= −Ω̃−1G̃− Ω̃−1
nX
i=1

π̂iĝiλ̂
0Ĝi +Op(n−1)

−(ρ3 + 1)Ω̃−1 1
n

nX
i=1

[(λ̂0ĝi)ĝiĝ0i +Op(n
−1) kĝik4)Ω̃−1[G̃+Op(n−1/2)]

= −Ω̃−1G̃− Ω̃−1
nX
i=1

π̂iĝiλ̂
0Ĝi

−(ρ3 + 1)Ω̃−1 1
n

nX
i=1

(λ̂0ĝi)ĝiĝ0iΩ̃
−1G̃+Op(n−1);

cf. Schennach (2004, eq. (54)).

Therefore, after substitution of eqs. (A.2) and (A.6) into the first term of the first order conditions

eq. (A.1) defining the GEL EL estimator,

∂λ̂(β̂)0

∂β

nX
i=1

Ã
1

nρ̂1i
− 1Pn

j=1 ρ̂1j

!
ρ̂2iĝi = −G̃0Ω̃−1ĝ − (ρ3 + 1)G̃0Ω̃−1 1

n

nX
i=1

ĝi(λ̂
0ĝi)2 (A.7)

−
nX
i=1

π̂iĜ
0
iλ̂ĝ

0
iΩ̃
−1ĝ

−(ρ3 + 1)G̃0Ω̃−1 1
n

nX
i=1

ĝi(λ̂
0ĝi)ĝ0iΩ̃

−1ĝ +Op(n−3/2)

= −G̃0Ω̃−1ĝ −
nX
i=1

π̂iĜ
0
iλ̂ĝ

0
iΩ̃
−1ĝ +Op(n−3/2),

where the second equality follows from eq. (A.4). Combining eqs. (A.5) and (A.7) in eq. (A.1) yields

0 = −G̃0Ω̃−1ĝ +Op(n−3/2).

As n(π̂i − π̂ELi ) = Op(n
−1) kĝik2, (i = 1, ..., n), G̃ = G̃EL + Op(n

−1) and Ω̃ = Ω̃EL + Op(n−1), where

G̃EL =
Pn
i=1 π̂

EL
i Ĝi, Ω̃EL =

Pn
i=1 π̂

EL
i ĝiĝ

0
i and π̂

EL
i , (i = 1, ..., n), denote the EL probabilities evaluated

at the GEL EL estimator β̂. Therefore, as ĝ = Op(n
−1/2), the GEL EL estimator β̂ satisfies the same

first order conditions as the EL estimator (to Op(n
−3/2)), G̃0ELΩ̃

−1
ELĝ = Op(n

−3/2), and so

β̂ − β̂EL = Op(n
−3/2).

Proof of Lemma 6.1: Let ρ̂1i(β) = ρ1(λ̂(β)gi(β)) and ρ̂2i(β) = ρ2(λ̂(β)gi(β)), (i = 1, ..., n). The

total differential of the first order conditions determining λ̂(β) at β̂ is given by

nX
i=1

ρ̂2i(β)gi(β)gi(β)
0dλ̂(β) +

nX
i=1

[ρ̂1i(β)Im + ρ̂2i(β)gi(β)λ̂(β)
0]Gi(β)dβ = 0,

from which the derivative matrix ∂λ̂(β)/∂β0 may be derived. Therefore, the first order conditions defining

the GEL EL and auxiliary parameter estimators are

0 = −
nX
i=1

G0i[ρ1iIm + ρ2iλg
0
i]

Ã
nX
i=1

ρ2igig
0
i

!−1 nX
i=1

Ã
1

nρ1i
− 1Pn

j=1 ρ1j

!
ρ2igi

[16]



+
nX
i=1

Ã
1

nρ1i
− 1Pn

j=1 ρ1j

!
ρ2iG

0
iλ

0 =
nX
i=1

ρ1igi.

Write the additional scalar and m-vector parameter estimators ρ1 and µ as

ρ1 ≡
nX
i=1

ρ1i/n, µ ≡ −
Ã

nX
i=1

ρ2igig
0
i/n

!−1 nX
i=1

((ρ1ρ2i/ρ1i)− ρ2i)gi/n.

The first order conditions determining ρ1, µ, λ and β then become

0 =
nX
i=1

⎛⎜⎜⎜⎜⎝
ρ1i − ρ1

ρ1igi

(ρ2igig
0
i)µ+ ((ρ1ρ2i/ρ1i)− ρ2i)gi

ρ1iG
0
iµ+ ρ2iG

0
iλg

0
iµ− ((ρ1ρ2i/ρ1i)− ρ2i)G

0
iλ

⎞⎟⎟⎟⎟⎠

=
nX
i=1

⎛⎜⎜⎜⎜⎝
ρ1i − ρ1

∂(ρ1ig
0
iµ− ρ1 log(ρ1i exp(−ρ1i))/∂κ

∂(ρ1ig
0
iµ− ρ1 log(ρ1i exp(−ρ1i))/∂λ

∂(ρ1ig
0
iµ− ρ1 log(ρ1i exp(−ρ1i))/∂β

⎞⎟⎟⎟⎟⎠ .

Proof of Theorem 6.1: The proof is an adaptation for GEL EL of that of Schennach (2004,

Theorem 10). We first demonstrate consistency of β̂ for β∗ and λ̂(β̂) for λ∗ ≡ λ∗(β∗).

Now, from Assumptions 6.1 (a) and (b), by Newey and McFadden (1994, Lemma 2.4, p.2129),

P̂ (β,λ) ≡ Pn
i=1 ρ(λ

0(gi(β) − E[g(z,β)])) p→ P (β,λ) ≡ E[ρ(λ0(g(z,β) − E[g(z,β)]))] uniformly (β,λ) ∈
B×Λ(β). By a similar argument to that in Schennach (2004, Proof of Theorem 10), supβ∈B

°°λ̄(β)− λ(β)
°°→

0. Likewise supβ∈B
°°°λ̂(β)− λ(β)

°°° p→ 0.

Next, supβ∈B
¯̄̄
P̂ (β, λ̂(β))− P (β,λ(β))

¯̄̄
→ 0 by Assumptions 6.1 (c) and (d) and the concavity of ρ(·).

As P (β,λ(β)) is uniquely minimised at β∗ from Assumption 6.1 (b), β̂
p→ β∗ and, thus, λ̂(β̂)

p→ λ(β∗).

Finally, ρ̂1 and µ̂ are explicit continuous functions of λ̂ and β̂. Let g∗ ≡ g(z,β∗). Hence,

ρ̂1
p→ ρ1∗ ≡ E[ρ1(λ

0
∗g∗)],

µ̂
p→ µ∗ ≡ −(E[ρ2(λ0∗g∗)g∗g0∗])−1

×E[((ρ1∗ρ2(λ0∗g∗)/ρ1(λ0∗g∗))− ρ2(λ
0
∗g∗))g∗],

noting that E[ρ2(λ
0
∗g∗)g∗g

0
∗] is nonsingular follows as Ψ∗ is n.s..

To show the asymptotic normality of the GEL EL and auxiliary parameter estimators, from Newey

and McFadden (1994, Theorem 3.4, p.2148), we need to establish (a) E[supθ∈Θ k∂ψ(z, θ)/∂θ0k] <∞ and

(b) E[ψ(z, θ∗)ψ(z, θ∗)0] exists. First, for (a), the normed derivative matrix k∂ψ(z, θ)/∂θ0k (apart from
multiplicative factors that are bounded) consists of terms like

3Y
j=1

|ρj(λ0g(z,β))|kj kg(z,β)kkg0 k∂g(z,β)/∂β0kkg1
°°∂2gl(z,β)/∂β∂β0°°kg2 , (l = 1, ...,m),

[17]



where 1 ≤ kg0 + kg1 + kg1 ≤ 3, which is bounded by
Q3
j=1 |ρj(λ0g(z,β))|kj b(z)k, 1 ≤ k ≤ 3. The indices

kj , (j = 1, 2, 3), obey (a) k3 = 0 unless −1 ≤ k1 ≤ 0 when k2 = 0, k3 = 1, (b) if −2 ≤ k1 ≤ −1,
k1 + k2 = 0, (c) if 0 ≤ k1 ≤ 1, k1 + k2 = 1 where k1, k2 ≥ 0. Therefore, for some positive constant C,

E[sup
θ∈Θ

k∂ψ(z, θ)/∂θ0k] ≤ CE[sup
θ∈Θ

3Y
j=1

|ρj(λ0g(z,β))|kj b(z)k]

= CE[sup
β∈B

sup
λ∈Λ(β)

3Y
j=1

|ρj(λ0g(z,β))|kj b(z)k] <∞.

Likewise, the normed matrix kψ(z, θ)ψ(z, θ)0k has terms of the form
2Y
j=1

|ρj(λ0g(z,β))|kj kg(z,β)kkg0 k∂g(z,β)/∂β0kkg1
°°∂2gl(z,β)/∂β∂β0°°kg2 , (l = 1, ...,m),

where 0 ≤ kg0 + kg1 + kg1 ≤ 4, which is bounded by
Q2
j=1 |ρj(λ0g(z,β))|kj b(z)k, 0 ≤ k ≤ 4. The indices

kj , (j = 1, 2), obey (a) if −2 ≤ k1 ≤ −1, k2 = 2, (b) if k1 = 0, 1 ≤ k2 ≤ 2, (c) if 1 ≤ k1 ≤ 2, k1 + k2 = 2
where k2 ≥ 0. That E[ψ(z, θ∗)ψ(z, θ∗)0] exists then follows as above.
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