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Abstract

We provide easy to verify sufficient conditions for the consistency and asymptotic normality
of a class of semiparametric optimization estimators where the criterion function does not obey
standard smoothness conditions and simultaneously depends on some preliminary nonparamet-
ric estimators. Our results extend existing theories like those of Pakes and Pollard (1989),
Andrews (1994a), and Newey (1994). We apply our results to two examples: a ‘hit rate’ and a

partially linear median regression with some endogenous regressors.
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1 Introduction

In this note we investigate a class of semiparametric estimation problems that involve non-smooth
criterion functions that contain both finite dimensional and infinite dimensional unknown parame-
ters. Powell (1994) and Manski (1994) discuss specification of econometric models through quantile,
symmetry, mode, and independence restrictions. The corresponding estimation procedures are often
non-smooth in the parameters of interest. In practice one may also want to have flexibility in the
functional form of the part of the model of interest, an issue also discussed in Powell (1994). We
study a number of examples that combine these two features below.

There have been many papers devoted to general theories of estimation, following Huber (1967).
The existing theories allow for non-smooth objective functions of finite dimensional parameters (with-
out infinite dimensional parameters) [e.g., Pakes and Pollard (1989) and Newey and McFadden (1994,
Section 7)], or smooth objective functions of both finite and infinite dimensional parameters [e.g.,
Bickel, Klaassen, Ritov, and Wellner (1993), Andrews (1994a), Newey (1994), Newey and McFad-
den (1994, Section 8), Pakes and Olley (1995), Chen and Shen (1998) and Ai and Chen (1999)].
We are unaware of a general theory on non-smooth objective functions with both finite and infinite
dimensional parameters, or rather the existing high level conditions for consistency and asymptotic
normality have not been verified in this less regular setting.

A viable approach here is to use the criterion function that has been smoothed over. This then
satisfies the usual regularity conditions and the standard distribution theory applies. Horowitz has
applied this idea to a number of problems including standard median estimation [Horowitz (1998a)];
he gives some additional justification for this approach in terms of higher order properties. Is ‘smooth-
ing over’ always the best estimation strategy? The issue here is analogous to whether one should use
the smoothed empirical distribution function instead of the usual unsmoothed empirical distribution
function. Although there are some statistical reasons for so doing, most applied economists would
be content with using the unsmoothed empirical distribution.!

We provide sufficient conditions to ensure /n—asymptotic normality of the finite dimensional
parameters obtained from a non-smooth criterion that depends on a preliminary infinite dimensional
parameter estimate. Our results allow for the case where the nonparametric estimator is ‘profiled’
i.e., is allowed to depend on the parameters. Our approach and results extend those of Pakes and

Pollard (1989), Andrews (1994a), Newey (1994) and Pakes and Olley (1995). We also provide a
"Horowitz (1992) originally applied this approach to the binary choice model of Manski (1975). He proposed a

smoothed maximum score estimator, and showed that his estimator converges faster than the original unsmoothed
maximum score and is asymptotically normal. Of course, this is a case where the semiparametric efficiency bound is
zero and the problem is correctly viewed as being nonparametric so that the smoothing idea fits in quite naturally.

Our theory does not apply to semiparametric models with zero efficiency bounds.



new result that establishes the consistency of the ordinary bootstrap method for obtaining standard
errors. The theory we present here relies on certain key empirical process results regarding the
stochastic equicontinuity properties of the non-smooth objective function, (especially with respect
to preliminary nonparametric estimators). We provide these results below by extending the work of
Andrews (1994b), Van Keilegom and Akritas (1999), and by applying the work of Van der Vaart and
Wellner (1996).

Finally, to simplify the presentation we focus on the i.i.d. sample in this note, but the Theorems
1 and 2 below actually allow for any dependent, heterogeneous sample as well. Although Theorem

B and Theorem 3 both require the i.i.d. structure and should be modified for time series models.

2 A General Class of Estimators

Throughout the paper we assume that the data {Z;}"; is randomly sampled from a distribution P
whose support is Z C R%. In many applications it is useful to denote a component of Z; as X; with
X; € R and 1 < d, < d,. We denote O for a finite dimensional parameter set (a compact subset
of R¥) and H for an infinite dimensional parameter set. We assume that H is a vector space of
functions endowed with a pseudo-metric || - ||, (i.e., H is a metric space except that ||kl = 0 does

not necessarily imply that h = 0 almost everywhere). For example when H is a class of continuous

functions mapping from Z to R and having finite sup-norms, we can take ||h|| = ||h|| = sup. |A(+)]|
or |||l = ||B||z.cpy = {J |R["dP}" for 1 < r < co. We also denote 6, € © and h, € H as the
true unknown finite and infinite dimensional parameters. Finally, we denote ||A|| = (tr(A'W A))Y/2

for any matrix A, where for notational ease we suppress the dependence of the norm on the fixed
symmetric positive definite matrix W.

Our estimation strategy is an extension of the Generalized Method of Moments (GMM) that is
popular in econometrics. In the current statistical parlance, we are treating essentially ‘Z-estimators’
except that we allow for over-identifying restrictions.? Suppose there exists a non-random measurable
vector-valued function M : R¥ x H — R!, with [ > k, such that M(6,h,) =0 at 0 =460, O C R*.
Suppose there also exists a random vector-valued function M, : R¥ x H — R! depending on data
{Z;:i=1,...,n}, such that ||M,(0, h,)|| is close to ||M (6, h,)||. We allow that M, (0, h) could be
non-smooth with respect to (6, h) but will assume that M (6, h) is smooth at (6,, h,) in a sense to be
defined later. As in Newey (1994), Pakes and Olley (1995), and Ai and Chen (1999), we allow that
Z,0, could enter h,(.) as arguments.

Suppose that for each 6 there is an initial nonparametric estimator TL() for h,(.). We estimate 6,

2 Although our approach can easily be modified to treat the ‘maximum-likelihood-like (M-) estimators’, we decide

not to state theorems for the ‘M-estimators’ due to the limitation of the note length.



by any 9 that approximately solves the sample minimization problem:

min || M;,(, ). (1)

There are many algorithms available for computing the optimum of general non-smooth functions,
e.g., the Nelder-Mead, and the more recent genetic and evolutionary algorithms. Koenker (1997) gives
a review of some methods targeted at quantile regression problems. It is not necessary that M (6, h) =
E[M,(0,h)] in the general limiting theorems we present below. Nevertheless many econometric
applications correspond to this case: M (0, h) = Em(Z;,0,h)] and M,(0,h) =n=* 3" m(Z;,0,h),
where m : R% x R*¥ x H — R! is a measurable vector-valued function such that E[m(Z;, 0, h,)] = 0
if and only if § = 6,. Hence the notations M (0, h) and M, (0, h) implicitly correspond to population
and sample moment conditions. Usually the function A enters m only through A(X;), but there are
some cases where h(Z1),...,h(Z,) enter m, and our high level conditions do not exclude this case.
Note that the estimator of h can be profiled, that is, h can also depend on 6, see the partially linear

median regression with some endogenous regressors example in section 5.

3 The Large Sample Theory

Our large sample theory follows the line of the well known paper of Pakes and Pollard (1989). See
Newey and McFadden (1994) for discussions of other approaches.

3.1 Consistency

Theorem 1. Suppose that 0, € O satisfies M(0,,h,) = 0, and that:
(11) M, (3,3 < infgce | M, (0,5) 4o, (1)
(1.2) For all 6 > 0, there exists €(6) > 0 such that infg_g s || M (0, ho)|| > €(6) > 0;
(1.3) Uniformly for all 0 € ©, M(6,h) is continuous [with respect to the metric ||-||x] in h at h = hy;
(1.4) ||k = holl3 = 0p(1) uniformly over 6 € ©;
(1.5) For all sequences of positive numbers {6,} with 6, = o(1),
M,(0,h) — M(0,h
oy o T TR T+ TR0 ~ 0

Then, 6 — 0, = op(1).

Remark 1: (i) Obviously condition 1.5 is implied by condition 1.5”: for any 6, = o(1),

sup  |[Mn(0, k) = M(0, h)|| = 0p(1).

0€0,||h—holl1 <bn



(ii) If M,(0,h) = M,(0,h,) and M(6,h) = M(0,h,) for all h, then conditions 1.3 and 1.4 are
automatically satisfied, and our Theorem 1 becomes Pakes and Pollard’s (1989) Corollary 3.2.

(iii) Comparing our Theorem 1 to Newey’s (1994) Lemma 5.2 in the case M (0, h) = Em(Z,0, h)],
the main difference is that while we impose continuity assumption on E[m(Z, 6, h)] (with respect to

0,h), Newey imposes a continuity assumption directly on m(Z, 0, h) (with respect to 0, h).

3.2 Asymptotic Normality

For any § € ©, we say that M(6,h) is pathwise differentiable at h in the direction [h — h] if
{h+7(h—nh): 7€ 0,1} € H and lim, o[M(0,h + 7(h — h)) — M(0,h)]/7 exists; we denote
the limit by T'y(0, h)[h — h]. We need the functional derivative to capture the effect of the estimation
of h, via h on the variability of 0.

Theorem 2. Suppose that 0, € int(©) satisfies M(8,,h,) =0, that 6 — 0, = 0p(1), and that:

(2.1) || Mo (0, )| = inf|j9_g,| <5, M, (0,h)] + 0,(1/+/n) for some positive sequence 6, = o(1).

(2.2) (i) The ordinary partial derivative in 0 of M(0,h,), denoted T'1(0, h,), exists in a neighborhood
of 0,, and is continuous at 0 = 0,; (ii) the matriz T'y = I'1(0,, ho) is of full (column) rank.

(2.3) The pathwise derivative I'y(0, h,) of M(8,h,) ezists in all directions [h — h,| and satisfies:

(@) |[M(0,h) = M(8, ho) — Ta(0, ho)[h = ho]|| < c|[h — holl3,
for all 6 with |10 — 6,|| = o(1), all h with ||h — hy|| = o(1), some constant ¢ € [0, 00);
(@) [[T2(0, ho)[h = ho] = T'a(0o, ho) [k = hol[| < €[ — o[ > 0(1)

for all 6 with ||0 — 6,|| = o(1), all h with ||h — he||3x = o(1), some constant ¢ € [0, 00).
(2.4) With probability tending to one, h € H, and c|[h — ho|[2, = 0,(n"Y/2) uniformly over 6 with
16 = 6o|| = o(1).
(2.5) For all sequences of positive numbers {6, } with 6, = o(1),
sup | M (0, ) — M (0, h) — My (0o, ho)|| = 0,(n~ /).

”9700“<5n7”h7h0H'H<6n

~

(2.6) For some finite matriz Vi, /n{M,(0,, ho) + T'2(0,,hs)[h — ho|} = N0, V4].
Then
Vvl —0,) = N[0,9), where Q = (D)WT,) T\ WViWT (I, W)~ (2)

Remark 2: (i) If M, (6,h) = M,(0,h,) and M(0,h) = M(0,h,) for all h, then conditions 2.3 and
2.4 are automatically satisfied, and our Theorem 2 becomes Pakes and Pollard’s (1989) Theorem 3.3
and is also very similar to Theorem 7.2 of Newey and McFadden (1994).

5



(ii) If a random norm W, = W, (6, h) is used in place of W = W (8,,h,) in (1), where 6, h are
estimators of 6, h,, the result (2) continues to hold so long as 6 — 6, = op(1), B — ho| |3 = 0p(1) and
SUD| (g0, |<6n.||h—holln<tn |Wn(0,h) — W (0o, ho)|| = 0,(1) using the arguments of Pakes and Pollard
(1989, Lemma 3.5).

(iii) Comparing our Theorem 2 to Newey’s (1994) Lemma 5.3 in the case M (0, h) = Em(Z,0, h)],
the main difference is that while we impose smoothness assumption on E[m(Z, 6, h)] (with respect
to 0, h), Newey imposes smoothness assumption directly on m(Z, 0, h) (with respect to 6, h).

(iv) Condition 2.4 requires that ¢||h — ho||%, = 0,(n"Y/2), which is equivalent to the well-known
assumption 5.1(ii) in Newey (1994). Note that ¢ = 0 when M (6, h) is linear in h. However even
in this linear case, the convergence rate ||h — ho||2, = 0p(n~'/2) is often needed in order to verify
condition 2.6, see e.g. Robinson’s (1988) partially linear regression example. Of course such a rate

is not needed if further Andrews’ (1994a, p.49) asymptotic orthogonality condition is satisfied.

3.3 The Asymptotic Variance and Computation of Standard Errors

The verification of condition 2.6 is in some cases difficult; it is itself the subject of a long paper by
Newey (1994). Condition 2.6 implicitly assumes that the pathwise derivative I's(6,,h,)[h — h,) is a
smooth linear functional of h — h,. In most applications, h is a square integrable function of U (a
subset of Z). Denote Fy; as the probability measure of U, then by the Riesz representation theorem
there is a unique square integrable function 7, of U such that Ty(6,,ho)[h — ho] = [ va(w)[h(u) —
ho(u)|dFy(u). When T has a closed form expression [or can be well approximated thereby]| such as an
empirical c.d.f., a kernel density or regression estimator, one can directly show that for some function
W(.) with B[y (U3)] = 0, E[|[¢:(U3)[2] < 00, [ va(u)[h(u) =ho(w)]dFy(u) = n=" S0, 4 (Us) +0,(n~172).
The function (.) is, under mild conditions, independent of the precise expression of h, and can be
arrived at by the Riesz representation approach taken in Newey (1994), Chen and Shen (1998), and
Ai and Chen (1999). We present two examples in Section 5 on how to check this condition. To
summarize, for i.i.d. observations and when M, (0,, h,) = n~1 Y1 m(Z;) + 0,(n"/?), condition 2.6

is implied by condition 2.6’:
M, (00, ho) + T (00,00 Z{m Uy} + op(n~1/?),
with E[m(Z;)] = 0, E[||m(Z;)||*] < oo and E[(U;)] = 0, E[||¢(U;)|[] < oo; in this case,

Vi = E({m(Z;) +p(U)H{m(Z;) +¢(Ui)}) -

To estimate V] one needs to estimate both 1 and m, which both depend on the unknown 6,, h, in

perhaps a complicated way, and then compute the sample second moment of the estimated quantities.

6



The estimation of I'; is also potentially difficult, especially in the profiled case where I'; contains an
additional term from the effect of 6 on M indirectly through h,. A standard approach here is to use
numerical derivatives [see Newey and McFadden (1994) and Powell (1994)]. In conclusion, obtaining
consistent standard errors from the asymptotic approximation involves considerably more work, and
the resulting method may not work well. An alternative is to use the bootstrap.

We next show that the ordinary bootstrap can consistently estimate the asymptotic distribu-
tion of \/5(5 —0,) in the special case where M,(0,h) = n~*> " m(Z;,0,h(Z;)) and M(0,h) =
E[m(Z,0,h(Z)]. Our results are similar to Brown and Wegkamp (2000) in this regard. Let {Z}},
be drawn randomly with replacement from {Z;}?_,, let M*(0,h) =n=*> " m(Z;,0,h(Z})) for each
0, h, and let h* (+) (for each #) be the same estimator as ﬁ() but based on the bootstrap data. Following
Hall and Horowitz (1996, p897) it is necessary to recenter the moment condition, at least in the overi-
dentified case. Define the recentered moment function m¢(z, 6, h(z)) = m(z,0,h(z)) — m(z,@,ﬁ(z))
and note that n=' S0 me(ZF,0, h(ZF)) = M*(0, h) — M, (6, ﬁ) Thus, define the bootstrap estimator

A%k

0 to be any sequence that satisfies
1M (67, h*) — My (6, h)|| = Inf | M (0, h%) — My (6, B)[| + 0p (n™1/?). (3)

Here, and subsequently, superscript * denotes a probability or moment computed under the bootstrap
distribution conditional on the original data set {Z;} ;.

Theorem B. Suppose that the conditions of Theorem 2 hold with ‘in probability’ replaced by ‘almost
surely’, and assume that conditions 2.2 and 2.3 hold with h, replaced by h with ||h — h,|| = o(1), and
assume that T'1(0, h) is continuous in h in the uniform norm at 0 = 0,,h = h,. Suppose also that
the following bootstrap conditions hold:

(2.4B) With P*-probability tending to one, h* € H, and ||/i;* — EHH = 0, (n™Y4) uniformly over
0 with [0 — 0, = o(1).

(2.6B) /r{M*(0,h) — M,(6,h) + T2(6,h)[h* — h]} = N[0, Vi] + op-(1).

Then, \/n(6" — ) converges in distribution to a N(0,€) distribution in P*-probability.

In the proof of Theorem B we use the stochastic equicontinuity of the bootstrap process /n(M(6, h)—
M,,(0, h)), which follows from the stochastic equicontinuity of the process \/n(M, (6, h) — M (0, h)) by
results of Giné and Zinn (1990). Condition 2.4B can be verified under the same conditions as imply
2.4 for a variety of kernel density and regression estimators, see for example Hall (1991). Likewise,
we expect that 2.6B holds under only slightly stronger conditions than those imply 2.6. Specifically,
from Giné and Zinn (1990) we know that the P*-distribution of /n{M}* (5,/5) - Mn(b\, ﬁ)} approx-
imates the distribution of \/ﬁ{Mn(g, ﬁ) - M (5, ﬁ)}, which by 2.5 is approximately the same as the
distribution of \/nM, (6., ho). In the common case of kernel estimation, h*(z) — /ﬁ(z), and hence

VAl (6,)[h* = h], is a sum (or approximately so) of mean zero and independent random variables

7



(under P*) and can be expected to satisfy a central limit theorem, see e.g. the ‘hit rate’ example.

4 Primitive Conditions for Stochastic Equicontinuity

In this section we provide some primitive sufficient conditions for conditions 1.5 and 2.5 when
M,(0,h) = nt3 " m(Z;,0,h(Z;)) and M(0,h) = E[m(Z,0,h(Z;)]. Let F = {m(z,0,h) : 0 €
©,h € H} denote the class of measurable functions indexed by (6, h). By modern empirical process
theory presented van der Vaart and Wellner (1996) for example, condition 1.5 of Theorem 1 will be
satisfied when F is P— Glivenko-Cantelli, while condition 2.5 of Theorem 2 will be satisfied if the
class F is P— Donsker. Moreover, whether or not F is a P—Glivenko-Cantelli [or P— Donsker] class
is closely linked to its L;(P) [or Ls(P)] covering numbers with bracketing (see van der Vaart and
Wellner (1996), p. 81-83 for the definition of these concepts). Therefore, the key to verify conditions
1.5” and 2.5 is to compute the covering numbers with bracketing for the moment class {m(z,6,h)}
based on the covering numbers with/without bracketing for the parameter class {§ € ©,h € H :
|h = holly;, < 6,}. Since © is a compact subset of R¥, the covering number of © is known. Since
in most applications, we estimate h, by some nonparametric smoothing methods such as kernel and
sieve procedures, h, is often assumed to be in H, a space of smooth functions such as a Sobolev,
Holder or Besov class, or at least lie there with probability tending to one. Therefore, the covering
number of the function space H can be found in many books and papers on approximation theory.
When the moment function m(z, 0, h) is (pointwise) Lipschitz continuous with respect to (6, h), we
can directly bound Nyj(e, F,|| - ||z,(p)) from above by the covering number of the parameter class
{0 € ©,h € H:|h—hol| < 0n}, see e.g., Theorem 2.7.11 of van der Vaart and Wellner (1996).
This is the approach taken in Chen and Shen (1998) and many others. When the moment function
m(z, 0, h) is (pointwise) Lipschitz continuous with respect to h but not in 6, we can sometimes still
apply the results in Andrews (1994b). However we are unaware of general results to handle the case
where the moment function m(z, 0, h) is not Lipschitz continuous with respect to h. In the following,
Theorem 3 extends the work of Andrews (1994b) to the case where the moment function m(z, 6, h)

is not (pointwise) continuous with respect to h and 6.

Theorem 3. Suppose that each component m; of m = (my,...,my) takes the form m;(z,0,h) =
me;(z,0,h) +mui(z,0,h), and satisfies:

(3.1) mcj(z, 0, h) is Holder continuous with respect to 0, h in the sense:
[mej (2, 01, hn) = mej(2, 02, ha)| < bj(2) {161 — 021" + [|h1 — holl3}

for some constants sy, s; € (0,1], a measurable function b;(-) with E[b;j(Z)]" < oo for some r > 2.



(3.2) mye;(+, 8, h) is locally uniformly L,.(P),(r > 2)—continuous with respect to 6, h in the sense:

(E
for all (6,h) € © x H, all small positive value 6 = o(1), and for some constants s; € (0,1], K; > 0.

(3.3) © is a compact subset of R*, and [ \/log N(e'/*i, H,|| - ||n)de < oo for j=1,... ,l.
0
Then for all positive 6,, with 6, = o(1),

1/r
sup |mue; (2,60, 1) — mue; (2,0, )| < K;6%
(0 1):||0'—6)|<8,||h—hl|2,<6

sup 1M,(8, 1) — M8, h) — Mo(Bo, ho) || = 0p(n~"/2). (4)
10=00|<bn;|[h—holl2<bn

Remark 3: (i) Condition 3.1 of Theorem 3 is an extension of the “type II class” of Andrews
(1994b) from 6 € © to (0, h) € © x H; Condition 3.2 is an extension of the “type IV class” of Andrews
(1994b) from 0 € © to (A, h) € © x H. Condition 3.2 allows for discontinuous moment functions in
(6, h) such as sign and indicator functions of (6, h).

(ii) Condition 3.3 of Theorem 3 allows for many nonparametric estimators of h,. As an example,
we recall a popular nonparametric class H stated in van der Vaart and Wellner (1996, p. 154). For
any vector a = (ai, ... ,aq,) of d, integers, define the differential operator D* = 9!*! /9x$" ... 0z,
where |a| = 2%, a;. Let Rx be a bounded, convex subset of R% with nonempty interior. For any

smooth function h : Rx — R and some a > 0, let a be the largest integer smaller than «, and

D2h — D%h(x’
|Alloc.a = maxsup [D*h(x)| + max sup | D*h(z) (=]

al< B
Further, let C¢(Rx) be the set of all continuous functions h : Rx — R with ||hlca < ¢ If
H = C¢(Rx) with [[ - [l = || - |loo, then log N(8, C&(Rx), || - [loc) < const. x 6%/, see e.g,
van der Vaart and Wellner (1996, Theorem 2.7.1). Hence [ +/log N(e'/s,C%(Rx), || - ||oo)de < o0 if
0

a > d,/2s. That is, when the sample moment function m(Z, 0, h) is less smooth in A (i.e., smaller
s < 1), we need h € H to be a “smaller function space” (i.e., a > d,/2s or higher smoothness of h)
to satisfy the stochastic equicontinuity condition 2.5.

(iii) In the old version of this paper, we show that the conclusion of Theorem 3 holds under
the following more primitive, yet more restrictive, conditions: (3.1°) For fixed h, m;(z,6, h) is com-
ponentwise monotone with respect to each #; and for fixed 6, m;(z,6, h) is monotone with respect
to h; (3.2") m;(z,0,h) is L,(P),(r > 2)—Holder continuous with respect to 6, h in the sense that
Im;(Z,0,h) — mi(Z, 0, })||p.py < K;{[|0 — 0| + ||h — W'||;3} for some constants s1;, s; € (0,1],
K; > 0; and (3.3") © is a compact subset of R, ZO\/IOgNH(gl/Sj,H, || - ||n)de < oo forj=1,... 1

See Lemma 1 in Akritas and Van Keilegom (2001) for the special case of indicator functions.



5 Examples

We present two examples in detail and then discuss some extensions. Both our examples arise in
practical situations. Although there maybe alternative estimation methods for these problems that
avoid the technical issues treated in this paper, the methods we propose seem to be the most natural.
The estimation procedure for the second example involves profiling the nonparametric estimation,
and so is representative of a broad class of problems. Our aim is to demonstrate that the regularity
conditions for asymptotic normality in Theorem 2 and for bootstrap consistency in Theorem B are
easily verified. We concentrate primarily on the key conditions 2.5, 2.6 and 2.6B; condition 2.3
is verified using similar techniques to 2.6 and so we do not provide that calculation here. The
verifications of conditions 2.1, 2.2, 2.4 and 2.4B are standard and so we do not discuss them here.?
In both examples for random variables Y, X we denote the conditional c.d.f. and density functions
at evaluation point X = x by Fy|, fy|a-

Example 1: Hit Rates. Suppose that one wants to estimate the parameter 6, = Pr[h,(X) €
A(Z)], where A(Z) is a random set that depends on the random variable Z, and h, is an unknown
function. Assuming h, € H = C{(Rx) where a > d, and Ry is a bounded and convex subset of R

with nonempty interior, and let || - ||y = || - ||co- The natural estimator of 6, is the sample analogue

(=

S|

> 1(h(X;) € A(Zy), (5)

where h(X;) is some nonparametric estimate of h(X;). The estimator # can be interpreted as
a member of our class of estimators by taking the sample moment condition to be M,(0,h) =
n Y {1(h(X:) € A(Z;)) — 0}. Bliss (1997) uses a criterion like (5) to evaluate nonparametric
yield curve fits. In this case, one observes a bid and an ask quote on a bond, {pr;, pv:}, along with
maturity and payment information. For convenience, the mid-point of the bid and ask price is taken
as a proxy for the actual price p;. From this one can estimate nonparametrically the discount func-
tion and the yield curve [see Linton, Mammen, Nielsen, and Tanggaard (2000)], and hence obtain
a predicted price p; for each bond. One way of evaluating the performance of the procedure is to
calculate the so-called hit rate, which is (5) with A(Z;) = [pri, pui] and h(X;) = D;. A high hit
rate corresponds to a good procedure. Smoothing over the criterion function is not an attractive
alternative here, although it would lead to straightforward but messy distribution theory. Another
potential application of this example is in testing for Revealed Preference as in Blundell, Browning,

and Crawford (1997, section 4.3). Their test involves comparing a weighted combination of budget

3The old version of this paper contains a complete set of primitive conditions that imply the conditions of Theorem

2. Fuller details are available from the authors upon request.

10



shares [estimated nonparametrically] with some relative prices. They do a test that uses the point-
wise confidence interval and then counts violations. Instead one could do a global test based on a
count like (5).

We now verify conditions 2.5, 2.6, and 2.6B in a special case of (5) where A(Z;) = (—o0,Y]]
and where h,(.) is the density of X;. We first verify that condition 2.5 holds by applying Theorem
3. For any z = (z,y), we have m(z,0,h) = 1(h(z) < y) — 0, and so |m(z,0', ') —m(z,0, )|’
2|1(W (z) < y) — 1(h(z) < y)| +2]¢' — 0]° . Therefore, for any small § € (0, 1],

sup im(z,0 1) —m(z,0,h)|> <262 +2 sup [1(K(z) <y)—1(h(z) <7y)l|.

|6"—6|<6,||h/ —h||1 <6 [P/ =h||2 <6

Since for all A’ € H with ||h' — k|| < 6 < 1, we have for all y, z:

h(z) —6 < h'(x) < h(z)+6 hence 1(h(z) — 6 <y) > 1(W(z) <y) > 1(h(z) + 6 < y)
h(z) —6 < h(z) < h(z)+ 6 hence 1(h(z) — 6 <y) > 1(h(z) <y) > 1(h(z) + 6 < y),

and hence
sup  |L(W(z) <y) = L(h(z) < y)| < 1(h(z) =6 <y) — L(h(z) + 6 < y).
|[A'—h||#<é
The right hand side of the preceding term is either one or zero, and its expectation is the probability
that A(X) +6 >Y > h(X) — 6 occurs. Then apply the law of iterated expectation to conclude that
for small enough 6 there is a constant K < oo such that

E[ s (2,0, 1) —m(Z,0,h)]] < 2Pr[h(X)+6>Y > h(X)— 8 + 26
10/ —0]<5,||I/—~hl| <6

= 2F [Fyix(h(X) + 8) — Fyx(h(X) — 8)] +26°
< K¢,

where the last inequality follows provided Fy, is Lipschitz in ¥ uniformly in z. Therefore, condition
3.2 of Theorem 3 is satisfied with » = 2 and s = 1/2, and condition 3.3 of Theorem 3 is satisfied by
Remark 3(ii) and the assumption that h, € H = C{(Rx) with || - || = || || and o > d,.

We now verify condition 2.6. Note that M(0,h) = [[1 — Fy,(h(z))]h,(z)dz — §. By the law of
iterated expectation and interchanging limits we obtain

8
Do(0, ho)[h = ho| = = (E[1(ho(Xi) + t[A(Xs) = ho(Xi)] < Yi)]) Li=o
- / (o)) () = () o)z

Now suppose that ﬁ(m) is a kernel estimator, i.e., h(z) = n~ b Yo K((z—X;)/b) for some kernel

K and bandwidth b. Under standard regularity conditions the bias of the nonparametric estimator,
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E/};(x) —ho(), can be majorized by some bounded continuous function of x times o(n~'/2). Therefore,
we just need to examine I'y(6, ho)[iAL - Eﬁ], which by construction is a sum of mean zero independent

random variables. Using standard change of variables and Taylor expansion arguments we have

(0. - EF] = [ Frathateito) |16 (S5 - Ex (57 ) as

= =2 P ho(X)ho(Xs) = Elfyix, (ol X))o (X0)] + 0y 72),

provided the required smoothness and boundedness conditions hold on fy/s, h,, and the kernel and

bandwidth satisfy various conditions; this yields condition 2.6. Regarding condition 2.6B,

N@ R —F] = —% Z:: / Fyio (b)) h(z) lK (“’ _be ) _BK (“’ _be )] da

- _% Z frix; (R(X})h(X;) — B [fyix: (X)X + 0 (n2),

where the approximation follows from the same change of variables and Taylor expansion arguments
used above. For this we need that iAL() possesses the same smoothness as h,(.), which it does by
condition 2.4. In the P*-distribution, Y;; = — fyjx: (R(X;)(X}) + E*[fyix: (R(X7)h(X})] are
independent and mean zero random variables and > | Y,*/\/n satisfies a triangular array central
limit theorem under weak additional conditions; the asymptotic variance is E| ff,' x, (Po(X:))h2(X3)] —
E?[fyix;(ho(X:))ho(X;)] under the smoothness conditions and uniform convergence of hf(.).

Example 2. Partially Linear Median Regression with some Endogenous Regressors. Suppose
Y; = X100 + hi(Xy;) + &5, med(e;|Xo;, X3;) =0 a.s., (6)

where h,(.) is an unknown function. We have partitioned X; = (Xi;, Xo;, X3;). The regressors
Xi; are endogenous, but we assume that there exist valid instruments X3; whose dimensionality
(weakly) exceeds that of Xi;. X3; could include some of Xs;. The partially linear functional form
has been discussed in many places before; it provides a convenient and interpretable intermediate
specification between parametric and nonparametric. We can replace h.(X»;) by an index function
or an additive function in cases where X5; has high dimensions. In the case with exogenous Xy; (say
when Xj; = X3;), Lee (2001) has proposed an estimation method for 6, that relies on preliminary
high-dimensional nonparametric quantile regression function of Y; given (Xy;, Xs;). Our method only
requires smoothing operations with the dimensions of X5; and permits endogeneity of X;;. For any
fixed 0§ € O, we denote the function h,(Xy;;0) = med(Y; — X1,0|Xs;). Clearly, h,(Xs;) = ho(X2i;0,).
Assuming for all € ©, h,(-;0) € H = C{*(Rx,) where a > dy and Ry, is a bounded and convex
subset of R?? with nonempty interior, and let ||h,||+ = sup, sup,, |ho(w; 0)|. We first estimate h,(+; 6)

12



for each 6 by the conditional median of Y; — X7,0 given X»; using some smoothing method like kernels

or series, denoting the estimator ﬁ(, 6).* We next estimate 6 by 6 = arg ming ||Mn(9,7L)||, where

1 n
M (6, h) = — D X5 [05 — 1{Y; < X[,0 + h(Xa5;0)}].

i=1
We now verify conditions 2.5, 2.6 and 2.6B with m(z,0,h) = x3[0.5 — 1{y < x,6 + h(xs;0)}], and
dim(X3) =1 > k. Again we apply Theorem 3 to show condition 2.5. For j =1,... [,

(2,0, 1) = my(2, 0. W) < a3 {1y < 240 + W (22 0') — Ly < 240+ W (22;0'))[}
i {1y < 40+ 1 (2:0)) = 1y < 240 + 1 (w3; 0))]}
a3 {11y < 240 + W (22:0)) — Ly < 740 + h(z:0))] .

We consider only the last term of the sum in the above right hand side, since the two other terms

can be treated similarly. By the arguments used in the previous example:

E| sup XY < X160+ K(X;0) — LY < X0+ h(X2;0))]
lA =Rl <6

< E[XZU(Y < X}0+ h(X;0) +6) — LY < X0+ h(X5;0) — )]
< B [X2{Fyx(X\0 + h(Xa;0) + 6) — Fyx (X160 + h(Xa;0) — 8)}] < K;6

for some K; < oo, under suitable conditions on Fy|x. Hence condition 3.2 is satisfied with r = 2
and s; = 1/2 and condition 3.3 holds by Remark 3(ii). We now verify condition 2.6. Let

M(0,h) = E[m(Z;,0,h)] = E{X5i[0.5 = Fyx,(X1,0 + h(X2:;0))]},

_ OM(6,hy) Oh,

I = Tb:eo = —E{Xsi fyx,(X100 + ha (X)) [X7; + 50 (X2i50,)] }-

Because med(g;|X3;) = 0 we have F[X3,{0.5 —1(s; <0)}] = 0 and hence M(6,,h,) = 0. It

follows that 6, is uniquely identified as long as I'; is non-singular. By similar reasoning as before
F2(907 ho)[hf - h'o] = _E{X3ifY|Xi (X{Z‘go + h'* (X22))[h(X227 90) - ho(X%; 90)]}

We now substitute in the Bahadur representation for /}';(132; 6,) — ho(z2;6,) [obtained by Chaudhuri
(1991) for local polynomials], interchange integral and summation, and approximate as in the first

example to obtain

Ty (8o, ho)[lt — ho) = % i:[()ﬁ — 1{e; < 0}v* (Xa:) + 0p(n~1?),

=1

4Chaudhuri (1991) treats local polynomial estimators of conditional quantiles for a given relationship. We expect
that Andrews (1995) results about parametric families of nonparametric regressions can be extended to the local

median estimator, so that condition 2.4 can be verified.
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where v*(Xy;) = _fX2 (X%)i['{i')_((i(();))Xsi’X%]v

and we have used the fact that fy|x,(X1;00 + hi(X2)) = fex,(0); here, fx, is the density of X;.
Using the definition of M, (6,, h,) it follows that

My (80, o) + Ta(00, ho) [l — ho) = % i[m — s < O} (X + v* (Xa0)] + 0p(n~2),

i=1
which is asymptotically normal with mean zero and finite variance under some conditions. Condition
2.6B is satisfied along the same lines as in the previous example using the corresponding Bahadur
representation for h* —h.

Finally, the model (6) can be easily generalized to allow for censoring or truncation at least
in the absence of endogeneity. Thus suppose that Y; = max{Xy;,0, + h.(Xs) + €;,0}, where
med(g;| X1, X2;) = 0. The usual CLAD estimation method of Powell (1984) can be extended to
this case with moment function m(z, 0, h) = z11{x}0 4+ h(x2;0) > 0}[0.5 — 1{y < 210 + h(xq;0)}].

The verifications of conditions 2.5 and 2.6 are pretty much the same as in the uncensored case.’

6 Concluding Remarks

Finally, we discuss some further areas of application in estimation. An example of current inter-
est appears in Han and Tamer (2002): they considered a linear median regression model Y; =
X0 + ¢; in which the covariates can be endogenous and where the dependent variable is sub-
ject to a sort of interval censoring, i.e., you only observe a lower and upper bound Yj,Y; on
Y. However, you do observe some instruments W for which med(e;|W;) = 0. Let m(z,0,h) =
w{(0.5 — hy(2;0)) 1 (h1(2;60) > 0.5) + (0.5 — hy(2;0))* 1 (ha(2;6) < 0.5)}, where z = (yo, %1, x, w) and
h = (hi1, he) with hy = (1o, hoo) = (Fy,—xew, Fv,—xew). Then E[m(Z,0,h,)] = 0 if and only if
0 = 6,. Han and Tamer smoothed over the indicator functions and actually worked with the cor-
responding least squares minimization problem. However, instead one can work with the moment
condition m and define an estimator like in (1).

There is a large class of semiparametric models defined through an independence restriction be-
tween regressors and error terms. For example, transformation models like in Horowitz (1998b,
Chapter 5) and Linton et al. (1997). An appealing estimation procedure here is the minimum
distance method [see Koul (2001) for a nice review] which involves minimizing the mean squared

distance from independence based on estimated empirical c.d.f.’s. Manski (1983) proposed a version

®The Lewbel and Linton (2001) or Chen and Khan (2001) procedures can be applied to provide an estimate of
h(z2;0).
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of the minimum distance estimator for models with separable independent error terms. More re-
cently, Brown and Wegkamp (2000) have applied this method to estimating nonlinear ‘parametric’
simultaneous equations. Our results suggest that the extension to allow for estimated nonparametric

components [like for example in Linton et al. (1997)] should hold.

7 Appendix

Proof of Theorem 1. The proof is similar to that of Corollary 3.2 in Pakes and Pollard (1989). By
condition 1.2, for all 6 > 0, Pr(||§— 0| > 6) < Pr(||M(§, ho)|| > €(6)), hence it suffices to show that
1M (8, ho)|| = 0,(1). Now by the triangle inequality, || M (6, ho)|| < ||M (8, ho)— M (8, h)||+]||M (6, h) —
M, (8, 1)||+ || M, (8, 1)||. It follows that by conditions 1.3 and 1.4, ||M (8, h,) — M (8, 1)|| = 0,(1), and
hence by conditions 1.4 and 1.5, |[M (8, h)— M0, h)|| < 0,(1) x {1+|| M, (8, h)[|+||M (8, h,)||+0,(1)}.
Hence |[M(8, h,)|| x {1 — 0,(1)} < 0,(1) + ||M,(8,R)]| x {1 4 0,(1)}. By condition 1.1, we have
HMn(g, ﬁ)|| < 0,(1) + infpee HMn(Q,/f;)H Under conditions 1.3, 1.4, 1.5 and M (6,, h,) = 0, we have:

M0, 1) < (M8, ) = M(8, )| + [|M (60, h) = M(6, ho)l| + | M(8, ho) = M (6o, 1)
< 0p(1) X {1+ || My (6, B)]| + |IM (6, o) [} + 0,(1) + [[M(6, ho) = M (B0, o),

and hence || M, (6, h)|| x {1 — 0p(1)} < 0p(1) + || M (6, ho) — M(B,, ho)|| X {1+ 0,(1)}, where all the
0,(1)’s hold uniformly with respect to # € ©. Now by M(6,, h,) = 0,

inf ||M,(0,h)|| < sup 0p(1) + inf [|M (0, hy) — M(0,, ho)|| x {1 +supoy(1)} = 0,(1)
0cO 9cO 0co 9cO

and the result follows. [ ]

Proof of Theorem 2. We first establish /n—consistency of 9 to 0,. We choose a positive
sequence 6, = o(1) such that Pr(Ha— Ool| > On, ||/f2 — holl2¢ > 6,) — 0. Hence we just need to look at
6, h such that ||0 — 0,|| < 6n,||h — ho||n < 6n. By condition 2.2, there is a constant C' > 0 such that
||/9\ —0,||C is bounded by ||M (5, ho)|| with probability tending to one; this in turn is by the triangle
inequality bounded by

I+ 1M (
I+ 1M (

)+ My (0o, ho)|| + || Mo
)+ M (0,, ho)|| + || Mo(

)|+ 1Mo (80, 1o )|

>_ Mn(
- )|+ O0p(n2), (1)

1M (8, ho) — M(
0,h,) — ) — My (

0. % 0.h 0. % 0. %
= ||M(0,h) — M(6,h 0. h 0. h 0. h

where the last equation is due to condition 2.6. By conditions 2.3, 2.4 and 2.6, and the fact that
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||/9\ —0,|| < by, ||E — ho||ln < 6, with probability approaching one, we have

HM(/é? ho) - M(/éa/i;)H < ’lM(57/ﬁ) - M(/é7 ho) - F2(§a ho)[/}; - ho]”
+H{T2(0, ho) — T2(0o, ho) i = hol|| + [[T2(6o, ho) [h — hol|
c{llR = holl#}* + 110 = Oo]| x 0p(1) + [T (0o, ho) [l — ho]|
= 0p(n %) + 10— Boll X 0p(1) + Opn"1?)

< || M, hy)|| % 0p(1) + Op(n~?), Dby condition 2.2. (8)

IN

And by condition 2.5, || M (8, h) — My (8, k) + M, (6, ho)|| = 0,(1). Hence, |[M(8, h,)|| < 0,(n"1/2) +

|| M,,(8, h)||[+0,(n~"/?). By condition 2.1, we have || M, (8, h)|| < 0,(n"/?)+infee, jo—o, <5, | Mn (8, B)]|.
Again under conditions 2.3, 2.4, 2.5 and 2.6, we have that ||Mn(0,/ﬂ)|| is bounded by
||Mn(07 h) - M<87E) - Mn(907 ho)“ + ||M(97 h) - M(G, ho)“ + ||M(97 ho)“ + ||Mn(007 ho)”
< 0p(n )+ Op(nH2) + [|M (8, ho)|| + Op(n~1/?)

hence with M(6,, ho) = 0, we have: || M,(6,R)]| < ||M(8, ho) — M (8, ho)|| + Op(n~Y2), where all
the o},s,0,’s hold uniformly with respect to ¢ € © with || — 6,| < 6,. Hence by condition 2.2,
infyee || Ma(0, h)|| = Op(n"7?), and [|6 — 6,]|C < ||M(B, ho)|| < Op(n"7?).

The rest of the proof is very similar to that of Theorem 3.3 in Pakes and Pollard (1989)

for \/n—normality, hence we just sketch the main steps here. Define the linearization L£,(6) =

~

M, (00, ho) +T1(0 —0,) + T'y(0,,h0)[h — ho]. By the triangle inequality
[1M2(8. 1) = L@ = [|M0(Bor o) + MO, 1) + Mo(8, 1) = M(B,h) — My(Bo, ho) — Lu(B)]
< M8 1) = M (8, ho) = Ta(Bo ho) b — holl| +|[M(B, ho) —T1(8 — 6,)]|
Mo (0, h) = M (D, ) = Mo (0, o) |
Then by the stochastic equicontinuity condition 2.5 the last line is 0,(n~/2). Then apply condition

2.3 to the first and second terms to obtain ||M, (8, h) — L, (8)|| = o0,(n~1/2). Similarly, ||M, (8, h) —
L,(0)]] = 0,(n"/?), where

\/7_l<§ - 90) = _(]"—VlVVl—Wl)711—‘/11/1/\/E [Mn(eo; ho) + F2(907ho)[ﬁ - ho]

is the minimizer of £, (). Under condition 2.6, a standard central limit theorem now implies to
V(6 = 6,). A little more work gives that\/n(d — 8) = 0p(1), and hence (2) follows. |

Proof of Theorem B. Make the definitions v* (6, h) = \/n(M*(0,h) — M, (0, h)) and v,(0,h) =
V(M (0,h) — M(6,h)). By the triangle inequality

sup [V (8, 9) —vi(0,h)]] = 0p(1) as. [P] 9)
[10—00|1<8n,[|0' —06]|<6n,|lg—hol |+ <bn,||h—ho| 3 <bn
sup ||Vn(0/ag) — vn(0, h>|| = Oa-S-(l) (10)

10=00||<6n,110" =00 | <6, ||g—holl+ <bn,|lh—ho|l2¢ <6
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In a similar way as was done in the proof of Theorem 2, it can be shown that [|§ — || =
Op+(n~Y/2) a.s.[P]. Next we approximate M?* (0, h*) — M,(9, E) with error o,-(n"/2) by the linear
function £7(6) = M?(6, h) — M, (8, h) +T5(8,h)[h* —h]+T1(8,h) (6 — ) for 6 in a root-n neighborhood
of 0. Here, Fl(/e\,/};) is the derivative of M (6, h) with respect to 6 evaluated at 6 = /9\, h=h. By adding

and subtracting and the triangle inequality

M8 ) — M, (8, h) — £50)|

= ||MZ(8,h) — M,(8,h) + M0, h*) — M(8,h) + M(8 ,h*) — M(8 ,h*) — M, (8, ) + M (8, h)
FMEO B — M0, h7) — M*(0,h) + Mo(6,h) — £2(0)]|

1M@ ) = M@ h) = To@B)0 = Bl + 1@ ) = M@, h) =Ty @R)E - )

+n (O, 1) = a0, )| + 02| (07, hY) — v (0, R)] = 0 (n7V2),

IN

where the o)« (n_l/ %) follows from the root-n consistencies, the stochastic equicontinuity properties
(9-10), and conditions 2.3 and 2.4B. Similarly || M (8", h*) — M, (0, h) — L%(8")|| = 0+ (n"1/2), where

" is the minimizer of £%. It follows that
Va0 = 0) = —~(@WT) T VR [ M 0,R) — Mo(@,5) + To@ )[R — ]| +o,.(1),

where fl =T 1(5, Tz) We can replace fl by I'y with probability one and use our assumption 2.6B. R
Proof of Theorem 3: By example 2.10.7 and corollary 2.3.12 in van der Vaart and Wellner
(1996), it suffices to show that for each j = 1,...,[, the followings are true:

(1) A1 ={m.(Z,0,h) : 0 € ©,h € H} is P—Donsker, or bf \/10gN[](6,]-"1j, |- |z,(p))de < o0;

(2) Foj = {mucj(Z,0,h) : 0 € ©,h € H} is P—Donsker, or [ +/log Ny(e, Faj, || - ||1,(p))de < o0.
0

For (1). Let {0y : k=1,..., N;} be an n*/*15—cover for (0,]|-||), and {hy : k=1,..., N5} be an
n'/si —cover for (H, ||-||7). Then under condition 3.1, for any m.;(Z, 0, h), there exist k; € {1,..., Ny}
and ko € {1,..., No} such that m¢;(Z, 0, , hi,) —2nb;(Z) < mj(Z,0,h) < mej(Z, Ok, , hiy) +20b;(Z).
Since E[b;(Z)]" < oo for some r > 2, we have that {[m.;(Z, Ok, hx,) — 20b;(Z), mc;j(Z, Ok, , hi,) +
2nb;(Z)) « kv € {1,...,Ni},ky € {1,..., No}} forms an e = 47||b;j(Z)||L,p)—bracket for (Fi;,|| -
||z,.(p)). Hence
__°c
Al16;(2)]] ..y
This and condition 3.3 imply (1).

For (2). Let {0x : k =1,..., Ny} be an §—cover for (O,||-||), and {hx : K = 1,..., No} be an
d—cover for (H,|| - |[#). Then under condition 3.2, for any my.;(Z,0, h), there exist k; € {1,..., N1}

€

1/51;"@’ . X Nl
] - 1) ([4\\bj(Z)HLT<P)

Ny(e, Fugo Il - o) < N([ 15 H || - | |0)-
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and ks € {1,..., Ny} such that |my.;(Z,0,h) — mu(Z, 0k, , hi,)| is bounded by

sup (e (2,60, 1) — muei(Z, 0k, hiy )| = b;(Z, 0k, hiy, 6).
(0" ,1):110" =0, [| <8, |R —hiy | |1 <6
Hence myc;(Z, 0k, , hiy) — bj(Z, 0k, hiey, 6) < muei(Z,6, h) < mye;(Z, 0y, hiey) + 0;(Z, 0k, , hiy, 6). Again
by condition 3.2, {E[b;j(Z, 0y, , hy,, 8)]" }/" < K;6% for all (y,, hy,) and all positive value § = o(1).
Therefore, {[myc;(Z, Ok, hiy)—b;(Z, Ok, Py, 0)s Muci (Z, 01y, by )+05(Z, Opy y By, 6)] t k1 € {1,..., N1}, ko €
{1,...,Ny}} forms an € = 2K;6% —bracket for (Fy;, || - ||1,(p)). Hence

5 £
Ny(es Fog |l - Neopy) < N[5, 04[] - 1) x N ([ ]V, 1 |- )
I J (P) 2K] 2Kj
This and condition 3.3 imply (2). |
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