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Abstract

We provide easy to verify sufficient conditions for the consistency and asymptotic normality

of a class of semiparametric optimization estimators where the criterion function does not obey

standard smoothness conditions and simultaneously depends on some preliminary nonparamet-

ric estimators. Our results extend existing theories like those of Pakes and Pollard (1989),

Andrews (1994a), and Newey (1994). We apply our results to two examples: a �hit rate� and a

partially linear median regression with some endogenous regressors.
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1 Introduction

In this note we investigate a class of semiparametric estimation problems that involve non-smooth

criterion functions that contain both Þnite dimensional and inÞnite dimensional unknown parame-

ters. Powell (1994) and Manski (1994) discuss speciÞcation of econometric models through quantile,

symmetry, mode, and independence restrictions. The corresponding estimation procedures are often

non-smooth in the parameters of interest. In practice one may also want to have ßexibility in the

functional form of the part of the model of interest, an issue also discussed in Powell (1994). We

study a number of examples that combine these two features below.

There have been many papers devoted to general theories of estimation, following Huber (1967).

The existing theories allow for non-smooth objective functions of Þnite dimensional parameters (with-

out inÞnite dimensional parameters) [e.g., Pakes and Pollard (1989) and Newey and McFadden (1994,

Section 7)], or smooth objective functions of both Þnite and inÞnite dimensional parameters [e.g.,

Bickel, Klaassen, Ritov, and Wellner (1993), Andrews (1994a), Newey (1994), Newey and McFad-

den (1994, Section 8), Pakes and Olley (1995), Chen and Shen (1998) and Ai and Chen (1999)].

We are unaware of a general theory on non-smooth objective functions with both Þnite and inÞnite

dimensional parameters, or rather the existing high level conditions for consistency and asymptotic

normality have not been veriÞed in this less regular setting.

A viable approach here is to use the criterion function that has been smoothed over. This then

satisÞes the usual regularity conditions and the standard distribution theory applies. Horowitz has

applied this idea to a number of problems including standard median estimation [Horowitz (1998a)];

he gives some additional justiÞcation for this approach in terms of higher order properties. Is �smooth-

ing over� always the best estimation strategy? The issue here is analogous to whether one should use

the smoothed empirical distribution function instead of the usual unsmoothed empirical distribution

function. Although there are some statistical reasons for so doing, most applied economists would

be content with using the unsmoothed empirical distribution.1

We provide sufficient conditions to ensure
√
n−asymptotic normality of the Þnite dimensional

parameters obtained from a non-smooth criterion that depends on a preliminary inÞnite dimensional

parameter estimate. Our results allow for the case where the nonparametric estimator is �proÞled�

i.e., is allowed to depend on the parameters. Our approach and results extend those of Pakes and

Pollard (1989), Andrews (1994a), Newey (1994) and Pakes and Olley (1995). We also provide a
1Horowitz (1992) originally applied this approach to the binary choice model of Manski (1975). He proposed a

smoothed maximum score estimator, and showed that his estimator converges faster than the original unsmoothed

maximum score and is asymptotically normal. Of course, this is a case where the semiparametric efficiency bound is

zero and the problem is correctly viewed as being nonparametric so that the smoothing idea Þts in quite naturally.

Our theory does not apply to semiparametric models with zero efficiency bounds.
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new result that establishes the consistency of the ordinary bootstrap method for obtaining standard

errors. The theory we present here relies on certain key empirical process results regarding the

stochastic equicontinuity properties of the non-smooth objective function, (especially with respect

to preliminary nonparametric estimators). We provide these results below by extending the work of

Andrews (1994b), Van Keilegom and Akritas (1999), and by applying the work of Van der Vaart and

Wellner (1996).

Finally, to simplify the presentation we focus on the i.i.d. sample in this note, but the Theorems

1 and 2 below actually allow for any dependent, heterogeneous sample as well. Although Theorem

B and Theorem 3 both require the i.i.d. structure and should be modiÞed for time series models.

2 A General Class of Estimators

Throughout the paper we assume that the data {Zi}ni=1 is randomly sampled from a distribution P

whose support is Z ⊂ Rdz . In many applications it is useful to denote a component of Zi as Xi with
Xi ∈ Rdx and 1 ≤ dx ≤ dz. We denote Θ for a Þnite dimensional parameter set (a compact subset
of Rk) and H for an inÞnite dimensional parameter set. We assume that H is a vector space of

functions endowed with a pseudo-metric || · ||H, (i.e., H is a metric space except that ||h||H = 0 does
not necessarily imply that h = 0 almost everywhere). For example when H is a class of continuous

functions mapping from Z to R and having Þnite sup-norms, we can take ||h||H = ||h||∞ = sup· |h(·)|
or ||h||H = ||h||Lr(P ) = {R |h|rdP}1/r for 1 ≤ r < ∞. We also denote θo ∈ Θ and ho ∈ H as the

true unknown Þnite and inÞnite dimensional parameters. Finally, we denote ||A|| = (tr(A0WA))1/2
for any matrix A, where for notational ease we suppress the dependence of the norm on the Þxed

symmetric positive deÞnite matrix W.

Our estimation strategy is an extension of the Generalized Method of Moments (GMM) that is

popular in econometrics. In the current statistical parlance, we are treating essentially �Z-estimators�

except that we allow for over-identifying restrictions.2 Suppose there exists a non-randommeasurable

vector-valued function M : Rk ×H→ Rl, with l ≥ k, such that M(θ, ho) = 0 at θ = θo ∈ Θ ⊂ Rk.
Suppose there also exists a random vector-valued function Mn : Rk × H → Rl depending on data
{Zi : i = 1, . . . , n}, such that ||Mn(θ, ho)|| is close to ||M(θ, ho)||. We allow that Mn(θ, h) could be

non-smooth with respect to (θ, h) but will assume that M(θ, h) is smooth at (θo, ho) in a sense to be

deÞned later. As in Newey (1994), Pakes and Olley (1995), and Ai and Chen (1999), we allow that

Z, θo could enter ho(.) as arguments.

Suppose that for each θ there is an initial nonparametric estimator bh(.) for ho(.). We estimate θo
2Although our approach can easily be modiÞed to treat the �maximum-likelihood-like (M-) estimators�, we decide

not to state theorems for the �M-estimators� due to the limitation of the note length.
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by any bθ that approximately solves the sample minimization problem:
min
θ∈Θ

||Mn(θ,bh)||. (1)

There are many algorithms available for computing the optimum of general non-smooth functions,

e.g., the Nelder-Mead, and the more recent genetic and evolutionary algorithms. Koenker (1997) gives

a review of some methods targeted at quantile regression problems. It is not necessary thatM(θ, h) =

E[Mn(θ, h)] in the general limiting theorems we present below. Nevertheless many econometric

applications correspond to this case: M(θ, h) = E[m(Zi, θ, h)] and Mn(θ, h) = n
−1Pn

i=1m(Zi, θ, h),

where m : Rdz × Rk ×H→ Rl is a measurable vector-valued function such that E[m(Zi, θ, ho)] = 0
if and only if θ = θo. Hence the notations M(θ, h) and Mn(θ, h) implicitly correspond to population

and sample moment conditions. Usually the function h enters m only through h(Xi), but there are

some cases where h(Z1), . . . , h(Zn) enter m, and our high level conditions do not exclude this case.

Note that the estimator of h can be proÞled, that is, bh can also depend on θ, see the partially linear
median regression with some endogenous regressors example in section 5.

3 The Large Sample Theory

Our large sample theory follows the line of the well known paper of Pakes and Pollard (1989). See

Newey and McFadden (1994) for discussions of other approaches.

3.1 Consistency

Theorem 1. Suppose that θo ∈ Θ satisÞes M(θo, ho) = 0, and that:
(1.1) kMn(bθ,bh)k ≤ infθ∈Θ kMn(θ,bh)k+op(1);
(1.2) For all δ > 0, there exists ²(δ) > 0 such that infkθ−θok>δ kM(θ, ho)k ≥ ²(δ) > 0;
(1.3) Uniformly for all θ ∈ Θ,M(θ, h) is continuous [with respect to the metric ||·||H] in h at h = ho;
(1.4) ||bh− hokH = op(1) uniformly over θ ∈ Θ;
(1.5) For all sequences of positive numbers {δn} with δn = o(1),

sup
θ∈Θ,kh−hokH≤δn

kMn(θ, h)−M(θ, h)k
1 + kMn(θ, h)k+ kM(θ, h)k = op(1).

Then, bθ − θo = op(1).
Remark 1: (i) Obviously condition 1.5 is implied by condition 1.5�: for any δn = o(1),

sup
θ∈Θ,kh−hokH≤δn

kMn(θ, h)−M(θ, h)k = op(1).
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(ii) If Mn(θ, h) = Mn(θ, ho) and M(θ, h) = M(θ, ho) for all h, then conditions 1.3 and 1.4 are

automatically satisÞed, and our Theorem 1 becomes Pakes and Pollard�s (1989) Corollary 3.2.

(iii) Comparing our Theorem 1 to Newey�s (1994) Lemma 5.2 in the caseM(θ, h) = E[m(Z, θ, h)],

the main difference is that while we impose continuity assumption on E[m(Z, θ, h)] (with respect to

θ, h), Newey imposes a continuity assumption directly on m(Z, θ, h) (with respect to θ, h).

3.2 Asymptotic Normality

For any θ ∈ Θ, we say that M(θ, h) is pathwise differentiable at h in the direction [h − h] if
{h + τ(h − h) : τ ∈ [0, 1]} ⊂ H and limτ→0[M(θ, h + τ(h − h)) − M(θ, h)]/τ exists; we denote
the limit by Γ2(θ, h)[h−h]. We need the functional derivative to capture the effect of the estimation
of ho via bh on the variability of bθ.
Theorem 2. Suppose that θo ∈ int(Θ) satisÞes M(θo, ho) = 0, that bθ − θo = op(1), and that:
(2.1) kMn(bθ,bh)k = inf ||θ−θo||≤δn kMn(θ,bh)k+ op(1/√n) for some positive sequence δn = o(1).
(2.2) (i) The ordinary partial derivative in θ of M(θ, ho), denoted Γ1(θ, ho), exists in a neighborhood

of θo, and is continuous at θ = θo; (ii) the matrix Γ1 = Γ1(θo, ho) is of full (column) rank.

(2.3) The pathwise derivative Γ2(θ, ho) of M(θ, ho) exists in all directions [h− ho] and satisÞes:

(i) ||M(θ, h)−M(θ, ho)− Γ2(θ, ho)[h− ho]|| ≤ c||h− ho||2H
for all θ with ||θ − θo|| = o(1), all h with ||h− ho||H = o(1), some constant c ∈ [0,∞);

(ii) ||Γ2(θ, ho)[h− ho]− Γ2(θo, ho)[h− ho]|| ≤ c0||θ − θo|| × o(1)

for all θ with ||θ − θo|| = o(1), all h with ||h− ho||H = o(1), some constant c0 ∈ [0,∞).
(2.4) With probability tending to one, bh ∈ H, and c||bh − ho||2H = op(n

−1/2) uniformly over θ with

||θ − θo|| = o(1).
(2.5) For all sequences of positive numbers {δn} with δn = o(1),

sup
kθ−θok<δn,kh−hokH<δn

kMn(θ, h)−M(θ, h)−Mn(θo, ho)k = op(n−1/2).

(2.6) For some Þnite matrix V1,
√
n{Mn(θo, ho) + Γ2(θo,ho)[bh− ho]} =⇒ N [0, V1].

Then √
n(bθ − θo) =⇒ N [0,Ω], where Ω = (Γ01WΓ1)−1Γ01WV1WΓ1(Γ01WΓ1)−1. (2)

Remark 2: (i) If Mn(θ, h) = Mn(θ, ho) and M(θ, h) = M(θ, ho) for all h, then conditions 2.3 and

2.4 are automatically satisÞed, and our Theorem 2 becomes Pakes and Pollard�s (1989) Theorem 3.3

and is also very similar to Theorem 7.2 of Newey and McFadden (1994).
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(ii) If a random norm Wn = Wn(eθ,eh) is used in place of W = W (θo, ho) in (1), where eθ,eh are
estimators of θo, ho, the result (2) continues to hold so long as eθ− θo = op(1), ||eh−ho||H = op(1) and
sup||θ−θo||≤δn,||h−ho||H≤δn kWn(θ, h)−W (θo, ho)k = op(1) using the arguments of Pakes and Pollard

(1989, Lemma 3.5).

(iii) Comparing our Theorem 2 to Newey�s (1994) Lemma 5.3 in the caseM(θ, h) = E[m(Z, θ, h)],

the main difference is that while we impose smoothness assumption on E[m(Z, θ, h)] (with respect

to θ, h), Newey imposes smoothness assumption directly on m(Z, θ, h) (with respect to θ, h).

(iv) Condition 2.4 requires that c||bh − ho||2H = op(n−1/2), which is equivalent to the well-known
assumption 5.1(ii) in Newey (1994). Note that c = 0 when M(θ, h) is linear in h. However even

in this linear case, the convergence rate ||bh − ho||2H = op(n
−1/2) is often needed in order to verify

condition 2.6, see e.g. Robinson�s (1988) partially linear regression example. Of course such a rate

is not needed if further Andrews� (1994a, p.49) asymptotic orthogonality condition is satisÞed.

3.3 The Asymptotic Variance and Computation of Standard Errors

The veriÞcation of condition 2.6 is in some cases difficult; it is itself the subject of a long paper by

Newey (1994). Condition 2.6 implicitly assumes that the pathwise derivative Γ2(θo,ho)[h − ho] is a
smooth linear functional of h − ho. In most applications, h is a square integrable function of U (a
subset of Z). Denote FU as the probability measure of U , then by the Riesz representation theorem

there is a unique square integrable function γ2 of U such that Γ2(θo,ho)[bh − ho] = R
γ2(u)[bh(u) −

ho(u)]dFU(u). When bh has a closed form expression [or can be well approximated thereby] such as an
empirical c.d.f., a kernel density or regression estimator, one can directly show that for some function

ψ(.) withE[ψ(Ui)] = 0, E[||ψ(Ui)||2] <∞,
R
γ2(u)[bh(u)−ho(u)]dFU(u) = n−1Pn

i=1 ψ(Ui)+op(n
−1/2).

The function ψ(.) is, under mild conditions, independent of the precise expression of bh, and can be
arrived at by the Riesz representation approach taken in Newey (1994), Chen and Shen (1998), and

Ai and Chen (1999). We present two examples in Section 5 on how to check this condition. To

summarize, for i.i.d. observations and when Mn(θo, ho) = n
−1Pn

i=1m(Zi) + op(n
−1/2), condition 2.6

is implied by condition 2.6�:

Mn(θo, ho) + Γ2(θo,ho)[bh− ho] = 1

n

nX
i=1

{m(Zi) + ψ(Ui)}+ op(n−1/2),

with E[m(Zi)] = 0, E[||m(Zi)||2] <∞ and E[ψ(Ui)] = 0, E[||ψ(Ui)||2] <∞; in this case,

V1 = E ({m(Zi) + ψ(Ui)}{m(Zi) + ψ(Ui)}0) .

To estimate V1 one needs to estimate both ψ and m, which both depend on the unknown θo, ho in

perhaps a complicated way, and then compute the sample second moment of the estimated quantities.
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The estimation of Γ1 is also potentially difficult, especially in the proÞled case where Γ1 contains an

additional term from the effect of θ on M indirectly through ho. A standard approach here is to use

numerical derivatives [see Newey and McFadden (1994) and Powell (1994)]. In conclusion, obtaining

consistent standard errors from the asymptotic approximation involves considerably more work, and

the resulting method may not work well. An alternative is to use the bootstrap.

We next show that the ordinary bootstrap can consistently estimate the asymptotic distribu-

tion of
√
n(bθ − θo) in the special case where Mn(θ, h) = n−1

Pn
i=1m(Zi, θ, h(Zi)) and M(θ, h) =

E[m(Z, θ, h(Z)]. Our results are similar to Brown and Wegkamp (2000) in this regard. Let {Z∗i }ni=1
be drawn randomly with replacement from {Zi}ni=1, letM∗

n(θ, h) = n
−1Pn

i=1m(Z
∗
i , θ, h(Z

∗
i )) for each

θ, h, and let bh∗(·) (for each θ) be the same estimator as bh(·) but based on the bootstrap data. Following
Hall and Horowitz (1996, p897) it is necessary to recenter the moment condition, at least in the overi-

dentiÞed case. DeÞne the recentered moment function mc(z, θ, h(z)) = m(z, θ, h(z)) −m(z,bθ,bh(z))
and note that n−1

Pn
i=1m

c(Z∗i , θ, h(Z
∗
i )) =M

∗
n(θ, h)−Mn(�θ,bh). Thus, deÞne the bootstrap estimator

�θ
∗
to be any sequence that satisÞes

kM∗
n(
�θ
∗
,bh∗)−Mn(�θ,bh)k = inf

θ∈Θ
kM∗

n(θ,
bh∗)−Mn(�θ,bh)k+ op∗(n−1/2). (3)

Here, and subsequently, superscript ∗ denotes a probability or moment computed under the bootstrap
distribution conditional on the original data set {Zi}ni=1.
Theorem B. Suppose that the conditions of Theorem 2 hold with �in probability� replaced by �almost

surely�, and assume that conditions 2.2 and 2.3 hold with ho replaced by h with ||h−ho|| = o(1), and
assume that Γ1(θ, h) is continuous in h in the uniform norm at θ = θo, h = ho. Suppose also that

the following bootstrap conditions hold:

(2.4B) With P ∗-probability tending to one, bh∗ ∈ H, and ||bh∗ − bh||H = op∗(n−1/4) uniformly over
θ with ||θ − θo|| = o(1).
(2.6B)

√
n{M∗

n(
bθ,bh)−Mn(bθ,bh) + Γ2(bθ,bh)[bh∗ − bh]} = N [0, V1] + oP∗(1).

Then,
√
n(�θ

∗ − �θ) converges in distribution to a N(0,Ω) distribution in P ∗-probability.
In the proof of TheoremBwe use the stochastic equicontinuity of the bootstrap process

√
n(M∗

n(θ, h)−
Mn(θ, h)), which follows from the stochastic equicontinuity of the process

√
n(Mn(θ, h)−M(θ, h)) by

results of Giné and Zinn (1990). Condition 2.4B can be veriÞed under the same conditions as imply

2.4 for a variety of kernel density and regression estimators, see for example Hall (1991). Likewise,

we expect that 2.6B holds under only slightly stronger conditions than those imply 2.6. SpeciÞcally,

from Giné and Zinn (1990) we know that the P ∗-distribution of
√
n{M∗

n(
bθ,bh) −Mn(bθ,bh)} approx-

imates the distribution of
√
n{Mn(bθ,bh)−M(bθ,bh)}, which by 2.5 is approximately the same as the

distribution of
√
nMn(θo, ho). In the common case of kernel estimation, bh∗(z) − bh(z), and hence√

nΓ2(bθ,bh)[bh∗ − bh], is a sum (or approximately so) of mean zero and independent random variables
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(under P ∗) and can be expected to satisfy a central limit theorem, see e.g. the �hit rate� example.

4 Primitive Conditions for Stochastic Equicontinuity

In this section we provide some primitive sufficient conditions for conditions 1.5� and 2.5 when

Mn(θ, h) = n−1
Pn

i=1m(Zi, θ, h(Zi)) and M(θ, h) = E[m(Z, θ, h(Zi)]. Let F = {m(z, θ, h) : θ ∈
Θ, h ∈ H} denote the class of measurable functions indexed by (θ, h). By modern empirical process
theory presented van der Vaart and Wellner (1996) for example, condition 1.5� of Theorem 1 will be

satisÞed when F is P− Glivenko-Cantelli, while condition 2.5 of Theorem 2 will be satisÞed if the

class F is P− Donsker. Moreover, whether or not F is a P−Glivenko-Cantelli [or P− Donsker] class
is closely linked to its L1(P ) [or L2(P )] covering numbers with bracketing (see van der Vaart and

Wellner (1996), p. 81-83 for the deÞnition of these concepts). Therefore, the key to verify conditions

1.5� and 2.5 is to compute the covering numbers with bracketing for the moment class {m(z, θ, h)}
based on the covering numbers with/without bracketing for the parameter class {θ ∈ Θ, h ∈ H :

kh− hokH ≤ δn}. Since Θ is a compact subset of Rk, the covering number of Θ is known. Since

in most applications, we estimate ho by some nonparametric smoothing methods such as kernel and

sieve procedures, ho is often assumed to be in H, a space of smooth functions such as a Sobolev,
Hölder or Besov class, or at least lie there with probability tending to one. Therefore, the covering

number of the function space H can be found in many books and papers on approximation theory.

When the moment function m(z, θ, h) is (pointwise) Lipschitz continuous with respect to (θ, h), we

can directly bound N[](ε,F , || · ||L2(P )) from above by the covering number of the parameter class

{θ ∈ Θ, h ∈ H : kh− hokH ≤ δn}, see e.g., Theorem 2.7.11 of van der Vaart and Wellner (1996).

This is the approach taken in Chen and Shen (1998) and many others. When the moment function

m(z, θ, h) is (pointwise) Lipschitz continuous with respect to h but not in θ, we can sometimes still

apply the results in Andrews (1994b). However we are unaware of general results to handle the case

where the moment function m(z, θ, h) is not Lipschitz continuous with respect to h. In the following,

Theorem 3 extends the work of Andrews (1994b) to the case where the moment function m(z, θ, h)

is not (pointwise) continuous with respect to h and θ.

Theorem 3. Suppose that each component mj of m = (m1, . . . ,ml)
0 takes the form mj(z, θ, h) =

mcj(z, θ, h) +mlcj(z, θ, h), and satisÞes:

(3.1) mcj(z, θ, h) is Hölder continuous with respect to θ, h in the sense:

|mcj(z, θ1, h1)−mcj(z, θ2, h2)| ≤ bj(z){kθ1 − θ2ks1j + kh1 − h2ksjH}

for some constants s1j, sj ∈ (0, 1], a measurable function bj(·) with E[bj(Z)]r <∞ for some r ≥ 2.
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(3.2) mlcj(·, θ, h) is locally uniformly Lr(P ), (r ≥ 2)−continuous with respect to θ, h in the sense:Ã
E

"
sup

(θ0,h0):||θ0−θ||<δ,||h0−h||H<δ
|mlcj(Z, θ

0, h0)−mlcj(Z, θ, h)|r
#!1/r

≤ Kjδ
sj

for all (θ, h) ∈ Θ×H, all small positive value δ = o(1), and for some constants sj ∈ (0, 1], Kj > 0.

(3.3) Θ is a compact subset of Rk, and
∞R
0

p
logN(ε1/sj ,H, || · ||H)dε <∞ for j = 1, . . . , l.

Then for all positive δn with δn = o(1),

sup
kθ−θok<δn,kh−hokH<δn

kMn(θ, h)−M(θ, h)−Mn(θo, ho)k = op(n−1/2). (4)

Remark 3: (i) Condition 3.1 of Theorem 3 is an extension of the �type II class� of Andrews

(1994b) from θ ∈ Θ to (θ, h) ∈ Θ×H; Condition 3.2 is an extension of the �type IV class� of Andrews
(1994b) from θ ∈ Θ to (θ, h) ∈ Θ×H. Condition 3.2 allows for discontinuous moment functions in
(θ, h) such as sign and indicator functions of (θ, h).

(ii) Condition 3.3 of Theorem 3 allows for many nonparametric estimators of ho. As an example,

we recall a popular nonparametric class H stated in van der Vaart and Wellner (1996, p. 154). For

any vector a = (a1, . . . , adx) of dx integers, deÞne the differential operator D
a = ∂|a|/∂xa11 . . . ∂x

adx
dx
,

where |a| =Pdx
i=1 ai. Let RX be a bounded, convex subset of Rdx with nonempty interior. For any

smooth function h : RX → R and some α > 0, let α be the largest integer smaller than α, and

khk∞,α = max|a|≤α
sup
x
|Dah(x)|+max

|a|=α
sup
x6=x0

|Dah(x)−Dah(x0)|
kx− x0kα−α .

Further, let Cαc (RX) be the set of all continuous functions h : RX → R with khk∞,α ≤ c. If

H = Cαc (RX) with || · ||H = || · ||∞, then logN(δ, Cαc (RX), || · ||∞) ≤ const. × δ−dx/α, see e.g.,
van der Vaart and Wellner (1996, Theorem 2.7.1). Hence

∞R
0

p
logN(ε1/s, Cαc (RX), || · ||∞)dε < ∞ if

α > dx/2s. That is, when the sample moment function m(Z, θ, h) is less smooth in h (i.e., smaller

s < 1), we need h ∈ H to be a �smaller function space� (i.e., α > dx/2s or higher smoothness of h)

to satisfy the stochastic equicontinuity condition 2.5.

(iii) In the old version of this paper, we show that the conclusion of Theorem 3 holds under

the following more primitive, yet more restrictive, conditions: (3.1�) For Þxed h, mj(z, θ, h) is com-

ponentwise monotone with respect to each θ; and for Þxed θ, mj(z, θ, h) is monotone with respect

to h; (3.2�) mj(z, θ, h) is Lr(P ), (r ≥ 2)−Hölder continuous with respect to θ, h in the sense that
kmj(Z, θ, h) −mj(Z, θ

0, h0)kLr(P ) ≤ Kj{kθ − θ0ks1j + kh − h0ksjH} for some constants s1j, sj ∈ (0, 1],
Kj > 0; and (3.3�) Θ is a compact subset of Rk,

∞R
0

q
logN[](ε1/sj ,H, || · ||H)dε <∞ for j = 1, . . . , l.

See Lemma 1 in Akritas and Van Keilegom (2001) for the special case of indicator functions.

9



5 Examples

We present two examples in detail and then discuss some extensions. Both our examples arise in

practical situations. Although there maybe alternative estimation methods for these problems that

avoid the technical issues treated in this paper, the methods we propose seem to be the most natural.

The estimation procedure for the second example involves proÞling the nonparametric estimation,

and so is representative of a broad class of problems. Our aim is to demonstrate that the regularity

conditions for asymptotic normality in Theorem 2 and for bootstrap consistency in Theorem B are

easily veriÞed. We concentrate primarily on the key conditions 2.5, 2.6 and 2.6B; condition 2.3

is veriÞed using similar techniques to 2.6 and so we do not provide that calculation here. The

veriÞcations of conditions 2.1, 2.2, 2.4 and 2.4B are standard and so we do not discuss them here.3

In both examples for random variables Y,X we denote the conditional c.d.f. and density functions

at evaluation point X = x by FY |x, fY |x.

Example 1: Hit Rates. Suppose that one wants to estimate the parameter θo = Pr[ho(X) ∈
A(Z)], where A(Z) is a random set that depends on the random variable Z, and ho is an unknown

function. Assuming ho ∈ H = Cα1 (RX) where α > dx and RX is a bounded and convex subset of Rdx
with nonempty interior, and let k · kH = || · ||∞. The natural estimator of θo is the sample analogue

bθ = 1

n

nX
i=1

1(bh(Xi) ∈ A(Zi)), (5)

where bh(Xi) is some nonparametric estimate of h(Xi). The estimator bθ can be interpreted as
a member of our class of estimators by taking the sample moment condition to be Mn(θ, h) =

n−1
Pn

i=1{1(h(Xi) ∈ A(Zi)) − θ}. Bliss (1997) uses a criterion like (5) to evaluate nonparametric
yield curve Þts. In this case, one observes a bid and an ask quote on a bond, {pLi, pUi}, along with
maturity and payment information. For convenience, the mid-point of the bid and ask price is taken

as a proxy for the actual price pi. From this one can estimate nonparametrically the discount func-

tion and the yield curve [see Linton, Mammen, Nielsen, and Tanggaard (2000)], and hence obtain

a predicted price bpi for each bond. One way of evaluating the performance of the procedure is to
calculate the so-called hit rate, which is (5) with A(Zi) = [pLi, pUi] and bh(Xi) = bpi. A high hit

rate corresponds to a good procedure. Smoothing over the criterion function is not an attractive

alternative here, although it would lead to straightforward but messy distribution theory. Another

potential application of this example is in testing for Revealed Preference as in Blundell, Browning,

and Crawford (1997, section 4.3). Their test involves comparing a weighted combination of budget
3The old version of this paper contains a complete set of primitive conditions that imply the conditions of Theorem

2. Fuller details are available from the authors upon request.
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shares [estimated nonparametrically] with some relative prices. They do a test that uses the point-

wise conÞdence interval and then counts violations. Instead one could do a global test based on a

count like (5).

We now verify conditions 2.5, 2.6, and 2.6B in a special case of (5) where A(Zi) = (−∞, Yi]
and where ho(.) is the density of Xi. We Þrst verify that condition 2.5 holds by applying Theorem

3. For any z = (x, y), we have m(z, θ, h) = 1(h(x) ≤ y) − θ, and so |m(z, θ0, h0)−m(z, θ, h)|2 ≤
2 |1(h0(x) ≤ y)− 1(h(x) ≤ y)|+ 2 |θ0 − θ|2 . Therefore, for any small δ ∈ (0, 1],

sup
|θ0−θ|≤δ,||h0−h||H≤δ

|m(z, θ0, h0)−m(z, θ, h)|2 ≤ 2δ2 + 2 sup
||h0−h||H≤δ

|1(h0(x) ≤ y)− 1(h(x) ≤ y)| .

Since for all h0 ∈ H with ||h0 − h||H ≤ δ ≤ 1, we have for all y, x:

h(x)− δ ≤ h0(x) ≤ h(x) + δ hence 1(h(x)− δ ≤ y) ≥ 1(h0(x) ≤ y) ≥ 1(h(x) + δ ≤ y)
h(x)− δ ≤ h(x) ≤ h(x) + δ hence 1(h(x)− δ ≤ y) ≥ 1(h(x) ≤ y) ≥ 1(h(x) + δ ≤ y),

and hence

sup
||h0−h||H≤δ

|1(h0(x) ≤ y)− 1(h(x) ≤ y)| ≤ 1(h(x)− δ ≤ y)− 1(h(x) + δ ≤ y).

The right hand side of the preceding term is either one or zero, and its expectation is the probability

that h(X) + δ > Y ≥ h(X)− δ occurs. Then apply the law of iterated expectation to conclude that
for small enough δ there is a constant K <∞ such that

E[ sup
|θ0−θ|≤δ,||h0−h||H≤δ

|m(Z, θ0, h0)−m(Z, θ, h)|2] ≤ 2Pr [h(X) + δ > Y ≥ h(X)− δ] + 2δ2

= 2E
£
FY |X(h(X) + δ)− FY |X(h(X)− δ)

¤
+ 2δ2

≤ Kδ,

where the last inequality follows provided FY |x is Lipschitz in Y uniformly in x. Therefore, condition

3.2 of Theorem 3 is satisÞed with r = 2 and s = 1/2, and condition 3.3 of Theorem 3 is satisÞed by

Remark 3(ii) and the assumption that ho ∈ H = Cα1 (RX) with || · ||H = || · ||∞ and α > dx.

We now verify condition 2.6. Note that M(θ, h) =
R
[1 − FY |x(h(x))]ho(x)dx − θ. By the law of

iterated expectation and interchanging limits we obtain

Γ2(θ, ho)[h− ho] = ∂

∂t
(E [1 (ho(Xi) + t[h(Xi)− ho(Xi)] ≤ Yi)]) ↓t=0

= −
Z
fY |x(ho(x))[h(x)− ho(x)]ho(x)dx.

Now suppose that bh(x) is a kernel estimator, i.e., bh(x) = n−1b−1Pn
i=1K((x−Xi)/b) for some kernel

K and bandwidth b. Under standard regularity conditions the bias of the nonparametric estimator,
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Ebh(x)−ho(x), can be majorized by some bounded continuous function of x times o(n−1/2). Therefore,
we just need to examine Γ2(θ, ho)[bh−Ebh], which by construction is a sum of mean zero independent
random variables. Using standard change of variables and Taylor expansion arguments we have

Γ2(θ, ho)[bh−Ebh] = − 1
nb

nX
i=1

Z
fY |x(ho(x))ho(x)

·
K

µ
x−Xi
b

¶
−EK

µ
x−Xi
b

¶¸
dx

= −1
n

nX
i=1

fY |Xi(ho(Xi))ho(Xi)−E[fY |Xi(ho(Xi))ho(Xi)] + op(n−1/2),

provided the required smoothness and boundedness conditions hold on fY |x, ho, and the kernel and

bandwidth satisfy various conditions; this yields condition 2.6. Regarding condition 2.6B,

Γ2(bθ,bh)[bh∗ − bh] = − 1
nb

nX
i=1

Z
fY |x(bh(x))bh(x) ·K µx−X∗

i

b

¶
−E∗K

µ
x−X∗

i

b

¶¸
dx

= −1
n

nX
i=1

fY |X∗
i
(bh(X∗

i ))
bh(X∗

i )−E∗[fY |X∗
i
(bh(X∗

i ))
bh(X∗

i )] + op∗(n
−1/2),

where the approximation follows from the same change of variables and Taylor expansion arguments

used above. For this we need that bh(.) possesses the same smoothness as ho(.), which it does by
condition 2.4. In the P ∗-distribution, Y ∗ni = −fY |X∗

i
(bh(X∗

i ))
bh(X∗

i ) + E
∗[fY |X∗

i
(bh(X∗

i ))
bh(X∗

i )] are

independent and mean zero random variables and
Pn

i=1 Y
∗
ni/
√
n satisÞes a triangular array central

limit theorem under weak additional conditions; the asymptotic variance is E[f2Y |Xi(ho(Xi))h
2
o(Xi)]−

E2[fY |Xi(ho(Xi))ho(Xi)] under the smoothness conditions and uniform convergence of bh(.).
Example 2. Partially Linear Median Regression with some Endogenous Regressors. Suppose

Yi = X
0
1iθo + h∗(X2i) + εi, med(εi|X2i, X3i) = 0 a.s., (6)

where h∗(.) is an unknown function. We have partitioned Xi = (X1i, X2i,X3i). The regressors

X1i are endogenous, but we assume that there exist valid instruments X3i whose dimensionality

(weakly) exceeds that of X1i. X3i could include some of X2i. The partially linear functional form

has been discussed in many places before; it provides a convenient and interpretable intermediate

speciÞcation between parametric and nonparametric. We can replace h∗(X2i) by an index function

or an additive function in cases where X2i has high dimensions. In the case with exogenous X1i (say

when X1i = X3i), Lee (2001) has proposed an estimation method for θo that relies on preliminary

high-dimensional nonparametric quantile regression function of Yi given (X1i,X2i). Our method only

requires smoothing operations with the dimensions of X2i and permits endogeneity of X1i. For any

Þxed θ ∈ Θ, we denote the function ho(X2i; θ) = med(Yi −X 0
1iθ|X2i). Clearly, h∗(X2i) = ho(X2i; θo).

Assuming for all θ ∈ Θ, ho(·; θ) ∈ H = Cα1 (RX2) where α > d2 and RX2 is a bounded and convex

subset of Rd2 with nonempty interior, and let khokH = supθ supw |ho(w; θ)|. We Þrst estimate ho(·; θ)
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for each θ by the conditional median of Yi−X 0
1iθ givenX2i using some smoothing method like kernels

or series, denoting the estimator bh(·, θ).4 We next estimate θ by bθ = argminθ ||Mn(θ,bh)||, where
Mn(θ, h) =

1

n

nX
i=1

X3i [0.5− 1{Yi ≤ X 0
1iθ + h(X2i; θ)}] .

We now verify conditions 2.5, 2.6 and 2.6B with m(z, θ, h) = x3[0.5 − 1{y ≤ x01θ + h(x2; θ)}], and
dim(X3) = l ≥ k. Again we apply Theorem 3 to show condition 2.5. For j = 1, . . . , l,

|mj(z, θ
0, h0)−mj(z, θ, h)|2 ≤ x23j{|1(y ≤ x01θ0 + h0(x2; θ0))− 1(y ≤ x01θ + h0(x2; θ0))|}

+x23j{|1(y ≤ x01θ + h0(x2; θ0))− 1(y ≤ x01θ + h0(x2; θ))|}
+x23j{|1(y ≤ x01θ + h0(x2; θ))− 1(y ≤ x01θ + h(x2; θ))|}.

We consider only the last term of the sum in the above right hand side, since the two other terms

can be treated similarly. By the arguments used in the previous example:

E

"
sup

kh0−hkH<δ
X2
3j|1(Y ≤ X 0

1θ + h
0(X2; θ))− 1(Y ≤ X 0

1θ + h(X2; θ))|
#

≤ E
£
X2
3j|1(Y ≤ X 0

1θ + h(X2; θ) + δ)− 1(Y ≤ X 0
1θ + h(X2; θ)− δ)|

¤
≤ E

£
X2
3j{FY |X(X 0

1θ + h(X2; θ) + δ)− FY |X(X 0
1θ + h(X2; θ)− δ)}

¤ ≤ Kjδ

for some Kj < ∞, under suitable conditions on FY |X . Hence condition 3.2 is satisÞed with r = 2

and sj = 1/2 and condition 3.3 holds by Remark 3(ii). We now verify condition 2.6. Let

M(θ, h) = E[m(Zi, θ, h)] = E{X3i[0.5− FY |Xi(X 0
1iθ + h(X2i; θ))]},

Γ1 =
∂M(θ, ho)

∂θ
|θ=θo = −E{X3ifY |Xi(X 0

1iθo + h∗(X2i))[X
0
1i +

∂ho
∂θ
(X2i; θo)]}.

Because med(εi|X3i) = 0 we have E [X3i{0.5− 1(εi ≤ 0)}] = 0 and hence M(θo, ho) = 0. It

follows that θo is uniquely identiÞed as long as Γ1 is non-singular. By similar reasoning as before

Γ2(θo, ho)[h− ho] = −E{X3ifY |Xi(X 0
1iθo + h∗(X2i))[h(X2i; θo)− ho(X2i; θo)]}.

We now substitute in the Bahadur representation for bh(x2; θo) − ho(x2; θo) [obtained by Chaudhuri
(1991) for local polynomials], interchange integral and summation, and approximate as in the Þrst

example to obtain

Γ2(θo, ho)[bh− ho] = 1

n

nX
i=1

[0.5− 1{εi ≤ 0}]v∗(X2i) + op(n−1/2),
4Chaudhuri (1991) treats local polynomial estimators of conditional quantiles for a given relationship. We expect

that Andrews (1995) results about parametric families of nonparametric regressions can be extended to the local

median estimator, so that condition 2.4 can be veriÞed.
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where v∗(X2i) = −fX2(X2i)E[fε|Xi(0)X3i|X2i]
fε|X2i(0)

,

and we have used the fact that fY |Xi(X
0
1iθo + h∗(X2i)) = fε|Xi(0); here, fX2 is the density of X2i.

Using the deÞnition of Mn(θo, ho) it follows that

Mn(θo, ho) + Γ2(θo, ho)[bh− ho] = 1

n

nX
i=1

[0.5− 1{εi ≤ 0}][X3i + v∗(X2i)] + op(n−1/2),

which is asymptotically normal with mean zero and Þnite variance under some conditions. Condition

2.6B is satisÞed along the same lines as in the previous example using the corresponding Bahadur

representation for bh∗ − bh.
Finally, the model (6) can be easily generalized to allow for censoring or truncation at least

in the absence of endogeneity. Thus suppose that Yi = max{X1iθo + h∗(X2i) + εi, 0}, where
med(εi|X1i,X2i) = 0. The usual CLAD estimation method of Powell (1984) can be extended to

this case with moment function m(z, θ, h) = x11{x01θ + h(x2; θ) > 0}[0.5 − 1{y ≤ x01θ + h(x2; θ)}].
The veriÞcations of conditions 2.5 and 2.6 are pretty much the same as in the uncensored case.5

6 Concluding Remarks

Finally, we discuss some further areas of application in estimation. An example of current inter-

est appears in Han and Tamer (2002): they considered a linear median regression model Yi =

X 0
iθ + εi in which the covariates can be endogenous and where the dependent variable is sub-

ject to a sort of interval censoring, i.e., you only observe a lower and upper bound Y0, Y1 on

Y . However, you do observe some instruments W for which med(εi|Wi) = 0. Let m(z, θ, h) =

w{(0.5− h1(z; θ)) 1 (h1(z; θ) > 0.5)+(0.5− h2(z; θ))2 1 (h2(z; θ) < 0.5)}, where z = (y0, y1, x, w) and
h = (h1, h2) with ho = (h1o, h2o) = (FY0−Xθ|W , FY1−Xθ|W ). Then E[m(Z, θ, ho)] = 0 if and only if

θ = θo. Han and Tamer smoothed over the indicator functions and actually worked with the cor-

responding least squares minimization problem. However, instead one can work with the moment

condition m and deÞne an estimator like in (1).

There is a large class of semiparametric models deÞned through an independence restriction be-

tween regressors and error terms. For example, transformation models like in Horowitz (1998b,

Chapter 5) and Linton et al. (1997). An appealing estimation procedure here is the minimum

distance method [see Koul (2001) for a nice review] which involves minimizing the mean squared

distance from independence based on estimated empirical c.d.f.�s. Manski (1983) proposed a version
5The Lewbel and Linton (2001) or Chen and Khan (2001) procedures can be applied to provide an estimate of

h(x2; θ).
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of the minimum distance estimator for models with separable independent error terms. More re-

cently, Brown and Wegkamp (2000) have applied this method to estimating nonlinear �parametric�

simultaneous equations. Our results suggest that the extension to allow for estimated nonparametric

components [like for example in Linton et al. (1997)] should hold.

7 Appendix

Proof of Theorem 1. The proof is similar to that of Corollary 3.2 in Pakes and Pollard (1989). By

condition 1.2, for all δ > 0, Pr(||bθ− θo|| > δ) ≤ Pr(||M(bθ, ho)|| ≥ ²(δ)), hence it suffices to show that
||M(bθ, ho)|| = op(1). Now by the triangle inequality, ||M(bθ, ho)|| ≤ ||M(bθ, ho)−M(bθ,bh)||+||M(bθ,bh)−
Mn(bθ,bh)||+ ||Mn(bθ,bh)||. It follows that by conditions 1.3 and 1.4, ||M(bθ, ho)−M(bθ,bh)|| = op(1), and
hence by conditions 1.4 and 1.5, ||M(bθ,bh)−Mn(bθ,bh)|| ≤ op(1)×{1+||Mn(bθ,bh)||+||M(bθ, ho)||+op(1)}.
Hence ||M(bθ, ho)|| × {1 − op(1)} ≤ op(1) + ||Mn(bθ,bh)|| × {1 + op(1)}. By condition 1.1, we have
||Mn(bθ,bh)|| ≤ op(1) + infθ∈Θ ||Mn(θ,bh)||. Under conditions 1.3, 1.4, 1.5 and M(θo, ho) = 0, we have:

||Mn(θ,bh)|| ≤ ||Mn(θ,bh)−M(θ,bh)||+ ||M(θ,bh)−M(θ, ho)||+ ||M(θ, ho)−M(θo, ho)||
≤ op(1)× {1 + ||Mn(θ,bh)||+ ||M(θ, ho)||}+ op(1) + ||M(θ, ho)−M(θo, ho)||,

and hence ||Mn(θ,bh)|| × {1− op(1)} ≤ op(1) + ||M(θ, ho)−M(θo, ho)|| × {1 + op(1)}, where all the
op(1)�s hold uniformly with respect to θ ∈ Θ. Now by M(θo, ho) = 0,

inf
θ∈Θ

||Mn(θ,bh)|| ≤ sup
θ∈Θ

op(1) + inf
θ∈Θ

||M(θ, ho)−M(θo, ho)|| × {1 + sup
θ∈Θ

op(1)} = op(1)

and the result follows.

Proof of Theorem 2. We Þrst establish
√
n−consistency of bθ to θo. We choose a positive

sequence δn = o(1) such that Pr(||bθ− θo|| ≥ δn, ||bh−ho||H ≥ δn)→ 0. Hence we just need to look at

θ, h such that kθ − θok < δn, ||h− ho||H < δn. By condition 2.2, there is a constant C > 0 such that
||bθ− θo||C is bounded by ||M(bθ, ho)|| with probability tending to one; this in turn is by the triangle
inequality bounded by

||M(bθ, ho)−M(bθ,bh)||+ ||M(bθ,bh)−Mn(bθ,bh) +Mn(θo, ho)||+ ||Mn(bθ,bh)||+ ||Mn(θo, ho)||
= ||M(bθ, ho)−M(bθ,bh)||+ ||M(bθ,bh)−Mn(bθ,bh) +Mn(θo, ho)||+ ||Mn(bθ,bh)||+Op(n−1/2), (7)

where the last equation is due to condition 2.6. By conditions 2.3, 2.4 and 2.6, and the fact that
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||bθ − θo|| < δn, ||bh− ho||H < δn with probability approaching one, we have
||M(bθ, ho)−M(bθ,bh)|| ≤ ||M(bθ,bh)−M(bθ, ho)− Γ2(bθ, ho)[bh− ho]||

+||{Γ2(bθ, ho)− Γ2(θo, ho)}[bh− ho]||+ ||Γ2(θo, ho)[bh− ho]||
≤ c{||bh− ho||H}2 + ||bθ − θo|| × op(1) + ||Γ2(θo, ho)[bh− ho]||
= op(n

−1/2) + ||bθ − θo|| × op(1) +Op(n−1/2)
≤ kM(bθ, ho)k × op(1) +Op(n−1/2), by condition 2.2. (8)

And by condition 2.5, ||M(bθ,bh)−Mn(bθ,bh) +Mn(θo, ho)|| = op(1). Hence, ||M(bθ, ho)|| ≤ op(n−1/2) +
||Mn(bθ,bh)||+Op(n−1/2).By condition 2.1, we have ||Mn(bθ,bh)|| ≤ op(n−1/2)+infθ∈Θ,||θ−θo||≤δn ||Mn(θ,bh)||.
Again under conditions 2.3, 2.4, 2.5 and 2.6, we have that ||Mn(θ,bh)|| is bounded by

||Mn(θ,bh)−M(θ,bh)−Mn(θo, ho)||+ ||M(θ,bh)−M(θ, ho)||+ ||M(θ, ho)||+ ||Mn(θo, ho)||
≤ op(n

−1/2) +Op(n−1/2) + ||M(θ, ho)||+Op(n−1/2)
hence with M(θo, ho) = 0, we have: ||Mn(θ,bh)|| ≤ ||M(θ, ho) −M(θo, ho)|| + Op(n−1/2), where all
the o0ps,Op�s hold uniformly with respect to θ ∈ Θ with kθ − θok < δn. Hence by condition 2.2,

infθ∈Θ ||Mn(θ,bh)|| = Op(n−1/2), and ||bθ − θo||C ≤ ||M(bθ, ho)|| ≤ Op(n−1/2).
The rest of the proof is very similar to that of Theorem 3.3 in Pakes and Pollard (1989)

for
√
n−normality, hence we just sketch the main steps here. DeÞne the linearization Ln(θ) =

Mn(θo, ho) + Γ1(θ − θo) + Γ2(θo,ho)[bh− ho]. By the triangle inequality
||Mn(bθ,bh)− Ln(bθ)|| = ||Mn(θo, ho) +M(bθ,bh) +Mn(bθ,bh)−M(bθ,bh)−Mn(θo, ho)− Ln(bθ)||

≤ ||M(bθ,bh)−M(bθ, ho)− Γ2(θo, ho)[bh− ho]||+ ||M(bθ, ho)− Γ1(bθ − θo)||
+||Mn(bθ,bh)−M(bθ,bh)−Mn(θo, ho)||.

Then by the stochastic equicontinuity condition 2.5 the last line is op(n−1/2). Then apply condition

2.3 to the Þrst and second terms to obtain ||Mn(bθ,bh) − Ln(bθ)|| = op(n−1/2). Similarly, ||Mn(θ,bh) −
Ln(θ)|| = op(n−1/2), where

√
n(θ − θo) = −(Γ01WΓ1)−1Γ01W

√
n
h
Mn(θo, ho) + Γ2(θo,ho)[bh− ho]i

is the minimizer of Ln(θ). Under condition 2.6, a standard central limit theorem now implies to√
n(θ − θo). A little more work gives that√n(bθ − θ) = op(1), and hence (2) follows.
Proof of Theorem B. Make the deÞnitions ν∗n(θ, h) =

√
n(M∗

n(θ, h)−Mn(θ, h)) and νn(θ, h) =√
n(Mn(θ, h)−M(θ, h)). By the triangle inequality

sup
||θ−θo||≤δn,||θ0−θo||≤δn,||g−ho||H≤δn,||h−ho||H≤δn

||ν∗n(θ0, g)− ν∗n(θ, h)|| = op∗(1) a.s. [P] (9)

sup
||θ−θo||≤δn,||θ0−θo||≤δn,||g−ho||H≤δn,||h−ho||H≤δn

||νn(θ0, g)− νn(θ, h)|| = oa.s.(1) (10)
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In a similar way as was done in the proof of Theorem 2, it can be shown that k�θ∗ − �θk =
OP∗(n

−1/2) a.s.[P]. Next we approximate M∗
n(θ,

bh∗) −Mn(bθ,bh) with error op∗(n−1/2) by the linear
function L∗n(θ) =M∗

n(
bθ,bh)−Mn(bθ,bh)+Γ2(bθ,bh)[bh∗−bh]+Γ1(bθ,bh)(θ−bθ) for θ in a root-n neighborhood

of bθ. Here, Γ1(bθ,bh) is the derivative ofM(θ, h) with respect to θ evaluated at θ = bθ, h = bh. By adding
and subtracting and the triangle inequality

||M∗
n(
bθ∗,bh∗)−Mn(bθ,bh)− L∗n(bθ∗)||

= ||M∗
n(
bθ,bh)−Mn(bθ,bh) +M(bθ∗,bh∗)−M(bθ,bh) +Mn(bθ∗,bh∗)−M(bθ∗,bh∗)−Mn(bθ,bh) +M(bθ,bh)

+M∗
n(
bθ∗,bh∗)−Mn(bθ∗,bh∗)−M∗

n(
bθ,bh) +Mn(bθ,bh)− L∗n(bθ∗)||

≤ ||M(bθ∗,bh∗)−M(bθ∗,bh)− Γ2(bθ,bh)[bh∗ − bh]||+ ||M(bθ∗,bh)−M(bθ,bh)− Γ1(bθ,bh)(bθ∗ − bθ)||
+n−1/2||νn(bθ∗,bh∗)− νn(bθ,bh)||+ n−1/2||ν∗n(bθ∗,bh∗)− ν∗n(bθ,bh)|| = op∗(n−1/2),

where the op∗(n−1/2) follows from the root-n consistencies, the stochastic equicontinuity properties

(9-10), and conditions 2.3 and 2.4B. Similarly ||M∗
n(θ

∗
,bh∗)−Mn(bθ,bh)−L∗n(θ∗)|| = op∗(n−1/2), where

θ
∗
is the minimizer of L∗n. It follows that

√
n(bθ∗ − bθ) = −(bΓ01WbΓ1)−1bΓ01W√n hM∗

n(
bθ,bh)−Mn(bθ,bh) + Γ2(bθ,bh)[bh∗ − bh]i+ op∗(1),

where bΓ1 = Γ1(bθ,bh). We can replace bΓ1 by Γ1 with probability one and use our assumption 2.6B.
Proof of Theorem 3: By example 2.10.7 and corollary 2.3.12 in van der Vaart and Wellner

(1996), it suffices to show that for each j = 1, . . . , l, the followings are true:

(1) F1j = {mcj(Z, θ, h) : θ ∈ Θ, h ∈ H} is P−Donsker, or
∞R
0

p
logN[](ε,F1j, || · ||Lr(P ))dε <∞;

(2) F2j = {mlcj(Z, θ, h) : θ ∈ Θ, h ∈ H} is P−Donsker, or
∞R
0

p
logN[](ε,F2j, || · ||Lr(P ))dε <∞.

For (1). Let {θk : k = 1, . . . , N1} be an η1/s1j−cover for (Θ, || · ||), and {hk : k = 1, . . . , N2} be an
η1/sj−cover for (H, ||·||H). Then under condition 3.1, for anymcj(Z, θ, h), there exist k1 ∈ {1, . . . , N1}
and k2 ∈ {1, . . . , N2} such that mcj(Z, θk1, hk2)−2ηbj(Z) ≤ mcj(Z, θ, h) ≤ mcj(Z, θk1 , hk2)+2ηbj(Z).

Since E[bj(Z)]r < ∞ for some r ≥ 2, we have that {[mcj(Z, θk1, hk2) − 2ηbj(Z),mcj(Z, θk1 , hk2) +

2ηbj(Z)] : k1 ∈ {1, . . . , N1}, k2 ∈ {1, . . . , N2}} forms an ε = 4η||bj(Z)||Lr(P )−bracket for (F1j, || ·
||Lr(P )). Hence

N[](ε,F1j, || · ||Lr(P )) ≤ N([
ε

4||bj(Z)||Lr(P )
]1/s1j ,Θ, || · ||)×N([ ε

4||bj(Z)||Lr(P )
]1/sj ,H, || · ||H).

This and condition 3.3 imply (1).

For (2). Let {θk : k = 1, . . . , N1} be an δ−cover for (Θ, || · ||), and {hk : k = 1, . . . , N2} be an
δ−cover for (H, || · ||H). Then under condition 3.2, for any mlcj(Z, θ, h), there exist k1 ∈ {1, . . . , N1}
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and k2 ∈ {1, . . . , N2} such that |mlcj(Z, θ, h)−mlcj(Z, θk1 , hk2)| is bounded by

sup
(θ0,h0):||θ0−θk1 ||<δ,||h0−hk2 ||H<δ

|mlcj(Z, θ
0, h0)−mlcj(Z, θk1 , hk2)| ≡ bj(Z, θk1, hk2 , δ).

Hence mlcj(Z, θk1 , hk2)− bj(Z, θk1 , hk2 , δ) ≤ mlcj(Z, θ, h) ≤ mlcj(Z, θk1 , hk2) + bj(Z, θk1 , hk2 , δ). Again

by condition 3.2, {E[bj(Z, θk1, hk2 , δ)]r}1/r ≤ Kjδ
sj for all (θk1, hk2) and all positive value δ = o(1).

Therefore, {[mlcj(Z, θk1 , hk2)−bj(Z, θk1 , hk2, δ),mlcj(Z, θk1, hk2)+bj(Z, θk1 , hk2 , δ)] : k1 ∈ {1, . . . , N1}, k2 ∈
{1, . . . , N2}} forms an ε = 2Kjδ

sj−bracket for (F2j, || · ||Lr(P )). Hence

N[](ε,F2j, || · ||Lr(P )) ≤ N([
ε

2Kj
]1/sj ,Θ, || · ||)×N([ ε

2Kj
]1/sj ,H, || · ||H).

This and condition 3.3 imply (2).
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