Chen, Xiaonhong; Linton, Oliver Bruce; Keilegom, Ingrid Van

Working Paper
Estimation of semiparametric models when the criterion function is not smooth

cemmap working paper, No. CWP02/02

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Chen, Xiaonhong; Linton, Oliver Bruce; Keilegom, Ingrid Van (2002) : Estimation of semiparametric models when the criterion function is not smooth, cemmap working paper, No. CWP02/02, Centre for Microdata Methods and Practice (cemmap), London, http://dx.doi.org/10.1920/wp.cem.2002.0202

This Version is available at:
http://hdl.handle.net/10419/79366

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
ESTIMATION OF SEMIPARAMETRIC MODELS WHEN THE CRITERION FUNCTION IS NOT SMOOTH

Xiaohong Chen
Oliver Linton
Ingrid Van Keilegom

THE INSTITUTE FOR FISCAL STUDIES
DEPARTMENT OF ECONOMICS, UCL
cemmap working paper CWP02/02
Estimation of Semiparametric Models when the Criterion Function is not Smooth

Xiaohong Chen†
London School of Economics and New York University

Oliver Linton‡
London School of Economics

Ingrid Van Keilegom§
Université catholique de Louvain

November 7, 2002

Abstract

We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some preliminary nonparametric estimators. Our results extend existing theories like those of Pakes and Pollard (1989), Andrews (1994a), and Newey (1994). We apply our results to two examples: a ‘hit rate’ and a partially linear median regression with some endogenous regressors.

*We would like to thank co-editor Joel Horowitz and two anonymous referees for their valuable suggestions. We also received helpful comments from R. Blundell, H. Hong, B. Honore, H. Ichimura, C. Meghir, R. Sherman and E. Tamer. The research is completed while Chen is visiting Department of Economics, Princeton University from Sept. 2001 to July 2002. Chen would like to thank the great hospitality provided by Princeton University, especially the Gregory Chow Econometrics Research Center. Chen and Linton would also like to acknowledge financial support from the ESRC. The research of Van Keilegom was supported by the contract ‘Projet d’Actions de Recherche Concertées’ nr 98/03–217, and by the IAP research network nr P5/24 of the Belgian state.

†Department of Economics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom. E-mail address: x.chen1@lse.ac.uk; and Department of Economics, New York University, 269 Mercer Street, New York, NY 10003, USA. E-mail address: xiaohong.chen@nyu.edu

‡Department of Economics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom. E-mail address: O.Linton@lse.ac.uk

§Institute of Statistics, Université catholique de Louvain, Voie du Roman Pays 20, B1348 Louvain-la-Neuve, Belgium. E-mail address: vankeilegom@stat.ucl.ac.be
1 Introduction

In this note we investigate a class of semiparametric estimation problems that involve non-smooth criterion functions that contain both finite dimensional and infinite dimensional unknown parameters. Powell (1994) and Manski (1994) discuss specification of econometric models through quantile, symmetry, mode, and independence restrictions. The corresponding estimation procedures are often non-smooth in the parameters of interest. In practice one may also want to have flexibility in the functional form of the part of the model of interest, an issue also discussed in Powell (1994). We study a number of examples that combine these two features below.

There have been many papers devoted to general theories of estimation, following Huber (1967). The existing theories allow for non-smooth objective functions of finite dimensional parameters (without infinite dimensional parameters) [e.g., Pakes and Pollard (1989) and Newey and McFadden (1994, Section 7)], or smooth objective functions of both finite and infinite dimensional parameters [e.g., Bickel, Klaassen, Ritov, and Wellner (1993), Andrews (1994a), Newey (1994), Newey and McFadden (1994, Section 8), Pakes and Olley (1995), Chen and Shen (1998) and Ai and Chen (1999)]. We are unaware of a general theory on non-smooth objective functions with both finite and infinite dimensional parameters, or rather the existing high level conditions for consistency and asymptotic normality have not been verified in this less regular setting.

A viable approach here is to use the criterion function that has been smoothed over. This then satisfies the usual regularity conditions and the standard distribution theory applies. Horowitz has applied this idea to a number of problems including standard median estimation [Horowitz (1998a)]; he gives some additional justification for this approach in terms of higher order properties. Is ‘smoothing over’ always the best estimation strategy? The issue here is analogous to whether one should use the smoothed empirical distribution function instead of the usual unsmoothed empirical distribution function. Although there are some statistical reasons for so doing, most applied economists would be content with using the unsmoothed empirical distribution.1

We provide sufficient conditions to ensure \sqrt{n}—asymptotic normality of the finite dimensional parameters obtained from a non-smooth criterion that depends on a preliminary infinite dimensional parameter estimate. Our results allow for the case where the nonparametric estimator is ‘profiled’ i.e., is allowed to depend on the parameters. Our approach and results extend those of Pakes and Pollard (1989), Andrews (1994a), Newey (1994) and Pakes and Olley (1995). We also provide a

1Horowitz (1992) originally applied this approach to the binary choice model of Manski (1975). He proposed a smoothed maximum score estimator, and showed that his estimator converges faster than the original unsmoothed maximum score and is asymptotically normal. Of course, this is a case where the semiparametric efficiency bound is zero and the problem is correctly viewed as being nonparametric so that the smoothing idea fits in quite naturally. Our theory does not apply to semiparametric models with zero efficiency bounds.
new result that establishes the consistency of the ordinary bootstrap method for obtaining standard errors. The theory we present here relies on certain key empirical process results regarding the stochastic equicontinuity properties of the non-smooth objective function, (especially with respect to preliminary nonparametric estimators). We provide these results below by extending the work of Andrews (1994b), Van Keilegom and Akritas (1999), and by applying the work of Van der Vaart and Wellner (1996).

Finally, to simplify the presentation we focus on the i.i.d. sample in this note, but the Theorems 1 and 2 below actually allow for any dependent, heterogeneous sample as well. Although Theorem B and Theorem 3 both require the i.i.d. structure and should be modiﬁed for time series models.

2 A General Class of Estimators

Throughout the paper we assume that the data \(\{Z_i\}_{i=1}^n \) is randomly sampled from a distribution \(P \) whose support is \(Z \subset \mathbb{R}^{d_z} \). In many applications it is useful to denote a component of \(Z_i \) as \(X_i \) with \(X_i \in \mathbb{R}^{d_x} \) and \(1 \leq d_x \leq d_z \). We denote \(\Theta \) for a ﬁnite dimensional parameter set (a compact subset of \(\mathbb{R}^k \)) and \(\mathcal{H} \) for an inﬁnite dimensional parameter set. We assume that \(\mathcal{H} \) is a vector space of functions endowed with a pseudo-metric \(|| \cdot ||_\mathcal{H} \), (i.e., \(\mathcal{H} \) is a metric space except that \(|| h ||_\mathcal{H} = 0 \) does not necessarily imply that \(h = 0 \) almost everywhere). For example when \(\mathcal{H} \) is a class of continuous functions mapping from \(Z \) to \(\mathbb{R} \) and having ﬁnite sup-norms, we can take \(|| h ||_\mathcal{H} = || h ||_\infty = \sup |h(\cdot)| \) or \(|| h ||_\mathcal{H} = || h ||_{L_r(P)} = \left\{ \int |h|^r dP \right\}^{1/r} \) for \(1 \leq r < \infty \). We also denote \(\theta_o \in \Theta \) and \(h_o \in \mathcal{H} \) as the true unknown ﬁnite and inﬁnite dimensional parameters. Finally, we denote \(|| A || = (tr(A'WA))^{1/2} \) for any matrix \(A \), where for notational ease we suppress the dependence of the norm on the ﬁxed symmetric positive deﬁnite matrix \(W \).

Our estimation strategy is an extension of the Generalized Method of Moments (GMM) that is popular in econometrics. In the current statistical parlance, we are treating essentially ‘Z-estimators’ except that we allow for over-identifying restrictions.\(^2\) Suppose there exists a non-random measurable vector-valued function \(M : \mathbb{R}^k \times \mathcal{H} \to \mathbb{R}^l \), with \(l \geq k \), such that \(M(\theta, h_o) = 0 \) at \(\theta = \theta_o \in \Theta \subset \mathbb{R}^k \). Suppose there also exists a random vector-valued function \(M_n : \mathbb{R}^k \times \mathcal{H} \to \mathbb{R}^l \) depending on data \(\{Z_i : i = 1, \ldots, n\} \), such that \(|| M_n(\theta, h_o) || \) is close to \(|| M(\theta, h_o) || \). We allow that \(M_n(\theta, h) \) could be non-smooth with respect to \((\theta, h) \) but will assume that \(M(\theta, h) \) is smooth at \((\theta_o, h_o) \) in a sense to be defined later. As in Newey (1994), Pakes and Olley (1995), and Ai and Chen (1999), we allow that \(Z, \theta_o \) could enter \(h_o(\cdot) \) as arguments.

Suppose that for each \(\theta \) there is an initial nonparametric estimator \(\hat{h}(\cdot) \) for \(h_o(\cdot) \). We estimate \(\theta_o \)

\(^2\)Although our approach can easily be modiﬁed to treat the ‘maximum-likelihood-like (M-) estimators’, we decide not to state theorems for the ‘M-estimators’ due to the limitation of the note length.
by any $\hat{\theta}$ that approximately solves the sample minimization problem:

$$\min_{\theta \in \Theta} \| M_n(\theta, \hat{h}) \|. \tag{1}$$

There are many algorithms available for computing the optimum of general non-smooth functions, e.g., the Nelder-Mead, and the more recent genetic and evolutionary algorithms. Koenker (1997) gives a review of some methods targeted at quantile regression problems. It is not necessary that $M(\theta, h) = E[M_n(\theta, h)]$ in the general limiting theorems we present below. Nevertheless many econometric applications correspond to this case: $M(\theta, h) = E[m(Z_i, \theta, h)]$ and $M_n(\theta, h) = n^{-1} \sum_{i=1}^n m(Z_i, \theta, h)$, where $m : \mathbb{R}^d \times \mathbb{R}^k \times \mathcal{H} \to \mathbb{R}$ is a measurable vector-valued function such that $E[m(Z_i, \theta, h_o)] = 0$ if and only if $\theta = \theta_o$. Hence the notations $M(\theta, h)$ and $M_n(\theta, h)$ implicitly correspond to population and sample moment conditions. Usually the function h enters m only through $h(X_i)$, but there are some cases where $h(Z_1), \ldots, h(Z_n)$ enter m, and our high level conditions do not exclude this case. Note that the estimator of h can be profiled, that is, \hat{h} can also depend on θ, see the partially linear median regression with some endogenous regressors example in section 5.

3 The Large Sample Theory

Our large sample theory follows the line of the well known paper of Pakes and Pollard (1989). See Newey and McFadden (1994) for discussions of other approaches.

3.1 Consistency

Theorem 1. Suppose that $\theta_o \in \Theta$ satisfies $M(\theta_o, h_o) = 0$, and that:

1. $\| M_n(\theta, \hat{h}) \| \leq \inf_{\theta \in \Theta} \| M_n(\theta, \hat{h}) \| + o_p(1)$;
2. For all $\delta > 0$, there exists $\epsilon(\delta) > 0$ such that $\inf_{\| \theta - \theta_o \| > \delta} \| M(\theta, h_o) \| \geq \epsilon(\delta) > 0$;
3. Uniformly for all $\theta \in \Theta$, $M(\theta, h)$ is continuous [with respect to the metric $\| \cdot \|_H$] in h at $h = h_o$;
4. $\| \hat{h} - h_o \|_H = o_p(1)$ uniformly over $\theta \in \Theta$;
5. For all sequences of positive numbers $\{ \delta_n \}$ with $\delta_n = o(1)$,

$$\sup_{\theta \in \Theta, \| \hat{h} - h_o \|_H \leq \delta_n} \frac{\| M_n(\theta, h) - M(\theta, h) \|}{1 + \| M_n(\theta, h) \| + \| M(\theta, h) \|} = o_p(1).$$

Then, $\hat{\theta} - \theta_o = o_p(1)$.

Remark 1: (i) Obviously condition 1.5 is implied by **condition 1.5’**: for any $\delta_n = o(1)$,

$$\sup_{\theta \in \Theta, \| \hat{h} - h_o \|_H \leq \delta_n} \| M_n(\theta, h) - M(\theta, h) \| = o_p(1).$$

4
Remark 2: (i) If \(M_n(\theta, h) = M_n(\theta, h_o) \) and \(M(\theta, h) = M(\theta, h_o) \) for all \(h \), then conditions 1.3 and 1.4 are automatically satisfied, and our Theorem 1 becomes Pakes and Pollard’s (1989) Corollary 3.2.

(ii) If \(M_n(\theta, h) = M_n(\theta, h_o) \) and \(M(\theta, h) = M(\theta, h_o) \) for all \(h \), then conditions 1.3 and 1.4 are automatically satisfied, and our Theorem 1 becomes Pakes and Pollard’s (1989) Corollary 3.2.

(iii) Comparing our Theorem 1 to Newey’s (1994) Lemma 5.2 in the case \(M(\theta, h) = E[m(Z, \theta, h)] \), the main difference is that while we impose continuity assumption on \(E[m(Z, \theta, h)] \) (with respect to \(\theta, h \)), Newey imposes a continuity assumption directly on \(m(Z, \theta, h) \) (with respect to \(\theta, h \)).

3.2 Asymptotic Normality

For any \(\theta \in \Theta \), we say that \(M(\theta, h) \) is pathwise differentiable at \(h \) in the direction \(\bar{h} - h \) if \(\{ h + \tau(\bar{h} - h) : \tau \in [0, 1] \} \subset \mathcal{H} \) and \(\lim_{\tau \to 0}[M(\theta, h + \tau(\bar{h} - h)) - M(\theta, h)]/\tau \) exists; we denote the limit by \(\Gamma_2(\theta, h)[\bar{h} - h] \). We need the functional derivative to capture the effect of the estimation of \(h_o \) via \(\hat{h} \) on the variability of \(b_\theta \).

Theorem 2. Suppose that \(\theta_o \in \text{int}(\Theta) \) satisfies \(M(\theta_o, h_o) = 0 \), that \(\bar{\theta} - \theta_o = o_p(1) \), and that:

1. \(M_n(\bar{\theta}, \hat{h}) = \inf_{|\theta - \theta_o| \leq \delta_n} M_n(\theta, \hat{h}) + o_p(1/\sqrt{n}) \) for some positive sequence \(\delta_n = o(1) \).

2. (i) The ordinary partial derivative in \(\theta \) of \(M(\theta, h_o) \), denoted \(\Gamma_1(\theta, h_o) \), exists in a neighborhood of \(\theta_o \), and is continuous at \(\theta = \theta_o \); (ii) the matrix \(\Gamma_1 = \Gamma_1(\theta_o, h_o) \) is of full (column) rank.

3. The pathwise derivative \(\Gamma_2(\theta, h_o) \) of \(M(\theta, h_o) \) exists in all directions \(\text{[} h - h_o \text{]} \) and satisfies:

 (i) \(||M(\theta, h) - M(\theta, h_o) - \Gamma_2(\theta, h_o)[h - h_o]|| < c||h - h_o||^2_H \)

 for all \(\theta \) with \(||\theta - \theta_o|| = o(1) \), all \(h \) with \(||h - h_o||_H = o(1) \), some constant \(c \in [0, \infty) \);

 (ii) \(||\Gamma_2(\theta, h_o)[h - h_o] - \Gamma_2(\theta_o, h_o)[h - h_o]|| < c'||\theta - \theta_o|| \times o(1) \)

 for all \(\theta \) with \(||\theta - \theta_o|| = o(1) \), all \(h \) with \(||h - h_o||_H = o(1) \), some constant \(c' \in [0, \infty) \).

4. With probability tending to one, \(\hat{h} \in \mathcal{H} \), and \(c||\hat{h} - h_o||^2_H = o_p(n^{-1/2}) \) uniformly over \(\theta \) with \(||\theta - \theta_o|| = o(1) \).

5. For all sequences of positive numbers \(\{\delta_n\} \) with \(\delta_n = o(1) \),

\[
\sup_{||\theta - \theta_o|| < \delta_n, ||h - h_o||_H < \delta_n} ||M_n(\theta, h) - M(\theta, h) - M_n(\theta_o, h_o)|| = o_p(n^{-1/2}).
\]

6. For some finite matrix \(V_1 \), \(\sqrt{n}[M_n(\theta_o, h_o) + \Gamma_2(\theta_o, h_o)[\hat{h} - h_o]] \rightarrow \mathcal{N}[0, V_1] \).

Then

\[
\sqrt{n}[\bar{\theta} - \theta_o] \rightarrow \mathcal{N}[0, \Omega], \text{ where } \Omega = (\Gamma_1' W\Gamma_1)^{-1} \Gamma_1' W V_1 W\Gamma_1 (\Gamma_1' W\Gamma_1)^{-1}.
\]

Remark 2: (i) If \(M_n(\theta, h) = M_n(\theta, h_o) \) and \(M(\theta, h) = M(\theta, h_o) \) for all \(h \), then conditions 2.3 and 2.4 are automatically satisfied, and our Theorem 2 becomes Pakes and Pollard’s (1989) Theorem 3.3 and is also very similar to Theorem 7.2 of Newey and McFadden (1994).
(ii) If a random norm $W_n = W_n(\hat{\theta}, \hat{h})$ is used in place of $W = W(\theta_o, h_o)$ in (1), where $\hat{\theta}, \hat{h}$ are estimators of θ_o, h_o, the result (2) continues to hold so long as $\hat{\theta} - \theta_o = o_p(1)$, $||\hat{h} - h_o||_H = o_p(1)$ and

$$\sup_{|\theta - \theta_o| \leq \epsilon_n, ||h - h_o||_H \leq \epsilon_n} ||W_n(\theta, h) - W(\theta_o, h_o)|| = o_p(1)$$

using the arguments of Pakes and Pollard (1989, Lemma 3.5).

(iii) Comparing our Theorem 2 to Newey’s (1994) Lemma 5.3 in the case $M(\theta, h) = E[m(Z, \theta, h)]$, the main difference is that while we impose smoothness assumption on $E[m(Z, \theta, h)]$ (with respect to θ, h), Newey imposes smoothness assumption directly on $m(Z, \theta, h)$ (with respect to θ, h).

(iv) Condition 2.4 requires that $c||\hat{h} - h_o||_H^2 = o_p(n^{-1/2})$, which is equivalent to the well-known assumption 5.1(ii) in Newey (1994). Note that $c = 0$ when $M(\theta, h)$ is linear in h. However even in this linear case, the convergence rate $||\hat{h} - h_o||_H^2 = o_p(n^{-1/2})$ is often needed in order to verify condition 2.6, see e.g. Robinson’s (1988) partially linear regression example. Of course such a rate is not needed if further Andrews’ (1994a, p.49) asymptotic orthogonality condition is satisfied.

3.3 The Asymptotic Variance and Computation of Standard Errors

The verification of condition 2.6 is in some cases difficult; it is itself the subject of a long paper by Newey (1994). Condition 2.6 implicitly assumes that the pathwise derivative $\Gamma_2(\theta_o, h_o)[h - h_o]$ is a smooth linear functional of $h - h_o$. In most applications, h is a square integrable function of U (a subset of Z). Denote F_U as the probability measure of U, then by the Riesz representation theorem there is a unique square integrable function γ_2 of U such that $\Gamma_2(\theta_o, h_o)[\hat{h} - h_o] = \int \gamma_2(u)[\hat{h}(u) - h_o(u)]dF_U(u)$. When \hat{h} has a closed form expression or can be well approximated thereby] such as an empirical c.d.f., a kernel density or regression estimator, one can directly show that for some function $\psi(.)$ with $E[\psi(U_i)] = 0$, $E[||\psi(U_i)||^2] < \infty$, $\int \gamma_2(u)[\hat{h}(u) - h_o(u)]dF_U(u) = n^{-1} \sum_{i=1}^n \psi(U_i) + o_p(n^{-1/2})$. The function $\psi(.)$ is, under mild conditions, independent of the precise expression of \hat{h}, and can be arrived at by the Riesz representation approach taken in Newey (1994), Chen and Shen (1998), and Ai and Chen (1999). We present two examples in Section 5 on how to check this condition. To summarize, for i.i.d. observations and when $M_n(\theta_o, h_o) = n^{-1} \sum_{i=1}^n m(Z_i) + o_p(n^{-1/2})$, condition 2.6 is implied by condition 2.6’:

$$M_n(\theta_o, h_o) + \Gamma_2(\theta_o, h_o)[h - h_o] = \frac{1}{n} \sum_{i=1}^n \{m(Z_i) + \psi(U_i)\} + o_p(n^{-1/2}),$$

with $E[m(Z_i)] = 0$, $E[||m(Z_i)||^2] < \infty$ and $E[\psi(U_i)] = 0$, $E[||\psi(U_i)||^2] < \infty$; in this case,

$$V_1 = E (\{m(Z_i) + \psi(U_i)\} \{m(Z_i) + \psi(U_i)\}').$$

To estimate V_1 one needs to estimate both ψ and m, which both depend on the unknown θ_o, h_o in perhaps a complicated way, and then compute the sample second moment of the estimated quantities.
The estimation of Γ_1 is also potentially difficult, especially in the profiled case where Γ_1 contains an additional term from the effect of θ on M indirectly through h_o. A standard approach here is to use numerical derivatives [see Newey and McFadden (1994) and Powell (1994)]. In conclusion, obtaining consistent standard errors from the asymptotic approximation involves considerably more work, and the resulting method may not work well. An alternative is to use the bootstrap.

We next show that the ordinary bootstrap can consistently estimate the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta_o)$ in the special case where $M_n(\theta, h) = n^{-1} \sum_{i=1}^n m(Z_i, \theta, h(Z_i))$ and $M(\theta, h) = E[m(Z, \theta, h(Z))]$. Our results are similar to Brown and Wegkamp (2000) in this regard. Let $\{Z_i^*\}_{i=1}^n$ be drawn randomly with replacement from $\{Z_i\}_{i=1}^n$, let $M_n^*(\theta, h) = n^{-1} \sum_{i=1}^n m(Z_i^*, \theta, h(Z_i^*))$ for each θ, h, and let $\hat{h}^*(\cdot)$ (for each θ) be the same estimator as $\hat{h}^*(\cdot)$ but based on the bootstrap data. Following Hall and Horowitz (1996, p897) it is necessary to recenter the moment condition, at least in the overidentified case. Define the recentered moment function $m^c(z, \theta, h(z)) = m(z, \theta, h(z)) - m(z, \hat{\theta}, \hat{h}(z))$ and note that $n^{-1} \sum_{i=1}^n m^c(Z_i^*, \theta, h(Z_i^*)) = M_n^*(\theta, h) - M_n(\hat{\theta}, \hat{h})$. Thus, define the bootstrap estimator $\hat{\theta}^*$ to be any sequence that satisfies

$$\|M_n^*(\hat{\theta}^*, \hat{h}^*) - M_n(\hat{\theta}, \hat{h})\| = \inf_{\theta \in \Theta} \|M_n^*(\theta, \hat{h}^*) - M_n(\hat{\theta}, \hat{h})\| + o_p(n^{-1/2}). \quad (3)$$

Here, and subsequently, superscript $*$ denotes a probability or moment computed under the bootstrap distribution conditional on the original data set $\{Z_i\}_{i=1}^n$.

Theorem B. Suppose that the conditions of Theorem 2 hold with ‘in probability’ replaced by ‘almost surely’, and assume that conditions 2.2 and 2.3 hold with h_o replaced by h with $||h - h_o|| = o(1)$, and assume that $\Gamma_1(\theta, h)$ is continuous in h in the uniform norm at $\theta = \theta_o, h = h_o$. Suppose also that the following bootstrap conditions hold:

(2.4B) With P^*-probability tending to one, $\hat{\theta}^* \in H$, and $||\hat{h}^* - \hat{h}||_H = o_p(n^{-1/4})$ uniformly over θ with $||\theta - \theta_o|| = o(1)$.

(2.6B) $\sqrt{n}\{M_n^*(\hat{\theta}, \hat{h}) - M_n(\hat{\theta}, \hat{h}) + \Gamma_2(\hat{\theta}, \hat{h})[\hat{h}^* - \hat{h}]\} = \mathcal{N}[0, V_i] + o_p(1)$.

Then, $\sqrt{n}(\hat{\theta}^* - \hat{\theta})$ converges in distribution to a $N(0, \Omega)$ distribution in P^*-probability.

In the proof of Theorem B we use the stochastic equicontinuity of the bootstrap process $\sqrt{n}(M_n^*(\theta, h) - M_n(\theta, h))$, which follows from the stochastic equicontinuity of the process $\sqrt{n}(M_n(\theta, h) - M(\theta, h))$ by results of Giné and Zinn (1990). Condition 2.4B can be verified under the same conditions as imply 2.4 for a variety of kernel density and regression estimators, see for example Hall (1991). Likewise, we expect that 2.6B holds under only slightly stronger conditions than those imply 2.6. Specifically, from Giné and Zinn (1990) we know that the P^*-distribution of $\sqrt{n}\{M_n^*(\hat{\theta}, \hat{h}) - M_n(\hat{\theta}, \hat{h})\}$ approximates the distribution of $\sqrt{n}\{\Gamma_2(\hat{\theta}, \hat{h})[\hat{h}^* - \hat{h}]\}$, which by 2.5 is approximately the same as the distribution of $\sqrt{n}\Gamma_2(\theta_o, h_o)$. In the common case of kernel estimation, $\hat{h}^*(z) - \hat{h}(z)$, and hence $\sqrt{n}\Gamma_2(\theta_o, h_o)\hat{h}^* - \hat{h}$, is a sum (or approximately so) of mean zero and independent random variables
(under P^*) and can be expected to satisfy a central limit theorem, see e.g. the ‘hit rate’ example.

4 Primitive Conditions for Stochastic Equicontinuity

In this section we provide some primitive sufficient conditions for conditions 1.5’ and 2.5 when $M_n(\theta, h) = n^{-1}\sum_{i=1}^n m(Z_i, \theta, h(Z_i))$ and $M(\theta, h) = E[m(Z, \theta, h(Z))]$. Let $\mathcal{F} = \{m(z, \theta, h) : \theta \in \Theta, h \in \mathcal{H}\}$ denote the class of measurable functions indexed by (θ, h). By modern empirical process theory presented van der Vaart and Wellner (1996) for example, condition 1.5’ of Theorem 1 will be satisfied when \mathcal{F} is P–Glivenko-Cantelli, while condition 2.5 of Theorem 2 will be satisfied if the class \mathcal{F} is P–Donsker. Moreover, whether or not \mathcal{F} is a P–Glivenko-Cantelli [or P–Donsker] class is closely linked to its $L_1(P)$ [or $L_2(P)$] covering numbers with bracketing (see van der Vaart and Wellner (1996), p. 81-83 for the definition of these concepts). Therefore, the key to verify conditions 1.5’ and 2.5 is to compute the covering numbers with bracketing for the moment class $\{m(z, \theta, h)\}$ based on the covering numbers with/without bracketing for the parameter class $\{\theta \in \Theta, h \in \mathcal{H} : \|h - h_0\|_{\mathcal{H}} \leq \delta_n\}$. Since Θ is a compact subset of \mathbb{R}^k, the covering number of Θ is known. Since in most applications, we estimate h_0 by some nonparametric smoothing methods such as kernel and sieve procedures, h_0 is often assumed to be in \mathcal{H}, a space of smooth functions such as a Sobolev, Hölder or Besov class, or at least lie there with probability tending to one. Therefore, the covering number of the function space \mathcal{H} can be found in many books and papers on approximation theory.

When the moment function $m(z, \theta, h)$ is (pointwise) Lipschitz continuous with respect to (θ, h), we can directly bound $N^0(\varepsilon, \mathcal{F}, || \cdot ||_{L_2(P)})$ from above by the covering number of the parameter class $\{\theta \in \Theta, h \in \mathcal{H} : \|h - h_0\|_{\mathcal{H}} \leq \delta_n\}$, see e.g., Theorem 2.7.11 of van der Vaart and Wellner (1996). This is the approach taken in Chen and Shen (1998) and many others. When the moment function $m(z, \theta, h)$ is (pointwise) Lipschitz continuous with respect to h but not in θ, we can sometimes still apply the results in Andrews (1994b). However we are unaware of general results to handle the case where the moment function $m(z, \theta, h)$ is not Lipschitz continuous with respect to h. In the following, Theorem 3 extends the work of Andrews (1994b) to the case where the moment function $m(z, \theta, h)$ is not (pointwise) continuous with respect to h and θ.

Theorem 3. Suppose that each component m_j of $m = (m_1, \ldots, m_l)'$ takes the form $m_j(z, \theta, h) = m_{c_{zj}}(z, \theta, h) + m_{l_{zj}}(z, \theta, h)$, and satisfies:

\[(3.1) m_{c_{zj}}(z, \theta, h) \text{ is Hölder continuous with respect to } \theta, h \text{ in the sense:}
\]

\[|m_{c_{zj}}(z, \theta_1, h_1) - m_{c_{zj}}(z, \theta_2, h_2)| \leq b_{zj}(z)\{||\theta_1 - \theta_2||^{s_{zj}} + ||h_1 - h_2||^{s_{zj}}_{\mathcal{H}}\}\]

for some constants s_{zj}, $s_j \in (0, 1]$, a measurable function $b_{zj}(\cdot)$ with $E[b_{zj}(Z)]^r < \infty$ for some $r \geq 2$.

8
(3.2) $m_{tcj}(\cdot, \theta, h)$ is locally uniformly $L_r(P)$, $(r \geq 2)$—continuous with respect to θ, h in the sense:

$$
\left(E \left[\sup_{(\theta', h') : ||\theta' - \theta|| < \delta, ||h' - h||_H < \delta} \left| m_{tcj}(Z, \theta', h') - m_{tcj}(Z, \theta, h) \right|^r \right] \right)^{1/r} \leq K_j \delta^{s_j}
$$

for all $(\theta, h) \in \Theta \times H$, all small positive value $\delta = o(1)$, and for some constants $s_j \in (0, 1]$, $K_j > 0$. (3.3) Θ is a compact subset of \mathbb{R}^k, and $\int_0^\infty \sqrt{\log N(\varepsilon^{1/s_j}, H, || \cdot ||_H)} d\varepsilon < \infty$ for $j = 1, \ldots, l$.

Then for all positive δ_n with $\delta_n = o(1)$,

$$
\sup_{||\theta - \theta_o|| < \delta_n, ||h - h_o||_H < \delta_n} \| M_n(\theta, h) - M(\theta, h) - M_n(\theta_o, h_o) \| = o_p(n^{-1/2}). \tag{4}
$$

Remark 3: (i) Condition 3.1 of Theorem 3 is an extension of the “type II class” of Andrews (1994b) from $\theta \in \Theta$ to $(\theta, h) \in \Theta \times H$; Condition 3.2 is an extension of the “type IV class” of Andrews (1994b) from $\theta \in \Theta$ to $(\theta, h) \in \Theta \times H$. Condition 3.2 allows for discontinuous moment functions in (θ, h) such as sign and indicator functions of θ.

(ii) Condition 3.3 of Theorem 3 allows for many nonparametric estimators of h_o. As an example, we recall a popular nonparametric class H stated in van der Vaart and Wellner (1996, p. 154). For any vector $a = (a_1, \ldots, a_d)$ of d_x integers, define the differential operator $D^a = \partial^{|a|} / \partial x_1^{a_1} \cdots \partial x_d^{a_d}$, where $|a| = \sum_{i=1}^{d_x} a_i$. Let R_X be a bounded, convex subset of \mathbb{R}^{d_x} with nonempty interior. For any smooth function $h : R_X \rightarrow \mathbb{R}$ and some $\alpha > 0$, let α be the largest integer smaller than α, and

$$
||h||_{\infty, \alpha} = \max_{|a| \leq \alpha} \sup_x |D^a h(x)| + \max_{|a| = \alpha} \sup_{x \neq x'} \frac{|D^a h(x) - D^a h(x')|}{||x - x'||^{\alpha - 2}}.
$$

Further, let $C_c^\alpha(R_X)$ be the set of all continuous functions $h : R_X \rightarrow \mathbb{R}$ with $||h||_{\infty, \alpha} \leq c$. If $H = C_c^\alpha(R_X)$ with $|| \cdot ||_H = || \cdot ||_{\infty, \alpha}$, then $\log N(\delta, C_c^\alpha(R_X), || \cdot ||_{\infty, \alpha}) \leq \text{const.} \times \delta^{-d_x/\alpha}$, see e.g., van der Vaart and Wellner (1996, Theorem 2.7.1). Hence $\int_0^\infty \sqrt{\log N(\varepsilon^{1/s_j}, C_c^\alpha(R_X), || \cdot ||_{\infty, \alpha})} d\varepsilon < \infty$ if $\alpha > d_x/2s$. That is, when the sample moment function $m(Z, \theta, h)$ is less smooth in h (i.e., smaller $s < 1$), we need $h \in H$ to be a “smaller function space” (i.e., $\alpha > d_x/2s$ or higher smoothness of h) to satisfy the stochastic equicontinuity condition 2.5.

(iii) In the old version of this paper, we show that the conclusion of Theorem 3 holds under the following more primitive, yet more restrictive, conditions: (3.1') For fixed h, $m_j(z, \theta, h)$ is componentwise monotone with respect to each θ; and for fixed θ, $m_j(z, \theta, h)$ is monotone with respect to h; (3.2') $m_j(z, \theta, h)$ is $L_r(P)$, $(r \geq 2)$—Hölder continuous with respect to θ, h in the sense that $|m_j(Z, \theta, h) - m_j(Z, \theta', h')|_{L_r(P)} \leq K_j \{ ||\theta - \theta'||^{s_j} + ||h - h'||_{H'}^{s_j} \}$ for some constants s_{ij}, $s_j \in (0, 1]$, $K_j > 0$; and (3.3') Θ is a compact subset of \mathbb{R}^k, $\int_0^\infty \sqrt{\log N(\varepsilon^{1/s_j}, H, || \cdot ||_H)} d\varepsilon < \infty$ for $j = 1, \ldots, l$.

See Lemma 1 in Akritas and Van Keilegom (2001) for the special case of indicator functions.
5 Examples

We present two examples in detail and then discuss some extensions. Both our examples arise in practical situations. Although there maybe alternative estimation methods for these problems that avoid the technical issues treated in this paper, the methods we propose seem to be the most natural. The estimation procedure for the second example involves profiling the nonparametric estimation, and so is representative of a broad class of problems. Our aim is to demonstrate that the regularity conditions for asymptotic normality in Theorem 2 and for bootstrap consistency in Theorem B are easily verified. We concentrate primarily on the key conditions 2.5, 2.6 and 2.6B; condition 2.3 is verified using similar techniques to 2.6 and so we do not provide that calculation here. The verifications of conditions 2.1, 2.2, 2.4 and 2.4B are standard and so we do not discuss them here.3

In both examples for random variables \(Y, X\) we denote the conditional c.d.f. and density functions at evaluation point \(X = x\) by \(F_{Y|X}, f_{Y|X}\).

Example 1: Hit Rates. Suppose that one wants to estimate the parameter \(\theta_o = \Pr[h_o(X) \in A(Z)]\), where \(A(Z)\) is a random set that depends on the random variable \(Z\), and \(h_o\) is an unknown function. Assuming \(h_o \in \mathcal{H} = C^\alpha_\alpha(R^n_X)\) where \(\alpha > d_x\) and \(R_X\) is a bounded and convex subset of \(\mathbb{R}^{d_x}\) with nonempty interior, and let \(\|\cdot\|_\mathcal{H} = \|\cdot\|_\infty\). The natural estimator of \(\theta_o\) is the sample analogue

\[
\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} 1(\hat{h}(X_i) \in A(Z_i)),
\]

where \(\hat{h}(X_i)\) is some nonparametric estimate of \(h(X_i)\). The estimator \(\hat{\theta}\) can be interpreted as a member of our class of estimators by taking the sample moment condition to be \(M_n(\theta, h) = n^{-1} \sum_{i=1}^{n} \{1(h(X_i) \in A(Z_i)) - \theta\}\).

Bliss (1997) uses a criterion like (5) to evaluate nonparametric yield curve fits. In this case, one observes a bid and an ask quote on a bond, \(\{p_{Li}, p_{Ui}\}\), along with maturity and payment information. For convenience, the mid-point of the bid and ask price is taken as a proxy for the actual price \(p_i\). From this one can estimate nonparametrically the discount function and the yield curve [see Linton, Mammen, Nielsen, and Tanggaard (2000)], and hence obtain a predicted price \(\hat{p}_i\) for each bond. One way of evaluating the performance of the procedure is to calculate the so-called hit rate, which is (5) with \(A(Z_i) = [p_{Li}, p_{Ui}]\) and \(\hat{h}(X_i) = \hat{p}_i\). A high hit rate corresponds to a good procedure. Smoothing over the criterion function is not an attractive alternative here, although it would lead to straightforward but messy distribution theory. Another potential application of this example is in testing for Revealed Preference as in Blundell, Browning, and Crawford (1997, section 4.3). Their test involves comparing a weighted combination of budget

3The old version of this paper contains a complete set of primitive conditions that imply the conditions of Theorem 2. Fuller details are available from the authors upon request.
shares [estimated nonparametrically] with some relative prices. They do a test that uses the point-
wise confidence interval and then counts violations. Instead one could do a global test based on a
count like (5).

We now verify conditions 2.5, 2.6, and 2.6B in a special case of (5) where \(A(Z_i) = (\infty, Y_i] \)
and where \(h_o(.) \) is the density of \(X_i \). We first verify that condition 2.5 holds by applying Theorem
3. For any \(z = (x, y) \), we have \(m(z, \theta, h) = 1(h(x) \leq y) - \theta \), and so \(|m(z, \theta', h') - m(z, \theta, h)|^2 \leq 2 |1(h'(x) \leq y) - 1(h(x) \leq y)| + 2 |\theta' - \theta|^2 \).

Therefore, for any small \(\delta \in (0, 1] \),

\[
\sup_{|\theta' - \theta| \leq \delta, ||h' - h||_H \leq \delta} |m(z, \theta', h') - m(z, \theta, h)|^2 \leq 2\delta^2 + 2 \sup_{||h' - h||_H \leq \delta} |1(h'(x) \leq y) - 1(h(x) \leq y)|.
\]

Since for all \(h' \in H \) with \(||h' - h||_H \leq \delta \leq 1 \), we have for all \(y, x \):

\[
h(x) - \delta \leq h'(x) \leq h(x) + \delta \quad \text{hence} \quad 1(h(x) - \delta \leq y) \geq 1(h'(x) \leq y) \geq 1(h(x) + \delta \leq y)
\]

and hence

\[
\sup_{||h' - h||_H \leq \delta} |1(h'(x) \leq y) - 1(h(x) \leq y)| \leq 1(h(x) - \delta \leq y) - 1(h(x) + \delta \leq y).
\]

The right hand side of the preceding term is either one or zero, and its expectation is the probability
that \(h(X) + \delta > Y \geq h(X) - \delta \) occurs. Then apply the law of iterated expectation to conclude that
for small enough \(\delta \) there is a constant \(K < \infty \) such that

\[
E\left[\sup_{|\theta' - \theta| \leq \delta, ||h' - h||_H \leq \delta} |m(Z, \theta', h') - m(Z, \theta, h)|^2 \right] \leq 2 \Pr[h(X) + \delta > Y \geq h(X) - \delta] + 2\delta^2
\]

\[
= 2E \left[F_{Y|X} (h(X) + \delta) - F_{Y|X} (h(X) - \delta) \right] + 2\delta^2
\]

\[
\leq K\delta,
\]

where the last inequality follows provided \(F_{Y|x} \) is Lipschitz in \(Y \) uniformly in \(x \). Therefore, condition
3.2 of Theorem 3 is satisfied with \(r = 2 \) and \(s = 1/2 \), and condition 3.3 of Theorem 3 is satisfied by
Remark 3(ii) and the assumption that \(h_o \in H = C^1_\alpha (R_X) \) with \(|| \cdot ||_H = || \cdot ||_\infty \) and \(\alpha > d_x \).

We now verify condition 2.6. Note that \(M(\theta, h) = \int [1 - F_{Y|X}(h(x))] h_o(x) dx - \theta \).
By the law of iterated expectation and interchanging limits we obtain

\[
\Gamma_2(\theta, h_o)[h - h_o] = \frac{\partial}{\partial t} (E[1(h_o(X_i) + t[h(X_i) - h_o(X_i)] \leq Y_i]) \big|_{t=0}
\]

\[
= -\int f_{Y|X}(h_o(x))[h(x) - h_o(x)] h_o(x) dx.
\]

Now suppose that \(\hat{h}(x) \) is a kernel estimator, i.e., \(\hat{h}(x) = n^{-1} b^{-1} \sum_{i=1}^n K((x - X_i)/b) \) for some kernel
\(K \) and bandwidth \(b \). Under standard regularity conditions the bias of the nonparametric estimator,
$E\hat{h}(x) - h_o(x)$, can be majorized by some bounded continuous function of x times $o(n^{-1/2})$. Therefore, we just need to examine $\Gamma_2(\theta, h_o)[\hat{h} - E\hat{h}]$, which by construction is a sum of mean zero independent random variables. Using standard change of variables and Taylor expansion arguments we have

$$
\Gamma_2(\theta, h_o)[\hat{h} - E\hat{h}] = -\frac{1}{nb} \sum_{i=1}^{n} \int f_{Y|x}(h_o(x))h_o(x) \left[K \left(\frac{x - X_i}{b} \right) - E K \left(\frac{x - X_i}{b} \right) \right] dx
$$

provided the required smoothness and boundedness conditions hold on $f_{Y|x}, h_o$, and the kernel and bandwidth satisfy various conditions; this yields condition 2.6. Regarding condition 2.6B,

$$
\Gamma_2(\hat{\theta}, h)[\hat{h}^* - \hat{h}] = -\frac{1}{nb} \sum_{i=1}^{n} \int f_{Y|x}(\hat{h}(x))\hat{h}(x) \left[K \left(\frac{x - X_i^*}{b} \right) - E^* K \left(\frac{x - X_i^*}{b} \right) \right] dx
$$

where the approximation follows from the same change of variables and Taylor expansion arguments used above. For this we need that $\hat{h}(.)$ possesses the same smoothness as $h_o(.)$, which it does by condition 2.4. In the P^*-distribution, $Y_{ni}^* = -f_{Y|x_i}(\hat{h}(X_i^*))\hat{h}(X_i^*) + E^*[f_{Y|x_i}(\hat{h}(X_i^*))\hat{h}(X_i^*)]$ are independent and mean zero random variables and $\sum_{i=1}^{n} Y_{ni}^*/\sqrt{n}$ satisfies a triangular array central limit theorem under weak additional conditions; the asymptotic variance is $E[f_{Y|x_i}(h_o(X_i))h_o^2(X_i)] - E^2[f_{Y|x_i}(h_o(X_i))h_o(X_i)]$ under the smoothness conditions and uniform convergence of $\hat{h}(.)$.

Example 2. Partially Linear Median Regression with some Endogenous Regressors. Suppose

$$
Y_i = X_i^\prime \theta_o + h_o(X_{2i}) + \varepsilon_i, \quad \text{med}(\varepsilon_i|X_{2i}, X_{3i}) = 0 \text{ a.s.}, \quad (6)
$$

where $h_o(.)$ is an unknown function. We have partitioned $X_i = (X_{1i}, X_{2i}, X_{3i})$. The regressors X_{1i} are endogenous, but we assume that there exist valid instruments X_{3i} whose dimensionality (weakly) exceeds that of X_{1i}. X_{3i} could include some of X_{2i}. The partially linear functional form has been discussed in many places before; it provides a convenient and interpretable intermediate specification between parametric and nonparametric. We can replace $h_o(X_{2i})$ by an index function or an additive function in cases where X_{2i} has high dimensions. In the case with exogenous X_{1i} (say when $X_{1i} = X_{3i}$), Lee (2001) has proposed an estimation method for θ_o that relies on preliminary high-dimensional nonparametric quantile regression function of Y_i given (X_{1i}, X_{2i}). Our method only requires smoothing operations with the dimensions of X_{2i} and permits endogeneity of X_{1i}. For any fixed $\theta \in \Theta$, we denote the function $h_o(X_{2i}; \theta) = \text{med}(Y_i - X_i^\prime \theta|X_{2i})$. Clearly, $h_o(X_{2i}) = h_o(X_{2i}; \theta_o)$. Assuming for all $\theta \in \Theta$, $h_o(\cdot; \theta) \in \mathcal{H} = C_\alpha^2(R_{X_2})$ where $\alpha > d_2$ and R_{X_2} is a bounded and convex subset of \mathbb{R}^{d_2} with nonempty interior, and let $\|h_o\|_\mathcal{H} = \sup_\theta \sup_w |h_o(w; \theta)|$. We first estimate $h_o(\cdot; \theta)$
for each \(\theta \) by the conditional median of \(Y_i - X_{1i}'\theta \) given \(X_{2i} \) using some smoothing method like kernels or series, denoting the estimator \(\hat{h}(\cdot, \theta) \).\(^4\) We next estimate \(\theta \) by \(\hat{\theta} = \arg\min_0 \| M_n(\theta, \hat{h}) \| \), where

\[
M_n(\theta, h) = \frac{1}{n} \sum_{i=1}^{n} X_{3i} \left[0.5 - 1\{ Y_i - X_{1i}'\theta + h(X_{2i}; \theta) \} \right].
\]

We now verify conditions 2.5, 2.6 and 2.6B with \(m(z, \theta, h) = x_3[0.5 - 1\{ y \leq x_1'\theta + h(x_2; \theta) \}] \), and \(\dim(X_3) = l \geq k \). Again we apply Theorem 3 to show condition 2.5. For \(j = 1, \ldots, l \),

\[
|m_j(z, \theta', h') - m_j(z, \theta, h)|^2 \leq x_3^2 \left\{ 1(1 \leq x_1'\theta' + h'(x_2; \theta')) - 1(1 \leq x_1'\theta + h'(x_2; \theta')) \right\} \\
+ x_3^2 \left\{ 1(1 \leq x_1'\theta + h'(x_2; \theta')) - 1(1 \leq x_1'\theta + h(x_2; \theta)) \right\} \\
+ x_3^2 \left\{ 1(1 \leq x_1'\theta + h(x_2; \theta)) - 1(1 \leq x_1'\theta + h(x_2; \theta)) \right\}.
\]

We consider only the last term of the sum in the above right hand side, since the two other terms can be treated similarly. By the arguments used in the previous example:

\[
E \left[\sup_{|x' - h'| < \delta} X_3^2 \left\{ 1(Y \leq X_1'\theta + h(X_2; \theta)) - 1(Y \leq X_1'\theta + h(X_2; \theta)) \right\} \right] \\
\leq E \left[X_3^2 \left\{ 1(Y \leq X_1'\theta + h(X_2; \theta) + \delta) - 1(Y \leq X_1'\theta + h(X_2; \theta) - \delta) \right\} \right] \\
\leq E \left[X_3^2 \{ F_{Y'(X_1'; \theta)}(X_1'\theta) + h(X_2; \theta) + \delta) - F_{Y'(X_1'; \theta)}(X_1'\theta) + h(X_2; \theta) - \delta) \right\} \right] \leq K_j\delta
\]

for some \(K_j < \infty \), under suitable conditions on \(F_{Y'(X_1')}. \) Hence condition 3.2 is satisfied with \(r = 2 \) and \(s_j = 1/2 \) and condition 3.3 holds by Remark 3(ii). We now verify condition 2.6. Let

\[
M(\theta, h) = E[m(Z_i, \theta, h)] = E\{X_{3i}[0.5 - F_{Y'(X_1'; \theta)}(X_1'\theta + h(X_2; \theta))])\},
\]

\[
\Gamma_1 = \frac{\partial M(\theta, h_o)}{\partial \theta}|_{\theta = \theta_o} = -E\{X_{3i}f_{Y'(X_1'; \theta)}(X_1'\theta_o + h_o(X_2))\}X_{1i} + \frac{\partial h_o}{\partial \theta}(X_2; \theta_o)\}.
\]

Because \(\text{med}(\varepsilon_i|X_{3i}) = 0 \) we have \(E\{X_{3i}[0.5 - 1(\varepsilon_i \leq 0)]\} = 0 \) and hence \(M(\theta, h_o) = 0 \). It follows that \(\theta_o \) is uniquely identified as long as \(\Gamma_1 \) is non-singular. By similar reasoning as before

\[
\Gamma_2(\theta_o, h_o)[h - h_o] = -E\{X_{3i}f_{Y'(X_1'; \theta)}(X_1'\theta_o + h_o(X_2))\}h(X_2; \theta_o) - h_o(X_2; \theta_o)\}.
\]

We now substitute in the Bahadur representation for \(\hat{h}(x_2; \theta_o) - h_o(x_2; \theta_o) \) [obtained by Chaudhuri (1991) for local polynomials], interchange integral and summation, and approximate as in the first example to obtain

\[
\Gamma_2(\theta_o, h_o)[\hat{h} - h_o] = \frac{1}{n} \sum_{i=1}^{n} [0.5 - 1(\varepsilon_i \leq 0)]h^*(X_{2i}) + o_p(n^{-1/2}),
\]

\(^4\)Chaudhuri (1991) treats local polynomial estimators of conditional quantiles for a given relationship. We expect that Andrews (1995) results about parametric families of nonparametric regressions can be extended to the local median estimator, so that condition 2.4 can be verified.
where \(w^*(X_{2i}) = -\frac{fx_2(X_{2i})E[f_{\varepsilon|X_i}(0)X_{3i}|X_{2i}]}{f_{\varepsilon|X_i}(0)} \), and we have used the fact that \(f_{Y|X_i}(X'_{i}\theta_o + h_o(X_{2i})) = f_{\varepsilon|X_i}(0) \); here, \(f_{X_2} \) is the density of \(X_{2i} \).

Using the definition of \(M_n(\theta_o, h_o) \) it follows that

\[
M_n(\theta_o, h_o) + \Gamma_2(\theta_o, h_o)[\hat{h} - h_o] = \frac{1}{n} \sum_{i=1}^{n} [0.5 - 1\{\varepsilon_i \leq 0\}] [X_{3i} + w^*(X_{2i})] + o_p(n^{-1/2}),
\]

which is asymptotically normal with mean zero and finite variance under some conditions. Condition 2.6B is satisfied along the same lines as in the previous example using the corresponding Bahadur representation for \(\hat{w}^* - \hat{w} \).

Finally, the model (6) can be easily generalized to allow for censoring or truncation at least in the absence of endogeneity. Thus suppose that \(Y_i = \max\{X_{1i}\theta_o + h_o(X_{2i}) + \varepsilon_i, 0\} \), where \(\text{med}(\varepsilon_i|X_{1i}, X_{2i}) = 0 \). The usual CLAD estimation method of Powell (1984) can be extended to this case with moment function \(m(z, \theta, h) = x_1[1\{x_1'\theta + h(x_2; \theta) > 0\}] [0.5 - 1\{y \leq x_1'\theta + h(x_2; \theta)\}] \). The verifications of conditions 2.5 and 2.6 are pretty much the same as in the uncensored case.\(^5\)

6 Concluding Remarks

Finally, we discuss some further areas of application in estimation. An example of current interest appears in Han and Tamer (2002): they considered a linear median regression model \(Y_i = X_i'\theta + \varepsilon_i \) in which the covariates can be endogenous and where the dependent variable is subject to a sort of interval censoring, i.e., you only observe a lower and upper bound \(Y_0, Y_1 \) on \(Y \). However, you do observe some instruments \(W \) for which \(\text{med}(\varepsilon_i|W_i) = 0 \). Let \(m(z, \theta, h) = \omega((0.5 - h_1(z; \theta)1(h_1(z; \theta) > 0.5) + (0.5 - h_2(z; \theta))^21(h_2(z; \theta) < 0.5)) \), where \(z = (y_0, y_1, x, w) \) and \(h = (h_1, h_2) \) with \(h_0 = (h_{1o}, h_{2o}) = (F_{Y_0 - X\theta|W}, F_{Y_1 - X\theta|W}) \). Then \(E[m(Z, \theta, h_0)] = 0 \) if and only if \(\theta = \theta_o \). Han and Tamer smoothed over the indicator functions and actually worked with the corresponding least squares minimization problem. However, instead one can work with the moment condition \(m \) and define an estimator like in (1).

There is a large class of semiparametric models defined through an independence restriction between regressors and error terms. For example, transformation models like in Horowitz (1998b, Chapter 5) and Linton et al. (1997). An appealing estimation procedure here is the minimum distance method [see Koul (2001) for a nice review] which involves minimizing the mean squared distance from independence based on estimated empirical c.d.f.’s. Manski (1983) proposed a version

\(^5\)The Lewbel and Linton (2001) or Chen and Khan (2001) procedures can be applied to provide an estimate of \(h(x_2; \theta) \).
of the minimum distance estimator for models with separable independent error terms. More recently, Brown and Wegkamp (2000) have applied this method to estimating nonlinear ‘parametric’ simultaneous equations. Our results suggest that the extension to allow for estimated nonparametric components [like for example in Linton et al. (1997)] should hold.

7 Appendix

Proof of Theorem 1. The proof is similar to that of Corollary 3.2 in Pakes and Pollard (1989). By condition 1.2, for all \(\delta > 0, \Pr(||\hat{\theta} - \theta_0|| > \delta) \leq \Pr(||M(\hat{\theta}, h_0)|| \geq \epsilon(\delta)), \) hence it suffices to show that \(||M(\hat{\theta}, h_0)|| = o_p(1). \) Now by the triangle inequality, \(||M(\hat{\theta}, h_0)|| \leq ||M(\hat{\theta}, h_0) - M(\hat{\theta}, \hat{h})|| + ||M(\hat{\theta}, \hat{h}) - M_n(\hat{\theta}, \hat{h})|| + ||M_n(\hat{\theta}, \hat{h})||. \) It follows that by conditions 1.3 and 1.4, \(||M(\hat{\theta}, h_0) - M(\hat{\theta}, \hat{h})|| = o_p(1), \) and hence by conditions 1.4 and 1.5, \(||M(\hat{\theta}, \hat{h}) - M_n(\hat{\theta}, \hat{h})|| \leq o_p(1) \times \{1 + ||M_n(\hat{\theta}, \hat{h})|| + ||M(\hat{\theta}, h_0)|| \} + o_p(1). \) Hence \(||M(\hat{\theta}, h_0)|| \times \{1 - o_p(1)\} \leq o_p(1) + ||M_n(\hat{\theta}, \hat{h})|| \times \{1 + o_p(1)\}. \) By condition 1.1, we have \(||M_n(\hat{\theta}, \hat{h})|| \leq o_p(1) + \inf_{\theta \in \Theta} ||M_n(\hat{\theta}, \hat{h})||. \) Under conditions 1.3, 1.4, 1.5 and \(M(\theta_0, h_0) = 0, \) we have:

\[
||M_n(\hat{\theta}, \hat{h})|| \leq ||M_n(\hat{\theta}, \hat{h}) - M(\hat{\theta}, \hat{h})|| + ||M(\hat{\theta}, \hat{h}) - M(\theta, h_0)|| + ||M(\theta, h_0) - M(\theta_0, h_0)|| \\
\leq o_p(1) \times \{1 + ||M_n(\hat{\theta}, \hat{h})|| + ||M(\theta, h_0)||\} + o_p(1) + ||M(\theta, h_0) - M(\theta_0, h_0)||,
\]

and hence \(||M_n(\hat{\theta}, \hat{h})|| \times \{1 - o_p(1)\} \leq o_p(1) + ||M(\theta, h_0) - M(\theta_0, h_0)|| \times \{1 + o_p(1)\}, \) where all the \(o_p(1)'s \) hold uniformly with respect to \(\theta \in \Theta. \) Now by \(M(\theta_0, h_0) = 0, \)

\[
\inf_{\theta \in \Theta} ||M_n(\hat{\theta}, \hat{h})|| \leq \sup_{\theta \in \Theta} o_p(1) + \inf_{\theta \in \Theta} ||M(\theta, h_0) - M(\theta_0, h_0)|| \times \{1 + \sup_{\theta \in \Theta} o_p(1)\} = o_p(1)
\]

and the result follows.

Proof of Theorem 2. We first establish \(\sqrt{n} \)-consistency of \(\hat{\theta} \) to \(\theta_0. \) We choose a positive sequence \(\delta_n = o(1) \) such that \(\Pr(||\hat{\theta} - \theta_0|| \geq \delta_n, ||\hat{h} - h_0||_{\mathcal{H}} \geq \delta_n) \rightarrow 0. \) Hence we just need to look at \(\theta, h \) such that \(||\theta - \theta_0|| < \delta_n, ||\hat{h} - h_0||_{\mathcal{H}} < \delta_n. \) By condition 2.2, there is a constant \(C > 0 \) such that \(||\hat{\theta} - \theta_0||C \) is bounded by \(||M(\hat{\theta}, h_0)|| \) with probability tending to one; this in turn is by the triangle inequality bounded by

\[
||M(\hat{\theta}, h_0) - M(\hat{\theta}, \hat{h})|| + ||M(\hat{\theta}, \hat{h}) - M_n(\hat{\theta}, \hat{h}) + M_n(\theta_0, h_0)|| + ||M_n(\theta_0, h_0)|| \\
= ||M(\hat{\theta}, h_0) - M(\hat{\theta}, \hat{h})|| + ||M(\hat{\theta}, \hat{h}) - M_\theta(\hat{\theta}, \hat{h}) + M_n(\theta_0, h_0)|| + ||M_n(\theta_0, h_0)|| + O_p(n^{-1/2}), \tag{7}
\]

where the last equation is due to condition 2.6. By conditions 2.3, 2.4 and 2.6, and the fact that
with probability approaching one, we have

$$
||\hat{\theta} - \theta_o|| < \delta_n, ||\hat{h} - h_o||_{\mathcal{H}} < \delta_n
$$

\[E

\begin{align*}
||M(\hat{\theta}, h_o) - M(\hat{\theta}, \hat{h})|| & \leq ||M(\hat{\theta}, \hat{h}) - M(\hat{\theta}, h_o) - \Gamma_2(\hat{\theta}, h_o)[\hat{h} - h_o]|| \\
& + ||\{\Gamma_2(\hat{\theta}, h_o) - \Gamma_2(\theta_o, h_o)\}[\hat{h} - h_o]|| + ||\Gamma_2(\theta_o, h_o)[\hat{h} - h_o]|| \\
& \leq c(||\hat{h} - h_o||_{\mathcal{H}})^2 + ||\hat{\theta} - \theta_o|| \times o_p(1) + ||\Gamma_2(\theta_o, h_o)[\hat{h} - h_o]|| \\
& = o_p(n^{-1/2}) + ||\hat{\theta} - \theta_o|| \times o_p(1) + O_p(n^{-1/2}) \\
& \leq ||M(\hat{\theta}, h_o)|| \times o_p(1) + O_p(n^{-1/2}), \quad \text{by condition 2.2.} \quad (8)
\end{align*}

And by condition 2.5, ||M(\hat{\theta}, h) - M_n(\hat{\theta}, \hat{h}) + M_n(\theta_o, h_o)|| = o_p(1). Hence, ||M(\hat{\theta}, h_o)|| \leq o_p(n^{-1/2}) + ||M_n(\hat{\theta}, \hat{h})|| + O_p(n^{-1/2}). By condition 2.1, we have ||M_n(\hat{\theta}, \hat{h})|| \leq o_p(n^{-1/2}) + \inf_{\theta \in \Theta, ||\theta - \theta_o|| \leq \delta_n} ||M_n(\theta, \hat{h})||.

Again under conditions 2.3, 2.4, 2.5 and 2.6, we have that ||M_n(\theta, \hat{h})|| is bounded by

\[E

\begin{align*}
||M_n(\theta, \hat{h}) - M(\theta, \hat{h}) - M(\theta, h_o)|| + ||M(\theta, \hat{h}) - M(\theta, h_o)|| + ||M(\theta, h_o)|| + ||M_n(\theta_o, h_o)|| \\
& \leq o_p(n^{-1/2}) + O_p(n^{-1/2}) + ||M(\theta, h_o)|| + O_p(n^{-1/2})
\end{align*}

hence with M(\theta_o, h_o) = 0, we have: ||M_n(\theta, \hat{h})|| \leq ||M(\theta, h_o) - M(\theta, h_o)|| + O_p(n^{-1/2}), where all the o_p's, O_p's hold uniformly with respect to \theta \in \Theta with ||\theta - \theta_o|| < \delta_n. Hence by condition 2.2, \inf_{\theta \in \Theta} ||M_n(\theta, \hat{h})|| = O_p(n^{-1/2}), and ||\hat{\theta} - \theta_o|| C \leq ||M_n(\theta, \hat{h})|| \leq O_p(n^{-1/2}).

The rest of the proof is very similar to that of Theorem 3.3 in Pakes and Pollard (1989) for \sqrt{n}-normality, hence we just sketch the main steps here. Define the linearization \(L_n(\theta) = M_n(\theta_o, h_o) + \Gamma_1(\theta - \theta_o) + \Gamma_2(\theta_o, h_o)[\hat{h} - h_o]. \) By the triangle inequality

\[E

\begin{align*}
||L_n(\hat{\theta}) - L_n(\theta)|| & = ||M_n(\theta_o, h_o) + M(\hat{\theta}, \hat{h}) + M_n(\hat{\theta}, \hat{h}) - M(\hat{\theta}, h_o) - M_n(\theta_o, h_o) - L_n(\theta)|| \\
& \leq ||M(\hat{\theta}, \hat{h}) - M(\hat{\theta}, \hat{h}) - \Gamma_2(\theta_o, h_o)[\hat{h} - h_o]|| + ||M(\hat{\theta}, h_o) - \Gamma_1(\hat{\theta} - \theta_o)|| \\
& + ||M_n(\hat{\theta}, \hat{h}) - M(\hat{\theta}, h_o) - M_n(\theta_o, h_o)||.
\end{align*}

\] Then by the stochastic equicontractivity condition 2.5 the last line is o_p(n^{-1/2}). Then apply condition 2.3 to the first and second terms to obtain ||M_n(\theta, \hat{h}) - L_n(\theta)|| = o_p(n^{-1/2}). Similarly, ||M_n(\theta, \hat{h}) - L_n(\theta)|| = o_p(n^{-1/2}), where

\[E

\sqrt{n}(\bar{\theta} - \theta_o) = -(\Gamma'_1 W \Gamma_1)^{-1} \Gamma'_1 W \sqrt{n} \left[M_n(\theta_o, h_o) + \Gamma_2(\theta_o, h_o)[\hat{h} - h_o] \right]

\] is the minimizer of \(L_n(\theta). \) Under condition 2.6, a standard central limit theorem now implies to \(\sqrt{n}(\bar{\theta} - \theta_o). \) A little more work gives that \(\sqrt{n}(\bar{\theta} - \bar{\theta}) = o_p(1), \) and hence (2) follows. \[]

Proof of Theorem B. Make the definitions \(\nu_n(\theta, h) = \sqrt{n}(M_n^*(\theta, h) - M_n(\theta, h)) \) and \(\nu_n(\theta, h) = \sqrt{n}(M_n(\theta, h) - M(\theta, h)). \) By the triangle inequality

\[E

\begin{align*}
\sup_{||\theta - \theta_o|| \leq \delta_n, ||\theta' - \theta_o|| \leq \delta_n, ||\theta - h_o||_{\mathcal{H}} \leq \delta_n} ||\nu_n^*(\theta', g) - \nu_n^*(\theta, h)|| & = o_p(1) \text{ a.s.} [\mathbb{P}] \\
\sup_{||\theta - \theta_o|| \leq \delta_n, ||\theta' - \theta_o|| \leq \delta_n, ||\theta - h_o||_{\mathcal{H}} \leq \delta_n} ||\nu_n(\theta', g) - \nu_n(\theta, h)|| & = o_{a.s.}(1)
\end{align*}

\]
In a similar way as was done in the proof of Theorem 2, it can be shown that \(\| \hat{\theta}^* - \hat{\theta} \| = O_{P^*}(n^{-1/2}) \) a.s.[P]. Next we approximate \(M_n^*(\hat{\theta}, \hat{\theta}^*) - M_n(\hat{\theta}, \hat{\theta}) \) with error \(o_{P^*}(n^{-1/2}) \) by the linear function \(\mathcal{L}_n^*(\theta) = M_n^*(\hat{\theta}, \hat{\theta}) - M_n(\hat{\theta}, \hat{\theta}) + \Gamma_2(\hat{\theta}, \hat{\theta})[\hat{\theta}^* - \hat{\theta}] + \Gamma_1(\hat{\theta}, \hat{\theta})(\theta - \hat{\theta}) \) for \(\theta \) in a root-n neighborhood of \(\hat{\theta} \). Here, \(\Gamma_1(\hat{\theta}, \hat{\theta}) \) is the derivative of \(M(\theta, h) \) with respect to \(\theta \) evaluated at \(\theta = \hat{\theta}, h = \hat{\theta} \). By adding and subtracting and the triangle inequality

\[
\| M_n^*(\hat{\theta}^*, \hat{\theta}^*) - M_n(\hat{\theta}, \hat{\theta}) - \mathcal{L}_n^*(\hat{\theta}) \|
\]

\[
= \| M_n^*(\hat{\theta}, \hat{\theta}) - M_n(\hat{\theta}, \hat{\theta}) + M(\hat{\theta}^*, \hat{\theta}^*) - M(\hat{\theta}, \hat{\theta}) - M_n(\hat{\theta}, \hat{\theta}) + M(\hat{\theta}, \hat{\theta}) + M_n(\hat{\theta}^*, \hat{\theta}^*) - M_n^*(\hat{\theta}, \hat{\theta}) - M_n^*(\hat{\theta}, \hat{\theta}) - \mathcal{L}_n^*(\hat{\theta}) \|
\]

\[
\leq \| M(\hat{\theta}^*, \hat{\theta}^*) - M(\hat{\theta}, \hat{\theta}) - \Gamma_2(\hat{\theta}, \hat{\theta})[\hat{\theta}^* - \hat{\theta}] \| + \| M(\hat{\theta}^*, \hat{\theta}) - M(\hat{\theta}, \hat{\theta}) - \Gamma_1(\hat{\theta}, \hat{\theta})(\theta - \hat{\theta}) \|
\]

\[
+ n^{-1/2} \| \nu_n(\hat{\theta}^*, \hat{\theta}^* - \nu_n(\hat{\theta}, \hat{\theta}) \| + n^{-1/2} \| \nu_n(\hat{\theta}^*, \hat{\theta}^*) - \nu_n(\hat{\theta}, \hat{\theta}) \| = o_{P^*}(n^{-1/2}),
\]

where the \(o_{P^*}(n^{-1/2}) \) follows from the root-n consistencies, the stochastic equicontinuity properties (9-10), and conditions 2.3 and 2.4B. Similarly \(\| M_n^*(\hat{\theta}, \hat{\theta}^*) - M_n(\hat{\theta}, \hat{\theta}) - \mathcal{L}_n^*(\hat{\theta}) \| = o_{P^*}(n^{-1/2}) \), where \(\hat{\theta} \) is the minimizer of \(\mathcal{L}_n^* \). It follows that

\[
\sqrt{n}(\hat{\theta}^* - \hat{\theta}) = -(\hat{\Gamma}_1 W \hat{\Gamma}_1)^{-1} \hat{\Gamma}_1 W \sqrt{n} \left[M_n^*(\hat{\theta}, \hat{\theta}) - M_n(\hat{\theta}, \hat{\theta}) + \Gamma_2(\hat{\theta}, \hat{\theta})[\hat{\theta}^* - \hat{\theta}] \right] + o_{P^*}(1),
\]

where \(\hat{\Gamma}_1 = \Gamma_1(\hat{\theta}, \hat{\theta}) \). We can replace \(\hat{\Gamma}_1 \) by \(\Gamma_1 \) with probability one and use our assumption 2.6B.

Proof of Theorem 3: By example 2.10.7 and corollary 2.3.12 in van der Vaart and Wellner (1996), it suffices to show that for each \(j = 1, \ldots, l \), the followings are true:

1. \(\mathcal{F}_{ij} = \{ m_{cj}(Z, \theta, h) : \theta \in \Theta, h \in \mathcal{H} \} \) is \(P \)-Donsker, or \(\int_0^\infty \sqrt{\log N\| (\varepsilon, \mathcal{F}_{ij}, \| \cdot \|_{L_r(P)})d\varepsilon < \infty \);

2. \(\mathcal{F}_{2j} = \{ m_{cj}(Z, \theta, h) : \theta \in \Theta, h \in \mathcal{H} \} \) is \(P \)-Donsker, or \(\int_0^\infty \sqrt{\log N\| (\varepsilon, \mathcal{F}_{ij}, \| \cdot \|_{L_r(P)})d\varepsilon < \infty \).

For (1). Let \(\{ \theta_k : k = 1, \ldots, N_1 \} \) be an \(\eta^{1/s_{ij}} \)-cover for \((\Theta, \| \cdot \|) \), and \(\{ h_k : k = 1, \ldots, N_2 \} \) be an \(\eta^{1/s} \)-cover for \((\mathcal{H}, \| \cdot \|_{\mathcal{H}}) \). Then under condition 3.1, for any \(m_{cj}(Z, \theta, h) \), there exist \(k_1 \in \{ 1, \ldots, N_1 \} \) and \(k_2 \in \{ 1, \ldots, N_2 \} \) such that \(m_{cj}(Z, \theta, h) - 2\eta b_j(Z) \leq m_{cj}(Z, \theta, h) \leq m_{cj}(Z, \theta, h) + 2\eta b_j(Z) \). Since \(E[b_j(Z)] < \infty \) for some \(r \geq 2 \), we have that \(\{ m_{cj}(Z, \theta, h) - 2\eta b_j(Z), m_{cj}(Z, \theta, h) + 2\eta b_j(Z) \} : k_1 \in \{ 1, \ldots, N_1 \}, k_2 \in \{ 1, \ldots, N_2 \} \) forms an \(\varepsilon = 4\eta \| b_j(Z) \|_{L_r(P)} \)-bracket for \((\mathcal{F}_{ij}, \| \cdot \|_{L_r(P)}) \). Hence

\[
N\| (\varepsilon, \mathcal{F}_{ij}, \| \cdot \|_{L_r(P)}) \leq N\left(\frac{\varepsilon}{4\| b_j(Z) \|_{L_r(P)}} \right)^{1/s_{ij}}, \Theta, \| \cdot \|) \times N\left(\frac{\varepsilon}{4\| b_j(Z) \|_{L_r(P)}} \right)^{1/s}, \mathcal{H}, \| \cdot \|_{\mathcal{H}}).
\]

This and condition 3.3 imply (1).

For (2). Let \(\{ \theta_k : k = 1, \ldots, N_1 \} \) be a \(\delta \)-cover for \((\Theta, \| \cdot \|) \), and \(\{ h_k : k = 1, \ldots, N_2 \} \) be a \(\delta \)-cover for \((\mathcal{H}, \| \cdot \|_{\mathcal{H}}) \). Then under condition 3.2, for any \(m_{cj}(Z, \theta, h) \), there exist \(k_1 \in \{ 1, \ldots, N_1 \} \) and
and \(k_2 \in \{1, \ldots, N_2\} \) such that \(|m_{lcj}(Z, \theta, h) - m_{lcj}(Z, \theta_{k_1}, h_{k_2})| \) is bounded by

\[
\sup_{(\theta', h') : ||\theta' - \theta_{k_1}|| < \delta, ||h' - h_{k_2}|| \leq \delta} |m_{lcj}(Z, \theta', h') - m_{lcj}(Z, \theta_{k_1}, h_{k_2})| \equiv b_j(Z, \theta_{k_1}, h_{k_2}, \delta).
\]

Hence \(m_{lcj}(Z, \theta_{k_1}, h_{k_2}) - b_j(Z, \theta_{k_1}, h_{k_2}, \delta) \leq m_{lcj}(Z, \theta, h) \leq m_{lcj}(Z, \theta_{k_1}, h_{k_2}) + b_j(Z, \theta_{k_1}, h_{k_2}, \delta). \) Again by condition 3.2, \(\{E[b_j(Z, \theta_{k_1}, h_{k_2}, \delta)]\}^{1/r} \leq K_j \delta^s_j \) for all \((\theta_{k_1}, h_{k_2})\) and all positive value \(\delta = o(1) \).

Therefore, \(\{[m_{lcj}(Z, \theta_{k_1}, h_{k_2}) - b_j(Z, \theta_{k_1}, h_{k_2}, \delta), m_{lcj}(Z, \theta_{k_1}, h_{k_2}) + b_j(Z, \theta_{k_1}, h_{k_2}, \delta)] : k_1 \in \{1, \ldots, N_1\}, k_2 \in \{1, \ldots, N_2\}\} \) forms an \(\varepsilon = 2K_j \delta^s_j \) - bracket for \((\mathcal{F}_{2j}, || \cdot ||_{L^r(P)}) \).

Hence

\[
N([\varepsilon, \mathcal{F}_{2j}, || \cdot ||_{L^r(P)}]) \leq N(\varepsilon^{1/s_j}, \mathcal{H}, || \cdot ||_{L^r} \times N(\varepsilon^{1/s_j}, \mathcal{H}, || \cdot ||_{L^r}).
\]

This and condition 3.3 imply (2). \(\blacksquare \)

References

