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ABSTRACT 

 
 This paper describes an estimator of the additive components of a nonparametric additive 
model with a known link function.  When the additive components are twice continuously 
differentiable, the estimator is asymptotically normally distributed with a rate of convergence in 

probability of 2 / 5n− .  This is true regardless of the (finite) dimension of the explanatory variable. 
Thus, in contrast to the existing asymptotically normal estimator, the new estimator has no curse 
of dimensionality.  Moreover, the asymptotic distribution of each additive component is the same 
as it would be if the other components were known with certainty. 
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NONPARAMETRIC ESTIMATION OF AN ADDITIVE MODEL WITH A LINK 
FUNCTION 

 
 
1.  Introduction 

 This paper is concerned with nonparametric estimation of the functions 1,..., dm m  in the 

model  

(1.1) 1
1[ ( ) ... ( )]d

dY F m X m X Uµ= + + + + , 
 

where jX  (j = 1, …, d) is the j’th component of the random vector dX ∈\  for some finite 

2d ≥ , F  is a known function, µ  is an unknown constant, 1,..., dm m  are unknown functions, and 

U  is an unobserved random variable satisfying ( | ) 0U X x= =E  for almost every x .  Estimation 

is based on an iid random sample { , : 1,..., }i iY X i n=  of ( , )Y X .  We describe an estimator of the 

additive components 1,..., dm m  that converges in probability pointwise at the rate 2 / 5n−  when F  

and the jm ’s are twice continuously differentiable and the second derivative of F  is sufficiently 

smooth.  In contrast to previous estimators, only two derivatives are needed regardless of the 

dimension of X , so asymptotically there is no curse of dimensionality.  The centered, scaled 

estimator of each additive component is asymptotically normally distributed with the same mean 

and variance that it would have if the other components were known. 

 Linton and Härdle (1996) (hereinafter LH) developed an estimator of the additive 

components of (1.1) that is based on marginal integration.  The marginal integration method is 

discussed in more detail below.  The estimator of LH converges at the rate 2 / 5n−  and is 

asymptotically normally distributed, but it requires the jm ’s to have an increasing number of 

derivatives as the dimension of X  increases. Thus, it suffers from the curse of dimensionality.  

Our estimator avoids this problem.  

 There is a large body of research on estimation of (1.1) when F  is the identity function 

so that 1
1( ) ... ( )d

dY m X m X Uµ= + + + + .  Stone (1985, 1986) showed that 2 / 5n−  is the optimal 

2L  rate of convergence of an estimator of the jm ’s when they are twice continuously 

differentiable.  Stone (1994) and Newey (1997) describe spline estimators whose 2L  rate of 

convergence is 2 / 5n− , but the pointwise rates of convergence and asymptotic distributions of 

spline and other series estimators remain unknown.  Breiman and Friedman (1985); Buja, Hastie, 

and Tibshirani (1989); Hastie and Tibshirani (1990); Opsomer and Ruppert (1997); Mammen, 

Linton and Nielsen (1999); and Opsomer (2000) have investigated the properties of backfitting 
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procedures.  Mammen, Linton and Nielsen (1999) give conditions under which a backfitting 

estimator of the jm ’s converges at the pointwise rate 2 / 5n−  when these functions are twice 

continuously differentiable.  The estimator is asymptotically normally distributed and avoids the 

curse of dimensionality, but extending it to models in which F  is not the identity function 

appears to be quite difficult.  Horowitz, Klemelä, and Mammen (2002) discuss optimality 

properties of a variety of estimators for nonparametric additive models. 

 Tjøstheim and Auestad (1994), Linton and Nielsen (1995); Chen, Härdle, Linton, and 

Severance-Lossin (1996); and Fan, Härdle, and Mammen (1998) have investigated the properties 

of marginal integration estimators for the case in which F  is the identity function.  These 

estimators are based on the observation that when F  is the identity function, then 1
1( )m x , say, is 

given up to an additive constant by  

(1.2) 2 2( | ) ( ,..., ) ...d dY X x w x x dx dx=∫E , 

where w  is a non-negative function satisfying  

2 2( ,..., ) ... 1d dw x x dx dx =∫ . 

Therefore, 1
1( )m x  can be estimated up to an additive constant by replacing ( | )Y X x=E  in (1.2) 

with a nonparametric estimator.  Linton and Nielsen (1995); Chen, Härdle, Linton, and 

Severance-Lossin (1996); and Fan, Härdle, and Mammen (1998) have given conditions under 

which a variety of estimators based on the marginal integration idea converge at rate 2 / 5n−  and 

are asymptotically normal.  LH extend marginal integration to the case in which F  is not the 

identity function.  However, marginal integration estimators have a curse of dimensionality:  the 

smoothness of the jm ’s must increase as the dimension of X  increases to achieve 2 / 5n−  

convergence.  The reason for this is that estimating ( | )Y X x=E  requires carrying out a d -

dimensional nonparametric regression.  If d  is large and the jm ’s are only twice differentiable, 

then the bias of the resulting estimator of ( | )Y X x=E  converges to zero too slowly as n →∞  to 

estimate the jm ’s with a 2 / 5n−  rate.  For example the estimator of Fan, Härdle, and Mammen 

(1998), which imposes the weakest smoothness conditions of any existing marginal integration 

estimator, requires more than two derivatives if 5d ≥ .   

 This paper describes a two-stage estimation procedure that does not require a d -

dimensional nonparametric regression and, thereby, avoids the curse of dimensionality.  In the 

first stage, nonlinear least squares is used to obtain a series approximation to each jm .  The first-



 3

stage procedure imposes the additive structure of (1.1) and yields estimates of the jm ’s that have 

smaller asymptotic biases than do estimators based on marginal integration or other procedures 

that require d -dimensional nonparametric estimation.  The first-stage estimates are inputs to the 

second stage.  The second-stage estimate of, say, 1m  is obtained by taking one Newton step from 

the first-stage estimate toward a local linear estimate.  In large samples, the second-stage 

estimator has a structure similar to that of a local linear estimator, so deriving its pointwise rate of 

convergence and asymptotic distribution is relatively easy.  The main results of this paper can 

also be obtained by using a local constant estimate in the second stage, and the results of Monte 

Carlo experiments described in Section 5 show that a local constant estimator has better finite-

sample performance under some conditions.  However, a local linear estimator has better 

boundary behavior and better ability to adapt to non-uniform designs, among other desirable 

properties (Fan and Gijbels 1996). 

 The remainder of this paper is organized as follows.  Section 2 provides an informal 

description of the two-stage estimator.  The main results are presented in Section 3.  Section 4 

discusses the selection of bandwidths.  Section 5 presents the results of a small simulation study, 

and Section 6 presents concluding comments.  The proofs of theorems are in Section 7.  

Throughout the paper, subscripts index observations and superscripts denote components of 

vectors.  Thus, iX  is the i ’th observation of X , jX  is the j ’th component of X , and j
iX  is 

the i ’th observation of the j ’th component. 

2.  Informal Description of the Estimator 

Assume that the support of X  is [ 1,1]d≡ −X , and normalize 1,..., dm m  so that 
 

1

1
( ) 0; 1,...,jm v dv j d

−
= =∫ . 

For any dx∈\  define 1
1( ) ( ) ... ( )d

dm x m x m x= + + , where jx  is the j’th component of x .  Let 

{ : 1,2,...}kp k =  denote a basis for smooth functions on [ 1,1]− .  A precise definition of “smooth” 

and conditions that the basis functions must satisfy are given in Section 3.  These conditions 

include: 

(2.1) 
1

1
( ) 0kp v dv

−
=∫ ; 

(2.2) 
1

1

1 if 
( ) ( )

0 otherwise;j k
j k

p v p v dv
−

=
= 
∫  

and 
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(2.3) 
1

( ) ( )j j
j jk k

k

m x p xθ
∞

=
=∑  

for each 1,...,j d= , each [0,1]jx ∈ , and suitable coefficients { }jkθ .  For any positive integer κ , 

define  

1 1 2 2
1 1 1( ) [1, ( ),..., ( ), ( ),..., ( ),..., ( ),... ( )]d dP x p x p x p x p x p x p xκ κ κ κ ′= . 

Then for 1dκ
κθ

+∈\ , ( )P xκ κθ′  is a series approximation to ( )m xµ + .  Section 3 gives 

conditions that κ  must satisfy.  These require that κ →∞  at an appropriate rate as n →∞ . 

To obtain the first-stage estimators of the jm ’s, let { , : 1,..., }i iY X i n=  be a random 

sample of ( , )Y X .  Let n̂κθ  be a solution to 

1 2

1

minimize:  ( ) { [ ( ) ]}
n

n i i
i

S n Y F P X
κ

κ κθ
θ θ−

∈Θ =

′≡ −∑ , 

where 1dκ
κ

+Θ ⊂ \  is a compact parameter set.  The series estimator of ( )m xµ +  is 

ˆ( ) ( ) nm x P xκ κµ θ′+ =� � , 

where µ�  is the first component of n̂κθ .  The estimator of ( )j
jm x  for any 1,...,j d=  and any 

[0,1]jx ∈  is the product of 1[ ( ),..., ( )]j jp x p xκ  with the appropriate components of κ̂θ .   

 To obtain the second-stage estimator of (say) 1
1( )m x , let iX�  denote the i ’th observation 

of 2( ,..., )dX X X≡� .  Define 2
1 2( ) ( ) ... ( )d

i i d im X m X m X− = + +�� � � , where j
iX  is the i ’th 

observation of the j ’th component of X  and jm�  is the series estimator of jm .  Let K  be a 

probability density function on [ 1,1]− , and define ( ) ( / )hK v K v h=  for any real, positive constant 

h .  Conditions that K  and h  must satisfy are given in Section 3.  These include 0h →  at an 

appropriate rate as n →∞ .  Define 

1
1

1 1 1 1 1 1
1 1 1 1

1

( , )

2 { [ ( ) ( )]} [ ( ) ( )]( ) ( )

nj

n
j

i i i i h i
i

S x m

Y F m x m X F m x m X X x K x Xµ µ− −
=

′ =

′− − + + + + − −∑

�

� �� � � � � �

 

for 0,1j =  and 
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1 1 2 1 1 1 1
1 1 1

1

1 1 1 1 1 1
1 1 1 1

1

( , ) 2 [ ( ) ( )] ( ) ( )

2 { [ ( ) ( )]} [ ( ) ( )]( ) ( )

n
j

nj i i h i
i

n
j

i i i i h i
i

S x m F m x m X X x K x X

Y F m x m X F m x m X X x K x X

µ

µ µ

−
=

− −
=

′′ ′= + + − −

′′− − + + + + − −

∑

∑

�� � � �

� �� � � � � �

 

for 0,1,2j = .  The second-stage estimator of 1
1( )m x  is 

(2.4) 
1 1 1 1

1 1 21 01 11 11
1 1 1 1 1 2

01 21 11

( , ) ( , ) ( , ) ( , )
ˆ ( ) ( )

( , ) ( , ) ( , )
n n n n

n n n

S x m S x m S x m S x m
m x m x

S x m S x m S x m

′′ ′ ′′ ′−= −
′′ ′′ ′′−
� � � ��

� � �
. 

The second stage estimators of 2
2 ( ),..., ( )d

dm x m x  are obtained similarly.   

 The estimator (2.4) can be understood intuitively as follows.  If µ�  and 1m−�  were the true 

values of µ  and 1m− , the local linear estimator of 1
1( )m x  would minimize 

(2.5) 1 1 1 2
1 0 1 0 1 1

1

( , , ) { [ ( ) ( )]}
n

n i i i
i

S x b b Y F b b X x m Xµ −
=

= − + + − +∑ �� � . 

Moreover, 1 1
1 1 0 1( , ) ( , , ) /nj n jS x m S x b b b′ = ∂ ∂�  ( 0,1j = ) evaluated at 1

0 1( )b m x= �  and 1 0b = .  

1
1( , )njS x m′′ �  gives the second derivatives of 1

1 0 1( , , )nS x b b  evaluated at the same point.  The 

estimator (2.4) is the result of taking one Newton step from the starting values 1
0 1( )b m x= � , 

1 0b =  toward the minimum of the right-hand side of (2.5). 

 Section 3 gives conditions under which 1 1 2 / 5
1 1ˆ ( ) ( ) ( )pm x m x O n−− =  and 

2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x−  is asymptotically normally distributed for any finite d  when F  and the 

jm ’s are twice continuously differentiable. 

3.  Main Results 

 This section has two parts.  Section 3.1 states the assumptions that are used to prove the 

main results.  Section 3.2 states the results.  The main results are the 2 / 5n− -consistency and 

asymptotic normality of the jm ’s. 

 The following additional notation is used.  For any matrix A , define the norm 

1/ 2[ ( )]A trace A A′= .  Define [ ( )]U Y F m Xµ= − + , ( ) ( | )V x Var U X x= = , Qκ =  

2{ [ ( )] ( ) ( ) }F m X P X P Xκ κµ′ ′+E , and 1 2 1{ [ ( )] ( ) ( ) ( ) }Q F m X V X P X P X Qκ κ κ κ κµ− −′ ′Ψ = +E  
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whenever the latter quantity exists.  Qκ  and κΨ  are ( ) ( )d dκ κ×  positive semidefinite matrices, 

where ( ) 1d dκ κ= + .  Let ,minκλ  denote the smallest eigenvalue of Qκ .  Let ,ijQκ  denote the 

( , )i j  element of Qκ .  Define sup ( )x P xκ κζ ∈= X .  Let { }jkθ  be the coefficients of the series 

expansion (2.3).  For each κ  define 

11 1 21 2 1( , ,..., , ,..., ,..., ,..., )d dκ κ κ κθ µ θ θ θ θ θ θ ′= . 

 3.1  Assumptions 

 The main results are obtained under the following assumptions. 

 A1:  The data, {( , ) : 1,..., }i iY X i n= , are an iid random sample from the distribution of 

( , )Y X , and ( | ) [ ( )]Y X x F m xµ= = +E  for almost every [ 1,1]dx∈ ≡ −X . 

 A2:  (i) The support of X  is X .  (ii) The distribution of X  is absolutely continuous with 

respect to Lebesgue measure.  (iii) The probability density function of X  is bounded, bounded 

away from zero, and twice continuously differentiable on X .  (iv) There are constants 0Vc >  

and VC < ∞  such that ( | )V Vc Var U X x C≤ = ≤  for all x∈X .  (v) There is a constant UC < ∞  

such that 2 2| | ! ( )jj
UU C j U−≤ < ∞E E  for all 2j ≥ . 

 A3:  (i) There is a constant mC < ∞  such that | ( ) |j mm v C≤  for each 1,...,j d=  and all 

[ 1,1]v∈ − .  (ii) Each function jm  is twice continuously differentiable on [ 1,1]− .  (iii) There are 

constants 1FC < ∞ , 2 0Fc > , and 2FC < ∞  such that 1( ) FF v C≤  and 1 2( )F Fc F v C′≤ ≤  for all 

[ , ]m mv C d C dµ µ∈ − + .  (iv) F  is twice continuously differentiable on [ , ]m mC d C dµ µ− + .  (v) 

There are constants 3FC < ∞  and 5/ 7s >  such that 2 1 3 2 1| ( ) ( ) | | |sFF v F v C v v′′ ′′− ≤ −  for all 

2 1, [ , ]m mv v C d C dµ µ∈ − + . 

 A4:  (i) There are constants QC < ∞  and 0cλ >  such that ,| |ij QQ Cκ ≤  and ,min cκ λλ >  

for all κ  and all , 1,..., ( )i j d κ= .  (ii) The largest eigenvalue of κΨ  is bounded for all κ . 

 A5:  (i) The functions { }kp  satisfy (2.1) and (2.2).  (ii) There is a constant 0cκ >  such 

that cκ κζ ≥  for all sufficiently large κ .  (iii) 1/ 2( )Oκζ κ=  as κ →∞ .  (iv) There are a constant 

Cθ < ∞  and vectors ( )
0 [ , ]dC C κ

κ κ θ θθ ∈Θ ≡ −  such that 2
0sup | ( ) ( ) | ( )x m x P x Oκ κµ θ κ −

∈ ′+ − =X  

as κ →∞ .  (v) For each κ , κθ  is an interior point of κΘ .   
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 A6:  (i) 4 /15C n ν
κκ +=  for some constant Cκ  satisfying 0 Cκ< < ∞  and some ν  

satisfying 0 min{1/ 30,(7 5) /[30(1 )]}s sν< < − + .  (ii) 1/ 5
hh C n−=  for some constant hC  

satisfying 0 hC< < ∞ . 

 A7:  The function K  is a bounded, continuous probability density function on [ 1,1]−  and 

is symmetrical about 0. 

 Assumption A2(v) restricts the thickness of the tails of the distribution of U  and is used 

to prove consistency of the first-stage estimator.  Assumption A3 defines the sense in which F  

and the jm ’s must be smooth.  A3(iii) is needed for identification.  A4 insures the existence and 

non-singularity of the covariance matrix of the asymptotic form of the first-stage estimator.  

Assumption A4(i) implies A4(ii) if U  is homoskedastic.  Assumptions A5(iii) and A5(iv) bound 

the magnitudes of the basis functions and insure that the errors in the series approximations to the 

jm ’s converge to zero sufficiently rapidly as κ →∞ .  These assumptions are satisfied by spline 

and (for periodic functions) Fourier bases.  Assumption A6 states the rates at which κ →∞  and 

0h →  as n →∞ .  The assumed rate of convergence of h  is well known to be asymptotically 

optimal for one-dimensional kernel mean-regression when the conditional mean function is twice 

continuously differentiable.  The required rate for κ  insures that the asymptotic bias and variance 

of the first-stage estimator are sufficiently small to achieve an 2 / 5n−  rate of convergence in the 

second stage.  The 2L  rate of convergence of a series estimator of jm  is maximized by setting 

1/ 5nκ ∝ , which is slower than the rates permitted by A6(i) (Newey (1997)).  Thus, A6(i) 

requires the first-stage estimator to be undersmoothed.  Undersmoothing is needed to insure 

sufficiently rapid convergence of the bias of the first-stage estimator. 

 3.2  Theorems 

 This section states two theorems that give the main results of the paper.  Theorem 1 gives 

the asymptotic behavior of the first-stage series estimator under assumptions A1-A6(i).  Theorem 

2 gives the properties of the second-stage estimator.  For 1,...,i n= , define 

[ ( )]i i iU Y F m Xµ= − +  and 0 0( ) ( ) ( )b x m x P xκ κ κµ θ′= + − .  Let v  denote the Euclidean norm 

of any finite-dimensional vector v . 

Theorem 1:  Let A1-A6(i) hold.  Then 

(a) 0
ˆlim 0n

n
κ κθ θ

→∞
− =  

almost surely, 
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(b) 1/ 2 1/ 2 2
0

ˆ ( / )n pO nκ κθ θ κ κ −− = + , 

and 

(c) 1/ 2 3/ 2sup | ( ) ( ) | ( / )p
x

m x m x O nκ κ −

∈
− = +�

X
. 

In addition,  

(d) 

1 1
0

1

1 1 2

1

ˆ [ ( )] ( )

[ ( )] ( ) ( ) ,

n

n i i i
i

n

i i i n
i

n Q F m X P X U

n Q F m X P X b X R

κ κ κ κ

κ κ κ

θ θ µ

µ

− −

=

− −

=

′− = +

′+ + +

∑

∑

 

where 3 / 2 1/ 2( / )n pR O n nκ −= + .  ■  

 Now let Xf  denote the probability density function of X .  For 0,1j = , define 

1
1

1 1 1 1 1 1
1 1 1 1

1

( , )

2 { [ ( ) ( )]} [ ( ) ( )]( ) ( ).

nj

n
j

i i i i h i
i

S x m

Y F m x m X F m x m X X x K x Xµ µ− −
=

′ =

′− − + + + + − −∑ � �

 

Also define  

1 1 2 1
0 1 1( ) 2 [ ( ) ( )] ( , )XD x F m x m x f x x dxµ −′= + +∫ � � � ,   

1 1 2 1 1
1 1 1( ) 2 [ ( ) ( )] [ ( , ) / ]XD x F m x m x f x x x dxµ −′= + + ∂ ∂∫ � � � , 

1 2

1
( )KA v K v dv

−
= ∫ , 

1 2

1
( )KB K v dv

−
= ∫ , 

1 1 1 1 1
1 1 1 1 1 1( , ) [ ( ) ( )] ( ) [ ( ) ( )] ( )g x x F m x m x m x F m x m x m xµ µ− −′′ ′ ′ ′′= + + + + +� � � , 

1 2 1 1 1 1 1
1 0 1 1( ) 2 ( ) ( , ) [ ( ) ( )] ( , )h K Xx C A D x g x x F m x m x f x x dxβ µ−

−′= + +∫ � � � � , 

and 

1 1 1 2 1 1 2 1
1 1 1( ) ( ) ( | , ) [ ( ) ( )] ( , )K h XV x B C D x Var U x x F m x m x f x x dxµ− −

−′= + +∫ � � � � . 

The next theorem gives the asymptotic properties of the second-stage estimator. 

 Theorem 2:  Let A1-A6 hold.  Then 
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1 1
1 1

1 1 1 1 1 1 2 / 5
0 01 1 0 11

ˆ(a) ( ) ( )

[ ( )] { ( , ) [ ( ) / ( )] ( , )} ( )n n p

m x m x

nhD x S x m D x D x S x m o n− −

− =

′ ′− + +

 

uniformly over 1| | 1x h≤ −  and 1 1 1/ 2 2 / 5
1 1ˆ ( ) ( ) [(log ) ]pm x m x O n n−− =  uniformly over 1| | 1x ≤ . 

(b) 2 / 5 1 1 1 1
1 1 1 1ˆ[ ( ) ( )] [ ( ), ( )]dn m x m x N x V xβ− → .   

(c) If 1j ≠ , then 2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x−  and 2 / 5 ˆ[ ( ) ( )]j j

j jn m x m x−  are asymptotically 

independently normally distributed.■  

 Theorem 2(a) implies that asymptotically, 2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x−  is not affected by 

random sampling errors in the first stage estimator.  In fact, the second-stage estimator of 1
1( )m x  

has the same asymptotic distribution that it would have if 2 ,..., dm m  were known and local linear 

estimation were used to estimate 1
1( )m x  directly.  In this sense, our estimator achieves an oracle 

bound.  Parts (b) and (c) of Theorem 2 imply that the estimators of 1
1( ),..., ( )d

dm x m x  are 

asymptotically independently distributed. 

 It is also possible to use a local constant estimator in the second stage.  The resulting 

second-stage estimator is 

1 1 1 1
1, 1 01 01ˆ ( ) ( ) ( , ) / ( , ).LC n nm x m x S x m S x m′ ′′= −� � �  

The following modification of Theorem 2, which we state without proof, gives the asymptotic 

properties of the local constant second-stage estimator.  Define 

1 2 2 1 1 1
1 1 1 1

0
( , ) ( / ){ [ ( ) ( )] [ ( ) ( )]} ( , )LC Xg x x F m x m x F m x m x f x x

ζ
ζ ζ ζ− − =

= ∂ ∂ + + − + +� � � �  

and 

1 2 1 1 1 1 1
1, 0 1 1( ) 2 ( ) ( , ) [ ( ) ( )] ( , ) .LC h K LC Xx C A D x g x x F m x m x f x x dxβ µ−

−′= + +∫ � � � �  

Theorem 3:  Let A1-A6 hold.  Then 

(a) 1 1 1 1 1 2 / 5
1, 1 0 01ˆ ( ) ( ) [ ( )] ( , ) ( )LC n pm x m x nhD x S x m o n− −′− = − + , 

uniformly over 1| | 1x h≤ −  and 1 1 1/ 2 2 / 5
1 1ˆ ( ) ( ) [(log ) ]pm x m x O n n−− =  uniformly over 1| | 1x ≤ . 

(b) 2 / 5 1 1 1 1
1, 1 1, 1ˆ[ ( ) ( )] [ ( ), ( )]d

LC LCn m x m x N x V xβ− → .   

(c) If 1j ≠ , then 2 / 5 1 1
1, 1ˆ[ ( ) ( )]LCn m x m x−  and 2 / 5

,ˆ[ ( ) ( )]j j
j LC jn m x m x−  are asymptotically 

independently normally distributed.■  
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1
1( )V x  and 1

1( )xβ  and 1
1, ( )LC xβ  can be estimated consistently by replacing unknown 

population parameters with consistent estimators.  Section 4 gives a method for estimating the 

derivatives of 1m  that are in the expressions for 1
1( )xβ  and 1

1, ( )LC xβ .  As is usual in 

nonparametric estimation, reasonably precise bias estimation is possible only by making 

assumptions that amount to undersmoothing.  One way of doing this is to assume that the second 

derivative of 1m  satisfies a Lipschitz condition.  Alternatively, one can set hh C n γ−=  for 

1/ 5 1γ< < .  Then (1 ) / 2 1 1 1
1 1 1ˆ[ ( ) ( )] [0, ( )]dn m x m x N V xγ− − → , and (1 ) / 2 1 1

1, 1ˆ[ ( ) ( )]LCn m x m xγ− −  

1
1[0, ( )]d N V x→ . 

4.  Bandwidth Selection 

 This section presents a plug-in and a penalized least squares (PLS) method for choosing 

h  in applications.  We begin with a description of the plug-in method.  This method estimates the 

value of h  that minimizes the asymptotic integrated mean-square error (AIMSE) of 

2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x−  for 1,...,j d= .  We discuss only local linear estimation, but similar results 

hold for local constant estimation.  The AIMSE of 2 / 5
1 1ˆ( )n m m−  is defined as 

14 / 5 1 1 2 1 1
1 1 11

( )[ ( ) ( )]AIMSE n w x x V x dxβ
−

= +∫  

where ( )w ⋅  is a non-negative weight function that integrates to one.  We also define the 

integrated squared error as (ISE) 

14 / 5 1 1 1 2 1
1 1 11

ˆ( )[ ( ) ( )]ISE n w x m x m x dx
−

= −∫ . 

We define the asymptotically optimal bandwidth for estimating 1m  as 1/ 5
1hC n− , where 1hC  

minimizes 1AIMSE .  Let 1 1 2
1 1( ) ( ) / hx x Cβ β=�  and 1 1

1 1( ) ( )hV x C V x=� .  Then  

(4.1) 

1/ 51 1 1 1
11

1 1 1 1 2 1
11

( ) ( )
(1/ 4)

( ) ( )
h

w x V x dx
C

w x x dxβ
−

−

 
 =  
  

∫
∫

�

�
. 

The results for the plug-in method rely on the following two theorems.  Theorem 4 shows 

that the difference between the ISE and AIMSE is asymptotically negligible.  Theorem 5 gives a 

method for estimating the first and second derivatives of jm .  Let ( )G A  denote the A ’th 

derivative of any A -times differentiable function G .   
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 Theorem 4:  Let A1-A6 hold.  Then for a continuous weight function ( )w ⋅  and as 

n →∞ , 1 1 (1)pAIMSE ISE o= + . ■  

 Theorem 5:  Let A1-A6 hold.  Let L  be a twice differentiable probability density 

function on [-1,1], and let { : 1,2,...}ng n =  be a sequence of strictly positive real numbers 

satisfying 0ng →  and 2 4 / 5 1(log )ng n n − →∞  as n →∞ .  For 1,2=A  define 

1( ) 1 1 ( ) 1
11 1

ˆ ˆ( ) [( ) / ] ( )n nm x g L x v g m v dv− −
−

= −∫A A A . 

Then as n →∞  and for 1,2=A  

1

( ) ( )1 1
1 1

| | 1
ˆsup | ( ) ( ) | (1)p

x
m x m x o

≤
− =A A .  ■  

A plug-in estimator of 1hC  can now be obtained by replacing unknown population 

quantities on the right-hand side of (4.1) with consistent estimators.  Theorem 5 provides 

consistent estimators of the required derivatives of 1m .  Estimators of the conditional variance of 

U  and of Xf  can be obtained by using standard kernel methods. 

We now describe the PLS method.  This method simultaneously estimates the 

bandwidths for second-stage estimation of all of the functions ( 1,.., )jm j d= .  Let 1/ 5
j hjh C n−=  

be the bandwidth for ˆ jm .  Then the PLS method selects the hjC ’s that minimize an estimate of 

the average squared error 

1 2

1

ˆ( ) { [ ( ) [ ( )]}
n

i i
i

ASE h n F m X F m Xµ µ−

=
= + − +∑ � , 

where 1/ 5 1/ 5
1( ,..., )h hdh C n C n− −= .  Specifically, the PLS method selects the hjC ’s to  

1

1 2

,..., 1

1 2 4 / 5 1

1 1

ˆ(4.2) minimize : ( ) { [ ( )]}

ˆ ˆ2 (0) { [ ( )] ( )} [ ( )] ,

h hd

n

i i
C C i

n d
j

i i hj j i
i j

PLS h n Y F m X

K n F m X V X n C D X

µ

µ

−

=

− −

= =

= − +

′+ +

∑

∑ ∑

�

 

where the hjC ’s are restricted to a compact, positive interval that excludes 0,  

2

1

1ˆ ˆ( ) ( ) [ ( )] ,
j

n
jj j

j h ii
j i

D x K X x F m X
nh

µ
=

′= − +∑ �  

and 
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1

1

1

1 1

1

1 1 2

1

ˆ( ) ( )... ( )

ˆ( )... ( ){ [ ( )] .

d

d

n
d d

h i h i
i

n
d d

h i h i i i
i

V x K X x K X x

K X x K X x Y F m Xµ

−

=

=

 
= − − 
  

× − − − +

∑

∑ �

 

The bandwidths used for V̂  may be different from those used for m̂  because V̂  is a full 

dimensional nonparametric estimator.  We now argue that the difference 

1 2

1

( ) ( )
n

i
i

n U ASE h PLS h−

=
+ −∑  

is asymptotically negligible and, therefore, that the solution to (4.2) estimates the bandwidths that 

minimize ASE .  A proof of this result only requires additional smoothness conditions on F  and 

more restrictive assumptions on κ .  The proof can be carried out by making arguments similar to 

those used in the proof of Theorem 2 but with a higher-order stochastic expansion for m̂ m− .  

Here, we provide only a heuristic outline.  For this purpose, note that  

1 2 1

1 1

1 2 4 / 5 1

1 1

ˆ( ) ( ) 2 { [ ( )] [ ( )]}

ˆ ˆ2 (0) [ ( )] ( ) [ ( )] .

n n

i i i i
i i

n d
j

i i hj j i
i j

n U ASE h PLS h n F m X F m X U

K n F m X V X n C D X

µ µ

µ

− −

= =

− −

= =

+ − = + − +

′− +

∑ ∑

∑ ∑

�

 

We now approximate ˆ[ ( )] [ ( )]i iF m X F m Xµ µ+ − +�  by a linear expansion in m̂ m−  and replace 

m̂ m−  with the stochastic approximation of Theorem 2(a).  (A rigorous argument would require a 

higher-order expansion of m̂ m− .)  Thus, ˆ[ ( )] [ ( )]i iF m X F m Xµ µ+ − +�  is approximated by a 

linear form in iU .  Dropping higher-order terms leads to an approximation of  

1

2
ˆ{ [ ( )] [ ( )]}

n

i i i
i

F m X F m X U
n

µ µ
=

+ − +∑ �  

that is a U statistic in iU .  The off-diagonal terms of the U statistic can be shown to be of higher 

order and, therefore, asymptotically negligible.  Thus, we get 
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2

1 1

4 / 5 1
0

1

2 2
ˆ{ [ ( )] [ ( )]} [ ( )] ( | )

[ ( )] (0),

n n

i i i i i i
i i

d
j

hj j i
j

F m X F m X U F m X Var U X
n n

n C D X h K

µ µ µ
= =

−

=

′+ − + ≈ +

×

∑ ∑

∑

�

 

where 

2
0 ( ) 2 { [ ( )] | } ( )j

jj j j
j i i XD x F m X X x f xµ′= + =E  

and jXf  is the probability density function of jX .  Now by standard kernel smoothing 

arguments, 0
ˆ( ) ( )j j

j jD x D x≈ .  In addition, it is clear that ˆ( ) ( | )i i iV X V U X≈ , which establishes 

the desired result. 

5.  Monte Carlo Experiments 

 This section presents the results of a small set of Monte Carlo experiments that compare 

the finite-sample performances of the two-stage estimator and the estimator of LH.  Experiments 

were carried out with 2d =  and 5d = .  The sample size is 500n = .  The experiments with 

2d =  consist of estimating 1f  and 2f  in the binary logit model 

 1 2
1 2( 1| ) [ ( ) ( )]Y X x L f x f x= = = +P , 

where L  is the cumulative logistic distribution function:  

( ) /[1 ];v vL v e e v= + −∞ < < ∞ . 

The experiments with 5d =  consist of estimating 1f  and 2f  in the binary logit model 

 
5

1 2
1 2

3

( 1| ) ( ) ( ) j

j

Y X x L f x f x x
=

 
 = = = + +
  

∑P . 

In all of the experiments, 1( ) sin( )f x xπ=  and 2 ( ) (3 )f x x= Φ , where Φ  is the standard normal 

distribution function.  The components of X  are independently distributed as [ 1,1]U − .  

Estimation is carried out under the assumption that the additive components have two (but not 

necessarily more) continuous derivatives.  Under this assumption, the two-stage estimator has the 

rate of convergence 2 / 5n− .  The LH estimator has this rate of convergence if 2d =  but not if 

5d = .   

 B-splines were used for the first-stage of the two-stage estimator.  The kernel used for the 

second stage and for the LH estimator is 
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2 2( ) (15/16)(1 ) (| | 1)K v v I v= − ≤ . 

Experiments were carried out using both local-constant and local-linear estimators in the second 

stage of the two-stage method.  There were 1000 Monte Carlo replications per experiment with 

the two-stage estimator but only 500 replications with the LH estimator because of the very long 

computing times it entails.  The experiments were carried out in GAUSS using GAUSS random 

number generators.   

 The results of the experiments are summarized in Table 1, which shows the empirical 

integrated mean-square errors (EIMSE’s) of the estimators at the values of the tuning parameters 

that minimize the EIMSE’s.  Lengthy computing times precluded using data-based methods for 

selecting tuning parameters in the experiments.  The EIMSE’s of the local-constant and local 

linear two-stage estimates of 1f  are considerably smaller than the EIMSE’s of the LH estimator.  

The EIMSE’s of the local-constant and LH estimators of 2f  are approximately equal same, 

whereas the local-linear estimator of 2f  has a larger EIMSE.  

6.  Conclusions 

 This paper has described an estimator of the additive components of a nonparametric 

additive model with a known link function.  The estimator is asymptotically normally distributed 

and has a pointwise rate of convergence in probability of 2 / 5n−  when the unknown functions are 

twice continuously differentiable, regardless of the dimension of the explanatory variable X .  In 

contrast, achieving the rate of convergence 2 / 5n−  with the only other currently available 

estimator for this model requires the additive components to have an increasing number of 

derivatives as the dimension of X  increases.   

7.  Appendix:  Proofs of Theorems 

 Assumptions A1-A7 hold throughout this section. 

 a.  Theorem 1 

 This section begins with lemmas that are used to prove Theorem 1. 

 Lemma 1:  There are constants 0a >  and C < ∞  such that 

2sup | ( ) ( ) | exp( )n nkS S C na
κ

κ
θ

θ θ ε ε
∈Θ

 
− > ≤ − 

  
P E  

for any sufficiently small 0ε >  and all sufficiently large n . 

 Proof:  Write  
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1 2
1 2

1

( ) 2 ( ) ( )
n

n i n n
i

S n Y S Sκ κ κθ θ θ−

=
= − +∑ , 

where 

1
1

1

( ) [ ( ) ]
n

n i i
i

S n Y F P Xκ κθ θ−

=

′= ∑  

and 

1 2
2

1

( ) [ ( ) ]
n

n i
i

S n F P Xκ κθ θ−

=

′= ∑ . 

It suffices to prove that 

2sup | ( ) ( ) | exp( ) ( 1,2)n j nkjS S C na j
κ

κ
θ

θ θ ε ε
∈Θ

 
− > ≤ − = 

  
P E �  

for any 0ε > , some C < ∞� , and all sufficiently large n .  The proof is given only for 1j = .  

Similar arguments apply when 2j = . 

 Define 1 1 1( ) ( ) ( )n n nS S Sκ κ κθ θ θ= − E� .  Divide κΘ  into hypercubes of edge-length A .  

Let (1) ( ),..., M
κ κΘ Θ  denote the ( )(2 / )dM C κ

θ= A  cubes thus created.  Let jκθ  be the point the 

center of ( )j
κΘ .  The maximum distance between jκθ  and any other point in ( )j

κΘ  is 

1/ 2( ) / 2r d κ= A , and exp{ ( )[log( / ) (1/ 2) log ( )]}M d C r dθκ κ= + .  Now 

( )
1 1

1

sup | ( ) | sup | ( ) |
j

M

n n
j

S S
κ κ

κ κ
θ θ

θ ε θ ε
∈Θ ∈Θ=

  
> ⊂ >  

      
� �∪ . 

Therefore, 

( )
1 1

1

sup | ( ) | sup | ( ) |
j

M

n n n
j

S S
κ κ

κ κ
θ θ

θ ε θ ε
∈Θ ∈Θ=

  
≡ > ≤ >  

      
∑P P P� � . 

Now for ( )j
κθ ∈Θ , 

 

1 1 1 1

1
1 1

1

1
1 1

1

| ( ) | | ( ) | | ( ) ( ) |

| ( ) | [ ( )] | |

| ( ) | 2 | |

n n j n n j

n

n j F i
i

n

n j F i
i

S S S S

S C r n Y

S C rn Y

κ κ κ κ κ κ

κ κ κ

κ κ κ

θ θ θ θ

θ ζ

θ ζ

−

=

−

=

≤ + −

≤ + +

≤ +

∑

∑

� � � �

� A

�
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for all sufficiently large κ  and, therefore, n .  Therefore, for all sufficiently large n , 

   
( )

1
1 1 1

1

sup | ( ) | [| ( ) | / 2] 2 | | / 2
j

n

n n j F i
i

S S C rn Y
κ

κ κ κ κ
θ

θ ε θ ε ζ ε−

∈Θ =

  
> ≤ > + >  

      
∑P P P� � . 

Choose 2r κζ= .  Then 1/ 2 2 (| |) / 4FC r Yκε ζ ε− >E  for all sufficiently large κ .  Moreover, 

1 1
1 1

1 1

2 2
1

2 | | / 2 2 (| | | |) / 4

2exp( )

n n

F i F i
i i

C rn Y C rn Y Y

a n

κ κ

κ

ζ ε ζ ε

ε ζ

− −

= =

   
> ≤ − >   

      

≤ −

∑ ∑P P E

 

for some constant 1 0a >  and all sufficiently large κ  by Bernstein’s inequality (Bosq 1998, p. 

22).  Also by Bernstein’s inequality, there is a constant 2 0a >  such that  

2
1 2[| ( ) | / 2] 2exp( )n jS a nκ κθ ε ε> ≤ −P �  

for all n , κ , and j .  Therefore, 

2 2
2 1

2 2
2

2
1

2[ exp( ) exp( )]

2exp{ 2 [log( / ) (1/ 2) log(2 ) (1/ 2) log ]}

2exp( ),

n M a n a n

a n dC n C r C d n

a n

γ
κ κ θ κ

ε ε

ε ζ γ

ε

≤ − + −

≤ − + + +

+ −

P

 

where 4 /15γ ν= + .  It follows that 24exp( )n anε≤ −P  for a suitable 0a >  and all sufficiently 

large n .  Q.E.D. 

 Define ( ) [ ( )]nS Sκ κθ θ= E  

and 

arg min ( )S
κ

κ κθ
θ θ

∈Θ
=� . 

 Lemma 2:  For any 0η > , ˆ( ) ( )nS Sκ κ κ κθ θ η− <�  almost surely for all sufficiently large 

n . 

 Proof:  For each κ , let ( )d κ
κ ⊂ \N  be an open set containing κθ� .  Let κN  denote the 

complement of κN  in κΘ .  Define Tκ κ κ= Θ�∩N .  Then ( )dT κ
κ ⊂ \  is compact.  Define 

min ( ) ( )
T

S S
κ

κ κ κθ
η θ θ

∈
= − � . 

Let nA  be the event | ( ) ( ) | / 2nS Sκ κθ θ η− <  for all κθ ∈Θ .  Then  

ˆ ˆ( ) ( ) / 2n n nA S Sκ κ κ κθ θ η⇒ < +  
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and 

( ) ( ) / 2n nA S Sκ κ κ κθ θ η⇒ < +� � . 

But ˆ( ) ( )n n nS Sκ κ κ κθ θ≤ �  by definition, so 

ˆ( ) ( ) / 2n n nA S Sκ κ κ κθ θ η⇒ < +� . 

Therefore, 

ˆ ˆ( ) ( ) ( ) ( )n n nA S S S Sκ κ κ κ κ κ κ κθ θ η θ θ η⇒ < + ⇒ − <� � . 

So ˆ
n nA κ κθ⇒ ∈N .  Since κN  is arbitrary, the result follows from Lemma 1 and Theorem 1.3.4 

of Serfling (1980, p. 10).  Q.E.D. 

 Define ( ) ( ) ( )kb x m x P xκ κµ θ′= + −  and 

2
0 ( ) { [ ( ) ( )]}S Y F P X b Xκ κ κθ θ′= − +E . 

Then 

0arg min ( )S
κ

κ κθ
θ θ

∈Θ
= . 

 Lemma 3:  For any 0η > , 0 0 0( ) ( )S Sκ κ κ κθ θ η− <�  for all sufficiently large n . 

 Proof:  Observe that 0| ( ) ( ) | 0S Sκ κθ θ− →  as n →∞  uniformly over κθ ∈Θ  because 

( ) 0b xκ →  for almost every x∈X .  For each κ , let ( )d κ
κ ⊂ \N  be an open set containing 0κθ .  

Define Tκ κ κ= Θ∩N .  Then ( )dT κ
κ ⊂ \  is compact.  Define 

0 0 0min ( ) ( )
T

S S
κ

κ κ κθ
η θ θ

∈
= − . 

Choose n  and, therefore, κ  large enough that 0| ( ) ( ) | / 2S Sκ κθ θ η− <  for all θ ∈Θ .  Now 

proceed as in the proof of Lemma 2.  Q.E.D. 

 Define [ ( )] ( )i i iZ F m X P Xκ κµ′= +  and 1
1

ˆ n
i ii

Q n Z Zκ κ κ
−

=
′= ∑ .  Then ˆQ Qκ κ= E .  Let 

k
iZκ  ( 1,..., ( )k d κ= ) denote the k ’th component of iZκ .  Let Zκ  denote the ( )n d κ×  matrix 

whose ( , )i k  element is k
iZκ . 

 Lemma 4:  
2 2ˆ ( / )pQ Q O nκ κ κ− = . 

 Proof:  Let ijQ  denote the ( , )i j  element of Qκ .  Then 

2( ) ( )2 1

1 1 1

ˆ
d d n

jk
i kji

k j i

Q Q n Z Z Q
κ κ

κ κ κ κ
−

= = =

 
− = −  

 
∑ ∑ ∑E E  
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        ( ) ( )

( ) ( )

( ) ( )
2 2

1 1 1 1

( ) ( ) ( ) ( )222 1 2

1 1 1 1 1

( ) ( ) 221

1 1

( / ).

d d n n
j jk k

i kji
k j i

d d d dn
jk

i kji
k j i k j

d d
jk

i i
k j

n Z Z Z Z Q

n Z Z n Q

n Z Z O n

κ κ

κ κκ κ

κ κ κ κ

κ κ

κ κ

κ κ κ

−

= = = =

− −

= = = = =

−

= =

 
= −  

 

= −

 
 ≤ =
  

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑

E

E

E

A A
A

 

The lemma now follows from Markov’s inequality.  Q.E.D. 

 Define ,min( / 2)n I cκ λγ λ= ≥ , where I  is the indicator function.  Let 1( ,..., )nU U U ′= . 

 Lemma 5:  1 1/ 2 1/ 2ˆ / ( / )n pQ Z U n O nκ κγ κ− ′ =  as n →∞ . 

 Proof:  For any x∈X , 

( )

( )

( )

22 1/ 2 2 1

2 1

2 1

1

ˆ ˆ

ˆ

ˆ

( ) /

n n k

n V

V n

n Q Z U X x n U Z Q Z U X x

n Trace Z Q Z UU X x

n C Trace Q Z Z

n C d C n

κ κ κ κ

κ κ κ

κ κ κ

γ γ

γ

γ κ κ

− − − −

− −

− −

−

 ′ ′= = = 
 

 ′ ′= = 

′≤

= ≤

E E

E

 

for some constant C < ∞ .  Therefore, 1/ 2 1/ 2 1/ 2ˆ / ( / )n pQ Z U n O nκ κγ κ− ′ =  by Markov’s 

inequality.  Now 

 1 1/ 2 1 1/ 2 1/ 2ˆ ˆ ˆ ˆ/ [( / ) ( / )]n nQ Z U n U Z n Q Q Q Z U nκ κ κ κ κ κ κγ γ− − − −′ ′ ′= . 

Define 1/ 2ˆ /Q Z U nκ κξ − ′= .  Let 1 ( ),..., d κη η  and 1 ( ),..., dq q κ  denote the eigenvalues and 

eigenvectors of 1Q̂κ
− .  Let max 1 ( )max( ,..., ).d κη η η=   The spectral decomposition of 1Q̂κ

−  gives 

( )1
1

ˆ d
Q q q

κ
κ η−

=
′=∑ A A AA

, so 
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( )21

1

( )

max max
1

ˆ /

( / ).

d

n n

d

n n p

Q Z U n q q

q q O n

κ

κ κ

κ

γ γ η ξ ξ

γ η ξ ξ γ η ξ ξ κ

−

=

=

′ ′ ′=

′ ′ ′≤ ≤ =

∑

∑

A A A
A

A A
A

 

Q.E.D. 

 Define  

1 1
0

1

ˆ [ ( )] ( )
n

n i i i
i

B Q n F m X Z b Xκ κ κµ− −

=

′= +∑ . 

 Lemma 6:  2( )nB O κ −=  with probability approaching 1 as n →∞ . 

 Proof:  Let ξ  be the 1n×  vector whose i ’th component is 0[ ( )] ( )i iF m X b Xκµ′ + .  Then 

1ˆ /nB Q Z nκ κξ
− ′= , and 

2 2 2ˆ
n n nB n Z Q Zκ κ κγ γ ξ ξ− −′ ′= .  Therefore, by the same arguments used to 

prove Lemma 5, 
2 1 4( )n n n nB Cn Oγ γ ξ ξ γ κ− −′≤ = .  The lemma follows from the fact that 

( 1) 1nγ = →P  as n →∞ .  Q.E.D. 

 Proof of Theorem 1:  To prove Part (a), write 

0 0

0 0 0 0

ˆ(7.1) ( ) ( )

ˆ ˆ ˆ[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )].

n

n n n

S S

S S S S S S S S

κ κ κ κ

κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ

θ θ

θ θ θ θ θ θ θ θ

− =

− + − + − + −� � � �

Given any 0h > , it follows from Lemmas 2-3 and uniform convergence of Sκ  to 0Sκ  that each 

term on the right-hand side of (4.1) is less than / 4η  almost surely for all sufficiently large n .  

Therefore 0 0
ˆ( ) ( )nS Sκ κ κ κθ θ η− <  almost surely for all sufficiently large n .  It follows that 

ˆ 0nκ κθ θ− →  almost surely as n →∞  because κθ  uniquely minimizes Sκ .  Part (a) follows 

because uniqueness of the series representation of each function jm  implies that 0 0κ κθ θ− →  

as n →∞ . 

 To prove the remaining parts of the theorem, observe that n̂κθ  satisfies the first-order 

condition ˆ( ) / 0n nS κ κθ θ∂ ∂ =  almost surely for all sufficiently large n .  Define ( )i iM m Xµ= +  

and 0 0
ˆ ˆ( ) ( ) ( ) ( )i i n i i n iM P X M P X b Xκ κ κ κ κ κθ θ θ′ ′∆ = − = − − .  Then a Taylor series expansion 

yields 

1 1
1 0 0 2

1 1

ˆ ˆ( )( ) ( ) ( ) 0
n n

i i n n i i i n
i i

n Z U Q R n F M Z b X Rκ κ κ κ κ κθ θ− −

= =

′− + − + + =∑ ∑ , 
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almost surely for all sufficiently large n .  1nR  is defined by  

  

1
1

1

2

0 0

{ ( ) [ ( ) ( )] [(3/ 2) ( ) ( )

(1/ 2) ( ) ( ) (1/ 2) ( ) ( )( ) ]

[ ( ) ( ) (1/ 2) ( ) ( ) ( ) ( ) ( )] ( )}

n

n i i i i i i i
i

i i i i i i i

i i i i i i i i

R n U F M U F M F M F M F M

F M F M M F M F M M M

F M F M F M F M F M F M b X b X Pκ κ κ

−

=

′′ ′′ ′′ ′′ ′= − + − +

′′ ′′ ′′ ′′+ ∆ + ∆ ∆ −

′′ ′ ′′ ′ ′′ ′′− +

∑ � �� �

� �� � � �

� �� � � � � ( ) ( ) ,i iX P Xκ ′

 

where iM�  and iM��  are points between ˆ( )i nP Xκ κθ′  and iM .  2nR  is defined by 

  

1
2

1

2
0 0 0

{ ( ) [ ( ) ( )]

[ ( ) ( ) (1/ 2) ( ) ( )] ( ) (1/ 2) ( ) ( ) ( ) } ( ).

n

n i i i i i
i

i i i i i i i i i

R n U F M U F M F M

F M F M F M F M b X F M F M b X b Xκ κ κ

−

=

′′ ′′ ′′= − + −

′′ ′ ′′ ′ ′′ ′′+ − −

∑ � �� �

� �� � � �
 

Now let ξ  be any ( ) 1d κ ×  vector.  Then 

2 21 1 1
1 1 1

ˆ ˆ ˆ ˆ[( ) ] ( )n n n n nQ R Q Q Q R Rκ κ κ κγ ξ γ ξ− − −+ − = +  

2
1 1 1

2
1

2 2
0 0 0

22 3

ˆ{ [ ( ) ]}

( )( )

ˆ( )( ) sup | ( ) ( ) ( ) | sup | ( ) |

ˆ( ) .

n n n n

p n

p n
x x

p

Trace R Q R R

O R

O O P x b x b x

O

κ

κ κ κ κ κ

κ

γ ξ ξ

κ ξ ξ

κ ξ ξ θ θ

ξ ξ κ θ θ κ

−

∈ ∈

−

′= +

′≤

 ′ ′= − − + 
 

 ′= − + 
 

X X

 

Setting 1ˆ /Q Z U nκ κξ − ′=  and applying Lemma 5 yields 
21 1

1
ˆ ˆ[( ) ] /nQ R Q Z U nκ κ κ

− − ′+ − =  

23 2
0

ˆ( / ) 1/( )p nO n nκ κκ θ θ κ − +  
.  Setting 1 1 2

0 21
ˆ ( ) ( ) ( )

n
i i i ni

Q n F M P X b X Rκ κ κξ − −
=

 ′= +  ∑ , 

applying Lemma 6, and using the result that 1 2
2

ˆ ( )n pQ R oκ κ− −=  yields  

    

2
21 1 1 5

1 0 2 0
1

ˆ ˆ ˆ[( ) ] ( ) ( ) / 1/
n

n i i i n p n
i

Q R Q n F M Z b X R Oκ κ κ κ κ κθ θ κ κ− − −

=

   ′+ − + = − +   
   

∑  

It follows from these results that 
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1 1
0

1

1 1 2
0

1

ˆ ˆ [ ( )] ( )

ˆ [ ( )] ( ) ( ) ,

n

n i i i
i

n

i i i n
i

n Q F m X P X U

n Q F m X P X b X R

κ κ κ κ

κ κ κ

θ θ µ

µ

− −

=

− −

=

′− = +

′+ + +

∑

∑

 

where 2 1/ 2( / )n pR O n nκ −= + .  Part (d) of the theorem now follows from Lemma 4.  Part (b) 

follows by applying Lemmas 5 and 6 to Part (d).  Part (c) follows from Part (b) and Assumption 

A5(iii).  Q.E.D. 

 b.  Theorem 2 

 This section begins with lemmas that are used to prove Theorem 2.  For any 

2 1( ,..., ) [ 1,1]d dx x x −≡ ∈ −� , set 2
1 2( ) ( ) ... ( )d

dm x m x m x− = + +� , and 0 1( ) ( )b x m xκ µ −= + −� �  

0( )P xκ κθ�  , where  

2 2
1 1( ) [1,0,...,0, ( ),..., ( ),..., ( ),... ( )]d dP x p x p x p x p xκ κ κ ′= ,  

and 

0 21 2 1( ,0,...,0, ,..., ,..., ,..., )d dκ κ κθ µ θ θ θ θ ′= . 

In other words, P  and 0κθ  are obtained by replacing 1
1( ),..., ( )dp x p xκ  with zeros in Pκ  and 

11 1,..., κθ θ  with zeros in 0κθ .   Also define 

1 1
1

1

( ) ( ) [ ( )] ( )
n

n j j j
j

x n P x Q F m X P X Uκ κ κδ µ− −

=

′ ′= +∑� � , 

and 

1 1 2
2 0

1

( ) ( ) [ ( )] ( ) ( )
n

n j j j
j

x n P x Q F m X P X b Xκ κ κ κδ µ− −

=

′ ′= +∑� � . 

For 1 [ 1,1]x ∈ −  and 0,1j =  define 

1 1/ 2 1 2 1 1 1 1
1 1 1 1

1

( ) ( ) [ ( ) ( )] ( ) ( ) ( )
n

j
nj i i h i n i

i

H x nh F m x m X X x K x X Xµ δ−
−

=

′= + + − −∑ � � , 

1 1/ 2 1 2 1 1 1 1
2 1 1 2

1

( ) ( ) [ ( ) ( )] ( ) ( ) ( )
n

j
nj i i h i n i

i

H x nh F m x m X X x K x X Xµ δ−
−

=

′= + + − −∑ � � , 

and 

1 1/ 2 1 2 1 1 1 1
3 1 1 0

1

( ) ( ) [ ( ) ( )] ( ) ( ) ( )
n

j
nj i i h i i

i

H x nh F m x m X X x K x X b Xκµ−
−

=

′= − + + − −∑ � � . 

 



 22

Let ( ) ( | )V x Var U X x= = . 

 Lemma 7:  For 0,1j =  and 1,2,3k = , 1( ) (1)njk pH x o=  as n →∞  uniformly over 

1 [ 1,1]x ∈ − .   
 Proof:  The proof is given only for 0j = .  Similar arguments apply with 1j = .  First 

consider 1
01( )nH x .  We can write 

1 1
01

1

( ) ( )
n

n j j
j

H x a x U
=

=∑ , 

where 

1

3 / 2 1/ 2 1 2 1 1 1
1 1

1

3/ 2 1/ 2 1 1 1

1

( )

[ ( ) ( )] ( ) ( ) [ ( )] ( )

( ) ( ).

j

n

i h i i j j
i

n

h i ij
i

a x

n h F m x m X K x X P X Q F m X P X

n h K x X A x

κ κ κµ µ− − −
−

=

− −

=

=

′ ′ ′+ + − +

≡ −

∑

∑

� �  

Using Lipschitz continuity of ja , the moment conditions A2(v) on jU , and arguments similar to 

those used to prove Lemma 1, the conclusion of the lemma for 0j = , 1k =  follows from 

(7.2) 
1

1 2

| | 1 1

sup ( ) (1)
n

j p
x j

a x o
≤ =

=∑ . 

To prove (7.2), it suffices to show that 

(7.3) 
1

1 1/ 2

| | 1,1
sup | ( ) | ( ) ( 1,2),jk p

x j n
a x o n k−

≤ ≤ ≤
= =  

where  

1 3/ 2 1/ 2 1 1 1
1( ) ( ) ( )j h j jja x n h K x X A x− −= −  

and 

1 3/ 2 1/ 2 1 1 1
2

1

( ) ( ) ( )
n

j h j ij
i
i j

a x n h K x X A x− −

=
≠

= −∑ . 

To prove (7.3), note first that by A3(iii), A5(iii), and A6(i), 

1

1 3 /10

| | 1,1 ,
sup | ( ) | ( ) ( )ij

x i j n
A x O O nκ

≤ ≤ ≤
= = . 

This immediately implies (7.3) for 1k = .  To prove (7.3) for 2k = , note that for some constant 

0C > , 
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1

1 1

| | 1
1 ,

sup | [ ( ) | ] |ij i
x

i j n
i j

A x X C
≤

≤ ≤
≠

≤E  

and 

1

1 2 1

| | 1
1 ,

sup | [ ( ) | ] |ij i
x

i j n
i j

A x X Cκ
≤

≤ ≤
≠

≤E . 

For a proof of these bounds, note that the density of X  is bounded from above and below so that  

1{ [ ( )] ( ) | } { [ ( )] ( )}j j i j jF m X P X X F m X P Xκ κµ µ′ ′+ = +E E  

are the Fourier coefficients of a bounded function.  Therefore, their sum of squares converges.  

Thus, it remains to show that 

(7.4) 
1

1 1/ 2 1 1 1

| | 1,1 1

sup ( ) ( ) (1)
n

h i ij p
x j n i

i j

n h K x X B x o− −

≤ ≤ ≤ =
≠

− =∑ , 

where 1 1 1 1( ) ( ) [ ( ) | ]ij ij ij iB x A x A x X= − E .  To prove (7.4), note that for 0δ > , 

1 1/ 2 1 1 1

1

3/ 4 1/ 2 1 1 1 1/ 4

1

3 / 2 1 2 1 1 2 1 3/ 4 1/ 2 3 /10 1/ 4
1 12

1/ 2 3/10

( ) ( )

exp ( ) ( ) exp( )

{1 ( ) ( )exp[ ( )]} exp( )

exp[ ( )]ex

n

h i ij
i
i j

n

h i ij
i
i j

n
h

n h K x X B x

n h K x X B x n

n h K x X B x O n h n n

O n n

δ

δ

δ

− −

=
≠

− −

=
≠

− − − −

−

 
 

− > 
 
  

 
 

≤ − − 
 
  

≤ + − −

≤

∑

∑

P

E

E

1/ 4

1/ 4

p( )

(1)exp( ).

n

O n

δ

δ

−

= −

 

We now prove the lemma for 0j = , 2k = .  We can write 

1 1/ 2 1 2 1 1
02 1 1

1

( ) ( ) [ ( ) ( )] ( ) ( )
n

n i h i i n
i

H x nh F m x m X K x X P X Bκµ−
−

=

′ ′= + + −∑ � � , 

where 
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1 1 2
0

1

[ ( )] ( ) ( )
n

n j j j
j

B n Q F m X P X b Xκ κ κµ− −

=

′= +∑ . 

Arguments like those used to prove Lemma 6 show that 
2 4( )nB O κ −=E .  Therefore, 

1 1

1 1/ 2 1 1 3/ 2
02

| | 1 | | 1 1

1/ 2 1/ 2 3 / 2

sup | ( ) | sup( ) ( ) ( )

( )

(1).

n

n h i p
x x i

p

p

H x nh K x X O

O n h

o

κ

κ

− −

≤ ≤ =

−

= − ⋅

=

=

∑

 

For the proof with 0j = , 3k = , note that  

1 1

1 1/ 2 1 1 2
03

| | 1 | | 1 1

sup | ( ) | sup( ) ( ) ( )

(1).

n

n h i p
x x i

p

H x nh K x X O

o

κ− −

≤ ≤ =
= − ⋅

=

∑
 

Q.E.D. 

 Let 1 1 1 2 2
1 1 1( , ) [1, ( ),..., ( ), ( ),..., ( ),..., ( ),... ( )]d dP x X p x p x p X p X p X p Xκ κ κ κ ′=�  and 

1 1 1
1 1 0( , ) ( ) ( ) ( , )i i ib x X m x m X P x Xκ κ κµ θ−= + + −� � � .  Define 

1 1 1 1
3

1

( , ) ( , ) [ ( )] ( )
n

n i i j j j
j

x X n P x X Q F m X P X Uκ κ κδ µ− −

=

′ ′= +∑� �  

and 

1 1 1 1 2
4 0

1

( , ) ( , ) [ ( )] ( ) ( )
n

n i i j j j
j

x X n P x X Q F m X P X b Xκ κ κ κδ µ− −

=

′ ′= +∑� � . 

Also, for 0,1j =  define 

1 1/ 2 1 1 1 1 1 1
1 1 1 3

1

( ) ( ) [ ( ) ( )]( ) ( ) ( , )
n

j
nj i i i h i n i

i

L x nh U F m x m X X x K x X x Xµ δ−
−

=

′′= + + − −∑ � � , 

1 1/ 2 1 1 1 1 1 1
2 1 1 4

1

( ) ( ) [ ( ) ( )]( ) ( ) ( , )
n

j
nj i i i h i n i

i

L x nh U F m x m X X x K x X x Xµ δ−
−

=

′′= + + − −∑ � � , 

1 1/ 2 1 1 1 1 1 1
3 1 1 0

1

( ) ( ) [ ( ) ( )]( ) ( ) ( , )
n

j
nj i i i h i i

i

L x nh U F m x m X X x K x X b x Xκµ−
−

=

′′= − + + − −∑ � � , 

1 1/ 2 1 1
4 1 1 1 1

1

1 1 1 1 1 1
1 1 3

( ) ( ) { [ ( ) ( )] [ ( ) ( )]}

[ ( ) ( )]( ) ( ) ( , ),

n

nj i i i
i

j
i i h i n i

L x nh F m X m X F m x m X

F m x m X X x K x X x X

µ µ

µ δ

−
− −

=

−

= + + − + +

′′ + + − −

∑ �

� �i
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1 1/ 2 1 1
5 1 1 1 1

1

1 1 1 1 1 1
1 1 4

( ) ( ) { [ ( ) ( )] [ ( ) ( )]}

[ ( ) ( )]( ) ( ) ( , ),

n

nj i i i
i

j
i i h i n i

L x nh F m X m X F m x m X

F m x m X X x K x X x X

µ µ

µ δ

−
− −

=

−

= + + − + +

′′ + + − −

∑ �

� �i

 

and 

1 1/ 2 1 1
6 1 1 1 1

1

1 1 1 1 1 1
1 1 0

( ) ( ) { [ ( ) ( )] [ ( ) ( )]}

[ ( ) ( )]( ) ( ) ( , ).

n

nj i i i
i

j
i i h i i

L x nh F m X m X F m x m X

F m x m X X x K x X b x Xκ

µ µ

µ

−
− −

=

−

= − + + − + +

′′ + + − −

∑ �

� �i

 

 Lemma 8:  As n →∞ , 1( ) (1)njk pL x o=  uniformly over 1 [ 1,1]x ∈ −  for each 0,1j = ; 

1,...,6k = . 

 Proof:  The proof is given only for 0j = .  The arguments are similar for 1j = .  By 

Theorem 1, 1
4 ( , )n ix Xδ �  is the asymptotic bias component of the stochastic expansion of 

1
0

ˆ( , )( )i nP x Xκ κ κθ θ−�  and is 3 / 2( )pO κ −  uniformly over 1( , ) [ 1,1]d
ix X ∈ −� .  This fact and 

standard bounds on 

1

1 1

| | 1 1

sup | | ( )
n

i h i
x i

U K x X
≤ =

−∑  

and 

1

1 1

| | 1 1

sup ( )
n

h i
x i

K x X
≤ =

−∑  

establish the conclusion of the lemma for 0j = , 2,5k = .  For 0j = , 3,6k = , proceed similarly 

using  

1

1 2
0

| | 1
sup | ( ) | ( )
x

b x Oκ κ −

≤
= . 

For 0j = , 5k = , one can use arguments similar to those made for 1
01( )nH x  in the proof of 

Lemma 7.  It remains to consider 1 1
01( ) ( )n n nL x D x B= , where 

1 1/ 2 1 1 1 1
1 1

1

( ) ( ) [ ( ) ( )] ( ) ( , )
n

n i i h i i
i

D x nh U F m x m X K x X P x Xκµ−
−

=

′′= + + −∑ � �  

and 

1 1 2

1

[ ( )] ( )
n

n j j j
j

B n Q F m X P X Uκ κµ− −

=

′= +∑ . 
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Now, 
2 1( )nB O nκ −=E , and 1( )nD x  contains elements of the form 

1/ 2 1 1 1 1
1 1

1

( ) ( ) [ ( ) ( )] ( )
n

r i i h i
i

nh p x U F m x m X K x Xµ−
−

=

′′ + + −∑ �  

and 

1/ 2 1 1 1
1 1

1

( ) ( ) [ ( ) ( )] ( )
n

i r i i h i
i

nh U p X F m x m X K x Xµ−
−

=

′′ + + −∑ A �  

for 0 r κ≤ ≤ , 2 d≤ ≤A .  These expressions can be bounded uniformly over 1| | 1x ≤  by terms that 

are 1/ 2 1[(log ) | ( ) |]p rO n p x  and 1/ 2[(log ) ]pO n , respectively.  This gives 

1

21

| | 1
sup ( ) ( log )n p
x

D x O nκ
≤

= . 

Therefore,  

1 1

2 21 2 1
01

| | 1 | | 1
sup | ( ) | sup ( ) (1)n n n p
x x

L x D x B o
≤ ≤

≤ = . 

Q.E.D. 

 Lemma 9:  The following hold uniformly over 1| | 1x h≤ − : 

1 1 1
01 0( ) ( , ) ( ) (1)n pnh S x m D x o− ′′ = +� , 

1 1 2 1
21 0( ) ( , ) ( )[1 (1)]n K pnh S x m A h D x o− ′′ = +� ,  

and  

1 1 2 1
11 1( ) ( , ) ( )[1 (1)]n K pnh S x m h A D x o− ′′ = + +� . 

 Proof:  This follows from the Theorem 1(c) and standard bounds on 

1

1 1 1 1

| | 1 1

sup ( ) ( )
n

r s
i i h i

x i

U X x K x X
≤ =

− −∑  

for 0,1r = ; 0,1,2s = .  Q.E.D. 

 Lemma 10:  The following hold uniformly over 1| | 1x h≤ − : 

(a) 1/ 2 1 1/ 2 1 1/ 2 1 1
01 01 0 1( ) ( , ) ( ) ( , ) ( ) ( ) ( ) (1)n n pnh S x m nh S x m nh D x m x o− −′ ′= + ∆ +� , 

and  

(b) 1/ 2 1 1/ 2 1
11 11( ) ( , ) ( ) ( , ) (1)n n pnh S x m nh S x m o− −′ ′= +� . 

 Proof:  Only (a) is proved.  The proof of (b) is similar.  For each 1,...,i n= , let 

1*( , )im x X�  and 1**( , )im x X�  denote quantities that are between 1
1 1( ) ( )im x m Xµ −+ + �� � �  and 
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1
1 1( ) ( )im x m Xµ −+ + � .  The values of 1*( , )im x X�  and 1**( , )im x X�  may be different in different 

uses.  A Taylor series expansion and Theorem 1(c) give 

1

4 31/ 2 1 1/ 2 1 1 1/ 2 1
01 01

( , )1

4
1/ 2 1 1

01
1

( ) ( , ) ( ) ( , ) ( ) ( ) sup ( , )

( ) ( , ) ( ) (1)

n n nj
x xj

n nj p
j

nh S x m nh S x m J x n nh O m x x

nh S x m J x o

− − −

∈=

−

=

 
′ ′= + + ∆ 

 

′= + +

∑

∑

�
� �

X

uniformly over 1| | 1x h≤ − , where 

1 1/ 2 1 2 1 1 1
1 1 1 1

1

( ) 2( ) [ ( ) ( )] ( ) ( )
n

n i h i
i

J x nh F m x m X K x X m xµ−
−

=

′= + + − ∆∑ � , 

1 1/ 2 1 2 1 1
2 1 1 1

1

( ) 2( ) [ ( ) ( )] ( ) ( )
n

n i h i i
i

J x nh F m x m X K x X m Xµ−
− −

=

′= + + − ∆∑ � � , 

1
3

1/ 2 1 1 1 1 1
1 1

1

( )

2( ) { [ ( ) ( )]} [ *( , )] ( ) ( , ),

n

n

i i i h i i
i

J x

nh Y F m x m X F m x X K x X m x Xµ−
−

=

=

′′− − + + − ∆∑ � � �

 

1 1/ 2 1 1 1
4 1 1

1

1 1 1 2

( ) 2( ) [ ( ) ( )]{ [ *( , )] 2 [ **( , )] }

( )[ ( , )] .

n

n i i i
i

h i i

J x nh F m x m X F m x X F m x X

K x X m x X

µ−
−

=

′ ′′ ′′= + + +

− ∆

∑ � � �

�i

 

It follows from Theorem 1(d) and Lemma 7 that 
31 1

2 01
( ) ( ) (1) (1)n n k p pk

J x H x o o
=

= + =∑  

uniformly over 1| | 1x h≤ − .  In addition, it follows from Theorem 1(c) that for some constant 

C < ∞  

1

1

21 1/ 2 1 1 1
4

( , )1

21/ 2 1

( , )

( ) ( ) ( ) sup ( , )

( ) sup ( , ) (1)

n

n h i
x xi

p p
x x

J x C nh K x X m x x

O nh m x x o

−

∈=

∈

 
< − ∆ 

 

 
= ∆ = 

 

∑
�

�

�

�

X

X

 

uniformly over 1| | 1x h≤ − .  Now consider 1
3( )nJ x .  It follows from Assumption A3(v) that  
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1
3

1/ 2 1 1 1 1 1
1 1 1 1

1

1/ 2 1 1

6
1 1/ 2 1 1

0
1

( )

2( ) { [ ( ) ( )]} [ ( ) ( )] ( ) ( , )

( ) sup | ( , ) |

( ) ( ) sup | ( , ) | (1)

n

n

i i i h i i
i

s
p

x

s
n k p p

xk

J x

nh Y F m x m X F m x m X K x X m x X

O nh m x x

L x O nh m x x o

µ µ−
− −

=

+

∈

+

∈=

=

′′− − + + + + − ∆

 + ∆ 
 

 = + ∆ + 
 

∑

∑

� � �

�

�

X

X

uniformly over 1| | 1x h≤ − .  Therefore, 1
3( ) (1)n pJ x o=  uniformly by Lemma 8 and Theorem 

1(c), and  

1/ 2 1 1/ 2 1 1
01 01 1( ) ( , ) ( ) ( , ) ( ) (1)n n n pnh S x m nh S x m J x o− −′ ′= + +�  

uniformly over 1| | 1x h≤ − . 

 Now consider 1
1( )nJ x .  Set 

1 1/ 2 1 2 1 1
1 1 1

1

( ) 2( ) [ ( ) ( )] ( )
n

n i h i
i

J x nh F m x m X K x Xµ−
−

=

′= + + −∑� � . 

It follows from Theorem 2.37 of Pollard (1984) that 1 1
1 1( ) [ ( )] (log )n nJ x J x o n− =E� �  almost surely 

as n →∞ .  In addition, 1/ 2 1 1 2
1[( ) ( )] ( ) ( )nnh J x D x O h− = +E � .  Therefore, 

1 1/ 2 1 1 1
1 1 1

1/ 2 1 1
1

( ) ( ) ( ) ( ) [log ( )]

( ) ( ) ( ) (1)

n

p

J x nh D x m x O n m x

nh D x m x o

= ∆ + ∆

= ∆ +

 

uniformly over 1| | 1x h≤ − .  Q.E.D. 

 Proof of Theorem 2:  By the definition of 1
1ˆ ( )m x , 

(4.3) 
1 1 1 1

1 1 1 1 21 01 11 11
1 1 1 1 1 1 1 2

01 21 11

( , ) ( , ) ( , ) ( , )
ˆ ( ) ( ) ( ) ( )

( , ) ( , ) ( , )
n n n n

n n n

S x m S x m S x m S x m
m x m x m x m x

S x m S x m S x m

′′ ′ ′′ ′−− = − −
′′ ′′ ′′−
� � � ��

� � �
. 

Part (a) follows by applying Lemmas 9 and 10 to the right-hand side of (4.3).  Define  

1 1 1 1 1 1
0 01 1 0 11[ ( )] { ( , ) [ ( ) / ( )] ( , )}n nw nhD x S x m D x D x S x m− ′ ′= − + . 
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Methods identical to those used to establish asymptotic normality of local linear estimators show 

that 2 / 5
1( ) (1)n w oβ= +E , 2 / 5 1

1( ) ( ) (1)Var n w V x o= + , and 2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x−  is 

asymptotically normal, which proves Part (b).  Q.E.D. 

 Proof of Theorem 4:  It follows from Theorem 2(a) that 

1

4 / 5 1 1 1 2 1
1 11 | | 1

ˆ( )[ ( ) ( )] (1)p
h x

n w x m x m x dx o
− ≤ ≤

− =∫ . 

Now consider  

1

4 / 5 1 1 1 2 1
1 1| | 1

ˆ( )[ ( ) ( )]
x h

n w x m x m x dx
≤ −

−∫ . 

By replacing the integrand with the expansion of Theorem 2(a), one obtains a U-statistic in iU  

conditional on 1,..., nX X .  This U statistic has vanishing conditional variance.  Q.E.D. 

 Proof of Theorem 5:  Use Theorem 2(a) to replace 1m̂  with 1m  in the expression for 

( )
1m̂ A .  The result now follows from standard methods for bounding kernel estimators.  Q.E.D. 
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TABLE 1:  Results of Monte Carlo Experiments1 

 

                                        Empirical IMSE_ 

  Estimator         1κ    2κ    1h    2h       1f       2f     
________________________________________________________ 

2d =  

   LH                        .9    .9    .116    .015  

2-Stage with        2    2   .4    .9    .052    .015  
Local Constant 
Smoothing 
 

2-Stage with        4    2   .5   1.4    .052    .023  
Local Linear 
Smoothing 

5d =  

   LH                       1.0   1.0    .145    .019  

2-Stage with        2    2   .4    .9    .060    .018  
Local Constant 
Smoothing 
 

2-Stage with        2    2   .6   1.3    .057    .029  
Local Linear 
Smoothing 

 

1  In the two-stage estimator, jκ  and jh  ( 1, 2j = ) are the series 

length and bandwidth used to estimate jf .  In the LH estimator, 

jh  ( 1, 2j = ) is the bandwidth used to estimate jf .  The values of 

1κ , 2κ , 1h , and 2h  minimize the IMSE’s of the estimates.   
 
 




