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ABSTRACT

This paper describes an estimator of the additive components of a nonparametric additive
model with a known link function. When the additive components are twice continuously
differentiable, the estimator is asymptotically normally distributed with a rate of convergencein

probability of n2/%. Thisistrue regardless of the (finite) dimension of the explanatory variable.
Thus, in contrast to the existing asymptotically normal estimator, the new estimator has no curse
of dimensionality. Moreover, the asymptotic distribution of each additive component is the same
asit would be if the other components were known with certainty.
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NONPARAMETRIC ESTIMATION OF AN ADDITIVE MODEL WITH A LINK
FUNCTION

1. Introduction

This paper is concerned with nonparametric estimation of the functions my,...,my in the

model
(1Y)  Y=F[u+m(XY)+. . +my(X]+U,

where X! (G =1, ..., d) is the j'th component of the random vector X e RY for some finite

d=2, F isaknown function, x« isan unknown constant, m,...,my are unknown functions, and
U isan unobserved random variable satisfying E(U | X = x) =0 for aimost every x. Estimation
is based on an iid random sample {Y;, X; :i =1...,n} of (Y, X). We describe an estimator of the
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additive components my,...,my that converges in probability pointwise at the rate n when F

and the m; ’s are twice continuously differentiable and the second derivative of F is sufficiently

smooth. In contrast to previous estimators, only two derivatives are needed regardless of the
dimension of X, so asymptotically there is no curse of dimensionality. The centered, scaled
estimator of each additive component is asymptotically normally distributed with the same mean
and variance that it would have if the other components were known.

Linton and Hérdle (1996) (hereinafter LH) developed an estimator of the additive
components of (1.1) that is based on marginal integration. The marginal integration method is

discussed in more detail below. The estimator of LH converges at the rate n2'® and is

asymptoticaly normally distributed, but it requires the m;’s to have an increasing number of

derivatives as the dimension of X increases. Thus, it suffers from the curse of dimensionality.
Our estimator avoids this problem.

There is alarge body of research on estimation of (1.1) when F is the identity function
sothat Y =+ m (XY +...+ my(X?)+U . Stone (1985, 1986) showed that n"2/® is the optimal

L, rate of convergence of an estimator of the m;’s when they are twice continuously

differentiable. Stone (1994) and Newey (1997) describe spline estimators whose L, rate of

convergence is n~2/S, but the pointwise rates of convergence and asymptotic distributions of
spline and other series estimators remain unknown. Breiman and Friedman (1985); Buja, Hastie,
and Tibshirani (1989); Hastie and Tibshirani (1990); Opsomer and Ruppert (1997); Mammen,
Linton and Nielsen (1999); and Opsomer (2000) have investigated the properties of backfitting



procedures. Mammen, Linton and Nielsen (1999) give conditions under which a backfitting
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estimator of the m;’s converges at the pointwise rate n~2/®> when these functions are twice

continuoudly differentiable. The estimator is asymptotically normally distributed and avoids the
curse of dimensionality, but extending it to models in which F is not the identity function
appears to be quite difficult. Horowitz, Klemeld, and Mammen (2002) discuss optimality
properties of avariety of estimators for nonparametric additive models.

Tjestheim and Auestad (1994), Linton and Nidsen (1995); Chen, Hardle, Linton, and
Severance-Lossin (1996); and Fan, Hérdle, and Mammen (1998) have investigated the properties

of margina integration estimators for the case in which F is the identity function. These

estimators are based on the observation that when F isthe identity function, then rrh(xl) , Say, is

given up to an additive constant by
(1.2) IE(Y | X = )W, ..., x3)adx...dx?
where w is ahon-negative function satisfying

J.W(xz,...,xd)dxz...dxd =1.

Therefore, ml(xl) can be estimated up to an additive constant by replacing E(Y | X =x) in (1.2)
with a nonparametric estimator. Linton and Nielsen (1995); Chen, Hérdle, Linton, and

Severance-Lossin (1996); and Fan, Hardle, and Mammen (1998) have given conditions under

which a variety of estimators based on the marginal integration idea converge at rate n~2/® and
are asymptotically normal. LH extend marginal integration to the case in which F is not the

identity function. However, marginal integration estimators have a curse of dimensionality: the

smoothness of the m, 's must increase as the dimension of X increases to achieve n~2/°

convergence. The reason for this is that estimating E(Y | X =X) requires carrying out a d -
dimensiona nonparametric regression. If d islarge and the m; s are only twice differentiable,

then the bias of the resulting estimator of E(Y | X =X) convergesto zero too dowly as n— oo to
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estimate the m, 'switha n rate. For example the estimator of Fan, Hardle, and Mammen

(1998), which imposes the weakest smoothness conditions of any existing marginal integration
estimator, requires more than two derivativesif d >5.

This paper describes a two-stage estimation procedure that does not require a d -
dimensiona nonparametric regression and, thereby, avoids the curse of dimensionality. In the

first stage, nonlinear least squares is used to obtain a series approximation to each m; . Thefirst-



stage procedure imposes the additive structure of (1.1) and yields estimates of the m; ’s that have

smaller asymptotic biases than do estimators based on margina integration or other procedures
that require d -dimensional nonparametric estimation. The first-stage estimates are inputs to the
second stage. The second-stage estimate of, say, my is obtained by taking one Newton step from

the firg-stage estimate toward a loca linear estimate. In large samples, the second-stage
estimator has a structure similar to that of alocal linear estimator, so deriving its pointwise rate of
convergence and asymptotic distribution is relatively easy. The main results of this paper can
also be obtained by using alocal constant estimate in the second stage, and the results of Monte
Carlo experiments described in Section 5 show that a local constant estimator has better finite-
sample performance under some conditions. However, a loca linear estimator has better
boundary behavior and better ability to adapt to non-uniform designs, among other desirable
properties (Fan and Gijbels 1996).

The remainder of this paper is organized as follows. Section 2 provides an informal
description of the two-stage estimator. The main results are presented in Section 3. Section 4
discusses the selection of bandwidths. Section 5 presents the results of a small simulation study,
and Section 6 presents concluding comments. The proofs of theorems are in Section 7.

Throughout the paper, subscripts index observations and superscripts denote components of

vectors. Thus, X; isthe i 'th observation of X, X! isthe j'th component of X, and X/ is

the i "th observation of the j’th component.

2. Informal Description of the Estimator

Assume that the support of X is Xz[—ll]d , and normalize my,...,my so that

1 .
I_lmj (Vidv=0; j=1,...,d.
For any xe RY define m(x) = m (x}) +...+ my (x?), where x! isthe j’th component of x. Let

{p: k=12,..} denoteabasisfor smooth functionson [-11] . A precise definition of *“smooth”

and conditions that the basis functions must satisfy are given in Section 3. These conditions

include:
1
2.1) j_l P (V)av=0;

lifj=k
0 otherwise;

1
22) [ PP (v)dv={

and



23)  m(x)=>0;p(x))
k=1

foreach j=1,...,d, each x e [0,1], and suitable coefficients {#;,} . For any positive integer x
define

Pe (%) =L PO,y Py (K1), PLOC) e P O,y PO, P (X))
Then for HKe]R’“H, P.(x)’8, is a series approximation to x+m(x). Section 3 gives
conditionsthat x must satisfy. These requirethat k¥ — oo at an appropriate rateas N — oo .

To obtain the first-stage estimators of the m;’s, let {Y,, X;:i=1..,n} be a random

sampleof (Y,X). Let énK be a solution to
n

minimize: S, (6) = n‘lg{vi —F[R.(X) 61},
where O, cR¥* g acompact parameter set. The series estimator of «+m(x) is

A+ 7(X) = P (X) e
where @ is the first component of én,(. The estimator of m, (xj) forany j=1,..,d and any
x) €[0,1] isthe product of [py(x'),..., p, (x))] with the appropriate components of 4, .

To obtain the second-stage estimator of (say) ml(xl) , let X; denotethe i 'th observation
of X=(X2..X%. Define m(X)=m(X2)+..+my(X?), where X/ is the i'th

observation of the j’th component of X and m,

is the series estimator of m;. Let K be a
probability density function on [-1,1], and define Ky, (v) = K(v/h) for any real, positive constant
h. Conditions that K and h must satisfy are given in Section 3. These include h— 0 at an

appropriate rateas n— o . Define
S“-l(xl,m) =

=22 (Y = Fjz+ iy (<) + My (X)IFF T2+ my (3) + i (X)I (K = ) K (¢ = X

i=1

for j=0,1 and



S0, M) =2 FTa+ My 0¢) + My ()P (4 3T K (6 = X)
i=1

=2 (¥ = FLa+my(x") + My (X)THF T+ my () + i (X1 = XD K (= X

i=1
for j =0,1,2. The second-stage estimator of ml(xl) is

Spra1 (X, M) S01 (X, 1) = iy (X', M) Sy (X, 1) .
Sho1 (X, M) S0 (X, M) — Sy (0, 17)?

The second stage estimators of mz(xz),...,rrh(xd) are obtained similarly.

24) M) =m(x)-

The estimator (2.4) can be understood intuitively asfollows. If & and m_; were thetrue

valuesof x and m_;, thelocal linear estimator of ml(xl) would minimize
(25)  Su(X"bo,by) = D {¥% — FLa+by+by (X —x}) + i (X))}
i=1

Moreover, (X", M) =0S,(x" by, ) /0b; (j=01) evaluated at lby=my(x") and b =0.
Sy1(x',m) gives the second derivatives of Sy(x",by,by) evaluated at the same point. The

estimator (2.4) is the result of taking one Newton step from the starting values by = rﬁl(xl),

by =0 toward the minimum of the right-hand side of (2.5).
Section 3 gives conditions under which My (x")-m(x)=0,(n"*%) and

n?"®[iy (1) - m (Y] is asymptotically normally distributed for any finite d when F and the

m; 's are twice continuously differentiable.

3. Main Results
This section has two parts. Section 3.1 states the assumptions that are used to prove the
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main results. Section 3.2 states the results. The main results are the n™'” -consistency and

asymptotic normality of the m; ’s.
The following additional notation is used. For any matrix A, define the norm
|A| =[trace( A2 Define U =Y-F[u+m(X)], V(X)=Var(U|X=x), Q.=

E{FTu+m(X)°P(X)P(X)}, and ¥, =Q E{FTu+m(X)?V(X)P(X)P(X)}Q:"



whenever the latter quantity exists. Q, and ¥, are d(x)xd(x) positive semidefinite matrices,
where d(x)=xd +1. Let A, denote the smallest eigenvalue of Q. Let Q. denote the
(i,]) element of Q. Define ¢, =sup,v|P.(¥)|. Let {6;} be the coefficients of the series

expansion (2.3). For each x define

3.1 Assumptions
The main results are obtained under the following assumptions.

Al: The data, {(Y;,,X;): i=1...,n}, are an iid random sample from the distribution of
(Y,X),and E(Y| X =x)=F[u+m(x)] for amost every xe X z[—],l]d .
A2: (i) Thesupport of X is X'. (ii) Thedistribution of X isabsolutely continuous with

respect to Lebesgue measure. (iii) The probability density function of X is bounded, bounded

away from zero, and twice continuously differentiable on X' . (iv) There are constants ¢, >0
and C, < suchthat 6, <Var(U |X =x)<C, foral xe X'. (v) Thereisaconstant C; <o
suchthat E |U |'<CJ?jIE(U?) <o fordl j>2.

A3: (i) Thereis aconstant Cy, <o such that |m;(v)|<C, for each j=1..,d and all
ve[-11]. (ii) Each function m; istwice continuously differentiable on [-11]. (iii) There are
constants Cgq <oo, Cg, >0, and Cg, <o such that F(v)<Cg; and cgq <F'(V)<Cp, for al
ve[u-C,d,u+C,d]. (iv) F istwice continuously differentiableon [#—-C.d,u+C,d]. (V)
There are constants Cg3 <o and s>5/7 such that |F"(v,)—F’(\)|<Crg|V,—y [° for al
Vo, €[u—-Cpd,u+C,d].

A4: (i) There are constants Cy <o and ¢; >0 such that |Q,; |[SCq and A min >C;
forall x andal i, =1,...,d(x). (ii) Thelargest eigenvalue of ¥, isbounded for al « .

AS5: (i) The functions { p,} satisfy (2.1) and (2.2). (ii) Thereisaconstant ¢, >0 such
that ¢ >c, forall sufficiently large x . (iii) £, =O(xY?) as Kk —oo. (iv) There are aconstant

Cy <o and vectors g€ O, =[-C,,Cy]%™ such that sup, y | 4+ M(X) = P.(X) 6,0 | = O(x2)

as Kk —oo. (V) Foreach x, 6, isaninterior point of O, .



A6 (i) k=C.n*"™" for some constant C, satisfying 0<C, < and some v

satisfying 0<v <min{1/30,(7s-5)/[30+s)]} . (i) h=C,nY® for some constant C;
satisfying 0< C;, <eo.

A7: Thefunction K isabounded, continuous probability density function on [-1,1] and
is symmetrical about 0.

Assumption A2(v) restricts the thickness of the tails of the distribution of U and is used
to prove consistency of the first-stage estimator. Assumption A3 defines the sense in which F

and the m; 's must be smooth. A3(iii) is needed for identification. A4 insures the existence and

non-singularity of the covariance matrix of the asymptotic form of the first-stage estimator.
Assumption A4(i) implies A4(ii) if U ishomoskedastic. Assumptions A5(iii) and A5(iv) bound
the magnitudes of the basis functions and insure that the errors in the series approximations to the

m; 's converge to zero sufficiently rapidly as xk — <. These assumptions are satisfied by spline

and (for periodic functions) Fourier bases. Assumption A6 states the rates at which k¥ — < and
h—0 as n—e. The assumed rate of convergence of h is well known to be asymptoticaly
optimal for one-dimensional kernel mean-regression when the conditional mean function is twice
continuously differentiable. The required rate for x insures that the asymptotic bias and variance
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of the first-stage estimator are sufficiently small to achieve an n rate of convergence in the

second stage. The L, rate of convergence of a series estimator of m; is maximized by setting

ko5, which is slower than the rates permitted by A6(i) (Newey (1997)). Thus, A6(i)
requires the first-stage estimator to be undersmoothed. Undersmoothing is needed to insure
sufficiently rapid convergence of the bias of the first-stage estimator.

3.2 Theorems

This section states two theorems that give the main results of the paper. Theorem 1 gives
the asymptotic behavior of the first-stage series estimator under assumptions A1-A6(i). Theorem
2 gives the properties of the second-stage estimator. For i=1..,n, define

Ui =Y, —F[u+m(X;)] and bo(X) = +m(x) - P (X)6q. Let ||v| denote the Euclidean norm
of any finite-dimensional vector v .
Theorem 1: Let A1-A6(i) hold. Then

@ 1im|Go ~ o] =0
N—oo
amost surely,



b 0. —-0,=0 Kllzln1/2+/(_2,
nx k0 p

and
(© sug |M(x) - m(X) |z Op (/% + %)
xe
In addition,
O =00 = n‘lQ;l_an‘, FTa+m(X)1R (XU,
(@ i

QS F i+ MO (X)b, (X) + R,

=
where |R,[=0,(x¥?/n+n""?). ®

Now let fy denote the probability density function of X . For j=0,1, define

S,’M(xl,m) =

=22 (¥ = FL -+ my () + mg (X)IF T+ my ) + mo (X)I(G = x5 K (¢ = X,

i=1
Also define
Do(x}) = 2j FLu+m () +m g (]2 fy (X, R)dX,

Dy(x) =2 j F T+ my () +my (R][0fx (', %)/ 9x %,
A = I_llsz(v)dv,
B = [ K,
g(x, %) = FLa+my () + my (RIm{ (") + F L+ my(x) + my (R]m{(x)
A1) = 2CE A Do () 9O, R T+ my () + My (R)] Fx (0 Rk,
and
VA(x') = B Cr D) [Var (U x5 %) F T+ my () + MLy (] Fi (', )R

The next theorem gives the asymptotic properties of the second-stage estimator.
Theorem 2: Let A1-A6 hold. Then



@ mh)-m(xh)=

[PhDo (XY™ {=Shon(x', M) +[ Dy (x')/ Do (X)) Siaa (x', M)} + 0, (n*'°)

uniformly over |x"|<1-h and riy(x") - my(x") = O,[(logn)"’*n"%'®] uniformly over |x"|<1.
(B Ry () - my ()] - NIAEO) ()]
© If j=1, then n”°[M(x)-m(Y)] and n?°[y;(x))-m;(x))] are asymptotically
independently normally distributed. l

Theorem 2(a) implies that asymptotically, n?/5[ry(x})—m(x})] is not affected by
random sampling errorsin the first stage estimator. In fact, the second-stage estimator of rrh(xl)
has the same asymptotic distribution that it would have if m,,...,my were known and local linear
estimation were used to estimate ml(xl) directly. In this sense, our estimator achieves an oracle

bound. Parts (b) and (c) of Theorem 2 imply that the estimators of rrh(xl) ..... my (X
asymptotically independently distributed.

It is adso possible to use a local constant estimator in the second stage. The resulting

second-stage estimator is
L (¢) = M (x) = Shon (X', M)/ Sy (x', ).

The following modification of Theorem 2, which we state without proof, gives the asymptatic

properties of the local constant second-stage estimator. Define
O (<% = (0% /9 FIM (¢ +3) + My (R)] - FIM () + My (R} (§+X3)
and
Bric(x) = 2CF AD (<) ™ gLe O F Tau+ my () + MLy ()] Fi (', Rk
Theorem 3: Let A1-A6 hold. Then
@ My () - my(x) =-[nhDy ()] ™ oy (¢, M) + 0, (n7%9),
uniformly over |x"|<1-h and iy (x") - my(x") = O [(logn)"’2n"%'®] uniformly over |x"|<1.
B n?%iy e () - m O] - N[BLLe (DM O] -

(©  If j#1,then n”’°[fy ¢ (x) - m(x)] and n?°[iy o (x))—m;(x!)] are asymptotically

independently normally distributed. &



Vi(xh) and By(x") and By c(x") can be estimated consistently by replacing unknown
population parameters with consistent estimators. Section 4 gives a method for estimating the
derivatives of my that are in the expressions for B;(x") and By c(x"). Asis usud in

nonparametric estimation, reasonably precise bias estimation is possible only by making

assumptions that amount to undersmoothing. One way of doing this is to assume that the second

derivative of m, satisfies a Lipschitz condition. Alternatively, one can set h=C,n" for
U5<y<1. Then n""2[my(x)~m ()] - N[OV ()], and 2[Ry ¢ (x') - my(x')]

-9 N[OV, ()] .

4. Bandwidth Selection

This section presents a plug-in and a penalized least squares (PLS) method for choosing
h in applications. We begin with a description of the plug-in method. This method estimates the
vaue of h that minimizes the asymptotic integrated mean-square error (AIMSE) of

n?S[my ) —m (4] for j=1,...d. Wediscuss only local linear estimation, but similar results

hold for local constant estimation. The AIMSE of n?®(fiy —my) isdefined as
AIMSE; =n*'3 [ " WOALB,0)2 +V, 06

where w(:) is a non-negative weight function that integrates to one. We also define the

integrated squared error as (1SE)
15, =03 [ WOy 0) - m P

We define the asymptotically optimal bandwidth for estimating m, as Cyn Y®, where C,
minimizes AIMSE;. Let 3,(x}) = ,(x})/C? and V;(x') = CV; (') . Then

1 . 1/5

[IRLCOVACSLS
1

[IRLCVACIRCS

41 Cyu=|W9

The results for the plug-in method rely on the following two theorems. Theorem 4 shows

that the difference between the ISE and AIMSE is asymptotically negligible. Theorem 5 gives a
method for estimating the first and second derivatives of m;. Let G denote the ¢’th

derivative of any ¢ -times differentiable function G.

10



Theorem 4. Let A1-A6 hold. Then for a continuous weight function w(-) and as
n—eo, AIMSE =185 +0,(1). B
Theorem 5: Let A1-A6 hold. Let L be a twice differentiable probability density

function on [-1,1], and let {g,:n=12,...} be a sequence of strictly positive real numbers

4/5

satisfying g,, — 0 and g?n*®(logn)™ — 0 as n— 0. For ¢=1,2 define

X 10 (L -
0 (¢) = g5t [ L1 =) gl (v)av.
Thenas n— e andfor (=12

sup |7 () - m () F 0, (2). W

X<t

A plug-in estimator of C,; can now be obtained by replacing unknown population
guantities on the right-hand side of (4.1) with consistent estimators. Theorem 5 provides
consistent estimators of the required derivatives of my. Estimators of the conditional variance of
U and of fy can beobtained by using standard kernel methods.

We now describe the PLS method. This method simultaneoudly estimates the

bandwidths for second-stage estimation of all of the functions m; (j =1,..,d). Let h; =Cyn™®

be the bandwidth for m; . Then the PLS method selects the Cy, 's that minimize an estimate of

the average squared error
n
ASE(R) =Y {FLa+@(X;) — Flu+m(X)]}?,
=l
where h = (Cyn/°,...,Cign™"'®) . Specifically, the PLS method selectsthe Cy; 'sto

(4.2) minimize: PLS(h)= n‘lzn:{Yi — Fa+m(X,)]}?
Chr-Cra i=1

n d
+ 2K ()N {F T+ m(X)1PV (X} D[ 5y By (X7
i=1 j=1

wherethe Cy; 'sarerestricted to acompact, positive interval that excludes 0,

Ii=1

D;(x)) =

and

11



n -1
V)= Y Ky (X =x.Kp, (X = x7)
i=1

xé Kp, (X = x1).. K, (X =x{Y = FLa+m(X;)]%.

The bandwidths used for V may be different from those used for m because V is a full
dimensional nhonparametric estimator. We now argue that the difference

n

N> U? + ASE(h) - PLS(h)

i=1
is asymptotically negligible and, therefore, that the solution to (4.2) estimates the bandwidths that
minimize ASE. A proof of thisresult only requires additional smoothness conditionson F and
more restrictive assumptionson x . The proof can be carried out by making arguments similar to
those used in the proof of Theorem 2 but with a higher-order stochastic expansion for m-m.
Here, we provide only a heuristic outline. For this purpose, note that

n‘lzn“ui2 + ASE(h) - PLS(h) = 2n‘1zn:{ Fa+m(X;)] - F[u+m(X;)]}V,
i=1 i=1

n d )
—2K(On Y F L+ m(X)1PV (%)Y [n*'°Cy Dy (X1
i=1 j=1
We now approximate F[i+m(X;)]—F[x«+m(X;)] by alinear expansion in m-m and replace
m—m with the stochastic approximation of Theorem 2(a). (A rigorous argument would require a
higher-order expansion of m-m.) Thus, F[&+m(X;)]-F[«+m(X;)] is approximated by a
linear formin U; . Dropping higher-order terms leads to an approximation of
2<% .
HZ{ Fla+m(X;)] = Flu+m(X;)}Y;
i=1
that isa U statisticin U; . The off-diagonal terms of the U statistic can be shown to be of higher

order and, therefore, asymptotically negligible. Thus, we get
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2 {FLa P06~ Fla+ mOGIU; =2 3 F e+ mOPVar Uy 1X)
i=1 i=1

d
Y [n*°Cy, Dg; (X )1 K (0),
j=1

where

Doj (x) = 2E{F T+ m(X;)I? | X{ =x/} £, (X))
and f,; is the probability density function of X', Now by standard kernel smoothing
arguments, Dy; (x') =D, (x!). In addition, itis clear that V(X;) =V (U; | X;) , which establishes

the desired result.

5. Monte Carlo Experiments

This section presents the results of a small set of Monte Carlo experiments that compare
the finite-sample performances of the two-stage estimator and the estimator of LH. Experiments
were carried out with d=2 and d=5. The sample size is n=500. The experiments with

d =2 consist of estimating f; and f, inthe binary logit model
P(Y=1| X =x) = L[ f,(}) + f,(3)],

where L isthe cumulative logistic distribution function:
L(v)=€"/[1+€"]; —co<V<oo,

The experiments with d =5 consist of estimating f; and f, inthe binary logit model

5
P(Y=1|X =X)= L{fl(x1)+ f2(x2)+2xj].

j=3

In al of the experiments, f;(Xx)=sin(zx) and f,(x)=®(3x), where ® is the standard normal
distribution function. The components of X are independently distributed as U[-171].
Estimation is carried out under the assumption that the additive components have two (but not

necessarily more) continuous derivatives. Under this assumption, the two-stage estimator has the

rate of convergence n 2/°

d=5.
B-splines were used for the first-stage of the two-stage estimator. The kernel used for the

. The LH estimator has this rate of convergence if d =2 but not if

second stage and for the LH estimator is

13



K(v) = (15/16)1-Vv*)?I (Jv|< 1).

Experiments were carried out using both local-constant and local-linear estimators in the second
stage of the two-stage method. There were 1000 Monte Carlo replications per experiment with
the two-stage estimator but only 500 replications with the LH estimator because of the very long
computing times it entails. The experiments were carried out in GAUSS using GAUSS random
number generators.

The results of the experiments are summarized in Table 1, which shows the empirical
integrated mean-square errors (EIMSE's) of the estimators at the values of the tuning parameters
that minimize the EIMSE’s. Lengthy computing times precluded using data-based methods for
selecting tuning parameters in the experiments. The EIMSE's of the local-constant and local

linear two-stage estimates of f; are considerably smaller than the EIMSE’s of the LH estimator.
The EIMSE's of the local-constant and LH estimators of f, are approximately equal same,

whereas the local-linear estimator of f, hasalarger EIMSE.

6. Conclusions
This paper has described an estimator of the additive components of a nonparametric

additive model with a known link function. The estimator is asymptotically normally distributed

-2/5

and has a pointwise rate of convergence in probability of n when the unknown functions are

twice continuously differentiable, regardless of the dimension of the explanatory variable X . In

~2/5 \with the only other currently available

contrast, achieving the rate of convergence n
estimator for this model requires the additive components to have an increasing number of

derivatives asthe dimension of X increases.

7. Appendix: Proofsof Theorems
Assumptions A1-A7 hold throughout this section.

a Theorem1
This section begins with lemmas that are used to prove Theorem 1.

Lemmal: Thereareconstants a>0 and C << such that

P| sup | S, (6) - ESy (6) |> £ |< Cexp(-nac?)
0cO,

for any sufficiently small € >0 and all sufficiently large n.
Proof: Write

14



S (@)=Y XZ =251 (0) +Sy2(0) .
i=1

where

Sw1(0) =Y YF[P.(X;)6]

i=1

and

Sh2(0) =" F[P(X;)0)° .

i=1

It sufficesto prove that

P guglsq,q(e)—Esnkj(e)pg <Cexp(-nas®) (j=12)

for any £>0, some C<eo, and al sufficiently large n. The proof is given only for j=1.
Similar arguments apply when j =2

Define S,,1(0) = S1(0) — ES,1(0) . Divide ©, into hypercubes of edge-length 7.
Let ©F,...0M) denote the M =(2C,/¢)**) cubes thus created. Let 6,; be the point the

center of ©{). The maximum distance between 6,; and any other point in ©{) is

r=d(x)2¢/2, and M =exp{d(x)[log(C, /) + 1/ 2)logd(x)]} . Now
[wp |Snz(1(‘9)|>5}CU{ sup |31K1(9)|>5}
LSC] 1 HE@

Therefore,

Pn—P{sup |sn,(1(9)|>e}<2p[ sup |31K1(9)|>5}
6O e

j=1
Now for G e 89),

|Su1(0) 11 S (64 ) 1+ 1 Ssa () = S (64 ) |

<1 Su1 O ) [HICr (£ + NIN DI |

i=1

n
<11 (6,j) [+2CE L™ 1Y |

i=1

15



for al sufficiently large x and, therefore, n. Therefore, for al sufficiently large n,

0e0l i=1

n
P{ Sp | Sya(0) 1> e} <Pl Sua(0c)) 1> €12+ P{chlgrn‘lzlvi |>e/2}
Choose r =2, Then £/2-2Cg,L, rE(|Y]) > /4 for all sufficiently large x . Moreover,

n n
P|:2CF1§Krn‘12|Yi |> g/z} < F{zcmg,(rn-lz(n(i I-E|Y])> 5/4}

i=1 i=1

< 2exp(-ane*(y)
for some constant & >0 and all sufficiently large x by Bernstein’s inequality (Bosq 1998, p.

22). Also by Bernstein’s inequality, thereis a constant a, >0 such that
Pl Sur (6 }) |> €12] < 2exp(-a5ne?)
fordl n, x,and j. Therefore,

P, < 2M exp(—a,ne?) + exp(-ayne?)]
< 2exp{—a,ne?¢? + 2dC, n"[log(C, /1) + (1/ 2)log(2C, d) + (1/ 2)y logn]}

+ 2exp(-ane?),

where y =4/15+v . It follows that B, < 4exp(-ane?) for a stitable a>0 and all sufficiently

large n. Q.E.D.

Define S, (6) = E[S,, (6)]
and

0, = inS.(9).

K arg(g;n@r:  (6)

Lemma2: Forany >0, SK(énK)—SK(éK)«y amost surely for al sufficiently large
n.

Proof: For each x, let N, c R9®) be an open set containing 6,.. Let A, denote the
complement of A in ©,. Define T, = N, NO,. Then T, c RY*) iscompact. Define
RN ORENUOE
Let A, betheevent |S, (0)-S.(0)|<n/2 fordl 8 ©, . Then

Ay = Sc(Bnc) < Suc(B,) + 112
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and
A= Sy (0,)<Sc(6,)+112.
But S, (6,.) < S, (8,) by definition, so

A= Se(0nc) < S (B) +1112.
Therefore,
A= Sc(0n) < Sc(B) + 1= Sc(Bn) = Sc(6,) <71
S0 A, = 6. € N,.. Since N, isarbitrary, the result follows from Lemma 1 and Theorem 1.3.4

of Serfling (1980, p. 10). Q.E.D.
Define b, (x) = ¢+ m(x) - P.(x)'6, and

Sc0(6) = E{Y —=F[P. (XY +b, (X)]}*.
Then
6, =arg N Syo(6)

Lemma3: Forany 7>0, S.o(0,)— Sco(f,0) <7 for adl sufficiently large n.

Proof: Observe that |S, () —S.(€)|—0 as n— oo uniformly over € ©, because
b, (x) — 0 for amost every xe X' . For each «, let N/, < R%*) be an open set containing 6,.,.
Define T, =N, NO,. Then T, c RY*) iscompact. Define

n= gE“TrK‘ Sc0(0) — Sco(bk0) -
Choose n and, therefore, x large enough that |S (0)—-S.¢(0)|<n/2 for dl 6 ®. Now
proceed asin the proof of Lemma?2. Q.E.D.

Define Z = FTu+m(X)IP(X;) and Q =n"">"" 7,;7;;. Then Q. =EQ,. Let
Z,'§i (k=1...,d(x)) denote the k’th component of Z,;. Let Z_ denote the nxd(x) matrix
whose (i,k) element is Z .

Lemma 4: HQK —QKHZ =0, (x*/n).

Proof: Let Q; denotethe (i, j) element of Q.. Then

A , ) d(x) n _ 2
elo-af=3 E(n—lzz,zz,g —Qk,}
k=l j=1 i=1

17



k=1 j=1 =1 /=1

df“) df“)[En‘zz > z8z)z¥z) —QE,-J

d(x) d(x) n d(x) d(x)

:kZ:;L ;En_zé(z’ﬁ) (z,g,) —n‘lz JZQkJ
Sn-lErg(z; )zg(z,g )2]=O(K/n).

The lemma now follows from Markov’ s inequality. Q.E.D.

Define ¥, =1 (A4 min 2C; /2) , where | istheindicator function. Let U = (Uy,...,.U,)".

Lemma5b: v,

(i);lz;lj/nu =0, (k2 /n"?) asn—co.

Proof: For any xe X,

n‘zE(yn

6;2z;0] | x = xj %, (02,G602,0(X =)

=n—’E [Trace(z,(é,glz,'(UU’)
< n‘zynq,Trace((‘:),;lz,(Z,’()

=n"'C,y,d(x) <Cx/n

for some constant C<eoo. Therefore, vy,

Q;llzz;U/nH=Op(/(1’2/n1’2) by Markov's
inequality. Now

2|0 20 1] = 7ol (02, IMQLM QM (2,0 )2,
Define ¢=Q;Y?Z;U/n. Let .ullgpy ad G,...0g denote the eigenvalues and

eigenvectors of Q. Let g = MaX(7y,...7g(x))-  The spectral decomposition of Q;* gives

_ d(x)
Q= z/ _, M99, SO

18



d(x)

A, — 2 , ,
"n QKlZKU /nH =7n z 77(4: Qz%f
(=1
d(x)
< ¥l mex Z EUYAE < VillmanS'E = Op(K/ n).
(=1
Q.ED.
Define

B, =G> F L+ (X )1Zyibso(X,)
i=1

Lemmas6: |B,|=0(x2) with probability approaching 1 as n— co.
Proof: Let & bethe nx1 vector whose i 'th component is FTu + m(X;)]b.o(X;). Then

B, =Q'Z/&/n, and 7, |By|? = n2nE'2,Q5%Z;& . Therefore, by the same arguments used to

prove Lemma 5, 7, ||Bn||2 <Cnly &E=y,0(x™*). The lemma follows from the fact that
P(y,=D)—>lasn—e. QED.
Proof of Theorem 1: To prove Part (a), write

(7.0 Seo(Bc) — Sco(6y) =

[Seo@re) = S G )] +[Sc (Bae) = Sc (@ +1Se () — Seo @) +[Se0(6) — Seo(B,)]-

Given any h>0, it follows from Lemmas 2-3 and uniform convergence of S to S, that each

term on the right-hand side of (4.1) is less than n/4 amost surely for al sufficiently large n.

Therefore SKo(énK)—SKO(GK)<77 amost surely for all sufficiently large n. It follows that

én;( —HKH%O amost surely as n— oo because 6, uniquely minimizes S_. Part (a) follows

because uniqueness of the series representation of each function m; implies that |6, — 6,0 — 0
asn-—oo.

To prove the remaining parts of the theorem, observe that énK satisfies the first-order
condition asnK(énK)/ae=o almost surely for all sufficiently large n. Define M; = u+m(X;)
and AM; = P, (X;)6pe = M; = P (X) (6o —60) ~beo(X;). Then a Taylor series expansion
yields

n_lzn: ZKiUi - (é/( + Rnl)(énr( _‘91(0) + n_lzn: F,(Mi )ZKi bKO(Xi ) + I:\)nZ =0,
i=1 i=1
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almost surely for all sufficiently large n. R, isdefined by

Ra = (U, F/(M,) +U,[F"(M,) ~ F/(M,)] +[312)F" (W, )F /(M)
i=1

+U/2)F" (M, )F”(M,)AM, + 1/ 2)F (M, )F”(M, )(AM, )2]AM, —
[F(M)F/(M;) — (U 2)F (M )F /(M) + F (M) F (M) (X)TBeo (X} Pe (X)) P (X1
where M; and I\7Ii are points between PK(Xi)’énK and M;. R,, isdefined by

Riz == {U;F"(M;)+ Ui [F (M)~ F*(M)]
i=1

AR (M) F'(M;) = (U 2F (M) F /(Mo (X5) = (U 2)F (M )F (M Do (X1) b0 (X)-
Now let & beany d(x)x1 vector. Then

~ 2
7o Qe +Ru) R

(G + R G104 =7

=Trace{ 7, [ Ry (Qr + Ry) 2Rufl}

<O, (K)(EE)|Rul?

= op(zc)(ff)O{wgg |Pe (%) (O —O,0) — Do (X) +sup b0 (X) ﬂ

= (£6)0, (KZ HéK - 9”2 + K_S).

A . . 2
Setting £=Q.'z,U/n and applying Lemma 5 vyields “[(QK+&1)‘1—Q;1]Z;U/n“

O, {(ﬁ/n)

G =0 1/ . Setting £ =G S MR (X)Bio(X) + Rz

applying Lemma 6, and using the result that “Q,;anzH =0, (k%) yields

o,

2

A

One —9,(0“2 I+ zc5j

[(Q +Ry) ™ —é;ll[n‘lz F(M{)Z,ibo (X)) + an}
i=1

It follows from these results that
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O =00 = n_l(j,;lzn: FTu+m(X)]P (XU,
=

G F L OGP, (X )b,0 () + R,
i=1

where |R,| =0, (x*/n+n""?). Part (d) of the theorem now follows from Lemma 4. Part (b)

follows by applying Lemmas 5 and 6 to Part (d). Part (c) follows from Part (b) and Assumption
A5(iii). Q.E.D.

b. Theorem 2
This section begins with lemmas that are used to prove Theorem 2. For any

=0 xDe 11970, st m(R)=m() +..+my(xY), and bo(X)=x+m (%) -
P.(X)6,, , Where
P.(X) =[10,..,0, p,(X2), e, P (62),eoes PLOX), oo P (XD,
and
0o = (14,0,...,0,051,..., Oy e, O s O ) -
In other words, P and 6,, are obtained by replacing pl(xl),..., pK(xd) with zeros in P, and
611,...,0, with zerosin 6. Also define
S (%) =B (R'Q Y FTu+ m(X P (XU
j=1
and
S2(%) = "B (R'Q D F T+ m(X )I?Pe (X))o (X)) -
j=1
For x!e[-1,1] and j =0,1 define
Hpja (X)) = (nh)‘”zi F o+ my () + My (X1 = x) KR (¢ = X3 (X)),
i=1
Hpj2(X) =(nh)‘1’2i F T+ my () + my (KO =3 KR (¢ = X 80,(X3),
i=1
and

Hys0) = ~(0h) 23 F e+ m06) + Ly (R)1(XE — ) KO0~ XDBio(K,).

i=1

21



LetV(X)=Var(U | X =X).

Lemma 7: For j=0,1 and k=123, Hnjk(xl)zop(l) as n—eo uniformly over
xte[-11].

Proof: The proof is given only for j=0. Similar arguments apply with j=1. First

consider Hq,(x!). We can write
n
Hpot (X)) = > &, (x)U;
=
where

a;j(x) =

32y Zi FLa+my () +meg (X2 Ky (¢ = XD P (X Qe F T+ m(X )P (X))
i=1

n‘3’2h‘1’2i Kp (¢ = X A; (04).
i=1

Using Lipschitz continuity of a; , the moment conditions A2(v) on U, and arguments similar to
those used to prove Lemma 1, the conclusion of thelemmafor j=0, k=1 followsfrom
5 2
(72)  supDd a;(x)?=0,(1).
X<z
To prove (7.2), it suffices to show that

(73 sp a0 Eoy(n?) (k=12),
[X'<1,1<j<n

where
a1 (x) = n"¥2h 2K, (- XT) A ()

and

ay,(x) = n‘3’2h‘1’22n: Kn(x = X1)A; ().
i=1
i#]
To prove (7.3), notefirst that by A3(iii), A5(iii), and A6(i),

sup | A;(x)|=0(x) =O(n*"?).
[x'[<1, 1<i, j<n

This immediately implies (7.3) for k=1. To prove (7.3) for k=2, note that for some constant
C>0,
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sup |E[A;(xX)X{]I<C
[x'<1

I<i,j<n

i#]

and

sup | E[A; (X)? | X{T]<Ck .
[x'<1

I<i,j<n

i#]

For aproof of these bounds, note that the density of X isbounded from above and below so that
E{F Ta+m(X IR (X)) | X} = E{F Ta+m(X)IPc(X;)}

are the Fourier coefficients of a bounded function. Therefore, their sum of squares converges.

Thus, it remains to show that

(7.4) sup nthY Zi Kn(x" = X")B; (x) =0, (),
IX'|<L,1<j<n i=1
i#]

where B (x') = A; (x") — E[A; (X)) | X{1. To prove (7.4), note that for 5 >0,

P n‘lh‘llzzn: Kn(x"= X")B; (x) >4
i=1

i#]

<Eexp| n*h Y Zzn: Kn(x" = X By (x") |exp(-n"'*5)
i=1
i#]

<{1+n " 2hEKR (X - X1)BE (x) exp[O(n~**h~H2n* )]} " exp(-n'5)
< exp[o(n—llznsllo)] @(p(_nll 45)

=0(1) exp(-n"45).

We now provethelemmafor j=0, k=2. Wecan write

Hioa (x) = (nh) ™2 FTu+ my (<) + my (X)) K (X = XHP(Xi)'B,

i=1

where
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By =n"Q.M Y Flu+m(X)?Pe(X;)beo(X;).

=
Arguments like those used to prove Lemma 6 show that E | Bn||2 =0O(x™*). Therefore,

sup | Hygp (X') | = wp(nhrl’zzK (= X{)-0,(x7'?)

IX'|s1 IX'[<1 i=1
— Op (nl/ Zhl/ ZK—3/2)

=0, (D.
For the proof with j =0, k=3, note that
SUp | Hos (X)) | = wp(nh)‘l’zz Kp(X" = X!)-0p(x7?)
<t X<l i-1
=0,(D.
Q.E.D.

Let PO, X) =1, pO)s e, P O, PUX ), ooy P (X 2), ey PL(X ), p (X)) and
b (7, Xi) = 1+ my (<) + My (X;) = P (X', X )6,0 . Define

Sra (X', Xi) =B (¢, X )’Q,;li F L+ mOX IR (X))
and -
Sna (X', %) =n TR (X, Xi)’Q,;l_i F L+ mO IR (X0 (X )
Also, for j=0,1 define -
L) = (AR M2 U F Tt my00) + L (R TOE =X K (R~ X4, %),

i=1

Lyj2(X) = (nh)‘l’ziuiF”[m my (1) + My (X)1OKE = x5 K (¢ = XD (<4 Xi)

i=1

Lyj3(x) =—(nh)‘1’2iui FTa+ my(x) + moy ()1 = x5 K (¢ = XDbeo O X))

i=1
Loja (<) = (M) ™23 (R [+ my (X + my (X)] = FL+ my () + m (X1

i=1

oF T+ my () + moy (X1 = x5 K (= X Sa (O, X)),
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Lojs (X7) = (nh) ™23 {F L+ my (X + mg (X)) = FLa+my () + my (X))}
i=1

oF T+ my () + moy (X1 =X T K (3= XD (4, X)),

and
Lojs(x) ==(nh) ™2 {FLa+my (X +my (X)) = Fla+ my (<) +my (X))
i=1
FLu+ my (<) + M (X)X = x) Ky (= XPbio (X', X0).
Lemma 8: As n—ee, Ly, (x)=0,(1) uniformly over x'e[-11] for each j=01;
k=1...,6.

Proof: The proof is given only for j=0. The arguments are similar for j=1. By
Theorem 1, 5n4(x1,>?i) is the asymptotic bias component of the stochastic expansion of
P (X, X) (G —Or0) and is Oy (x~%?) uniformly over (x*,X;)e[-11%. This fact and
standard bounds on

n

sup D |U; [Kp (< = X{)

IX<1i=1
and

5 1

sup Y K (X" = X{)

IX<Li=1
establish the conclusion of the lemmafor j=0, k=25. For j=0, k=3,6, proceed similarly
using

sup | bo(x") [=O(k?) .

X1
For j=0, k=5, one can use arguments similar to those made for Hnm(xl) in the proof of

Lemma7. It remainsto consider L, (x) = D,,(x})B,, where

Dy (x) = (nh)‘”ziui FT e+ m () + moy (X)1Kp (¢ = X P, X))

i=1

and

B, = QY F L+ mOX PR (XU,
j=1
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Now, E|B,|* =0(xn™), and D,(x*) contains elements of the form
(nh) ™2 p, (xl)iui FLu+m () + my (X)IKR (X = X7
i
and
(nh)—”ziui P (X F Lo+ my(x) + my (X)TKR (¢ = X7
i
for 0<r<x, 2<¢/<d. These expressions can be bounded uniformly over |x! <1 by terms that

12 12 : o
are Op[(logn)™“ | p; (xl) | and Oy[(logn)™“], respectively. Thisgives

Sup
X<l

Therefore,

Dn(xl)“z =0, (xlogn) .

Dy () Bl =0, 0.

Sup | Lnoy (<) P < sup|
X1

X<t
Q.E.D.

Lemma: The following hold uniformly over |x*|<1-h:
(nh) ™ Sios (X, M) = Dy () + 0, (1) ,
(nh) ™ S751 (X', M) = Ach?Do (X)) 1+ 0, (D],
and
(nh) ™ Sy (1, 11) = h? A Dy (XH[1+ +0, (1)] -

Proof: Thisfollows from the Theorem 1(c) and standard bounds on

sup S U7 (X2~ YK (6~ XD)

IX<Li=1
for r=0,1; s=0,1,2. Q.E.D.
Lemma 10: The following hold uniformly over | X' |<1-h:
@ ()25 (x', M) = (h) ™2 Sy (x, m) + (nh) 2 Do (x ) Amy (x') + 0, 1),
and
() ()2 (xm) = () ™25, (< m) + 0, (D)«
Proof: Only (a) is proved. The proof of (b) is similar. For each i=1..,n, let

mr(x, X)) and m#*(xt, X;) denote quantities that are between i +my(x})+m (X;) and
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u+m () +m 4 (X). Thevalues of mr(x}, X;) and mr*(x}, X;) may be different in different

uses. A Taylor series expansion and Theorem 1(c) give

(nh) ™2 S50, (O¢,11) = () /2 S/ (¢, m)+ZJnJ (<) +n(nh)” 1’20{ sup_[am(x, x)H

(xt,%)ex

=(nh)‘1’zsam(x1,m)+i3n,- (x")+0,(D)

=
uniformly over |xt |<1-h, where

3,008) = 2(nh) M2 F -+ my () + Ly (R K (4 - XHAm (),

i=1

Inp(x) = 2(nh)‘1’2i FLp+m(3) +moy ()12 K (¢ = XhamLy (Xi)

i=1

‘]nS(Xl) =
- 2(nh)—1’2i{vi — FLa+my () + my GO F T (¢, Xi)] K (X = XHam(d, X)),
i=1

Ina(x) = 2n0) 2" F L+ my () + Moy (X)L F T (¢, X))+ 2F Tm*(x, X)] }

i=1
Ky (" = XH[AmM(E, Xp)]%,
It follows from Theorem 1(d) and Lemma 7 that J,,(x}) = zilen(,k (x")+0, (D) =0,(D)

uniformly over | xt |£1-h. Inaddition, it follows from Theorem 1(c) that for some constant

C<e

n4(x1)<C(nh)‘1’22K ¢ =X ){ sup

(Xt X)ex

AM(, x)” }

=0, | (N2 sup
(X, X)eXx

AMOE, x)\ﬂ =0, (1)

uniformly over |x!|<1-h. Now consider Jn3(x1) . It follows from Assumption A3(v) that
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‘]nS(Xl) =

= 2(nh) ™2 LY = FlLa+my (X + Mg ()T Ta+ my(X) + mg (Xi)] K (¢ = XHAm(xt, X)

i=1

+0, {(nh)” 2 sup | Am(xt, %) F*S}

xeX

6
= Lok (x) +O,, [(nh)” 2 wg | Am(, X) r’ﬂ +0, (1)

k=1
uniformly over |x"|<1-h. Therefore, J3(x") =0,(1) uniformly by Lemma8 and Theorem

1(c), and
(h) ™25, (<, M) = (nh) ™ 280, (X", M) + Iy (x) + 0, (D)
uniformly over |xt|<1-h.

Now consider J,;(x') . Set

Ju(x) = 2(nh)‘1’2i FTu+my () + moy (X)1P Ky (3= X

i=1
It follows from Theorem 2.37 of Pollard (1984) that J, (x') — E[J,;(x")] = o(logn) almost surely
as n—oo. Inaddition, E[(nh)™2J,,(x})] = D(x!) + O(h?). Therefore,

Jra (x) = (nh) 2 D(x")Amy (x) + Oflog nAmy (x*)]

= (nh)""2D(x)Amy (x) + 0, ()
uniformly over |x'|<1-h. Q.E.D.
Proof of Theorem 2: By the definition of rﬁl(xl) :

Shan (X, M) S0 (<, 1) = Sy (4, 1) S (X1, M) .
Shor (X', ) Sz (X', ) = S (X', 1)
Part (a) follows by applying Lemmas 9 and 10 to the right-hand side of (4.3). Define

(43 M) -my(x) = m(x)-m(x) -

w=[nhDy (x")] ™4~ Sn01 (X", M) +[ Dy (X") / Do (x')] Sz (X', M)} .
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Methods identical to those used to establish asymptotic normality of local linear estimators show
that EM?%w)=pg+01), Var(n?’w)=V,(x})+o@1), and n?S[m()-m(d)] s
asymptotically normal, which proves Part (b). Q.E.D.

Proof of Theorem 4: It follows from Theorem 2(a) that

WOy (x) = my (X1 dx = 0, (2) .

4/5 J‘
1-h<|x <1

Now consider
4/5 2 _ 2
N0 sy WO ~m ()P
By replacing the integrand with the expansion of Theorem 2(&), one obtains a U-statistic in U;

conditional on Xy,..., X,,. ThisU statistic has vanishing conditional variance. Q.E.D.

Proof of Theorem 5: Use Theorem 2(a) to replace m; with m; in the expression for

rﬁff) . The result now follows from standard methods for bounding kerndl estimators. Q.E.D.
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TABLE 1: Results of Monte Carlo Experiments*

Enpirical | MSE_

Esti mat or Ky Koy h h, fy f,
d=2
LH .9 . 9 . 116 . 015
2-Stage with 2 2 .4 .9 . 052 . 015
Local Const ant
Snoot hi ng
2-Stage with 4 2 .5 1.4 . 052 . 023
Local Li near
Snoot hi ng
d=
LH 1.0 1.0 . 145 . 019
2-Stage with 2 2 .4 .9 . 060 . 018
Local Const ant
Snoot hi ng
2-Stage with 2 2 . 6 1.3 . 057 . 029
Local Li near
Snoot hi ng

' In the two-stage estimator, ki and h; (j=12) are the series

I ength and bandw dth used to estimate f;.
h.

i (1=12) is the bandwidth used to estimate f;.

Ky, kKo, h, and h, minimze the IMSE s of the estinmates.

In the LH estinator,
The val ues of
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