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In an effort to improve the small sample properties of generalized method of mo-
ments (GMM) estimators, a number of alternative estimators have been suggested.
These include empirical likelihood (EL), continuous updating, and exponential tilt-
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geneity. We also find that EL has no asymptotic bias from estimating the optimal
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1 Introduction

In an effort to improve the small sample properties of GMM, a number of alternative

estimators have been suggested. These include the empirical likelihood (EL) estimator

of Owen (1988), Qin and Lawless (1994), and Imbens (1997), the continuous updating

estimator (CUE) of Hansen, Heaton, and Yaron (1996), and the exponential tilting (ET)

estimator of Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998). As

shown by Smith (1997), EL and ET share a common structure, being members of a

class of generalized empirical likelihood (GEL) estimators. We show that the CUE is

also a member of this class as are estimators from the Cressie and Read (1984) power

divergence family of discrepancies. All of these estimators and GMM have the same

asymptotic distribution but different higher order asymptotic properties. We use the

GEL structure, which helps simplify calculations and comparisons, to analyze higher

order properties like those of Nagar (1959). We derive and compare the (higher order)

asymptotic bias for all of these estimators. We also derive bias corrected GMM and GEL

estimators and consider their higher order efficiency.

We find that EL has two theoretical advantages. First, its asymptotic bias does

not grow with the number of moment restrictions, while the bias of GMM often does.

Consequently, with many moment conditions the bias of EL will be less than the bias of

GMM. This property is important in econometrics, where many moment conditions are

often used. For example, Hansen and Singleton (1982), Holtz-Eakin, Newey, and Rosen

(1988), and Abowd and Card (1989), all use quite large numbers of moment conditions

in their empirical work. The relatively low asymptotic bias of EL indicates that it is an

important alternative to GMM in such applications. Furthermore, we show that under

a symmetry condition, which may be satisfied in some instrumental variable settings,

all the GEL estimators inherit the small bias property of EL. We provide intuition for

the bias results by interpreting EL as a GMM estimator where the linear combination

coefficients are efficiently estimated. Because of their efficiency these coefficients are

asymptotically uncorrelated with the moment conditions, removing the primary source
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of asymptotic bias.

The second theoretical advantage of EL is that after it is bias corrected, using prob-

abilities obtained from EL, it is higher order efficient relative to other bias corrected

estimators. This property has a simple explanation. When the data are discrete, having

finite support, the nonparametric (one probability per observation, unknown cells) EL

estimator is asymptotically equal to the parametric (one probability per cell) maximum

likelihood estimator (MLE). Furthermore, the bias correction based on EL probabilities is

identical to the discrete data bias correction for the MLE. Consequently, for discrete data

EL inherits the well known higher order efficiency of the MLE (e.g. see Rao, 1963 and

Pfanzagl and Wefelmeyer, 1978). Then, since nothing in the higher order variance de-

pends on discreteness, this result extends to any distribution. More precisely, by Lemma

3 of Chamberlain (1987), we can find a discrete distribution that matches all the mo-

ments that make up the higher order variances of any two estimators, so the efficiency

of bias corrected EL for the discrete distribution implies efficiency for the true one.

Although the small bias property of EL is nice, there are methods of removing all

of the asymptotic bias. These include the bootstrap, as in Horowitz (1998) for GMM,

the jackknife, as in Kezdi, Hahn, and Solon (2001) for minimum distance, and analytical

methods, as in Hahn, Hausman, and Kuersteiner (2001) for dynamic panel data. Here

we give general analytical bias corrected versions of GMM and GEL. The higher order

efficiency of bias corrected EL gives it a theoretical advantage over all the other bias

corrected estimators.

It is also of interest to compare higher order efficiency when the full bias correction

is not used, so that EL need not be higher order efficient. We do this for estimators that

improve asymptotic efficiency (relative to least squares) under unknown heteroskedas-

ticity, as considered in Amemiya (1983), Chamberlain (1982), and Cragg (1983). We

impose auxiliary assumptions that give zero bias for GMM and GEL, even though the

estimated bias corrections are not zero (so that EL is not higher order efficient), and

compare higher order variances. We find that with a Gaussian disturbance GEL and

GMM have the same higher order variances with many moments, but that with condi-
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tional kurtosis, GMM is efficient relative to EL with thick tailed errors whereas EL is

better with thin tailed errors. This provides an example where there is no bias concern,

the only issue being efficiency, and where EL may not be best in terms of MSE.

Some previous work on higher order properties of these estimators has been done.

Koenker et al. (1994) and Rilstone, Srivastava, and Ullah (1996) give some higher order

variance and bias calculations for special cases of GMM. Corcoran (1998) showed that

in a class of minimum discrepancy estimators, EL has the only objective function that is

Bartlett correctable. Rothenberg (1996) showed that for a single equation of a Gaussian,

homoskedastic linear simultaneous equations model the asymptotic bias of EL is the same

as the limited information MLE and that a bias corrected EL is higher order efficient

relative to a bias corrected GMM estimator. Imbens and Spady (2001) showed in a special

model that the higher order MSE for GMM grows faster with the number of moment

conditions than for EL. We obtain bias formulae and corrections for fully general GMM

and GEL estimators and show EL has relatively small bias and is higher order efficient

after bias correction.

The outline of the paper is as follows. In Section 2 the model and estimators are

described, and new interpretations of some of the estimators are given. Section 3 gives

the asymptotic expansions on which the results are based, including a new consistency

result for GEL. Section 4 presents the results on asymptotic bias. Bias corrected versions

of GMM and GEL are given in Section 5. Section 6 presents the results on higher order

efficiency. Section 7 concludes. Proofs are given in the Appendix.

2 The Model and Estimators

The model we consider is one with a finite number of moment restrictions. To describe

it, let zi, (i = 1, ..., n), be i.i.d. observations on a data vector z. Also, let β be a p × 1
parameter vector and g(z, β) be an m × 1 vector of functions of the data observation z
and the parameter β, where m ≥ p. The model has a true parameter β0 satisfying the
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moment condition

E[g(z, β0)] = 0,

where E[.] denotes expectation taken with respect to the distribution of zi.

An important estimator of β is the two step GMM estimator of Hansen (1982). To

describe it, let gi(β) ≡ g(zi,β), ĝ(β) ≡ n−1 Pn
i=1 gi(β), and Ω̂(β) ≡ n−1

Pn
i=1 gi(β)gi(β)

0.

Also, let β̃ be some preliminary estimator, given by β̃ = argminβ∈B ĝ(β)0Ŵ−1ĝ(β) where

B denotes the parameter space, and Ŵ is a random matrix with properties to be specified

below. The GMM estimator we consider is

β̂GMM = argmin
β∈B

ĝ(β)0Ω̂(β̃)−1ĝ(β). (2.1)

We will compare the properties of this estimator to a class of alternative estimators.

The alternatives to GMM we consider are generalized empirical likelihood (GEL)

estimators, as in Smith (1997, 2001). To describe GEL let ρ(v) be a function of a scalar

v that is concave on its domain, an open interval V containing zero. Let Λ̂n(β) = {λ :
λ0gi(β) ∈ V , i = 1, ..., n}. The estimator is the solution to a saddle point problem

β̂GEL = argmin
β∈B

sup
λ∈Λ̂n(β)

nX
i=1

ρ(λ0gi(β)). (2.2)

The empirical likelihood (EL) estimator is a special case with ρ(v) = ln(1 − v) and
V = (−∞, 1), as shown by Qin and Lawless (1994) and Smith (1997). The exponential
tilting (ET) estimator is a special case with ρ(v) = −ev, as shown by Kitamura and
Stutzer (1997) and Smith (1997).

It will be convenient to impose a normalization on ρ(v). Let ρj(v) = ∂
jρ(v)/∂vj and

ρj = ρj(0), (j = 0, 1, 2, ...). We normalize so that ρ1 = ρ2 = −1. As long as ρ1 6= 0

and ρ2 < 0, which we will assume to be true, this normalization can always be imposed

by replacing ρ(v) by [−ρ2/ρ21]ρ([ρ1/ρ2]v), which does not affect the estimator of β. It is
satisfied by the ρ(v) given above for EL and ET.

The continuous updating estimator (CUE) of Hansen, Heaton, and Yaron (1996) is

also a GEL estimator as we now show. The CUE is analogous to GMM except that the
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objective function is simultaneously minimized over β in Ω̂(β)−1. It is given by

β̂CUE = argmin
βεB

ĝ(β)0Ω̂(β)−ĝ(β), (2.3)

where A− denotes any generalized inverse of a matrix A, satisfying AA−A = A.1 The

following result shows that this estimator is a GEL estimator for quadratic ρ(v).

Theorem 2.1: If ρ(v) is quadratic then β̂GEL = β̂CUE.

Associated with each GEL estimator are empirical probabilities for the observations.

Because these probabilities are important for our analysis we give a brief description. For

a given function ρ(v), an associated GEL estimator β̂, and ĝi = gi(β̂) they are

π̂i = ρ1(λ̂
0ĝi)/

nX
j=1

ρ1(λ̂
0ĝj), (i = 1, ..., n), (2.4)

where λ̂ = argmaxλ∈Λ̂n(β̂)

Pn
i=1 ρ(λ

0ĝi)/n. The empirical probabilities π̂i, (i = 1, ..., n),

sum to one by construction, satisfy the sample moment condition
Pn
i=1 π̂iĝi = 0 when

the first order conditions for λ̂ hold, and are positive when λ̂0ĝi is small uniformly in i.

For EL they were given by Owen (1988), for ET by Kitamura and Stutzer (1997), for

quadratic ρ(v) by Back and Brown (1993), and for the general case by Brown and Newey

(1992); see also Smith (1997). For any function a(z, β) and GEL estimator β̂ these can be

used to form an efficient estimator
Pn
i=1 π̂ia(zi, β̂) of E[a(z, β0)], as in Brown and Newey

(1998).

2.1 Duality for GEL

Comparing GEL with another type of estimator helps explain the form of the probabilities

in equation (2.4) and connects our results with the existing literature. Let h(π) be a

convex function of a scalar π, and consider the estimator

β̄ = arg min
β∈B,π1,...,πn

nX
i=1

h(πi), s.t.
nX
i=1

πigi(β) = 0,
nX
i=1

πi = 1. (2.5)

1The CUE of Hansen, Heaton, and Yaron (1996) actually minimizes Q̃(β) = ĝ(β)0[Ω̂(β) −
ĝ(β)ĝ(β)0]−1ĝ(β) rather than Q̂(β) = ĝ(β)0Ω̂(β)−1ĝ(β) , but equality of the two estimators follows
by Q̃(β) = Q̂(β)/[1− Q̂(β)].
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This general class of minimum discrepancy (MD) estimators was formulated by Corcoran

(1998). Like GEL, this class also includes as special cases EL and ET, where h(π) is

− ln(π) and π ln(π) respectively.
For each MD estimator there is a dual GEL estimator when h(π) is a member of the

Cressie and Read (1984) family of discrepancies in which h(π) = [γ(γ + 1)]−1[(nπ)γ+1 −
1]/n. To describe this result, note that the Lagrangian for MD is

L =
1

γ(γ + 1)

nX
i=1

[(nπi)
γ+1 − 1]/n− α0

nX
i=1

πigi(β) + µ(1−
nX
i=1

πi),

where α is an m× 1 vector of Lagrangian multipliers associated with the first constraint
and µ a scalar multiplier for the second constraint. Let π̄i, ᾱ, and µ̄ denote the solutions

to the MD optimization problem, along with β̄. We interpret expressions as limits for

γ = 0 or γ = −1.

Theorem 2.2: If g(z,β) is continuously differentiable in β, for some scalar γ

ρ(v) = −(1 + γv)(γ+1)/γ/(γ + 1), (2.6)

the solutions to equation (2.5) and (2.2) occur in the interior of B, λ̂ exists, and Pn
i=1 ρ2(λ̂

0ĝi)ĝiĝ0i

is nonsingular, then the first order conditions for GEL and MD coincide for β̂ = β̄,

π̂i = π̄i, (i = 1, ..., n), and λ̂ = ᾱ/(γµ̄) for γ 6= 0 and λ̂ = ᾱ for γ = 0.

The duality between MD and GEL estimators is known for EL (γ = −1, Qin and
Lawless, 1994) and for ET (γ = 0, Kitamura and Stutzer, 1997), but is new for the

CUE (γ = 1) as well as for all the other members of the Cressie and Read (1984) family.

Duality is useful because it shows how the computationally less complex GEL estimators

are related to MD estimators of the Cressie-Read family, which has become a common

standard for comparison in the empirical likelihood literature (e.g. see Owen, 2001). Also,

duality justifies the π̂i in equation (2.4) as MD estimates, which aids the interpretation

of the first order conditions of the estimators.
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2.2 The First Order Conditions

Some interpretations of the first order conditions are useful for understanding our asymp-

totic bias results. Let Gi(β) ≡ ∂gi(β)/∂β. The GMM first order conditions imply

[
nX
i=1

Gi(β̂GMM)/n]
0Ω̂(β̃)−1ĝ(β̂GMM) = 0. (2.7)

We can also obtain an analogous expression for any GEL estimator β̂.2 Let k(v) =

[ρ1(v) + 1]/v, v 6= 0 and k(0) = −1. Also, let v̂i = λ̂0ĝi, k̂i = k(v̂i)/Pn
j=1 k(v̂j), and π̂i be

as given in equation (2.4).

Theorem 2.3: The GEL first order conditions imply

[
nX
i=1

π̂iGi(β̂)]
0[
nX
i=1

k̂igi(β̂)gi(β̂)
0]−1ĝ(β̂) = 0,

where k̂i = π̂i for EL and k̂i = 1/n for CUE.

In comparing the GMM and GEL first order conditions, we see that each can be

viewed as setting a linear combination of ĝ(β) equal to zero, but the linear combination

coefficients are estimated in different ways. GMM uses sample averages while GEL

uses an efficient estimator of the Jacobian term. Also EL uses an efficient estimator of

the second moments, CUE uses the sample average, and other GEL estimators use other

weighted averages. An important property of efficient moment estimators is that they are

asymptotically uncorrelated with ĝ(β̂), eliminating correlations between corresponding

terms in the first order conditions which are an important source of nonzero expectation

for the first order conditions, and hence of bias. Consequently, as we will show, for GEL

there will be no asymptotic bias from estimation of the Jacobian and, furthermore, for

EL there will also be no asymptotic bias from estimating the second moments.3 We

will also see that the absence of second moment bias holds for any GEL estimator with

ρ3 = −2, which can be explained by the fact that k(v) = ρ1(v) + o(v) in this case, and
hence k̂i is approximately equal to π̂i.

2Bonnal and Renault (2001) independently obtained a similar result for the CUE.
3Donald and Newey (2000) previously discussed the absence of Jacobian bias for the CUE.

[7]



3 Stochastic Expansion

We find the asymptotic bias and higher order variance using stochastic expansions for

each estimator. Let F denote the distribution of z, ψ(z, F ) a function of z and F

with E[ψ(z, F0)] = 0, and ψ̃ =
Pn
i=1 ψ(zi, F0)/

√
n. Also define a(z, F ), ã, b(z, F ), and b̃

analogously. For each estimator we derive an expansion

√
n(β̂ − β0) = ψ̃ +Q1(ψ̃, ã, F0)/

√
n+Q2(ψ̃, ã, b̃, F0)/n+Rn, (3.1)

where Q1 is quadratic in its first two arguments, Q2 is cubic in its first three arguments,

and Rn = Op(n
−3/2). As discussed in Rothenberg (1984), valid higher order bias and

variance calculations can be based on the expectation and variance of the sum of the

first three terms in this expansion. Under certain regularity conditions, including con-

tinuous distributions, this bias and variance will coincide with those of an Edgeworth

approximation to the distribution. Furthermore, even when the data are discrete, so

that an Edgeworth approximation is not valid, these calculations can be used for higher

order efficiency comparisons, as in Pfanzagl and Wefelmeyer (1978). We also note that

in the Appendix we give a corresponding expansion for λ̂, which may be of interest for

the analysis of overidentifying moment tests, as in Imbens, Spady, and Johnson (1998);

see also Smith (1997, 2001).

Consistency and asymptotic normality are important prerequisites for stochastic ex-

pansions, so we first briefly consider these properties for any GEL estimator β̂. We make

use of the following identification and regularity condition. Let Ω = E[gi(β0)gi(β0)
0].

Assumption 1: (a) β0 ∈ B is the unique solution to E[g(z, β)] = 0; (b) B is compact;
(c) g(z, β) is continuous at each β ∈ B with probability one; (d) E

h
supβ∈B kg(z,β)kα

i
<

∞ for some α > 2; (e) Ω is nonsingular; (f) ρ(v) is twice continuously differentiable in a

neighborhood of zero.

This assumption requires the existence of slightly higher moments than consistency

for two step efficient GMM, as in Hansen (1982), but otherwise is the same.
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Theorem 3.1: If Assumption 1 is satisfied then β̂
p→ β0, ĝ(β̂) = Op(n

−1/2), λ̂ =

argmaxλ∈Λ̂n(β̂)

Pn
i=1 ρ(λ

0gi(β̂))/n exists with probability approaching one, and λ̂ = Op(n−1/2).

This result is new in making no auxiliary assumption about β̂ or λ̂. Also, the proof

is based directly on the global concavity of ρ(v) and the saddle point form of GEL.

Additional conditions are needed for asymptotic normality. Let G = E[∂gi(β0)/∂β].

Assumption 2: (a) β0 ∈ int(B); (b) g(z, β) is continuously differentiable in a neigh-
borhood N of β0 and E[supβ∈N k∂gi(β)/∂β 0k] <∞; (c) rank(G) = p.

Let Σ = (G0Ω−1G)−1, H = ΣG0Ω−1, and P = Ω−1 −Ω−1GΣG0Ω−1.

Theorem 3.2: If Assumptions 1 and 2 are satisfied then

√
n

Ã
β̂ − β0
λ̂

!
d→ N(0, diag(Σ, P )), 2n[

nX
i=1

ρ(λ̂0gi(β̂))/n− ρ0] d→ χ2(m− p).

This result shows asymptotic normality of GEL estimators, and that, properly nor-

malized, the saddle point objective function has a limiting chi square distribution. This

is an overidentification test statistic that was formulated by Smith (1997). It is included

here because we thought that this test statistic might have independent interest.

Additional smoothness and moment conditions are needed for the stochastic expan-

sion. Let ∇j denote a vector of all distinct partial derivatives with respect to β of order

j.

Assumption 3: There is b(z) with E[b(zi)
6] < ∞ such that for 0 ≤ j ≤ 4 and

all z, ∇jg(z, β) exists on a neighborhood N of β0, supβ∈N k∇jg(z,β)k ≤ b(z), and for

each β ∈ N , k∇4g(z, β) − ∇4g(z, β0)k ≤ b(z)kβ − β0k, ρ(v) is four times continuously
differentiable with Lipschitz fourth derivative in a neighborhood of zero.

Also, for the GMM estimator we need to specify conditions concerning the initial

weighting matrix Ŵ .

Assumption 4: There existsW and ξ(z) such that Ŵ =W+
Pn
i=1 ξ(zi)/n+Op(n

−1),

W is positive definite, E[ξ(zi)] = 0 and E[kξ(zi)k6] <∞.

[9]



We derive the stochastic expansion for GMM using an auxiliary parameter λ̂GMM

that is analogous to that for GEL. Specifically, we consider GMM first order conditions

of the form

−[
nX
i=1

Gi(β̂GMM)/n]
0λ̂GMM = 0,−ĝ(β̂GMM)− Ω̂(β̃)λ̂GMM = 0. (3.2)

This formulation simplifies calculations, because it removes the inverse matrix from the

first order conditions. A different way to do this was proposed by Rilstone et. al. (1996).

The next result shows that GMM has a stochastic expansion.

Theorem 3.3: If Assumptions 1 - 4 are satisfied then equation (3.1) is satisfied for

the GMM estimator.

The final result of this Section is the stochastic expansion for GEL.

Theorem 3.4: If Assumptions 1 - 3 are satisfied then equation (3.1) is satisfied for

the GEL estimator.

Expressions for each of the terms in the expansions of Theorems 3.3 and 3.4 are given

in the respective proofs of these results because they are quite complicated. Implicit

in this result for GMM is that the expansion depends on the preliminary estimator β̃

only through the limit W and influence function ξ(zi). For example, all efficient GMM

estimators that have been iterated at least twice, so that Ŵ = Ω̂(β̄) and β̄ is itself

an efficient GMM estimator, have the same expansion. Also, similarly to Pfanzagl and

Wefelmeyer (1978), Rothenberg (1984), and Robinson (1988), after three iterations that

start at an initial
√
n-consistent estimator, numerical procedures for solving the GEL

first order conditions will produce an estimator with the same leading three terms in the

expansion of equation (3.1).

4 Asymptotic Bias

The asymptotic (higher order) bias formula is given by

Bias(β̂) = E[Q1(ψi, ai, F0)]/n, (4.1)

[10]



with other terms in the expansion being O(n−2). To describe the precise form of the bias

we need some additional notation. LetHW = (G0W−1G)−1G0W−1, Ω̄βj
= E[∂{gi(β0)gi(β0)0}/∂βj],

a be an m× 1 vector such that

aj ≡ tr(ΣE[∂2gij(β0)/∂β∂β 0])/2, (j = 1, ...,m), (4.2)

where gij(β) denotes the jth element of gi(β), and ej the jth unit vector. For GMM we

have the following result:

Theorem 4.1: If Assumptions 1 - 4 are satisfied then

Bias(β̂GMM) = BI +BG +BΩ +BW , BI = H(−a+ E[GiHgi])/n,BG = −ΣE[G0iPgi]/n,
BΩ = HE[gig

0
iPgi]/n,BW = −H

pX
j=1

Ω̄βj
(HW −H)0ej/n. (4.3)

Each of the terms has an interesting interpretation. The first term BI is precisely the

asymptotic bias for a GMM estimator with the optimal (asymptotic variance minimizing,

Hansen, 1982) linear combination G0Ω−1g(z,β). The term BG arises from estimation of

G. If Gi is constant as in minimum distance estimation, see Section 4.2, BG = 0 but

BG is generally nonzero whenever there is endogeneity. Similarly the term BΩ arises

from estimation of the second moment matrix Ω. It is zero if third moments are zero,

but is generally nonzero. Both BG and BΩ will be zero with exact identification, where

m = p, because P is zero in this case. The term BW arises from the choice of preliminary

estimator. It is zero if W is a scalar multiple of Ω. This result is consistent with the

Monte Carlo example of Hansen, Heaton, and Yaron (1996), where multiple iterations

on β̃ had little effect on bias.

We now turn to the bias formula for GEL.

Theorem 4.2: If Assumptions 1 - 3 are satisfied then

Bias(β̂GEL) = BI + (1 +
ρ3
2
)BΩ

In comparison with the GMM bias, we find that BG and BW drop out, i.e. there is

no asymptotic bias from estimation of the Jacobian or from the preliminary estimator.
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The absence of any bias from the preliminary estimator is to be expected from the one

step nature of the GEL estimator. Also, as noted in Section 2, the absence of bias from

Jacobian estimation can be explained by the presence of an efficient estimator of the

Jacobian in the first order conditions. In addition, as noted in Section 2, EL uses an

efficient second moment estimator, leading to the following result.

Corollary 4.3: If Assumptions 1 - 3 are satisfied then

Bias(β̂EL) = BI . (4.4)

Thus, for EL the bias is exactly the same as for an estimator with moment functions

G0Ω−1g(z, β). This same property would be shared by any GEL estimator with ρ3 = −2.
It will also be shared by any GEL estimator when third moments are zero.

Corollary 4.4: If Assumptions 1 - 3 are satisfied and E[gig
0
igij] = 0, (j = 1, ...,m),

then

Bias(β̂GEL) = Bias(β̂EL) = BI . (4.5)

This third moment condition will hold in an IV setting, when disturbances are sym-

metrically distributed. When it does hold one can actually show something slightly

stronger, that β̂GEL − β̂EL = Op(n−3/2).
It is well known that, in overidentified linear models, estimation of the Jacobian term

is an important source of bias in IV estimators. Because the GMM bias includes such

effects but GEL does not, we expect that GEL will have relatively small bias in such

settings. Also, from Altonji and Segal (1996) we know that, in covariance parameter

models, estimation of Ω can be an important source of bias in optimal minimum distance.

Given that the EL bias does not include this effect we expect that it will have relatively

small bias for minimum distance. We can verify this intuition in some specific models.
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4.1 Conditional Moment Restrictions

One important model, that is useful for considering IV estimation, involves a conditional

moment restriction. To describe this model let u(z, β) be a scalar residual satisfying

E[u(zi, β0)|xi] = 0. (4.6)

Consider moment conditions where g(z, β) = q(x)u(z, β) and q(x) is a m × 1 vector of
instrumental variables. To derive the bias, let ui = u(zi,β0), uβi = ∂u(zi, β0)/∂β, uββi =

∂2u(zi, β0)/∂β∂β
0, σ2i = E[u

2
i |xi] and qi = q(xi). Also, for σ2i > 0, let di = E[uβi|xi]/σ2i ,

κi = −E[uβiui|xi],

d̄i = G
0Ω−1qi,Hi = E[uββi|xi], µ3i = E[u3i |xi], δi = Σ(κi + d̄iµ3i)/σ2i .

Theorem 4.5: If Assumptions 1 - 4 and equation (4.6) are satisfied and β̂GMM a

GMM estimator with W = Ω,

Bias(β̂EL) = −Σ(E[d̄itr(ΣHi)]/2 + E[d̄id̄0iΣκi])/n,
Bias(β̂GEL) = Bias(β̂EL) + (1 +

ρ3
2
)BΩ, BΩ = ΣE[d̄iµ3iq

0
iPqi]/n,

Bias(β̂GMM) = Bias(β̂EL) + ΣE[κiq
0
iPqi]/n+BΩ.

Also, if E[kHik2/σ2i ] < ∞, E[σ2i kdik2] < ∞, and κi/σ2i is bounded, there are constants
C1 and C2 such that for all q(x)

kBias(β̂EL)k ≤ C1kΣk/n, e0jBias(β̂GMM)− e0jBias(β̂EL) ≥ C2(m− p) inf{e0jδi}/n.

Here inf{e0jδi} = sup{C : Pr(e0jδi ≥ C) = 1}. In the general heteroskedastic case, we
find that the asymptotic bias of GMM grows linearly with the number of overidentifying

restrictions when inf{e0jδi}̇ = sup{C : Pr(e0jδi ≥ C) = 1} > 0, while the bias of EL is

bounded. In this case the bias of GMM will exceed the bias of EL in magnitude when the

number of overidentifying restrictions is large enough. We can also show this result when

sup{e0jδi} < 0. Donald, Imbens, and Newey (2002) show that these comparisons between
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asymptotic biases are also correct when m is allowed to grow with the sample size. If the

preliminary estimator β̃ is inefficient, the additional term BW = 2ΣE[d̄iq
0
i(HW−H)0κi]/n

should be included in Bias(β̂GMM).

An important special case is a homoskedastic linear model, where uββi = 0 and

κi = κ, σ2i = σ2, µ3i = µ3 are constants. Here Bias(β̂EL) = −Σκ/σ2, which is the
same as the bias of the Gaussian limited information MLE, as shown by Rothenberg

(1996) for Gaussian disturbances. Also, when µ3 = 0, Bias(β̂GEL) = Bias(β̂EL) and

Bias(β̂GMM) = (m − p − 1)Σκ/σ2, which is the Nagar (1959) bias of two stage least
squares. When µ3 6= 0 all the estimators, except for EL and GEL with ρ3 = −2, have an
additional bias term from estimating the weight matrix.

4.2 Minimum Distance Estimation

The second example is classical minimum distance estimation. Consider moment condi-

tions where g(z,β) = r(z) − h(β), for r(z) a vector of functions of the data and h(β) a
vector of functions of the unknown parameters. Here G = −∂h(β0)/∂β, Ω = V ar(r(zi)),
and aj = −tr(Σ∂2hj(β0)/∂β∂β 0)/2. We can derive a bound on the bias of β that only
depends on Σ, analogous to that for the previous model, when h(β) can be interpreted

as the expectation with respect to the pdf for some model. The following assumption

imposes this condition along with some smoothness.

Assumption 5: There is a family of densities f(z|β) such that for any r(z), h(β) =R
r(z)f(z|β)dz. Also, f(z|β) is twice continuously differentiable in a neighborhood N of

β0,
R
(1+kr(z)k) supβ∈N k∂f(z|β)/∂βkdz <∞,

R
(1+kr(z)k) supβ∈N k∂2f(z|β)/∂β∂β 0kdz <

∞, and for si = ∂ ln f(zi|β0)/∂β and Fi = ∂2 ln f(zi|β0)/∂β∂β 0+sis0i, we have E[ksik2] <
∞, and E[kFik2] <∞.

Theorem 4.6: If Assumptions 1 - 4 are satisfied and g(z,β) = r(z)− h(β) then

Bias(β̂EL) = −ΣG0Ω−1a/n,
Bias(β̂GEL) = Bias(β̂EL) + (1 +

ρ3
2
)ΣG0Ω−1E[gig0iPgi]/n,

Bias(β̂GMM) = Bias(β̂CUE) = Bias(β̂EL) + ΣG
0Ω−1E[gig0iPgi]/n.
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Also, if h(β) is linear in β then Bias(β̂EL) = 0. Furthermore, if Assumption 5 is also

satisfied then

kBias(β̂EL)k ≤ pkΣk2
q
E[ksik2]E[kFik2]/2n.

Here the bias for GMM is identical to that for CUE, which occurs because there is

no asymptotic bias from estimation of the Jacobian or from the preliminary estimator

β̃ as Ω̄βj
= 0, (j = 1, ..., p). Also, we find that the asymptotic bias of EL is zero in

the special case of a linear h(β) function, and that it does not grow with the number of

overidentifying restrictions.

For optimal minimum distance it seems difficult to give a general result showing how

the bias of GMM grows with the number of moment restrictions, but an example provides

some insight. Suppose that β is a scalar, r(z) = (z1, ..., zm)
0, and h(β) = βι, where ι is an

m× 1 vector of units. Also, suppose that the components of z are mutually independent
and identically distributed. Let σ2 = V ar(zji) and µ3 = E[(zji − β0)3]. Then Ω = σ2Im
and G = −ι, so that Σ = σ2/m and P = (Im − ιι0/m)/σ2. It follows that

Bias(β̂EL) = 0, Bias(β̂GMM) = Bias(β̂CUE) =
µ
m− 1
m

¶ µ
µ3
σ2

¶
/n,

Bias(β̂GMM)√
Σ

=
√
m

µ
m− 1
m

¶ µ
µ3
σ3

¶
/n.

Here the bias of GMM relative to its asymptotic standard error grows with the square

root of the number of overidentifying restrictions. Dividing by the standard error is an

appropriate normalization, since it goes to zero as m grows.

5 Bias Corrected GMM and GEL

Although we have established that EL has smaller asymptotic bias than GMM in several

important cases, it is also possible to remove all the asymptotic bias. As mentioned in

the introduction, there are several approaches to bias correction, including the bootstrap,

jackknife, and analytical methods. Here we use an analytical approach, bias correcting

GMM and GEL using the asymptotic bias formulae we have derived. These bias cor-

rections are much simpler computationally than the bootstrap or jackknife methods,
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particularly in nonlinear models. They can be constructed using the same ingredients as

the estimator of Σ along with the second derivatives of the moment indicators.

The basic idea of analytical bias corrections is simple and well known, and consists of

estimating the asymptotic bias and subtracting from β̂. Here we use the general formula

of equation (4.1) to construct the bias estimate. For an estimator F̂ of the distribution

of a single observation, the bias corrected estimator is

β̂c = β̂ − dBias(β̂), dBias(β̂) = Z
Q1(ψ(z, F̂ ), a(z, F̂ ), F̂ )F̂ (dz)/n. (5.1)

The distribution estimator F̂ can be chosen to be the empirical distribution or a

distribution based on the GEL probabilities in equation (2.4). This choice does not affect

the asymptotic bias of the estimator, nor the higher order asymptotic variance. It can be

shown that the effect of using the GEL probabilities, rather than empirical distribution,

enters only through the appearance in Q2 of a linear combination of
√
nĝ(β̂), and that

√
nĝ(β̂) is asymptotically uncorrelated with ψ̃. Consequently, since Q2 enters the higher

order variance only through its asymptotic correlation with ψ̃, see Section 6, using a GEL

estimator of the distribution has no effect on the higher order variance of β̂ (although it

will on λ̂).

To describe the specific form of the bias correction for GMM, we need to introduce

some notation. Let β̂GMM denote the GMM estimator and

ĝi = gi(β̂GMM), Ĝi = Gi(β̂GMM), Ĝ =
nX
i=1

Ĝi/n, Ω̂ = Ω̂(β̂GMM),

Σ̂ = (Ĝ0Ω̂−1Ĝ)−1, Ĥ = Σ̂Ĝ0Ω̂−1, ψ̂βi = −Ĥĝi, P̂ = Ω̂−1 − Ω̂−1ĜΣ̂Ĝ0Ω̂−1,
âj ≡ tr(Σ̂

nX
i=1

∂2gij(β̂GMM)/∂β∂β
0/n)/2, (j = 1, ...,m),

ĤW = (Ĝ0Ŵ−1Ĝ)−1Ĝ0Ŵ−1, Ω̂βj
= ∂Ω̂(β̂GMM)/∂βj.

Then for the bias formula given in Theorem 4.1, and using the empirical distribution F̂

to estimate the expectations in this formula, the estimator of the bias term is

dBias(β̂GMM) = [−Ĥ(â+
nX
i=1

Ĝiψ̂
β
i /n)

−Σ̂
nX
i=1

Ĝ0iP̂ ĝi/n−
nX
i=1

ψ̂βi ĝ
0
iP̂ ĝi/n− Ĥ

pX
j=1

Ω̂βj
(ĤW − Ĥ)0ej ]/n.

[16]



The bias corrected GMM estimator is then β̂cGMM = β̂GMM − dBias(β̂GMM).
To form a bias corrected GEL estimator we use analogous formulae, replacing the

empirical distribution F̂ by one based on the GEL probabilities of equation (2.4). Let

β̂GEL denote the estimator, π̂i, (i = 1, ..., n), the associated empirical probabilities, and

g̃i = gi(β̂GEL), G̃i = Gi(β̂GEL), G̃ =
nX
i=1

π̂iG̃i, Ω̃ =
nX
i=1

π̂ig̃ig̃
0
i,

Σ̃ = (G̃0Ω̃−1G̃)−1, H̃ = Σ̃G̃0Ω̃−1, ψ̃βi = −H̃g̃i, P̃ = Ω̃−1 − Ω̃−1G̃Σ̃G̃0Ω̃−1,
ãj ≡ tr(Σ̃

nX
i=1

π̂i∂
2gij(β̂GEL)/∂β∂β

0)/2, (j = 1, ...,m).

Then for the bias formula in Theorem 4.2, the estimator of the GEL asymptotic bias is

dBias(β̂GEL) = [−H̃(ã+ nX
i=1

π̂iG̃iψ̃
β
i )− (1 +

ρ3
2
)
nX
i=1

π̂iψ̃
β
i g̃

0
iP̃ g̃i]/n.

The bias corrected GEL estimator is then β̂cGEL = β̂GEL − dBias(β̂GEL).
We can show under the conditions already given that these bias corrected estimators

have expansions with zero asymptotic bias.

Theorem 5.1: If Assumptions 1 - 4 are satisfied then β̂cGEL and β̂
c
GMM satisfy equa-

tion (3.1) with Bias(β̂cGEL) = Bias(β̂
c
GMM) = 0.

6 Higher Order Efficiency of Empirical Likelihood

The precision of different estimators can be compared based on their higher order MSE,

given by

MSE(
√
n(θ̂ − θ0)) = BnB

0
n + Vn, Bn =

√
nBias(θ̂), Vn = Σ+ Ξ/n,

Ξ = lim
n→∞{V ar(Q̃1) + E[(

√
nQ̃1 + Q̃2)ψ̃

0] + E[ψ̃(
√
nQ̃1 + Q̃2)

0]},

where Q̃1 = Q1(ψ̃, ã, F0), Q̃2 = Q2(ψ̃, ã, b̃, F0), and terms that are o(n
−1) are dropped.

Here the term Ξ is the additional, n−1 variance term for
√
n(θ̂ − θ0). One estimator is

higher order efficient relative to another if its MSE matrix is smaller than that of the

other, in the positive semidefinite sense. This property is often referred to in the literaure
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as third order efficiency, motivated by the presence of three terms in the expansion of

equation (3.1) (see e.g. Pfanzagl and Wefelmeyer, 1978). In general, although they

may be derived relatively straightforwardly from the Appendix, the expressions for Ξ for

GMM and GEL are extremely complicated, and so are not given here, although some

comparisons can be made.

It turns out that bias corrected EL is third or higher order efficient relative to other

bias corrected GMM or GEL estimators, in the sense that Ξ is smaller for EL. An

explanation of this result was given in the introduction. Here we give a rigorous proof.

Let ΞEL denote the higher order variance of bias corrected EL.

Theorem 6.1: If Assumptions 1-4 are satisfied and Ξ is the higher order variance

of any bias corrected GEL or GMM estimator with Ŵ = Ω̂(β̃) and β̃ an efficient GMM

estimator, then Ξ− ΞEL is positive semi-definite.

The third order efficiency of EL will be shared by any GEL estimator for which

ρ3 = −2 and ρ4 = −6, because they all have the same expansion (3.1) as EL. Rothenberg
(1996) showed the third order efficiency of a bias corrected EL versus a bias corrected

GMM in the linear case of equation (4.5) with Gaussian disturbances. These higher order

variance comparisons correspond to a quadratic loss function. As shown by Pfanzagl and

Wefelmeyer (1978), the MLE for discrete data is also third order efficient for a wide class

of quasi-convex loss functions satisfying the smoothness condition of their Theorem 10.

Consequently, it can also be shown that EL is higher order efficient for any such loss

function.

The higher order efficiency of EL only holds among bias corrected estimators. If

the bias corrections are dropped, then EL may not have the smallest MSE. Intuitively,

the estimated bias corrections from Section 5 are asymptotically correlated with ψ̃, so

dropping them may change the higher order MSE ranking of Theorem 6.1. Estimators

of parametric models are known to behave analogously. For instance, Amemiya (1980)

showed that in logit models the higher order MSE of a minimum chi square estimator is

smaller than that of maximum likelihood for a wide range of parameter values.
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As an example of MSE comparisons of estimators without bias correction we consider

heteroskedastic linear regression, a special case of that in Section 4.1. The model is

yi = x
0
iβ0 + ui, E[ui|xi] = 0. (6.1)

Amemiya (1983), Chamberlain (1982), and Cragg (1983) considered GMM estimators

that are more efficient than least squares, based on moment indicators g(z,β) = q(x)(y−
x0β), where q(x) includes x . For these moment indicators we compare the higher order

variance of GMM with GEL without bias correction. We also assume that E[u3i |xi] = 0,
which implies (together with E[ui|xi] = 0) that GMM and GEL have no asymptotic

bias. However, EL need not be higher order efficient, because omitting the estimated bias

corrections affects the ranking of Theorem 6.1. Intuitively, E[u3i |xi] = 0 generally does
not hold for either the empirical distribution or the empirical likelihood π̂i distribution,

so that estimated bias corrections are non-zero. Dropping them therefore will also change

the higher order variances.

Let σ2i = E[u
2
i |xi], µ4i = E[u4i |xi], x̄i = −G0Ω−1qiσ2i = E[σ2i (xi/σ2i )q0i]{E[σ2i qiq0i]}−1qiσ2i

and Ki = q
0
iPqi.

Theorem 6.2: If Assumptions 1-4 are satisfied, Ŵ = Ω̂(β̃), and β̃ is an optimal

GMM estimator then

ΞGMM − ΞGEL = D +D0, D = Σ{(ρ3/2)E[(µ4i/σ4i − 3)Kix̄ix̄
0
i]

+E[Kixi(x̄i − xi)0] + (3ρ3/2)E[Kix̄i(x̄i − xi)0]}Σ

Furthermore, if σ2i is bounded and bounded away from zero, µ4i is bounded, E[qiq
0
i] is

nonsingular for each m, and there exists γm such that for the support X of x, as m→∞,

{sup
x∈X

q(x)0(E[qiq0i])
−1q(x)}2E[kxi/σ2i − γmqik2]→ 0.

then as m→∞,

ΞGMM − ΞGEL − ρ3ΣE[(µ4i/σ4i − 3)Kix̄ix̄
0
i]Σ→ 0.
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This result gives an explicit formula for the difference of higher order variances as

well as a limit result as the number of moments gets large. The hypothesis for the limit

result combines an approximation property for q(x) with a bound on its size, which by

Newey (1997) will hold for cubic splines if the density of x is bounded away from zero,

the support of X is a rectangle, knots are evenly spaced, and σ2i is twice differentiable in

xi. Koenker et al. (1994) also calculate the higher order variance of GMM, for a different

choice of β̃ in Ŵ = Ω̂(β̃). Our contribution is to compare GMM with GEL.

The limit result has a nice interpretation. If the disturbances are conditionally normal,

so that µ4i = 3σ
4
i , then in the limit the higher order variances are equal. Also ρ3 = 0 for

CUE, so that it has the same limit higher order variance as GMM. For EL and ET, ρ3 < 0

so that they have smaller limit higher order variance than GMM when the disturbances

are thinner tailed than normal, in the sense that µ4i < 3σ4i , and higher when they are

thick tailed, in the sense that µ4i > 3σ
4
i . In the latter case, GEL estimators with ρ3 > 0

have smaller limit higher order variance than GMM.

Recently, Donald, Imbens, and Newey (2002) have carried out an analogous com-

parison when there is endogeneity, but still with zero conditional skewness given the

instruments. They find that when m is allowed to increase with the sample size, the

MSE of GMM generally exceeds that of GEL for large enough sample size. This occurs

because the squared bias from Section 4 grows with m2, whereas the variance grows

only with m. They also find that the CUE has smaller higher order variance than a bias

corrected GMM which only corrects for BG. Furthermore, the higher order efficiency

ranking among GEL estimators is similar to that from Theorem 6.2, with EL being higher

order less efficient for thick tailed disturbances.

7 Conclusion

The usefulness of higher order bias and variance results depends on how well they help

to explain finite sample properties of estimators. There are now several Monte Carlo

experiments that are consistent with our results. For conditional moment restriction
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models, Hansen, Heaton, and Yaron (1996) found that the CUE had smaller bias than

GMM, and that iterating on the preliminary estimator β̃ used to form the weighting

matrix had little effect on bias. For IV estimation of a Gaussian linear equation, Ramalho

(2001) and Judge and Mittlehammer (2001) found that, with several instruments, EL and

ET have similar, lower bias than GMM. These findings are consistent with Theorem 4.5,

which shows lower asymptotic bias for GEL when there are several instruments and zero

third moments.

For minimum distance estimation in panel data models Imbens (1997) found that EL

had smaller bias than GMM. Newey, Ramalho and Smith (2001) obtained similar bias

results for EL and GMM and also reported that the bias of the CUE differed little from

that of GMM. Moreover, the bias of ET although an improvement over GMM exceeded

that of EL. These findings are consistent with the relatively small bias of EL found in

Theorem 4.6. Newey, Ramalho, and Smith (2001) also found that for large enough sample

size EL generally had smaller variance than a bias corrected GMM, consistent with the

higher order efficiency of EL found in Theorem 6.1.

Overall, the theory in this paper, when coupled with existing Monte Carlo results,

suggests some prescriptions for applied work. For IV estimation with many instruments

of a single equation where bias from the estimating the weighting matrix is not important,

GEL estimators should all have smaller bias than GMM. As yet, the Monte Carlo evidence

provides little guidance on which GEL estimator to use, although the recent theoretical

work of Donald, Imbens, and Newey (2002) for IV estimation shows that the CUE has

smaller higher order variance than bias corrected GMM while EL and ET may not.

In minimum distance estimation of panel data models, where bias from estimation of

the weighting matrix can be a serious problem, the EL estimator has especially good

properties. It eliminates the bias from estimation of the weighting matrix, and after

correcting for bias arising from nonlinearity, is higher order efficient relative to bias

corrected GMM. Thus, for both IV and minimum distance estimation, the theoretical

and Monte Carlo work to date suggest that GEL estimation should be considered as an

alternative to GMM in applied work.
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Appendix: Proofs

Throughout the Appendix, C will denote a generic positive constant that may be different

in different uses, and CS, M, and T the Cauchy-Schwarz, Markov, and triangle inequalities

respectively. Also, with probability approaching one will be abbreviated as w.p.a.1,

positive semi-definite as p.s.d., UWL will denote a uniform weak law of large numbers

such as Lemma 2.4 of Newey and McFadden (1994), and CLT will refer to the Lindeberg-

Lévy central limit theorem. We let P̂ (β,λ) =
Pn
i=1 ρ(λ

0gi(β))/n.

Proof of Theorem 2.1: Let A = [g1(β), ..., gn(β)]
0/
√
n and ι = (1, ..., 1)0 be

an n × 1 vector of units. Thus, ĝ(β) = A0ι/
√
n and Ω̂(β) = A0A. By Rao (1973,

1b.5(vi),(viii)), A(A0A)−A0 is invariant to the choice of generalized inverse as is the CUE

objective function ι0A(A0A)−A0ι/n. Also, A0A(A0A)−A0 = A0. By ρ(v) quadratic, a

second order Taylor expansion is exact, giving

P̂ (β,λ) = ρ0 − ĝ(β)0λ− 1
2
λ0Ω̂(β)λ. (A.1)

By concavity of P̂ (β,λ) in λ, any solution λ̂(β) to the first order conditions

0 = ĝ(β) + Ω̂(β)λ

will maximize P̂ (β,λ) with respect to λ holding β fixed. Then, Ω̂(β)Ω̂(β)−ĝ(β) =

A0A(A0A)−A0ι/
√
n = ĝ(β), so that λ̂(β) = −Ω̂(β)−ĝ(β) solves the first order conditions.

Since

P̂ (β, λ̂(β)) = ρ0 +
1

2
ĝ(β)0Ω̂(β)−ĝ(β). (A.2)

the GEL objective function P̂ (β, λ̂(β)) is a monotonic increasing transformation of the

CUE objective function, so that the set of GEL estimators coincides with the set of CUE

estimators. Q.E.D.

Proof of Theorem 2.2: We first consider the case where γ 6= 0. The first order
conditions for π̄i are (nπ̄i)

γ/γ− ᾱ0gi(β̄)− µ̄ = 0. Solving gives π̄i = [γ(µ̄+ ᾱ0gi(β̄))]1/γ/n.
The other MD first order conditions are

Pn
i=1 π̄i = 1 and, for Gi(β) = ∂gi(β)/∂β,

nX
i=1

π̄iGi(β̄)
0ᾱ = 0,

nX
i=1

π̄igi(β̄) = 0. (A.3)
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The first order conditions for λ̂ are
Pn
i=1 ρ1(λ̂

0gi(β̂))gi(β̂) = 0. By the implicit function

theorem there is a neighborhood of β̂ where the solution λ(β) to
Pn
i=1 ρ1(λ

0gi(β))gi(β) = 0

exists and is continuously differentiable. Then by the envelope theorem the first order

conditions for GEL are

nX
i=1

π̂iGi(β̂)
0λ̂ = 0,

nX
i=1

π̂igi(β̂) = 0, (A.4)

where π̂i = ρ1(λ̂
0gi(β̂))/

Pn
j=1 ρ1(λ̂

0gj(β̂)). Then for λ̄ = ᾱ/(γµ̄), by
Pn
i=1 π̄i = 1,

π̄i = [(γµ̄)
1/γ/n](1 + γλ̄0gi(β̄))1/γ = (1 + γλ̄0gi(β̄))1/γ/

nX
j=1

(1 + γλ̄0gj(β̄))1/γ.

Noting that ρ1(v) = −(1 + γv)1/γ, we see from the respective first order conditions that

the conclusion holds for π̂i = π̄i and λ̂ = λ̄.

For the γ = 0 case, we note that ρ(v) = −ev and that under the constraintPn
i=1 πi = 1,Pn

i=1 h(πi) =
Pn
i=1 ln(nπi)πi =

Pn
i=1 ln(πi)πi + ln(n). Then using this objective function

in the Lagrangian, the first order conditions for π̄i are 1 + ln(π̄i) = µ̄+ ᾱ
0gi(β̄). Solving,

π̄i = exp(µ̄− 1 + ᾱ0gi(β̄)) = exp(λ̄0gi(β̄))/
nX
j=1

exp(λ̄0gj(β̄)),

with λ̄ = ᾱ. The conclusion then follows as before. Q.E.D.

Proof of Theorem 2.3: Let Ĝi = Gi(β̂) and ĝi = gi(β̂). By eq. (A.4) and the

definition of k(v),

0 =
nX
i=1

ρ1(v̂i)ĝi =
nX
i=1

[ρ1(v̂i) + 1]ĝi − nĝ(β̂) =
nX
i=1

k(v̂i)ĝiĝ
0
iλ̂− nĝ(β̂).

Solving for λ̂, plugging into the first part of eq. (A.4), and multiplying by
Pn
j=1 k(v̂j)/n

gives the first result. Note that for EL k(v) = [−(1− v)−1 + 1]/v = −(1− v)−1 = ρ1(v)
and for CUE k(v) = [−(1 + v) + 1]/v = −1 is constant. Q.E.D.

Let bi = supβ∈B kgi(β)k.

Lemma A1: If Assumption 1 is satisfied then for any ζ with 1/α < ζ < 1/2 and

Λn = {λ : kλk ≤ n−ζ}, supβ∈B,λ∈Λn,1≤i≤n |λ0gi(β)|
p→ 0 and w.p.a.1, Λn ⊆ Λ̂n(β) for all

β ∈ B.
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Proof: By Assumption 1 it follows by M that max1≤i≤n bi = Op(n1/α). Then by CS,

sup
β∈B,λ∈Λn,1≤i≤n

|λ0gi(β)| ≤ n−ζ max
1≤i≤n bi = Op(n

−ζ+1/α)
p→ 0,

giving the first conclusion, so w.p.a.1 λ0gi(β) ∈ V for all β ∈ B and kλk ≤ n−ζ . Q.E.D.

Lemma A2: If Assumption 1 is satisfied, β̄ ∈ B, β̄ p→ β0, and ĝ(β̄) = Op(n
−1/2),

then λ̄ = argmaxλ∈Λ̂n(β̄)
P̂ (β̄,λ) exists w.p.a.1, λ̄ = Op(n

−1/2), and supλ∈Λ̂n(β̄)
P̂ (β̄,λ) ≤

ρ0 +Op(n
−1).

Proof: By UWL Ω̄
def
= Ω̂(β̄)

p→ Ω. Then by nonsingularity of Ω the smallest

eigenvalue of Ω̄ is bounded away from zero w.p.a.1. Let Λn be as defined in Lemma A1.

By Lemma A1 and twice continuous differentiability of ρ(v) in a neighborhood of zero,

P̂ (β̄,λ) is twice continuously differentiable on Λn w.p.a.1. Then λ̃ = argmaxλ∈Λn P̂ (β̄,λ)

exists w.p.a.1. Furthermore, for ḡi = gi(β̄) and any λ̇ on the line joining λ̃ and 0, by

Lemma A1 and ρ2 = −1, max1≤i≤n ρ2(λ̇0ḡi) < −1/2 w.p.a.1. Then by a Taylor expansion
around λ = 0 with Lagrange remainder, there is λ̇ on the line joining λ̃ and 0 such that

for ḡ
def
= ĝ(β̄),

ρ0 = P̂ (β̄, 0) ≤ P̂ (β̄, λ̃) = ρ0 − λ̃0ḡ + (1/2)λ̃0[
nX
i=1

ρ2(λ̇
0ḡi)ḡiḡ0i/n]λ̃

≤ ρ0 − λ̃0ḡ − (1/4)λ̃0Ω̄λ̃ ≤ ρ0 + kλ̃kkḡk− Ckλ̃k2.

Subtracting ρ0 − Ckλ̃k2 from both sides and dividing by kλ̃k we find that Ckλ̃k ≤
kḡk, w.p.a.1. By assumption, ḡ = Op(n

−1/2), and hence kλ̃k = Op(n
−1/2) = op(n

−ζ).

Therefore, w.p.a.1 λ̃ ∈ int(Λn) and hence ∂P̂ (β̄, λ̃)/∂λ = 0, the first order conditions for
an interior maximum. By Lemma A1, w.p.a.1 λ̃ ∈ Λ̂n(β̄), so by concavity of P̂ (β̄,λ) and
convexity of Λ̂n(β̄) it follows that P̂ (β̄, λ̃) = supλ∈Λ̂n(β̄)

P̂ (β̄,λ), giving the first and second

conclusions with λ̄ = λ̃. Then by the last inequality of above equation, kḡk = Op(n−1/2),
and kλ̃k = Op(n−1/2), we obtain P̂ (β̄, λ̄) ≤ ρ0+kλ̄kkḡk−Ckλ̄k2 = ρ0+Op(n−1). Q.E.D.

Lemma A3: If Assumption 1 is satisfied, then kĝ(β̂)k = Op(n−1/2).

Proof: Let ĝi = gi(β̂), ĝ = ĝ(β̂), and for ζ in Lemma A1, λ̃ = −n−ζ ĝ/kĝk. By
Lemma A1, maxi≤n |λ̃0ĝi| p→ 0 and λ̃ ∈ Λ̂n(β̂) w.p.a.1. Thus, for any λ̇ on the line joining
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λ̃ and 0, w.p.a.1 ρ2(λ̇
0ĝi) ≥ −C, (i = 1, ..., n). Also, by CS and UWL,

P
i ĝiĝ

0
i/n ≤

(
P
i b
2
i /n)I

p→ CI, so that the largest eigenvalue of
P
i ĝiĝ

0
i/n is bounded above w.p.a.1.

An expansion then gives

P̂ (β̂, λ̃) = ρ0 − λ̃0ĝ + (1/2)λ̃0[
X
i

ρ2(λ̇
0ĝi)ĝiĝ0i/n]λ̃

≥ ρ0 + n
−ζkĝk− C(1/2)λ̃0[X

i

ĝiĝ
0
i/n]λ̃ ≥ ρ0 + n−ζkĝk− Cn−2ζ

w.p.a.1. By the CLT the hypotheses of Lemma A2 are satisfied by β̄ = β0. By β̂ and λ̂

being a saddle point, this equation and Lemma A2 give

ρ0 + n
−ζkĝk− Cn−2ζ ≤ P̂ (β̂, λ̃) ≤ P̂ (β̂, λ̂) ≤ sup

λ∈Λ̂n(β0)

P̂ (β0,λ) ≤ ρ0 +Op(n−1). (A.5)

Also, by ζ < 1/2, ζ − 1 < −1/2 < −ζ. Solving eq. (A.5) for kĝk then gives

kĝk ≤ Op(nζ−1) + Cn−ζ = Op(n−ζ). (A.6)

Now, consider any εn → 0. Let λ̄ = −εnĝ. Note that λ̄ = op(n−ζ) by eq. (A.6), so that
λ̄ ∈ Λn w.p.a.1. Then, as in eq. (A.5),

ρ0 − λ̄0ĝ − Ckλ̄k2 = ρ0 + εnkĝk2 − Cε2nkĝk2 ≤ ρ0 +Op(n−1).

Since, for all n large enough, 1−εnC is bounded away from zero, it follows that εnkĝk2 =
Op(n

−1). The conclusion then follows by a standard result from probability theory, that

if εnYn = Op(n
−1) for all εn → 0, then Yn = Op(n

−1). Q.E.D.

Proof of Theorem 3.1: Let g(β) = E[g(z, β)]. By Lemma A3, ĝ(β̂)
p→ 0, and

by UWL, supβ∈B kĝ(β) − g(β)k p→ 0 and g(β) is continuous. By T g(β̂)
p→ 0. Since

g(β) = 0 has a unique zero at β0, kg(β)k must be bounded away from zero outside any

neighborhood of β0. Therefore, β̂ must be inside any neighborhood of β0 w.p.a.1, i.e.

β̂
p→ β0, giving the first conclusion. The second conclusion follows by Lemma A3. Also,

note by the first two conclusions the hypotheses of Lemma A2 are satisfied for β̄ = β̂, so

that the last conclusion follows from Lemma A2. Q.E.D.
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Proof of Theorem 3.2: For ĝi = gi(β̂), by Theorem 3.1 and Lemma A1, maxi≤n |λ̃0ĝi| p→
0. Therefore, the first order conditions

Pn
i=1 ρ1(λ̂

0ĝi)ĝi = 0 are satisfied w.p.a.1. Also,

Ω̃ =
Pn
i=1 ρ2(λ̂

0ĝi)ĝiĝ0i/n
p→ ρ2Ω so that Ω̃ is nonsingular w.p.a.1. Then as in the proof

of Theorem 2.2, the first order conditions of eq. (A.4) are satisfied w.p.a.1. Then by

a mean value expansion of the second part of these first order conditions we have, for

θ̂ = (β̂ 0, λ̂0)0 and θ0 = (β00, 0
0)0,

0 =

Ã
0

−ĝ(β0)
!
+ M̄(θ̂ − θ0), (A.7)

M̄ =

Ã
0

Pn
i=1 ρ1(λ̂

0ĝi)Gi(β̂)0/nPn
i=1 ρ1(λ̄

0ĝi)Gi(β̄)/n
Pn
i=1 ρ2(λ̄

0ĝi)gi(β̄)ĝ0i/n

!
,

where β̄ and λ̄ are mean values that actually differ from row to row of the matrix

M̄. By λ̄ = Op(n
−1/2), it follows as in Lemma A1 that maxi≤n |λ̄0ĝi| p→ 0. Therefore,

maxi≤n |ρ1(λ̃0ĝi) + 1| p→ 0 and maxi≤n |ρ2(λ̄0ĝi) + 1| p→ 0. It then follows from UWL that

M̄
p→M , where

M = −
Ã
0 G0

G Ω

!
,M−1 = −

Ã −Σ H
H 0 P

!
.

Inverting and solving in eq. (A.7) then gives

√
n(θ̂ − θ0) = −M̄−1(0,−√nĝ(β0)0)0 = −M−1(0,−√nĝ(β0)0)0 + op(1) (A.8)

= −(H 0, P )0
√
nĝ(β0) + op(1).

The first conclusion follows from this equation and the CLT. For the second conclusion,

note that an expansion and eq. (A.8) give

ĝ(β̂) = ĝ(β0)−GHĝ(β0) + op(n−1/2) = −Ωλ̂+ op(n−1/2).

Also,

P̂ (β̂, λ̂) = ρ0 − λ̂0ĝ(β̂) + λ̂0[
nX
i=1

ρ2(λ̄
0ĝi)ĝiĝ0i/n]λ̂/2 (A.9)

= ρ0 − λ̂0ĝ(β̂)− λ̂0Ωλ̂/2 + op(n−1) = ρ0 + ĝ(β̂)0Ω−1ĝ(β̂)/2 + op(n−1).

It follows as in Hansen (1982) that nĝ(β̂)0Ω−1ĝ(β̂) d→ χ2(m−p), so the second conclusion
follows from eq. (A.9). Q.E.D.
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We now give some Lemmas that are used to derive asymptotic expansions. The next

one is like Lemma 3.3 of Rilstone et. al. (1996), except that we expand in a shrinking

neighborhood to allow for λ̂ in GEL. For notational simplicity we will suppress the F

argument.

Lemma A4: Suppose that the estimator θ̂ and vector of functions m(z, θ) satisfy a)

θ̂ = θ0 + Op(n
−1/2); b) m̂(θ̂) =

Pn
i=1m(zi, θ̂)/n = 0 w.p.a.1; c) For some ζ > 2, d(z)

with E[d(z)] < ∞, and Tn = {θ : kθ − θ0k ≤ n−1/ζ}, w.p.a.1 for i = 1, ..., n, m(zi, θ) is
three times continuously differentiable on Tn and for θ ∈ Tn,

k∂3m(zi, θ)/∂θj∂θk∂θ` − ∂3m(zi, θ0)/∂θj∂θk∂θ`k ≤ d(zi)kθ − θ0k;

d) E[km(z, θ0)k6], E[k∂m(z, θ0)/∂θk6], E[k∂2m(z, θ0)/∂θj∂θk6], and E[k∂3m(z, θ0)/∂θj∂θk∂θk2],
(j, k = 1, ..., q), are finite; e) E[m(z, θ0)] = 0 andM = E[∂m(z, θ0)/∂θ] exists and is non-

singular. Let

Mj = E[∂2m(z, θ0)/∂θj∂θ],Mjk = E[∂
3m(z, θ0)/∂θk∂θj∂θ],

A(z) = ∂m(z, θ0)/∂θ −M,Bj(z) = ∂2m(z, θ0)/∂θj∂θ −Mj ,

ψ(z) = −M−1m(z, θ0), a(z) = vecA(z), b(z) = vec[B1(z), ..., Bq(z)].

Then eq. (3.1) is satisfied for
√
n(θ̂ − θ0) with

Q1(ψ̃, ã) = −M−1[Ãψ̃ +
qX
j=1

ψ̃jMjψ̃/2], Q2(ψ̃, ã, b̃) = −M−1[ÃQ1(ψ̃, ã) (A.10)

+
qX
j=1

{ψ̃jMjQ1(ψ̃, ã) +Q1j(ψ̃, ã)Mjψ̃ + ψ̃jB̃jψ̃}/2 +
qX

j,k=1

ψ̃jψ̃kMjkψ̃/6].

Proof: Let M̂(θ) = n−1
Pn
i=1 ∂m(zi, θ)/∂θ. A Taylor expansion with Lagrange

remainder gives,

0 = m̂(θ0) + M̂(θ0)(θ̂ − θ0) +
qX
j=1

(θ̂j − θj0)[∂M̂(θ0)/∂θj](θ̂ − θ0)/2 (A.11)

+
qX

j,k=1

(θ̂j − θj0)(θ̂k − θk0)[∂2M̂(θ̄)/∂θk∂θj](θ̂ − θ0)/6.
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By T, M, the CLT, and the Lipschitz hypothesis,

k∂2M̂(θ̄)/∂θk∂θj −Mjkk ≤ k∂2M̂(θ̄)/∂θk∂θj − ∂2M̂(θ0)/∂θk∂θjk+ k∂2M̂(θ0)/∂θk∂θj −Mjkk
≤ [

nX
i=1

d(zi)/n]kθ̂ − θ0k+Op(n−1/2) = Op(n−1/2).

It follows then for M̂ = M̂(θ0) that by adding, subtracting, and solving gives

θ̂ − θ0 = ψ̃/
√
n−M−1[Ã(θ̂ − θ0)/

√
n+

qX
j=1

(θ̂j − θj0)Mj(θ̂ − θ0)/2 (A.12)

+
qX
j=1

(θ̂j − θj0)(B̃j/
√
n)(θ̂ − θ0)/2

+
qX

j,k=1

(θ̂j − θj0)(θ̂k − θk0)Mjk(θ̂ − θ0)/6] +Op(n−2).

As all the terms except ψ̃/
√
n are Op(n

−1), it follows that

θ̂ − θ0 = ψ̃/
√
n+Op(n

−1).

Next, the last three terms (including the remainder) in eq. (A.12) are Op(n
−3/2), and

replacing θ̂ − θ0 by ψ̃/√n in the second and third terms also generates an error that is
Op(n

−3/2), we obtain

θ̂ − θ0 = ψ̃/
√
n−M−1[Ãψ̃ +

qX
j=1

ψ̃jMjψ̃/2]/n+Op(n
−3/2) (A.13)

= ψ̃/
√
n+Q1(ψ̃, ã)/n+Op(n

−3/2).

Finally, replacing θ̂−θ0 in the second and third terms of eq. (A.12) by ψ̃/√n+Q1(ψ̃, ã)/n
and in the fourth and fifth terms by ψ̃/

√
n gives the conclusion. Q.E.D.

Lemma A5: Suppose that Assumptions 1-4 are satisfied and let ΣW = (G0W−1G)−1,

HW = ΣWG
0W−1, PW =W−1 −W−1GHW , ψi = −[H 0

W , PW ]
0gi, G

j
i = E[∂Gi(β0)/∂βj],

Mi = −
Ã
0 G0i
Gi W + ξ(zi)

!
,M = −

Ã
0 G0

G W

!
,M−1 = −

Ã −ΣW HW
H 0
W PW

!
,

Mj = −
Ã

0 E[Gji ]
0

E[Gji ] 0

!
, (j ≤ p),Mp+j = −

Ã
E[∂2gij(β0)/∂β∂β

0] 0
0 0

!
, (j ≤ m).
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Then for λ̃ = −Ŵ−1ĝ(β̃), θ̂ = (β̃ 0, λ̃0)0, and for ψ̃, ã, and Q1(·, ·) as in Lemma A4 we
have,

θ̂ = θ0 + ψ̃/
√
n+Q1(ψ̃, ã)/n+Op(n

−3/2).

Proof: Let θ = (β0,λ0)0, λ0 = 0, and m(z, θ) = −(λ0∂g(z, β)/∂β, g(z, θ)0 + λ0[W +

ξ(z)])0. It follows from Theorem 3.4 of Newey and McFadden (1994) that θ̂ = θ0 +

Op(n
−1/2). Note that for this choice of m(z, θ) we have Mi = ∂m(zi, θ0)/∂θ and Mj in

Lemma A4 as in the statement of Lemma A5. Then for m̂(θ) =
P
im(zi, θ)/n, by the

first order conditions for β̃, the definition of λ̃, and Assumption 4 we have

0 = m̂(θ̂) + [0,−λ̃0(Ŵ −W −X
i

ξ(zi)/n)]
0 = m̂(θ̂) +Op(n−3/2). (A.14)

Then expanding as in eq. (A.13) gives the result. Q.E.D.

Lemma A6: Suppose that Assumptions 1-4 are satisfied and let Ωiβj
= ∂[gi(β0)gi(β0)

0]/∂βj,

Ω̄βj
= E[Ωiβj

], Ω̃βj
=

P
i(Ωiβj

− Ω̄βj
)/
√
n, Ω̄βjβk

= E[∂2{gi(β0)gi(β0)0}/∂βk∂βj], and
let a superscript W denote objects from the conclusion of Lemma A5, that is let ψWi ,

MW
i , M

W
j , a

W
i , and Q

W
1 (·, ·) be as there without the superscript W . Also, let ξΩi =

gig
0
i − Ω+

Pp
j=1 Ω̄βj

e0jψ
W
i and

Q̃Ω1 =
pX
j=1

Ω̃βj
e0jψ̃

W +
pX
j=1

Ω̄βj
e0jQ

W
1 (ψ̃

W , ãW ) +
pX

j,k=1

Ω̄βkβj
e0jψ̃

We0kψ̃
W/2.

Then Ω̂(β̃) = Ω+ ξ̃Ω/
√
n+ Q̃Ω1 /n+Op(n

−3/2).

Proof: Similarly to the proof of Lemma A4, expanding gives

Ω̂(β̃) = Ω̂(β0) +
pX
j=1

Ω̄βj
(β̃j − βj0) +

pX
j=1

(Ω̃βj
/
√
n)(β̃j − βj0) (A.15)

+
pX

j,k=1

Ω̄βkβj
(β̃j − βj0)(β̃k − βk0)/2 +Op(n−3/2).

By Lemma A5, β̃j − βj0 = e0jψ̃
W/
√
n + Op(n

−1) = e0jψ̃
W/
√
n + e0jQ

W
1 (ψ̃

W , ãW )/n +

Op(n
−3/2). The conclusion follows by substituting the first equality for the last two terms

in eq. (A.15) and by substituting the second equality for the second term. Q.E.D.
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Proof of Theorem 3.3: Let mi(θ) = −(λ0Gi(β), gi(β)0 + λ0(Ω + ξΩi ))0, A(zi), M ,
Mj be as in Lemma A5 with W = Ω. Also, let ψi = −[H 0, P ]0gi and ψ̃ =

P
i ψi/

√
n.

B1j (zi) = −
Ã

0 Gj0i − E[Gji ]0
Gji − E[Gji ] 0

!
, (j ≤ p),

B1p+j(zi) = −
Ã
∂2gij(β0)/∂β∂β

0 −E[∂2gij(β0)/∂β∂β0] 0
0 0

!
, (j ≤ m).

Let λ̂ = −Ω̂(β̃)−1ĝ(β̂). Then λ̂ = Op(n
−1/2), e.g. as shown in Newey and McFadden

(1994). Then the first order conditions for GMM and Lemma A6 imply

0 = m̂(θ̂) + [0,−λ̂0(Q̃Ω1 /n+Op(n−3/2))]0 = m̂(θ̂) + [0,−λ̂0Q̃Ω1 /n]0 +Op(n−2). (A.16)

Let Q1(·, ·) and Q21(·, ·, ·) be equal to Q1 and Q2 as given in the conclusion of Lemma
A4, with ψ̃, M , Mj, Mjk, A(z), as specified here (and as in Lemma A5 with W = Ω).

Also, let b1(z) be the vector elements of every Bj(z) and T = θ0+ ψ̃/
√
n+Q1(ψ̃, ã)/n+

Q21(ψ̃, ã, b̃
1)/n3/2. Then as −λ̂0Q̃Ω1 /n = Op(n

−3/2) we can solve for θ̂ − θ0 as in the
conclusion of Lemma A4 to obtain

θ̂ = T +M−1[0, λ̂0Q̃Ω1 /n]
0 +Op(n−2).

Then by λ̂ = [0, Im]ψ̃/
√
n+Op(n

−1) we can substitute for λ̂ to obtain

θ̂ = T +M−1diag[0, Q̃Ω1 ]ψ̃/n
3/2 +Op(n

−2).

The conclusion then follows by including in b(z) all the components of b1(z) as well as

those of every variable that appears as
√
n times a sample average in Q̃Ω1 . Then we find

the second order term in the expansion for GMM to be

Q2(ψ̃, ã, b̃) = Q21(ψ̃, ã, b̃
1) +M−1diag[0, Q̃Ω1 ]ψ̃,

giving the conclusion. Q.E.D.

Proof of Theorem 3.4: We apply Lemma A4. Let θ = (β0,λ0)0, θ0 = (β00, 0
0)0, θ̂

be the GEL estimator, Gi(β) = ∂gi(β)/∂β, and
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m(zi, θ) = ρ1(λ
0gi(β))

Ã
Gi(β)

0λ
gi(β)

!
.

By Theorem 3.2, θ̂ = θ0 + Op(n
−1/2). Also, as shown in the proof of Theorem 3.2,P

im(zi, θ̂) = 0 w.p.a.1. Let 2 < ζ < α for α in Assumption 1(d). Then by Lemma

A1, Assumption 3, and ρ1(v) three times continuously differentiable on a neighborhood

of 0, m(zi, θ) is three times continuously differentiable on Tn of Lemma A4, i = 1, ..., n,

to which we henceforth restrict attention. Let mi(θ) = m(zi, θ), vi(θ) = λ
0gi(θ), hi(θ) =

∂vi(θ)/∂θ = (λ
0Gi(β), gi(β)0)0, and hi(θ)j denote the jth element of hi(θ). Then

∂mi(θ)/∂θ = ρ2(vi(θ))hi(θ)hi(θ)
0 + ρ1(vi(θ))∂hi(θ)/∂θ, (A.17)

∂2mi(θ)/∂θj∂θ = ρ3(vi(θ))hi(θ)jhi(θ)hi(θ)
0 + ρ2(vi(θ))∂[hi(θ)hi(θ)0]/∂θj

+ρ2(vi(θ))hi(θ)j∂hi(θ)/∂θ + ρ1(vi(θ))∂
2hi(θ)/∂θj∂θ.

∂3mi(θ)/∂θk∂θj∂θ = ρ4(vi(θ))hi(θ)khi(θ)jhi(θ)hi(θ)
0 + ρ3(vi(θ))∂[hi(θ)jhi(θ)hi(θ)0]/∂θk

+ρ3(vi(θ))hi(θ)k∂[hi(θ)hi(θ)
0]/∂θj + ρ2(vi(θ))∂2[hi(θ)hi(θ)0]/∂θk∂θj

+ρ3(vi(θ))hi(θ)khi(θ)j∂hi(θ)/∂θ + ρ2(vi(θ))∂[hi(θ)j∂hi(θ)/∂θ]/∂θk

+ρ2(vi(θ))hi(θ)k∂
2hi(θ)/∂θj∂θ + ρ1(vi(θ))∂

3hi(θ)/∂θk∂θj∂θ.

By hypothesis ρj(v) is Lipschitz in a neighborhood of zero so that for bi = b(zi),

|ρj(vi(θ))− ρj| ≤ C|vi(θ)| ≤ Ckλkkgi(β)k ≤ Cbikθ − θ0k.

Also, by Assumption 3, all of the terms involving hi(θ) and its derivatives in the third

derivative for mi(θ) are bounded above by Cb
4
i on Tn. Then the norm of the difference of

∂3mi(θ)/∂θk∂θj∂θ and the same expression with vi(θ) replaced by vi(θ0) = 0 is bounded

above by Cb5ikθ − θ0k. Also, it follows by similar reasoning that the difference of each
expression involving hi(θ) and its value at θ0 is bounded by Cb

J
i kθ− θ0k for some integer

J ≤ 4. Thus, the Lipschitz hypothesis of Lemma A4 holds by E[b5i ] <∞.
Next, let gi = gi(β0) and Gi = Gi(β0). Note that hi(θ0) = (00, g0i)

0, so that by

ρ1 = ρ2 = −1,

∂mi(θ0)/∂θ = −
Ã
0 G0i
Gi gig

0
i

!
,M = −

Ã
0 G0

G Ω

!
, (A.18)
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andM is nonsingular, as shown in the proof of Theorem 3.2. Now letGji = ∂
2gi(β0)/∂βj∂β,

gji = ∂gi(β0)/∂βj , t = j − p for j > p, let et denote the tth unit vector, and a t subscript
denote the tth element of a vector. Then evaluate at θ = θ0 to obtain

∂2mi(θ0)/∂θj∂θ = −
Ã
0 Gj0i
Gji gji g

0
i + gig

j0
i

!
, (j ≤ p), (A.19)

= −
Ã
∂2[e0tgi(β0)]/∂β∂β

0 G0ietg
0
i + gitG

0
i

gie
0
tGi + gitGi −ρ3gitgig0i

!
, (j > p).

Next, let Gjki = ∂3gi(β0)/∂βk∂βj∂β and g
jk
i = ∂2gi(β0)/∂βk∂βj . Then for the second

derivatives corresponding to β, with j ≤ p and k ≤ p,

∂3mi(θ0)/∂θk∂θj∂θ = −
Ã

0 Gjk0i
Gjki gjki g

0
i + g

j
i g
k0
i + g

k
i g
j0
i + gig

jk0
i

!
. (A.20)

For the cross partial between λt and βj , with j ≤ p, k > p, and t = k − p,

∂3mi(θ0)/∂θk∂θj∂θ (A.21)

= −
Ã

∂3git(β0)/∂βj∂β∂β
0 G0ietg

j0
i +G

j0
i etg

0
i +GitjG

0
i + gitG

j0
i

gji etGi + gietG
j
i +GitjGi + gitG

j
i −ρ3[Gitjgig0i + git(gji gi + gigj0i )]

!
.

For the second partial derivatives between λt and λu, with j > p, k > p, t = j − p, and
u = k − p,

∂3mi(θ0)/∂θk∂θj∂θ =

Ã −G0iete0uGi −G0ieue0tGi ρ3(gitG
0
ieu + giuG

0
iet)g

0
i

ρ3gi(gite
0
uGi + giue

0
tGi) ρ4gitgiugig

0
i

!
(A.22)

−
Ã
git∂

2giu(β0)/∂β∂β
0 + giu∂2git(β0)/∂β∂β0 −ρ3gitgiuG0i

−ρ3gitgiuGi 0

!
.

Then by the conclusion of Lemma A4, eq. (3.1) is satisfied, for Q1, Q2, a(z), and b(z)

as given in the statement of Lemma A4, and mi(θ) and its derivatives as given in this

proof. Q.E.D.

Proof of Theorem 4.1: By Lemma A6 it follows that Assumption 4 is satisfied for

W = Ω and ξΩi = gig
0
i−Ω−

Pp
j=1 Ω̄βj

e0jHWgi. Note that E[e
0
jHWgiPgi] = PE[gig

0
i]H

0
W ej =

(HW − H)0ej . Also, for Sk = E[∂2gik(β0)/∂β∂β
0], the kth element of

Pp
j=1E[G

j
i ]Σej/2

is
Pp
j=1 e

0
jSkΣej/2 =

Pp
j=1 tr(Σeje

0
jSk)/2 = ak. Then for λ̂ = −Ω̂(β̃)−1ĝ(β̂) the bias of
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θ̂ = (β̂ 0, λ̂0)0 can be obtained as the expectation of the term from Lemma A5 withW = Ω,

giving

Bias(θ̂) = E[Q1(ψi, ai)]/n = −M−1{E[
Ã
0 G0i
Gi ξΩi

! Ã
H
P

!
gi]

−
pX
j=1

Ã
0 E[Gji ]

0

E[Gji ] 0

! Ã
Σ
0

!
ej/2−

mX
j=1

Ã
Sj 0
0 0

! Ã
0
P

!
ej/2}/n

= −M−1
Ã

E[G0iPgi]
E[GiHgi]− a+ E[gig0iPgi]−

Pp
j=1 Ω̄βj

(HW −H)0ej

!
/n.

Then [Ip, 0]M
−1 = [Σ,−H] and the previous equation gives the result. Q.E.D.

Proof of Theorem 4.2: By the proof of Theorem 3.4 θ̂ = (β̂ 0, λ̂0)0 satisfies eq.

(3.1) with Q1 as in the statement of Lemma A4 with ψ(zi) = −[H 0, P ]0gi, for H =

ΣG0Ω−1, A(zi) = ∂mi(θ0)/∂θ − E[∂mi(θ0)/∂θ] for ∂mi(θ0)/∂θ from eq. (A.18), and

Mj = E[∂2mi(θ0)/∂θj∂θ] for ∂
2mi(θ0)/∂θj∂θ from eq. (A.19). Note that E[ψiψ

0
i] =

diag[Σ, P ] and

E[A(zi)ψi] =

Ã
E[G0iPgi]

E[GiHgi + gig
0
iPgi]

!
.

Also,
Pm
j=1 Pejgij =

Pm
j=1 Peje

0
jgi = Pgi, and by symmetry of P,

Pm
j=1G

0
iejg

0
iPej =Pm

j=1G
0
ieje

0
jPgi = G

0
iPgi. Then

qX
j=1

MjE[ψiψ
0
i]ej/2 =

pX
j=1

Mj [Σ, 0]
0ej/2 +

mX
j=1

Mj+p[0, P ]
0ej/2

= −
pX
j=1

Ã
0

E[Gji ]Σej/2

!
−

mX
j=1

Ã
E[G0iejg

0
i + gijG

0
i]Pej/2

−ρ3E[gijgig0i]Pej/2
!
=

Ã −E[G0iPgi]
−a+ ρ3E[gig0iPgi]/2

!
.

Then by Lemma A4, Bias(θ̂) is the first p elements of

E[Q1(ψi, ai, F0)]/n = −M−1{E[A(zi)ψi] +
qX
j=1

MjE[ψiψ
0
i]ej/2}/n

= −M−1
Ã

0
−a+ E[GiHgi] + (1 + ρ3/2)E[gig0iPgi]

!
/n. Q.E.D.

Proof of Theorem 4.5: Note that tr(Σ∂2gij(β0)/∂β∂β
0) = qj(xi)tr(Σuββi), so

that aj = E[qj(xi)tr(Σuββi)]/2 = E[qj(xi)tr(ΣHi)]/2. Also, note that Gi = qiu
0
βi, so that
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G0Ω−1Gi = d̄iu0βi. Then we have

ΣG0Ω−1a = ΣG0Ω−1E[qitr(ΣHi)]/2 = ΣE[d̄itr(ΣHi)]/2,

ΣG0Ω−1E[GiΣG0Ω−1gi] = ΣE[d̄iu
0
βiΣd̄iui] = ΣE[d̄id̄

0
iΣuβiui] = −ΣE[d̄id̄0iΣκi],

BG = −ΣE[uβiq0iPqiui]/n = ΣE[κiq0iPqi]/n,
BΩ = ΣE[d̄iu

3
i q
0
iPqi]/n = ΣE[d̄iµ3iq

0
iPqi]/n.

Note next that d̄i is the mean square projection of di on qi for the expectation operator Ē

given by Ē[a(xi)] = E[σ
2
i a(xi)]/E[σ

2
i ]. Therefore, it follows that E[σ

2
i kd̄ik2] ≤ E[σ2i kdik2].

By standard results for matrix norms, |tr(ΣHi)| ≤ pkΣHik ≤ pkΣkkHik. Then by CS

kE[d̄itr(ΣHi)]/2k ≤ pkΣkE[σikd̄ikkHik/σi]/2 ≤ pkΣk
q
E[σ2i kd̄ik2]

q
E[kHik2/σ2i ]/2

≤ pkΣk
q
E[σ2i kdik2]

q
E[kHik2/σ2i ]/2.

Also, we have for ∆ = supx kκ(x)/σ2(x)k,

kE[d̄id̄0iΣκi]k ≤ kΣkE[kd̄ik2kκik] ≤ kΣkE[σ2i kd̄ik2]∆ ≤ kΣkE[σ2i kdik2]∆.

By T and CS we then have

kBias(β̂EL)k ≤ kΣk(p
q
E[σ2i kdik2]

q
E[kHik2/σ2i ]/2 + E[σ2i kdik2]∆)/n,

giving the first conclusion. For the second conclusion, note that E[σ2i q
0
iPqi] = E[g

0
iPgi] =

m− p, so that for ηi = e0jΣ(κi + d̄iµ3i)/σ2i = e0jδi,

e0j(Bias(β̂GMM)−Bias(β̂EL)) = e0jΣE[(κi + d̄iµ3i)q0iPqi]/n = E[ηiσ2i qiPq0i]/n.

The second conclusion then follows from σ2i q
0
iPqi ≥ 0, so that when ηi ≥ C2, E[ηiσ2i qiPq0i] ≥

C2E[σ
2
i q
0
iPqi] = C2(m− p). Q.E.D.

Proof of Theorem 4.6: The bias formulae follow immediately from Theorems 4.1

and 4.2, since by Gi = G,

E[G0iPgi] = E[G
0Pgi] = G0PE[gi] = 0, E[GiHgi] = E[GHgi] = 0.
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To obtain the bound, note that differentiating the equality h(β) =
R
r(z)f(z|β)dz under

the integral is allowed by the conditions, as is differentiating the identity 1 =
R
f(z|β)dz.

Twice differentiating the second gives E[si] = 0 and E[Fi] = 0. Twice differentiating the

first gives

G = −
Z
r(z)[∂f(z|β0)/∂β]dz = −E[r(zi)si] = −E[gisi],

aj = −tr(Σ
Z
rj(z)[∂

2f(z|β0)/∂β∂β 0]dz)/2 = −E[rj(zi)tr(ΣFi)]/2 = −E[gijtr(ΣFi)]/2.

Stacking the formulae for aj we find that for τi = tr(ΣFi), a = −E[giτi]/2, so that

Bias(β̂EL) = −ΣE[sig0i](E[gig0i])−1E[giτi]/2n.

Note that τ 2i ≤ p2kΣk2kFik2, so that by CS,

kBias(β̂EL)k ≤ kΣk
q
E[ksik2]E[τ 2i ]/2n ≤ pkΣk2

q
E[ksik2]E[kFik2]/2n.Q.E.D.

Proof of Theorem 5.1: In the case of GMM, the bias correction takes the formdBias(β̂) = τ (Pi di(β̂)/n)/n, where di(β) = d(zi, β) is a vector of products of g(z, β) and

its derivatives to second order and τ is a function that is twice continuously differentiable

in a neighborhood of d0 = E[di(β0)]. Then by Assumption 3 and a standard expansion,

dBias(β̂) = τ (d0)/n+ τd(d0)X
i

ψτi /n
2 +Op(n

−2),ψτi = di(β0)− d0 − E[∂di(β0)/∂β]Hgi.

Then for ψ̃, Q1, and Q2 from Theorem 3.3,

√
n(β̂c − β0) = ψ̃ + [Q1(ψ̃, ã)− τ (d0)]/

√
n+ [Q2(ψ̃, ã, b̃, F0) + τd(d0)ψ̃

τ ]/n+Op(n
−3/2),

giving the conclusion for GMM. For GEL dBias(β̂) = τ (
P
i π̂idi(β̂))/n. The conclusion

follows similarly for GEL, with τ and d(z, β) corresponding to the bias formula for GEL,

and

ψτi = di(β0)− d0 − E[di(β0)g0i]Pgi − E[∂di(β0)/∂β]Hgi. Q.E.D.

Before proving Theorem 6.1, we will prove the following intermediate result:
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Lemma A7: If the hypotheses of Theorem 6.1 are satisfied and zi has finite support

{Z1, ..., ZJ} then for the bias corrected estimators, Ξ− ΞEL is positive semi-definite.

Proof: Let nj =
Pn
i=1 1(zi = Zj) and consider the multinomial, moment restricted

MLE given by

β̂ML = arg max
β∈B,Π1,...,ΠJ

JX
j=1

nj lnΠj , s.t.
JX
J=1

Πjg(Zj, β) = 0,
JX
j=1

Πj = 1.

By standard theory for MLE β̂ML is consistent and there is neighborhood N of β0

such that w.p.a.1 β̂ML is the unique β in N solving the first order conditions. Also,PJ
j=1 nj lnΠj is a monotonic increasing transformation of

PJ
j=1 nj ln(Πj/nj). Let Ij =

{i : zi = Zj}. Note that holding Πj > 0 fixed, by strict concavity the maximum ofP
i∈Ij

ln(πi) subject to Πj =
P
i∈Ij

πi is nj ln(Πj/nj). Then, similarly to Section 2.3 of

Owen (2001),

β̂ML = arg max
β∈B,π1,...,πn

JX
j=1

X
i∈Ij

ln(πi)

: s.t.
JX
j=1

Πjg(Zj ,β) = 0,
JX
j=1

Πj = 1,Πj =
X
i∈Ij

πi. (A.23)

= arg max
β∈B,π1,...,πn

nX
i=1

ln(πi), s.t.
nX
i=1

πig(zi,β) = 0,
nX
i=1

πi = 1.

Therefore, w.p.a.1 β̂ML = β̂MD for h(π) = − ln(π). Now consider β̂EL defined as the
solution to eq. (2.2). By Theorem 3.1, β̂EL is consistent, so that β̂EL ∈ int(B) and λ̂ exists
w.p.a.1. Also, similarly to the proof of Theorem 3.1 it follows that

Pn
i=1 ρ2(λ̂

0ĝi)ĝiĝ0i/n

is nonsingular so that all the hypotheses of Theorem 2.2 are satisfied, w.p.a.1. Then

by consistency, β̂EL ∈ N and by Theorem 2.2 has the same first order conditions as

β̂ML = β̂MD, so β̂ML = β̂EL, w.p.a.1. Furthermore, from Corollary 4.3 we know that

there are known functions τ (d) and d(z, β) with

Bias(β̂EL) = τ (E[d(z, β0)])/n = B(Π10, ...,ΠJ0,β0)/n,

B(Π1, ...,ΠJ , β) = τ (
JX
j=1

Πjd(Zj, β)).
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Then by π̂i = Π̂j/nj and β̂EL = β̂ML = β̂,

dBias(β̂) = τ( nX
i=1

π̂id(zi, β̂))/n = τ(
JX
j=1

Π̂jd(Zj , β̂))/n = B(Π̂1, ..., Π̂J , β̂)/n.

Thus, the EL bias estimate dBias(β̂) equals the MLE bias estimate obtained by plugging
the MLE into the bias formula. Since EL equals MLE, and the EL bias correction equals

the MLE bias correction, the bias corrected EL estimator is equal to the bias corrected

MLE.

Next we show that the Pfanzagl and Wefelmeyer (1978) (PW henceforth) conditions

for third order efficiency of MLE relative to the other estimator are satisfied. We consider

a reparameterization as in Lemma 1 of Chamberlain (1987), where it is shown that there

exists a J − (m− p)− 1 subvector γ of Π = (Π1, ...,ΠJ)0 such that for θ = (β0, γ0)0, there
is Π(θ) = (Π1(θ), ...,ΠJ(θ))

0 and an open set Θ containing θ0 with

JX
j=1

Πj(θ)g(Zj ,β) = 0,Πj(θ) ≥ C > 0,
JX
j=1

Πj(θ)∂
2 lnΠj(θ)/∂θ∂θ

0 : is nonsingular.

Consider the multinomial log likelihood `(z, θ) =
PJ
j=1 1(z = Zj) lnΠj(θ). In the notation

of PW, the score vector is l(z, θ) =
PJ
j=1 1(z = Zj)Πj(θ)

−1∂Πj(θ)/∂θ. Then it follows

from the implicit function theorem similarly to Lemma 1 of Chamberlain (1987) that

Π(θ) is four times continuously differentiable with Lipschitz fourth derivative, giving L4

andM4 of PW. Conditions i), ii), iii), and I3 of PW follow similarly, so that l(·, ·) satisfies
all the conditions of Theorem 1’ of PW. Furthermore, it follows by β̂ being equal to the

MLE, as shown above, and by invariance of the MLE to reparameterization, that there

is γ̂ such that w.p.a.1, θ̂ = (β̂0, γ̂0) satisfies
Pn
i=1 l(zi, θ̂) = 0. Therefore, all the conditions

of Theorem 1’ of PW for the MLE and the likelihood are satisfied.

Next, consider the other GMM or GEL estimator β̂. Let θ̃ = (β̂0, γ̂0MLE). It follows

by Theorem 3.3 or 3.4 and the previous paragraph that the estimator has a stochastic

expansion as in eq. (3.1). Then eq. (3.1) of PW is satisfied, without the remainder

condition (which we will not need). By Lemma A5 all the terms in the expansion are
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polynomials in means of random variables, with coefficients that are Lipschitz in θ,

so that the Condition B requirements on p.5 of PW are satisfied. Furthermore, the

normalizations required by PW for the random variables in the expansion can be satisfied

by adding and subtracting appropriate terms (including the mean square projections

given there). Then the expansion for θ̃ satisfies all the conditions of PW.

Finally, we show how the results of PW can be adapted to show that the higher order

variance of the bias corrected MLE is less than or equal to that of any one of the other

estimators. To do this, let Q̃1 = Q1(ψ̃, ã, F0), Q̃2 = Q2(ψ̃, ã, b̃, F0) be the terms in the

stochastic expansion of any of the estimators and

Ỹ = ψ̃ + Q̃1/
√
n+ Q̃2/n

be the expansion without the remainder. Also, for any positive definite matrix A let

L(u) = u0Au. Then, as noted in Remark 16 of PW (see also Rothenberg, 1984, p.904), for

the polynomial (quadratic) loss function L(u) and the polynomial (in ψ̃, ã, b̃) stochastic

expansion Ỹ , the expected loss computed from a formal Edgeworth expansion equals

E[L(Ỹ )] + o(n−1). Then, as in the square brackets on the top of p. 25 of PW,

E[L(Ỹ )] =
Z
χ̄n(u, v, w)L(u)dudvdw + o(n

−1),

where χ̄n(u, v, w) is given in eq. (6.15) of PW. It then follows as in the remainder of

the argument on pp.25-26 of PW that
R
χ̄n(u, v, w)L(u)dudvdw+ o(n

−1) is minimized at

the bias corrected MLE. It is also the case that by the expression for the higher order

variance Ξ in Section 6,

E[ψ̃0Aψ̃] = tr(AΣ),

E[Q̃01AQ̃1]/n+ 2E[ψ̃
0AQ̃1]/

√
n+ 2E[ψ̃0AQ̃2]/n = tr(AΞ)/n+ o(n−1),

E[Q̃02AQ̃2]/n
2 + 2E[Q̃01AQ̃2]/n

3/2 = o(n−1),

so that

E[L(Ỹ )] = tr(AΣ) + tr(AΞ)/n+ o(n−1).
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Subtracting, we obtain

Z
χ̄n(u, v, w)L(u)dudvdw = tr(AΣ) + tr(AΞ)/n+ o(n−1).

Therefore, tr(AΣ)+ tr(AΞ)/n is minimized at the bias corrected MLE. Since Σ is the

same for each estimator, it follows that tr(AΞ)/n is minimized at the bias corrected MLE,

and thus

0 ≤ tr(AΞ)− tr(AΞEL) = tr(A∆),∆ = Ξ− ΞEL.

Since this inequality holds for any positive definite matrix A it follows that ∆ is positive

semi-definite. (For ∆ = BΛB0 with B0B = I and Λ a diagonal matrix of eigenvalues of

∆ let A = B(eje
0
j + ε

P
k 6=j eke0k)B

0 for any ε > 0, so that tr(A∆) = Λjj + ε
P
k 6=j Λkk ≥ 0

for any ε > 0 implies Λjj ≥ 0.) Q.E.D.

Proof of Theorem 6.1: By Lemma A7 it suffices to show that there is a distri-

bution with finite support {Z1, ..., ZJ} such that Assumptions 1-4 are satisfied and both
ΞEL and Ξ have the same values as under the true distribution. To do this, we show that

there is a vector of known functions V (z,β) and known functions τEL(·) and τ(·) such
that

ΞEL = τEL(E[V (z, β0)]),Ξ = τ(E[V (z, β0)]). (A.24)

For GEL, it follows as in the proof of Theorem 3.4 that eq. (A.12) is satisfied with

θ = (β 0,λ0)0 andm(zi, θ) as given in the proof of Theorem 3.4. Then, from the higher order

variance formula given in Rilstone et. al. (1996), it follows that the higher order variance

is a known function of expectations of first, second, and third derivatives of m(zi, θ) with

respect to θ, evaluated at the truth (forming the constant coefficients in the expansion),

the covariance of m(zi, θ0) with itself and with its derivative with respect to θ, (forming

limn→∞ V ar(Q̃1)), third moments of m(zi, θ0) and the third cross moment of derivatives

of m(zi, θ0) with products of m(zi, θ0) (forming limn→∞E[
√
nQ̃1ψ̃

0]), and covariance of

m(zi, θ0) with itself, its derivatives, and its third derivatives (forming limn→∞E[Q̃2ψ̃0],

including the bias correction term in Q̃2), all of which moments exist by Assumptions

1-4. Let V (z, θ) be any finite vector including all of these functions. Thus, eq. (A.24) is
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satisfied for ΞEL and for any Ξ corresponding to a GEL estimator. For GMM, it follows

by the use of at least two iterations that the estimator has the same asymptotic expansion

as an estimator solving eq. (3.2) with β̃ = β̂GMM , i.e. that is fully iterated. This then is

an M-estimator withm(z, θ) = (λ0∂g(z, β)/∂β, g(z,β)0(1+λ0g(z, β))0. It follows similarly

to the proof of Theorem 3.4 that eq. (A.12) is satisfied, so that eq. (A.24) is satisfied for

Ξ corresponding to a GMM estimator.

Next, by Lemma 3 of Chamberlain (1987) there is a distribution with support {Z1, ..., ZJ}
and probabilities Πj0 of each Zj such that for the expectation Ē[a(z)] =

PJ
j=1Πj0a(Zj),

Ē[g(z,β0)] = E[g(z, β0)] = 0,

Ē[∂g(z, β0)/∂β] = E[∂g(z, β0)/∂β], Ē[g(z, β0)g(z, β0)
0] = E[g(z, β0)g(z, β0)0],

Ē[V (z,β0)] = E[V (z, β0)], Ē[b(z)] = E[b(z)].

Consider now the case where zi, (i = 1, ..., n), are i.i.d. with distribution F̄ . By con-

struction this discrete distribution has the same ΞEL and Ξ as the true distribution. By

Ē[b(z)] = E[b(z)] <∞ it follows that Assumptions 1-4 are satisfied for this distribution.

Then by Lemma A7 it follows that ΞEL ≤ Ξ. Q.E.D.

Proof of Theorem 6.2: Let gi(β) = qi(yi − x0iβ). Note that, by comparing

the proof of Theorems 3.3 and 3.4, the M and ψi for GMM and GEL are identical.

Also, in Lemma A6, Ω̄βj
= E[−2qiq0ixijui] = 0, so that ψΩi = gig0i − Ω. It then follows

that the A(z) in the statement of Lemma A4 for GMM and GEL are identical to one

another. Furthermore, it is straightforward to show that Mj = 0 for both GMM and

GEL. Therefore, Q1(ψ̃, ã) coincides for the two estimators. For b̃
GMM and b̃GEL, let

Q̃GMM2 = Q2(ψ̃, ã, b̃
GMM) and Q̃GEL2 = Q2(ψ̃, ã, b̃

GEL) denote the second order terms for

GMM and GEL respectively. From the form of Ξ given in Section 6 we see that the

difference in higher order variances for GMM and GEL estimators of β reduces to

ΞGMM − ΞGEL = D +D0, D = [Ip, 0] lim
n→∞E[(Q̃

GMM
2 − Q̃GEL2 )ψ̃0][Ip, 0]0.

Thus, it suffices just to calculate the difference of second order terms. Furthermore,

by Ã and Q̃1 identical for GMM and GEL, the first term in the formula for Q̃2 in eq.
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(A.10) is identical for GMM and GEL. Also, for GEL Mj = 0 for all j so that we

only have to calculate the last two terms in Q̃2 for GEL, namely
Pq
j=1 ψ̃jB̃jψ̃/2 andPq

j,k=1 ψ̃jψ̃kMjkψ̃/6. For GMM, B
1
j (z) = 0 and Mjk = 0 (by linearity of mi(θ)) from the

proof of Theorem 3.3. In addition for GMM, by efficiency of β̃, ψ̃W from Lemma A6 is

equal to ψ̃, so that Q̃Ω1 =
Pp
j=1 Ω̃βj

e0jψ̃ +
Pp
j,k=1 Ω̄βkβj

e0jψ̃je
0
kψ̃k/2. Let ψ̃

β = [Ip, 0]ψ̃ and

ψ̃λ = [0, Im]ψ̃. We have

[Ip, 0]E[M
−1diag[0,

pX
j,k=1

Ω̄βkβj
ψ̃βj ψ̃

β
k/2]ψ̃ψ̃

0][Ip, 0]0 = −H
pX

j,k=1

Ω̄βkβj
E[ψ̃βj ψ̃

β
k ψ̃

λψ̃β0]

= O(n−2),

where the last equality follows by existence of fourth moments of gi and by ψ̃
β and ψ̃λ

having zero asymptotic covariance. Therefore, for Mjk and B̃j from GEL, we have, by

[Ip, 0]M
−1 = [Σ,−H],

D = D1 +D2, D1 = lim
n→∞E[D̃1], D2 = lim

n→∞E[D̃2],

D̃1 = [Σ,−H]{T̃GMM +
qX
j=1

ψ̃jB̃jψ̃/2}ψ̃β0, T̃GMM = diag[0,
pX
j=1

Ω̃βj
ψ̃βj ]ψ̃

D̃2 = [Σ,−H]{
qX

j,k=1

ψ̃jψ̃kMjkψ̃/6}ψ̃β0.

Consider D̃1. Note that for j ≤ p and Ωiβj
= ∂[gi(β0)gi(β0)

0]/∂βj as defined above, from

eq. (A.19), B̃j = −diag[0, Ω̃βj ], so that
pX
j=1

ψ̃βj B̃jψ̃/2 = −diag[0,
pX
j=1

Ω̃βjψ̃
β
j ]ψ̃/2 = −T̃GMM/2.

Note also that for j > 0,

mX
j=1

ψ̃λj B̃p+j

Ã
Ip
0

!
ψ̃β/2 = −

mX
j=1

ψ̃λj

Ã
0

[Ω̃β1ej , ..., Ω̃βpej]

!
ψ̃β/2 = −T̃GMM/2.

Then,

T̃GMM +
m+pX
j=1

ψ̃jB̃jψ̃/2 = T̃GMM/2 +
mX
j=1

ψ̃λj B̃p+jψ̃/2

=
mX
j=1

ψ̃λj B̃p+j

Ã
0
Im

!
ψ̃λ/2 = −

mX
j=1

ψ̃λj

Ã
2

P
i gijG

0
i/
√
n

−ρ3 P
i gijgig

0
i/
√
n

!
ψ̃λ/2.
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Then using gi = qiui, Gi = −qix0i, and letting x̄i = −G0Ω−1qiσ2i , and Ki = q
0
iPqi, so that

ψβi = Σx̄iui/σ
2
i , it follows by E[ψ̃

λψ̃β0] = 0 and fourth moments bounded that

D1 = [Σ,−H] lim
n→∞E[

mX
j=1

ψ̃λj

Ã
2

P
i uiqijxiq

0
i/
√
n

ρ3
P
i u

3
i qijqiq

0
i/
√
n

!
ψ̃λψ̃β0]/2

= Σ
mX
j=1

{2E[(u2i /σ2i )qijxiq0iPejx̄0i] + ρ3E[(ε4i /σ4i )qijx̄iq0iPejx̄0i]}Σ/2

= Σ{E[Kixix̄
0
i] + (ρ3/2)E[(µ4i/σ

3
i )Kix̄ix̄

0
i]}Σ.

Next, consider D̃2. Let Pjk denote the (j, k)
th element of P . We have by linearity of

gi(β) in β, eq. (A.22),

mX
j,k=1

PjkMp+j,p+k[Σ, 0]
0 =

mX
j,k=1

PjkE[

Ã −G0ieje0kGi −G0ieke0jGi
ρ3gi(gije

0
kGi + gike

0
jGi + gijgikGi)

!
]Σ

= −
mX

j,k=1

Pjk

Ã
2E[xix

0
iqijqik]

3ρ3E[σ
2
i qixiqijqik]

!
Σ

= −
Ã

2E[Kixix
0
i]

3ρ3E[σ
2
iKiqix

0
i]

!
Σ.

Also, by eq. (A.21),
Pm
j=1 qijPej = Pqi, and

Pp
k=1 xike

0
kΣ = x

0
iΣ,

mX
j=1

pX
k=1

Mp+j,k

Ã
0
P

!
eje

0
kΣ = −

mX
j=1

pX
k=1

E[

Ã
G0iejg

k0
i ++GijkG

0
i

−ρ3[Gijkgig0i + gij(gki gi + gigk0i )]
!
]Peje

0
kΣ

= −
mX
j=1

pX
k=1

Ã
2E[xiq

0
iqijxik]

3ρ3E[σ
2
i qiq

0
iqijxik]

!
Peje

0
kΣ

= −
Ã

2E[Kixix
0
i]

3ρ3E[ε
2
iKiqix

0
i]

!
Σ.

Note that for j, k ≤ p, for GEL in a linear model the left block of Mjk is zero, so that

Mjk[Σ, 0]
0 = 0 and hence MjkE[ψiψij ] = 0. Also, by standard V-statistic calculations

and Mjk =Mkj ,

D2 = [Σ,−H] lim
n→∞E[

qX
j,k=1

ψ̃jψ̃kMjkψ̃ψ̃
β0]/6 = [Σ,−H]{

qX
j,k=1

E[ψijψik]Mjk

Ã
Σ
0

!

+2
qX

j,k=1

MjkE[ψiψij]E[ψikψ
β0
i ]}/6

= [Σ,−H]{
mX

j,k=1

PjkMp+j,p+k

Ã
Σ
0

!
+ 2

mX
j=1

pX
k=1

Mp+j,k

Ã
0
P

!
eje

0
kΣ}/6

= −Σ{E[Kixix
0
i] + (3ρ3/2)E[Kix̄ix

0
i]}Σ.

[42]



Then summing D1 and D2 gives the first conclusion. For the second conclusion, note that

Ki ≤ q0iΩ−1qi ≤ Cq0i(E[qiq0i])−1qi ≤ Cζ(m)1/2 for ζ(m) = {supx∈X q(x)0(E[qiq0i])−1q(x)}2.
Then since −G0Ω−1 are the population least squares coefficients from a regression of

xi/σ
2
i on qi,

kE[Kixi(x̄i − xi)0]k2 ≤ E[K2
i kxik2]E[kx̄i − xik2] ≤ Cζ(m)E[kxik2]E[σ4i k(−G0Ω−1)qi − xi/σ2i k2]

≤ Cζ(m)E[k(−G0Ω−1qi)− xi/σ2i k2] ≤ Cζ(m)E[kγmqi − xi/σ2i k2]→ 0.

It follows similarly that E[Kix̄i(x̄i − xi)0]→ 0, giving the second conclusion. Q.E.D.
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