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Abstract

In an effort to improve the small sample properties of generalized method of mo-
ments (GMM) estimators, a number of alternative estimators have been suggested.
These include empirical likelihood (EL), continuous updating, and exponential tilt-
ing estimators. We show that these estimators share a common structure, being
members of a class of generalized empirical likelihood (GEL) estimators. We use
this structure to compare their higher order asymptotic properties. We find that
GEL has no asymptotic bias due to correlation of the moment functions with their
Jacobian, eliminating an important source of bias for GMM in models with endo-
geneity. We also find that EL has no asymptotic bias from estimating the optimal
weight matrix, eliminating a further important source of bias for GMM in panel
data models. We give bias corrected GMM and GEL estimators. We also show
that bias corrected EL inherits the higher order property of maximum likelihood,
that it is higher order asymptotically efficient relative to the other bias corrected
estimators.
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1 Introduction

In an effort to improve the small sample properties of GMM, a number of alternative
estimators have been suggested. These include the empirical likelihood (EL) estimator
of Owen (1988), Qin and Lawless (1994), and Imbens (1997), the continuous updating
estimator (CUE) of Hansen, Heaton, and Yaron (1996), and the exponential tilting (ET)
estimator of Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998). As
shown by Smith (1997), EL and ET share a common structure, being members of a
class of generalized empirical likelihood (GEL) estimators. We show that the CUE is
also a member of this class as are estimators from the Cressie and Read (1984) power
divergence family of discrepancies. All of these estimators and GMM have the same
asymptotic distribution but different higher order asymptotic properties. We use the
GEL structure, which helps simplify calculations and comparisons, to analyze higher
order properties like those of Nagar (1959). We derive and compare the (higher order)
asymptotic bias for all of these estimators. We also derive bias corrected GMM and GEL
estimators and consider their higher order efficiency.

We find that EL has two theoretical advantages. First, its asymptotic bias does
not grow with the number of moment restrictions, while the bias of GMM often does.
Consequently, with many moment conditions the bias of EL will be less than the bias of
GMM. This property is important in econometrics, where many moment conditions are
often used. For example, Hansen and Singleton (1982), Holtz-Eakin, Newey, and Rosen
(1988), and Abowd and Card (1989), all use quite large numbers of moment conditions
in their empirical work. The relatively low asymptotic bias of EL indicates that it is an
important alternative to GMM in such applications. Furthermore, we show that under
a symmetry condition, which may be satisfied in some instrumental variable settings,
all the GEL estimators inherit the small bias property of EL. We provide intuition for
the bias results by interpreting EL as a GMM estimator where the linear combination
coefficients are efficiently estimated. Because of their efficiency these coefficients are

asymptotically uncorrelated with the moment conditions, removing the primary source
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of asymptotic bias.

The second theoretical advantage of EL is that after it is bias corrected, using prob-
abilities obtained from EL, it is higher order efficient relative to other bias corrected
estimators. This property has a simple explanation. When the data are discrete, having
finite support, the nonparametric (one probability per observation, unknown cells) EL
estimator is asymptotically equal to the parametric (one probability per cell) maximum
likelihood estimator (MLE). Furthermore, the bias correction based on EL probabilities is
identical to the discrete data bias correction for the MLE. Consequently, for discrete data
EL inherits the well known higher order efficiency of the MLE (e.g. see Rao, 1963 and
Pfanzagl and Wefelmeyer, 1978). Then, since nothing in the higher order variance de-
pends on discreteness, this result extends to any distribution. More precisely, by Lemma
3 of Chamberlain (1987), we can find a discrete distribution that matches all the mo-
ments that make up the higher order variances of any two estimators, so the efficiency
of bias corrected EL for the discrete distribution implies efficiency for the true one.

Although the small bias property of EL is nice, there are methods of removing all
of the asymptotic bias. These include the bootstrap, as in Horowitz (1998) for GMM,
the jackknife, as in Kezdi, Hahn, and Solon (2001) for minimum distance, and analytical
methods, as in Hahn, Hausman, and Kuersteiner (2001) for dynamic panel data. Here
we give general analytical bias corrected versions of GMM and GEL. The higher order
efficiency of bias corrected EL gives it a theoretical advantage over all the other bias
corrected estimators.

It is also of interest to compare higher order efficiency when the full bias correction
is not used, so that EL need not be higher order efficient. We do this for estimators that
improve asymptotic efficiency (relative to least squares) under unknown heteroskedas-
ticity, as considered in Amemiya (1983), Chamberlain (1982), and Cragg (1983). We
impose auxiliary assumptions that give zero bias for GMM and GEL, even though the
estimated bias corrections are not zero (so that EL is not higher order efficient), and
compare higher order variances. We find that with a Gaussian disturbance GEL and

GMM have the same higher order variances with many moments, but that with condi-
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tional kurtosis, GMM is efficient relative to EL with thick tailed errors whereas EL is
better with thin tailed errors. This provides an example where there is no bias concern,
the only issue being efficiency, and where EL may not be best in terms of MSE.

Some previous work on higher order properties of these estimators has been done.
Koenker et al. (1994) and Rilstone, Srivastava, and Ullah (1996) give some higher order
variance and bias calculations for special cases of GMM. Corcoran (1998) showed that
in a class of minimum discrepancy estimators, EL has the only objective function that is
Bartlett correctable. Rothenberg (1996) showed that for a single equation of a Gaussian,
homoskedastic linear simultaneous equations model the asymptotic bias of EL is the same
as the limited information MLE and that a bias corrected EL is higher order efficient
relative to a bias corrected GMM estimator. Imbens and Spady (2001) showed in a special
model that the higher order MSE for GMM grows faster with the number of moment
conditions than for EL. We obtain bias formulae and corrections for fully general GMM
and GEL estimators and show EL has relatively small bias and is higher order efficient
after bias correction.

The outline of the paper is as follows. In Section 2 the model and estimators are
described, and new interpretations of some of the estimators are given. Section 3 gives
the asymptotic expansions on which the results are based, including a new consistency
result for GEL. Section 4 presents the results on asymptotic bias. Bias corrected versions
of GMM and GEL are given in Section 5. Section 6 presents the results on higher order

efficiency. Section 7 concludes. Proofs are given in the Appendix.

2 The Model and Estimators

The model we consider is one with a finite number of moment restrictions. To describe
it, let z;, (¢ = 1,...,n), be i.i.d. observations on a data vector z. Also, let 3 be a p x 1
parameter vector and g(z, 3) be an m x 1 vector of functions of the data observation z

and the parameter 3, where m > p. The model has a true parameter (3, satisfying the



moment condition
E[g(27 50)] = 07

where E[.] denotes expectation taken with respect to the distribution of z;.

An important estimator of 3 is the two step GMM estimator of Hansen (1982). To
describe it, let gi(8) = g(zi, 8), (8) =" 1, gi(8), and QB) =n ' 1, 6i(B)gi(B).
Also, let 8 be some preliminary estimator, given by 3 = arg mingeg §(5)’ Wflg(ﬂ) where
B denotes the parameter space, and W is a random matrix with properties to be specified

below. The GMM estimator we consider is

Borins = argmin (8 (5) 4(5). 2.1)

We will compare the properties of this estimator to a class of alternative estimators.
The alternatives to GMM we consider are generalized empirical likelihood (GEL)
estimators, as in Smith (1997, 2001). To describe GEL let p(v) be a function of a scalar
v that is concave on its domain, an open interval V containing zero. Let A,(8) = {\ :

Ngi(6) € V,i=1,...,n}. The estimator is the solution to a saddle point problem

A X
BerL = argmin  sup p(N'gi(B3)). (22)
PEB \ehn(B) i=1

The empirical likelihood (EL) estimator is a special case with p(v) = In(l — v) and
VY = (—00,1), as shown by Qin and Lawless (1994) and Smith (1997). The exponential

tilting (ET) estimator is a special case with p(v) = —e

Stutzer (1997) and Smith (1997).

, as shown by Kitamura and

It will be convenient to impose a normalization on p(v). Let p;(v) = & p(v)/0v? and
p; = p;(0), ( = 0,1,2,...). We normalize so that p; = p, = —1. As long as p; # 0
and ps < 0, which we will assume to be true, this normalization can always be imposed
by replacing p(v) by [—p2/p3]p([p1/p2]v), which does not affect the estimator of 3. It is
satisfied by the p(v) given above for EL and ET.

The continuous updating estimator (CUE) of Hansen, Heaton, and Yaron (1996) is
also a GEL estimator as we now show. The CUE is analogous to GMM except that the
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objective function is simultaneously minimized over [ in Q(ﬁ)_l. It is given by

Bovr = argmin §(3)'2(8)4(8), (233)

where A~ denotes any generalized inverse of a matrix A, satisfying AA~A = A.! The

following result shows that this estimator is a GEL estimator for quadratic p(v).
Theorem 2.1: If p(v) is quadratic then Berr = Bevs.

Associated with each GEL estimator are empirical probabilities for the observations.
Because these probabilities are important for our analysis we give a brief description. For
a given function p(v), an associated GEL estimator B, and §; = gZ(B) they are

A~ 37~ X /2N .

Ti=p1(Ngi)/  p(Ngy), (i=1,...,n), (2.4)

j=1
here A = P (Vg he empirical probabilities #;, (i =

where A = argmax, ;3 i=1(A'3;)/n. The empirical proba 11t1|e3s i, (1 =1,...,n),
sum to one by construction, satisfy the sample moment condition ', 7;g; = 0 when
the first order conditions for A hold, and are positive when X g; is small uniformly in 4.
For EL they were given by Owen (1988), for ET by Kitamura and Stutzer (1997), for
quadratic p(v) by Back and Brown (1993), and for the general case by Brown and Newey
(1992); see also Smith (1997). For any function a(z, 3) and GEL estimator § these can be

. . P, . .
used to form an efficient estimator I, m;a(z;, ) of Ela(z, )], as in Brown and Newey

(1998).

2.1 Duality for GEL

Comparing GEL with another type of estimator helps explain the form of the probabilities
in equation (2.4) and connects our results with the existing literature. Let h(m) be a
convex function of a scalar 7, and consider the estimator

B = arg Bmin Xh(m)7 s.t. Xmgi(ﬁ) =0, Xm- = 1. (2.5)

=1 i=1 i=1

1The CUE of Hansen, Heaton, and Yaron (1996) actually minimizes QB = (BB —
9(8)9(8)1714(83) rather than Q(3) = §(8)'Q(3)"*¢(3) , but equality of the two estimators follows

by Q%) = Q(8)/[1 - Q(8)].
[5]



This general class of minimum discrepancy (MD) estimators was formulated by Corcoran
(1998). Like GEL, this class also includes as special cases EL and ET, where h(r) is
—In(m) and 7 In(7) respectively.

For each MD estimator there is a dual GEL estimator when () is a member of the
Cressie and Read (1984) family of discrepancies in which k() = [y(y + 1)] " (nm)7 ! —
1]/n. To describe this result, note that the Lagrangian for MD is

L 1 X - X X

= WiZI[(”Wi) —1]/n—a . mig:(8) + p(1 _¢=1 i),
where « is an m x 1 vector of Lagrangian multipliers associated with the first constraint
and p a scalar multiplier for the second constraint. Let 7;, @, and iz denote the solutions

to the MD optimization problem, along with 3. We interpret expressions as limits for

vy=0orvy=—1.
Theorem 2.2: If g(z, ) is continuously differentiable in [3, for some scalar
p(v) = —(1+70)0"V7 /(v + 1), (2.6)

n

; P
the solutions to equation (2.5) and (2.2) occur in the interior of B, X exists, and =

Il
—_
RS
N
—~
>
>
=
QSQ>
Na}

is nonsingular, then the first order conditions for GEL and MD coincide for B = 3,
Fi=7, (i=1,...n), and X = &/(y) for v # 0 and A\ = a for v = 0.

The duality between MD and GEL estimators is known for EL (v = —1, Qin and
Lawless, 1994) and for ET (y = 0, Kitamura and Stutzer, 1997), but is new for the
CUE (y = 1) as well as for all the other members of the Cressie and Read (1984) family.
Duality is useful because it shows how the computationally less complex GEL estimators
are related to MD estimators of the Cressie-Read family, which has become a common
standard for comparison in the empirical likelihood literature (e.g. see Owen, 2001). Also,
duality justifies the 7; in equation (2.4) as MD estimates, which aids the interpretation

of the first order conditions of the estimators.



2.2 The First Order Conditions

Some interpretations of the first order conditions are useful for understanding our asymp-
totic bias results. Let G;(8) = 0g;(5)/98. The GMM first order conditions imply

™ GulBownn) /B " Benss) = . (27)
We can also obtain an analogous expression for any GEL estimator B'z Let k(v) =
[p1(v) +1]/v,v # 0 and k(0) = —1. Also, let &; = Ng;, k; = k(?;)/ P?ZI k(v;), and 7; be

as given in equation (2.4).

Theorem 2.3: The GEL first order conditions imply
XX
[ mGB)'  kigi(B)g:(B)] " 9(B) =0,

=1 i=1

where k; = 7; for EL and k; = 1/n for CUE.

In comparing the GMM and GEL first order conditions, we see that each can be
viewed as setting a linear combination of §(/3) equal to zero, but the linear combination
coefficients are estimated in different ways. GMM uses sample averages while GEL
uses an efficient estimator of the Jacobian term. Also EL uses an efficient estimator of
the second moments, CUE uses the sample average, and other GEL estimators use other
weighted averages. An important property of efficient moment estimators is that they are
asymptotically uncorrelated with Q(B), eliminating correlations between corresponding
terms in the first order conditions which are an important source of nonzero expectation
for the first order conditions, and hence of bias. Consequently, as we will show, for GEL
there will be no asymptotic bias from estimation of the Jacobian and, furthermore, for
EL there will also be no asymptotic bias from estimating the second moments.> We
will also see that the absence of second moment bias holds for any GEL estimator with
p3 = —2, which can be explained by the fact that k(v) = p1(v) 4+ o(v) in this case, and

hence k; is approximately equal to 7;.

2Bonnal and Renault (2001) independently obtained a similar result for the CUE.
3Donald and Newey (2000) previously discussed the absence of Jacobian bias for the CUE.

[7]



3 Stochastic Expansion

We find the asymptotic bias and higher order variance using stochastic expansions for
each estimator. Let F' denote the distribution of z, ¥(z, F') a function of z and F
with E[Y(z, Fy)] = 0, and ) = P?:l (2, Fy)/y/n. Also define a(z, F), @, b(z, F), and b

analogously. For each estimator we derive an expansion

V(B = Bo) = ¥ + Qi(,a, Fo)/v/n + Q2(, @, b, Fy)/n + R, (3.1)

where () is quadratic in its first two arguments, ()7 is cubic in its first three arguments,
and R, = O,(n=%?). As discussed in Rothenberg (1984), valid higher order bias and
variance calculations can be based on the expectation and variance of the sum of the
first three terms in this expansion. Under certain regularity conditions, including con-
tinuous distributions, this bias and variance will coincide with those of an Edgeworth
approximation to the distribution. Furthermore, even when the data are discrete, so
that an Edgeworth approximation is not valid, these calculations can be used for higher
order efficiency comparisons, as in Pfanzagl and Wefelmeyer (1978). We also note that
in the Appendix we give a corresponding expansion for A, which may be of interest for
the analysis of overidentifying moment tests, as in Imbens, Spady, and Johnson (1998);
see also Smith (1997, 2001).

Consistency and asymptotic normality are important prerequisites for stochastic ex-
pansions, so we first briefly consider these properties for any GEL estimator B We make

use of the following identification and regularity condition. Let Q = E{g;(80)g:(50)']-

Assumption 1: (a) fy € B is the unique solution to E[g(z, 5)] = 0; (b) B is compact;

h i
(c) g(z, ) is continuous at each § € B with probability one; (d) E supges [|g(z, 8)[|* <
oo for some a > 2; (e) € is nonsingular; (f) p(v) is twice continuously differentiable in a

neighborhood of zero.

This assumption requires the existence of slightly higher moments than consistency

for two step efficient GMM, as in Hansen (1982), but otherwise is the same.

8]



Theorem 3.1: If Assumption 1 is satisfied then 3 2 By, §(8) = Op(n~/?), A =
P ~ ~
argmax, 35 i1 P(AN'gi(B))/n exists with probability approaching one, and A = O,(n=1/?).

This result is new in making no auxiliary assumption about B or \. Also, the proof
is based directly on the global concavity of p(v) and the saddle point form of GEL.
Additional conditions are needed for asymptotic normality. Let G = E[0g;(5o)/00].

Assumption 2: (a) 5, € int(B); (b) g(z, ) is continuously differentiable in a neigh-
borhood N of §y and E[supsey ||09:(8)/08']|]] < oo; (¢) rank(G) = p.

Let ¥ = (G'Q7'G)~, H = SG'Q7!, and P = Q! — Q-1GRG'QL.

Theorem 3.2: If Assumptions 1 and 2 are satisfied then
A 1

Jn P ‘Xﬁﬂ < N(0, diag(%, P)), 2n[X p(Ngi(B))/n — po] % x*(m — p).

i=1

This result shows asymptotic normality of GEL estimators, and that, properly nor-
malized, the saddle point objective function has a limiting chi square distribution. This
is an overidentification test statistic that was formulated by Smith (1997). It is included
here because we thought that this test statistic might have independent interest.

Additional smoothness and moment conditions are needed for the stochastic expan-
sion. Let V7 denote a vector of all distinct partial derivatives with respect to 3 of order
],

Assumption 3: There is b(z) with E[b(z;)% < oo such that for 0 < j < 4 and
all z, V/g(z, 3) exists on a neighborhood N of 3y, supgep[|V7g(2, 3)|| < b(z), and for
each 3 € N, ||Vig(z, B8) — Vig(z, Bo)|| < b(2)||B3 — Boll, p(v) is four times continuously

differentiable with Lipschitz fourth derivative in a neighborhood of zero.

Also, for the GMM estimator we need to specify conditions concerning the initial

weighting matrix w.

- . P
Assumption 4: There exists W and £(z) such that W = W+ 7, £(2;)/n+0,(n 1),
W is positive definite, E[¢(2;)] = 0 and E[||€(2)]|%] < oo.

[9]



We derive the stochastic expansion for GMM using an auxiliary parameter pVEIVIY:
that is analogous to that for GEL. Specifically, we consider GMM first order conditions
of the form

" Gulownn)/nl oans = 0.~iBann) = AP ican =0. (32
This formulation simplifies calculations, because it removes the inverse matrix from the
first order conditions. A different way to do this was proposed by Rilstone et. al. (1996).

The next result shows that GMM has a stochastic expansion.

Theorem 3.3: If Assumptions 1 - 4 are satisfied then equation (3.1) is satisfied for
the GMM estimator.

The final result of this Section is the stochastic expansion for GEL.

Theorem 3.4: If Assumptions 1 - 3 are satisfied then equation (3.1) is satisfied for
the GEL estimator.

Expressions for each of the terms in the expansions of Theorems 3.3 and 3.4 are given
in the respective proofs of these results because they are quite complicated. Implicit
in this result for GMM is that the expansion depends on the preliminary estimator /3
only through the limit W and influence function £(z;). For example, all efficient GMM
estimators that have been iterated at least twice, so that W = Q(B) and (3 is itself
an efficient GMM estimator, have the same expansion. Also, similarly to Pfanzagl and
Wefelmeyer (1978), Rothenberg (1984), and Robinson (1988), after three iterations that
start at an initial /n-consistent estimator, numerical procedures for solving the GEL
first order conditions will produce an estimator with the same leading three terms in the

expansion of equation (3.1).

4 Asymptotic Bias

The asymptotic (higher order) bias formula is given by

A

Bias(8) = E[Q1(¥s, ai, Fo)l/n, (4.1)

[10]



with other terms in the expansion being O(n~2). To describe the precise form of the bias
we need some additional notation. Let Hy = (G'W'G)'\G'W ™, Qg = E[0{g:(00)9:(50)'}/95;],

a be an m x 1 vector such that

a; = tr(SE[0%;;(6)/0B08)) /2, (j = 1,...,m), (4.2)

where g;;() denotes the jth element of ¢;(3), and e; the jth unit vector. For GMM we

have the following result:

Theorem 4.1: If Assumptions 1 - 4 are satisfied then

Bias(BGMM) = Br+ Bg+ Bg+ Bw,Br = H(—a+ E|G;Hg,|)/n, B¢ = —XE|G,Pg]/n,
Bq = HE|g:g.Pgi]/n, By = —H%(ngj (Hw — H)'e;/n. (4.3)
j=
Each of the terms has an interesting interpretation. The first term By is precisely the
asymptotic bias for a GMM estimator with the optimal (asymptotic variance minimizing,
Hansen, 1982) linear combination G'Q2"'g(z,3). The term Bg arises from estimation of
G. If G; is constant as in minimum distance estimation, see Section 4.2, Bg = 0 but
B¢ is generally nonzero whenever there is endogeneity. Similarly the term Bg arises
from estimation of the second moment matrix 2. It is zero if third moments are zero,
but is generally nonzero. Both Bg and Bg will be zero with exact identification, where
m = p, because P is zero in this case. The term By arises from the choice of preliminary
estimator. It is zero if W is a scalar multiple of €2. This result is consistent with the
Monte Carlo example of Hansen, Heaton, and Yaron (1996), where multiple iterations
on § had little effect on bias.

We now turn to the bias formula for GEL.

Theorem 4.2: If Assumptions 1 - 8 are satisfied then

Bias(Bepr) = Br + (1 + %)BQ

In comparison with the GMM bias, we find that Bg and By drop out, i.e. there is

no asymptotic bias from estimation of the Jacobian or from the preliminary estimator.
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The absence of any bias from the preliminary estimator is to be expected from the one
step nature of the GEL estimator. Also, as noted in Section 2, the absence of bias from
Jacobian estimation can be explained by the presence of an efficient estimator of the
Jacobian in the first order conditions. In addition, as noted in Section 2, EL uses an

efficient second moment estimator, leading to the following result.
Corollary 4.3: If Assumptions 1 - 8 are satisfied then

Bias(fgL) = Br. (4.4)

Thus, for EL the bias is exactly the same as for an estimator with moment functions
G’ 'g(z, 8). This same property would be shared by any GEL estimator with p3 = —2.

It will also be shared by any GEL estimator when third moments are zero.

Corollary 4.4: If Assumptions 1 - 3 are satisfied and E|g;9.g:;] = 0, (j =1, ...,m),
then
Bias(BapL) = Bias(fgL) = Bi. (4.5)

This third moment condition will hold in an IV setting, when disturbances are sym-
metrically distributed. When it does hold one can actually show something slightly
stronger, that Bepr — Ber = 0,(n=3/?).

It is well known that, in overidentified linear models, estimation of the Jacobian term
is an important source of bias in IV estimators. Because the GMM bias includes such
effects but GEL does not, we expect that GEL will have relatively small bias in such
settings. Also, from Altonji and Segal (1996) we know that, in covariance parameter
models, estimation of {2 can be an important source of bias in optimal minimum distance.
Given that the EL bias does not include this effect we expect that it will have relatively

small bias for minimum distance. We can verify this intuition in some specific models.
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4.1 Conditional Moment Restrictions

One important model, that is useful for considering IV estimation, involves a conditional

moment restriction. To describe this model let u(z, 5) be a scalar residual satisfying

Consider moment conditions where g(z, 3) = q(x)u(z, ) and ¢(x) is a m x 1 vector of
instrumental variables. To derive the bias, let u; = u(z;, Bo), ug = Ou(z;, Bo)/00, ugp: =
0*u(z;, 00)/0B0F', 0} = Elui|z;] and ¢; = q(x;). Also, for o > 0, let d; = Elug;|vi]/0?,

R; = —E[umul |.’131] s

Ji = G/Qilqui = E[Uﬂm’%LMm = E[Uﬂ%]? 0 = E(F&i + Jmsi)/af.

Theorem 4.5: If Assumptions 1 - J and equation (4.6) are satisfied and BGMM a
GMM estimator with W = €,

Bias(BpL) = —X(E[ditr(SH;)]/2 + Eld;dSki))/n,
Bias(Bopr) = Bias(Bpr) + (1 + %)Bg, Bq = YE[diuzid Pai) /n,

Bias(Beun) = Bias(BpL) + SE[ki¢,Pg]/n + Ba.

Also, if E[||H;||*/c?] < oo, Elc?||d;||] < oo, and k;/c? is bounded, there are constants

Cy and Cy such that for all q(z)

|Bias(Ber)|| < C1l|Z||/n, € Bias(Ban) — €;Bias(Bpr) > Ca(m — p) inf{e;é;} /n.

Here inf{e}6;} = sup{C : Pr(€}6; > C') = 1}. In the general heteroskedastic case, we
find that the asymptotic bias of GMM grows linearly with the number of overidentifying
restrictions when inf{e}&i} = sup{C : Pr(e}6; > C) = 1} > 0, while the bias of EL is
bounded. In this case the bias of GMM will exceed the bias of EL in magnitude when the
number of overidentifying restrictions is large enough. We can also show this result when

sup{e;6;} < 0. Donald, Imbens, and Newey (2002) show that these comparisons between
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asymptotic biases are also correct when m is allowed to grow with the sample size. If the
preliminary estimator 3 is inefficient, the additional term By = 25 E|[d;q)(Hw —H)'ki]/n
should be included in Bz’as(BGMM).

An important special case is a homoskedastic linear model, where ugs = 0 and
ki = K, 02 = 0%, usy = pg are constants. Here Bias(fpr) = —Sk/0?, which is the
same as the bias of the Gaussian limited information MLE, as shown by Rothenberg
(1996) for Gaussian disturbances. Also, when ps = 0, Bias(Bgpr) = Bias(3gL) and
Bias(Bany) = (m — p — 1)2k /02, which is the Nagar (1959) bias of two stage least
squares. When p3 # 0 all the estimators, except for EL and GEL with p3 = —2, have an

additional bias term from estimating the weight matrix.

4.2 Minimum Distance Estimation

The second example is classical minimum distance estimation. Consider moment condi-
tions where g(z,3) = r(z) — h(f), for r(2) a vector of functions of the data and h(f3) a
vector of functions of the unknown parameters. Here G = —0h(8,)/083, 2 = Var(r(z;)),
and a; = —tr(30%h;(5)/0803")/2. We can derive a bound on the bias of 3 that only
depends on X, analogous to that for the previous model, when h(3) can be interpreted
as the expectation with respect to the pdf for some model. The following assumption

imposes this condition along with some smoothness.

Assumption 5: There is a family of densities f(z|3) such that for any r(z), h(3) =

R
r(2)f(z|8)dz. Also, f(2|8) is twice continuously differentiable in a neighborhood N of

R R
Bo. (L+|Ir(2)]]) supgen [10.f(218) /08l dz < 0o, (1+]lr(2)|]) supgen 0% f(218) /0807 ||dz <
00, and for s; = d1n f(2|50)/08 and F; = 0*In f(2]8) /0308 + s;5., we have E[||s;||?] <
oo, and E[|F||?] < oc.

Theorem 4.6: If Assumptions 1 - 4 are satisfied and g(z,3) = r(z) — h(3) then

Bias(BgL) = —XG'Q'a/n,
Bias(fepr) = Bias(BpL) + (1 + %)zg’g*lE[giggpgi] /n,
Bias(Bany) = Bias(Beyr) = Bias(BsL) + SG'QC E|gigPgi] /n.
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Also, if h(B) is linear in B then Bias(BEL) = 0. Furthermore, if Assumption 5 is also
satisfied then

q

| Bias(Beu)ll < pIZI?  Ells:|2IB[|F]2)/2n.

Here the bias for GMM is identical to that for CUE, which occurs because there is
no asymptotic bias from estimation of the Jacobian or from the preliminary estimator
B as ng =0, (j = 1,...,p). Also, we find that the asymptotic bias of EL is zero in
the special case of a linear h(/3) function, and that it does not grow with the number of
overidentifying restrictions.

For optimal minimum distance it seems difficult to give a general result showing how
the bias of GMM grows with the number of moment restrictions, but an example provides
some insight. Suppose that 3 is a scalar, r(z) = (21, ..., 2m)’, and k() = (i, where ¢ is an
m x 1 vector of units. Also, suppose that the components of z are mutually independent
and identically distributed. Let 0* = Var(z;;) and puz = E[(z;; — o)*]. Then Q = 021,

and G = —t, so that ¥ = 0?/m and P = (I,,, — u//m)/o?. Tt follows that
H i 1
(A LA . m — 1
Bias(fs1) = 0, Bias(Boun) = Bias(Bovs) = —— 22,

m o2
N m o3 '

Here the bias of GMM relative to its asymptotic standard error grows with the square
root of the number of overidentifying restrictions. Dividing by the standard error is an

appropriate normalization, since it goes to zero as m grows.

5 Bias Corrected GMM and GEL

Although we have established that EL has smaller asymptotic bias than GMM in several
important cases, it is also possible to remove all the asymptotic bias. As mentioned in
the introduction, there are several approaches to bias correction, including the bootstrap,
jackknife, and analytical methods. Here we use an analytical approach, bias correcting
GMM and GEL using the asymptotic bias formulae we have derived. These bias cor-

rections are much simpler computationally than the bootstrap or jackknife methods,
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particularly in nonlinear models. They can be constructed using the same ingredients as
the estimator of 3 along with the second derivatives of the moment indicators.

The basic idea of analytical bias corrections is simple and well known, and consists of
estimating the asymptotic bias and subtracting from B . Here we use the general formula
of equation (4.1) to construct the bias estimate. For an estimator F' of the distribution
of a single observation, the bias corrected estimator is

Z
5= - BAs(9), BAs(3) = Qi(v(2, F),alz, F), F)F(dz)/n. (5.1)

The distribution estimator F' can be chosen to be the empirical distribution or a
distribution based on the GEL probabilities in equation (2.4). This choice does not affect
the asymptotic bias of the estimator, nor the higher order asymptotic variance. It can be
shown that the effect of using the GEL probabilities, rather than empirical distribution,
enters only through the appearance in (); of a linear combination of \/ﬁg(ﬁ), and that
\/ﬁﬁ(ﬁ) is asymptotically uncorrelated with zﬁ Consequently, since )2 enters the higher
order variance only through its asymptotic correlation with 1, see Section 6, using a GEL
estimator of the distribution has no effect on the higher order variance of 3 (although it
will on \).

To describe the specific form of the bias correction for GMM, we need to introduce

some notation. Let @GMM denote the GMM estimator and

A

« R R > . . A
G = 9(Beum), Gi =Gi(Beum), G = Gi/n, Q= QBemm),
=1
S o= (GO'G)LH=SGO0 Y = —Hg, P=0" —QTIGREO Y,

X .
a; = tr(S 0%g(Bern) /0808 [n) /2, (5 = 1,...,m),

i=1
Hy = (GWGQ)'G'W, Qs = 0QBanum)/B;.

Then for the bias formula given in Theorem 4.1, and using the empirical distribution F
to estimate the expectations in this formula, the estimator of the bias term is

N A x ..
BRs(Baun) = [-H@a+ Gl /n)
i=1
~ X Ay A X B At B L X, N A

i=1 i= j=1
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The bias corrected GMM estimator is then 5%y = Baarar — B (Banrn).
To form a bias corrected GEL estimator we use analogous formulae, replacing the
empirical distribution F by one based on the GEL probabilities of equation (2.4). Let

6GEL denote the estimator, 7;, (i = 1,...,n), the associated empirical probabilities, and

. R . . D S S
g = gi(ﬁGEL)y G; = Gi(ﬁGEL); G = G, Q2 = T:9:9;,

=1 =1

S o= (GG =SG0P = Mg, P =0 - QGRG0

- X A
C~Lj tT’(E . 7%18291]<5GEL)/8/886/)/2, (j = 1, ceuy m)

Then for the bias formula in Theorem 4.2, the estimator of the GEL asymptotic bias is
N ~ x . >x -
Bs(Bors) = [~H(a+ " wmGa) - (1+2) " #d{gPal/n.
i=1 i=1
The bias corrected GEL estimator is then ﬂAéEL = BGEL — B%s(ﬁGEL).

We can show under the conditions already given that these bias corrected estimators

have expansions with zero asymptotic bias.

Theorem 5.1: If Assumptions 1 - 4 are satisfied then B&EL and B&MM satisfy equa-
tion (3.1) with Bias(f%y;) = Bias(65ua) = 0.

6 Higher Order Efficiency of Empirical Likelihood

The precision of different estimators can be compared based on their higher order MSE,

given by
MSE(v/n(0 —6,)) = B,B., +V,,B, =+/nBias(0),V, = +Z/n,
= = lim {Var(Qy) + EIVAQ: + Qo)) + Bl (Vi + Q) 1},
where Q; = Ql(zﬁ, i, Fy), Qg = QQ(zﬁ, a, b, Fy), and terms that are o(n™!) are dropped.
Here the term Z is the additional, n~! variance term for \/n(6 — ;). One estimator is

higher order efficient relative to another if its MSE matrix is smaller than that of the

other, in the positive semidefinite sense. This property is often referred to in the literaure
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as third order efficiency, motivated by the presence of three terms in the expansion of
equation (3.1) (see e.g. Pfanzagl and Wefelmeyer, 1978). In general, although they
may be derived relatively straightforwardly from the Appendix, the expressions for = for
GMM and GEL are extremely complicated, and so are not given here, although some
comparisons can be made.

It turns out that bias corrected EL is third or higher order efficient relative to other
bias corrected GMM or GEL estimators, in the sense that = is smaller for EL. An
explanation of this result was given in the introduction. Here we give a rigorous proof.

Let Zgr, denote the higher order variance of bias corrected EL.

Theorem 6.1: If Assumptions 1-4 are satisfied and = is the higher order variance
of any bias corrected GEL or GMM estimator with W = Q(B) and B an efficient GMM

estimator, then = — Zgr, is positive semi-definite.

The third order efficiency of EL will be shared by any GEL estimator for which
p3 = —2 and ps = —6, because they all have the same expansion (3.1) as EL. Rothenberg
(1996) showed the third order efficiency of a bias corrected EL versus a bias corrected
GMM in the linear case of equation (4.5) with Gaussian disturbances. These higher order
variance comparisons correspond to a quadratic loss function. As shown by Pfanzagl and
Wefelmeyer (1978), the MLE for discrete data is also third order efficient for a wide class
of quasi-convex loss functions satisfying the smoothness condition of their Theorem 1’.
Consequently, it can also be shown that EL is higher order efficient for any such loss
function.

The higher order efficiency of EL only holds among bias corrected estimators. If
the bias corrections are dropped, then EL may not have the smallest MSE. Intuitively,
the estimated bias corrections from Section 5 are asymptotically correlated with 12, SO
dropping them may change the higher order MSE ranking of Theorem 6.1. Estimators
of parametric models are known to behave analogously. For instance, Amemiya (1980)
showed that in logit models the higher order MSE of a minimum chi square estimator is

smaller than that of maximum likelihood for a wide range of parameter values.
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As an example of MSE comparisons of estimators without bias correction we consider

heteroskedastic linear regression, a special case of that in Section 4.1. The model is
Yyi = 200 + i, Elu;|z;] = 0. (6.1)

Amemiya (1983), Chamberlain (1982), and Cragg (1983) considered GMM estimators
that are more efficient than least squares, based on moment indicators g(z, 3) = q(x)(y —
2'3), where q(z) includes = . For these moment indicators we compare the higher order
variance of GMM with GEL without bias correction. We also assume that E[u}|z;] = 0,
which implies (together with Elu;|z;] = 0) that GMM and GEL have no asymptotic
bias. However, EL need not be higher order efficient, because omitting the estimated bias
corrections affects the ranking of Theorem 6.1. Intuitively, E[u}|z;] = 0 generally does
not hold for either the empirical distribution or the empirical likelihood 7; distribution,
so that estimated bias corrections are non-zero. Dropping them therefore will also change
the higher order variances.

Let 0f = Eluf|zi], pai = Eluil|vi], 7 = —G'Q7 g0} = Elo}(zi/0})gi{ Elo}a:iq]} qi0?
and K; = q.Pg;.

Theorem 6.2: If Assumptions 1-4 are satisfied, W = Q(B), and B is an optimal
GMM estimator then

Eeum — Eger = D+ D', D =%{(p3/2)E(hai/ 0} — 3) KiZi7]]

Furthermore, if o? is bounded and bounded away from zero, j4; is bounded, E[qq.] is

nonsingular for each m, and there exists ~y,, such that for the support X of x, as m — oo,

{sup («)' (Elaig]) " a(@)} Ellei/ 07 = ymail”] — 0.
then as m — oo,

Ecvm — Zerr — p3XE (o} — 3)Kizzi)E — 0.
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This result gives an explicit formula for the difference of higher order variances as
well as a limit result as the number of moments gets large. The hypothesis for the limit
result combines an approximation property for ¢(x) with a bound on its size, which by
Newey (1997) will hold for cubic splines if the density of z is bounded away from zero,
the support of X is a rectangle, knots are evenly spaced, and o2 is twice differentiable in
z;. Koenker et al. (1994) also calculate the higher order variance of GMM, for a different
choice of B in W = Q(B) Our contribution is to compare GMM with GEL.

The limit result has a nice interpretation. If the disturbances are conditionally normal,
so that py; = 30}, then in the limit the higher order variances are equal. Also p3 = 0 for
CUE, so that it has the same limit higher order variance as GMM. For EL and ET, p3 < 0
so that they have smaller limit higher order variance than GMM when the disturbances

4

are thinner tailed than normal, in the sense that py; < 307,

and higher when they are
thick tailed, in the sense that ug; > 30}. In the latter case, GEL estimators with ps > 0
have smaller limit higher order variance than GMM.

Recently, Donald, Imbens, and Newey (2002) have carried out an analogous com-
parison when there is endogeneity, but still with zero conditional skewness given the
instruments. They find that when m is allowed to increase with the sample size, the
MSE of GMM generally exceeds that of GEL for large enough sample size. This occurs
because the squared bias from Section 4 grows with m?, whereas the variance grows
only with m. They also find that the CUE has smaller higher order variance than a bias
corrected GMM which only corrects for Bg. Furthermore, the higher order efficiency
ranking among GEL estimators is similar to that from Theorem 6.2, with EL being higher

order less efficient for thick tailed disturbances.

7 Conclusion

The usefulness of higher order bias and variance results depends on how well they help
to explain finite sample properties of estimators. There are now several Monte Carlo

experiments that are consistent with our results. For conditional moment restriction
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models, Hansen, Heaton, and Yaron (1996) found that the CUE had smaller bias than
GMM, and that iterating on the preliminary estimator 3 used to form the weighting
matrix had little effect on bias. For IV estimation of a Gaussian linear equation, Ramalho
(2001) and Judge and Mittlehammer (2001) found that, with several instruments, EL and
ET have similar, lower bias than GMM. These findings are consistent with Theorem 4.5,
which shows lower asymptotic bias for GEL when there are several instruments and zero
third moments.

For minimum distance estimation in panel data models Imbens (1997) found that EL
had smaller bias than GMM. Newey, Ramalho and Smith (2001) obtained similar bias
results for EL. and GMM and also reported that the bias of the CUE differed little from
that of GMM. Moreover, the bias of ET although an improvement over GMM exceeded
that of EL. These findings are consistent with the relatively small bias of EL found in
Theorem 4.6. Newey, Ramalho, and Smith (2001) also found that for large enough sample
size EL generally had smaller variance than a bias corrected GMM, consistent with the
higher order efficiency of EL found in Theorem 6.1.

Overall, the theory in this paper, when coupled with existing Monte Carlo results,
suggests some prescriptions for applied work. For IV estimation with many instruments
of a single equation where bias from the estimating the weighting matrix is not important,
GEL estimators should all have smaller bias than GMM. As yet, the Monte Carlo evidence
provides little guidance on which GEL estimator to use, although the recent theoretical
work of Donald, Imbens, and Newey (2002) for IV estimation shows that the CUE has
smaller higher order variance than bias corrected GMM while EL and ET may not.
In minimum distance estimation of panel data models, where bias from estimation of
the weighting matrix can be a serious problem, the EL estimator has especially good
properties. It eliminates the bias from estimation of the weighting matrix, and after
correcting for bias arising from nonlinearity, is higher order efficient relative to bias
corrected GMM. Thus, for both IV and minimum distance estimation, the theoretical
and Monte Carlo work to date suggest that GEL estimation should be considered as an

alternative to GMM in applied work.
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Appendix: Proofs

Throughout the Appendix, C will denote a generic positive constant that may be different
in different uses, and CS, M, and T the Cauchy-Schwarz, Markov, and triangle inequalities
respectively. Also, with probability approaching one will be abbreviated as w.p.a.l,
positive semi-definite as p.s.d., UWL will denote a uniform weak law of large numbers
such as Lemma 2.4 of Newey and McFadden (1994), and CLT will refer to the Lindeberg-
Lévy central limit theorem. We let P(8,\) = P?:l p(Ngi(B))/n.

Proof of Theorem 2.1: Let A = [g:(8),...,9.(8)]'/v/n and ¢+ = (1,...,1) be
an n x 1 vector of units. Thus, §(8) = A't/\/n and Q(8) = A’A. By Rao (1973,
1b.5(vi),(viii)), A(A’A)~ A’ is invariant to the choice of generalized inverse as is the CUE
objective function /A(A'A)"A't/n. Also, AA(A'A)"A" = A’. By p(v) quadratic, a

second order Taylor expansion is exact, giving

A

. I
P(3,2) = po — §(0)A — SN (A1)
By concavity of P((3,)) in A, any solution S\(ﬁ) to the first order conditions

0= g(8) + QB)A

will maximize P(8, ) with respect to A holding 3 fixed. Then, Q(8)Q3) §(8) =
AA(AA) A"/ = §(B), so that A(3) = —Q(8)~§(8) solves the first order conditions.

Since

P(3MB)) = po + S6(BYB) 3(5). (4.2)

the GEL objective function P(3,A()) is a monotonic increasing transformation of the
CUE objective function, so that the set of GEL estimators coincides with the set of CUE
estimators. Q.E.D.

Proof of Theorem 2.2: We first consider the case where v # 0. The first order

conditions for 7; are (n7;)7/y — a'g:(3) — i = 0. Solving gives 7i; = [y(fi + &' g:(3))]* /n.

P
The other MD first order conditions are [, 7; = 1 and, for G;(8) = 0g;(5)/00,

X _ X _



< P A .

The first order conditions for A are = i, p1(N'gi(5))g:(3) = 0. By the implicit function
; P

theorem there is a neighborhood of 3 where the solution A(8) to 74 p1(XNg:(5))g:(8) =0

exists and is continuously differentiable. Then by the envelope theorem the first order

conditions for GEL are

" X “
TGi(B)A =0, Tgi(6) =0, (A.4)

_ _ _ _ X _ _
72 = () )+ AN gD = (1 v X ga(B) 7 (14 ANy (B) 7.

j=1
Noting that p;(v) = —(1 +yv)/7, we see from the respective first order conditions that
the conclusion holds for #; = 7; and A = .
For the v = 0 case, we note that p(v) = —e’ and that under the constraint P?:l m =1,
o h(m) = P?:l In(nm;)m; = P?:l In(m;)m; + In(n). Then using this objective function
in the Lagrangian, the first order conditions for 7; are 1 + In(7;) = ji + & g;(3). Solving,
o= expl — 1+ a'ai(9) = ep(Ni(3))/ - exp(Ngy ().

J=1

with A = @&. The conclusion then follows as before. Q.E.D.

Proof of Theorem 2.3: Let G; = GZ(B) and g; = gz(ﬁ) By eq. (A.4) and the
definition of k(v),
X o X ) R s x e s
0= p(@)gi= [po(:) +1]gi —ng(B) = k(8:)3:giA — ng(P).
i=1 i=1 i=1
Solving for ), plugging into the first part of eq. (A.4), and multiplying by P?:1 k(v;)/n

gives the first result. Note that for EL k(v) = [-(1 —v) ' + 1]/v = —(1 —v) ™' = p1(v)
and for CUE k(v) = [—(1 4+ v) + 1]/v = —1 is constant. Q.E.D.

Let b; = supgeg [|9:(B)]]-

Lemma Al: If Assumption 1 is satisfied then for any ¢ with 1/a < ( < 1/2 and
A, ={\: |\ € n¢Y, SUPgepreAn 1<i<n [N Gi(5)] 2,0 and w.p.a.1, A, C An(ﬁ) for all
g€ B.
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Proof: By Assumption 1 it follows by M that max;<;<, b; = Op(nl/ @). Then by CS,

Sup INgi(B)] <n™¢ max b; = Op(n—C+1/oc> 2,0,
BeEBAEAN,1<i<n 1<i<n

giving the first conclusion, so w.p.a.1 Ng;(8) € V for all 8 € B and ||A]| <n~¢. Q.E.D.

Lemma A2: If Assumption 1 is satisfied, 3 € B, B 2 By, and §(B) = O,(n"1/?),
then \ = argmax, i (3 ]5(5, \) ezists w.p.a.1, X = Oy(n~Y?), and SUPyCA, (ﬂ)P(ﬂ, A) <
pPo + Op(nfl).

Proof: By UWL Q = Q(ﬁ) 2, Q. Then by nonsingularity of © the smallest
eigenvalue of € is bounded away from zero w.p.a.1. Let A, be as defined in Lemma Al.
By Lemma A1l and twice continuous differentiability of p(v) in a neighborhood of zero,
]5(5, A) is twice continuously differentiable on A,, w.p.a.1. Then ) = arg maxc An P(ﬂ_, A)
exists w.p.a.1. Furthermore, for g; = ¢;(3) and any A on the line joining A and 0, by
Lemma Al and py = —1, maxj<i<y, pg(}\’gi) < —1/2 w.p.a.1l. Then by a Taylor expansion
around A = 0 with Lagrange remainder, there is A on the line joining A and 0 such that

for g 4(p),

N - L X . -
po = P(B,0) < P(B,A) =po—Ng+ (1/2)N]  p2(N3:)53:g;/n] A

i=1
< po = Ng— (1L/HNQX < po + [ N[l = CINI*.

Subtracting py — C||A||> from both sides and dividing by ||A|| we find that C|A|| <
3]/, w.p.a.1. By assumption, § = O,(n?), and hence ||\ = O,(n""?) = o0,(n9).
Therefore, w.p.a.1 A € int(A,) and hence P (5, X) /O = 0, the first order conditions for
an interior maximum. By Lemma Al, w.p.a.l A € An(ﬁ), so by concavity of P(ﬁ, A) and
convexity of f\n(ﬁ) it follows that P (3,\) = sup \ehn(B) ]5(5, A), giving the first and second
conclusions with A = X. Then by the last inequality of above equation, ||g|| = O,(n~"/2),
and [[A]] = Op(n="2), we obtain P(8,A) < po+ |13 = ClIA* = po+Op(n™"). QED.

Lemma A3: If Assumption 1 is satisfied, then ||§(B)|| = O,(n~"/?).

~

Proof: Let §; = ¢:(0), § = §(3), and for ¢ in Lemma A1, A = —n$§/||g||. B
Lemma Al, max;<, [N 2 0and A € A,(3) w.p.a.1. Thus, for any A on the line joining
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~ . P
A and 0, w.p.a.l po(Ng) > —C, (i = 1,...,n). Also, by CS and UWL,  ,g;g;/n <
P P

(" ;b2/n)I L CI, so that the largest eigenvalue of = ; §;§,/n is bounded above w.p.a.1.
An expansion then gives

5 5 <. 3
P(B,A) = po—Ng+ 12N p2(NGi)gigi/n]A

)

> g —O12X’X“’ A\ > gl — Cn~%*¢
po+n"cgll = C(L/2)NT  Gigi/n]A > po +n"°||g]| — Cn

w.p.a.1l. By the CLT the hypotheses of Lemma A2 are satisfied by 3 = . By 6 and )\

being a saddle point, this equation and Lemma A2 give

po+n¢g|l — Cn~X < P(B,\) < P(B,\) < sup P(Bo,\) < po+Op(n7h). (A.5)
AEAn(ﬂO)

Also, by ( < 1/2, ( —1< —1/2 < —(. Solving eq. (A.5) for ||g|| then gives
131l < Op(n*™1) + Cn™¢ = O,p(n™°). (A.6)

Now, consider any ¢, — 0. Let A\ = —¢,§. Note that A = 0,(n~%) by eq. (A.6), so that
A € A, w.p.a.l. Then, as in eq. (A.5),

po = NG = CIAI* = po + eallgll* = Cenllgll* < po + Op(n").

Since, for all n large enough, 1—¢,C is bounded away from zero, it follows that &,||g]|* =
Op(n~'). The conclusion then follows by a standard result from probability theory, that
if €,Y,, = O,(n 1) for all &, — 0, then Y,, = O,(n"!). Q.E.D.

Proof of Theorem 3.1: Let g(3) = Elg(z,()]. By Lemma A3, §(3) 2 0, and
by UWL, supgcs [|9(8) — g(B)]| L, 0 and g(B) is continuous. By T g(4) £ 0. Since
g(B) = 0 has a unique zero at fy, ||g(f3)|| must be bounded away from zero outside any
neighborhood of fy. Therefore, 4 must be inside any neighborhood of fy w.p.a.1, i.e.
B2 B, giving the first conclusion. The second conclusion follows by Lemma A3. Also,

note by the first two conclusions the hypotheses of Lemma A2 are satisfied for § = B, SO
that the last conclusion follows from Lemma A2. Q.E.D.
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Proof of Theorem 3.2: For g; = gi(ﬁ), by Theorem 3.1 and Lemma A1, max;<y, |5\’§i] LN
P .
0. Therefore, the first order conditions = [, p1(Ng;)g; = 0 are satisfied w.p.a.1. Also,

I = . -
Q="",0N3)ag,/n 2 pQ so that Q is nonsingular w.p.a.1. Then as in the proof

of Theorem 2.2, the first order conditions of eq. (A.4) are satisfied w.p.a.1. Then by

a mean value expansion of the second part of these first order conditions we have, for

0= (3 XY and 6y = (5,0
_ O \ A_

0= g MO 90)7P | (A7)

Y 0 B i1 Pl(_j\'ﬁi)Gi(ﬁ)//n .

M P a)GB) T Ve s(Ba

where 3 and A are mean values that actually differ from row to row of the matrix

M. By A = O,(n"1/2), it follows as in Lemma A1l that max;<, |\ g;| = 0. Therefore,

max;<, ]pl(S\/gi) + 1| & 0 and max;<,, |p2(Ng;) + 1| 2 0. It then follows from UWL that

P
M = M, where A ' A

1
- H

_ -1 _ _
M = , M I p

G Q

Inverting and solving in eq. (A.7) then gives

Vil —0o) = —MH0,—v/ng(Bo)') = =M (0, —vng(Bo)') +0p(1)  (A8)
= —(H', P)'V/ng(B) + op(1).

The first conclusion follows from this equation and the CLT. For the second conclusion,

note that an expansion and eq. (A.8) give

~

9B = §(Bo) — GHG(Bo) + op(n™?) = —QA + 0,(n?).

G K A
P(B3,A) = po—=Ng(B)+ N[ p2(N3:)3:gi/m]A/2 (A.9)

i=1

= po—N3(B) = N2+ 0,(n™") = po + 4(8) Q' §(B) /2 + 0p(n "),

It follows as in Hansen (1982) that nj(6)'Q'4(3) <2 (m—p), so the second conclusion
follows from eq. (A.9). Q.E.D.
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We now give some Lemmas that are used to derive asymptotic expansions. The next
one is like Lemma 3.3 of Rilstone et. al. (1996), except that we expand in a shrinking
neighborhood to allow for A in GEL. For notational simplicity we will suppress the F

argument.

Lemma A4: Suppose that the estimator 6 and vector of functions m(z,0) satisfy a)
. R P .
0 =0y + O,(n~2); b) M) = ,m(z,0)/n =0 w.p.a.1; c) For some ¢ > 2, d(z)
with Ed(z)] < oo, and T,, = {0 : |0 — o] < n~ Y}, w.p.a.1 fori=1,...,n, m(z;,0) is

three times continuously differentiable on T, and for 6 € T,
10°m(2:,0)/00,00,00, — 8*m(2,60)/00,;00:00,|] < d(2:)]|0 — Oo;

d) Bl||m(z,00)(°, E[|0m(z,00)/00]°]. E[[|0°m(2,00)/06;00|°], and E[||0*m(z, 6)/00;00x00||],
(J,k =1,...,q), are finite; e) Elm(z,00)] = 0 and M = E[0m(z,0y)/00] exists and is non-

singular. Let

Mj = E[@Zm(z, 90)/89j89], Mjk = E[83m(2, 90)/69k89j89],
A(z) = 0m(z,00)/80 — M, B;(2) = 8*m/(z,0,)/00,80 — M;,

V(z) = —M 'm(z,0),a(z) = vecA(z2),b(z) = vec|By(2), ..., By(2)].

Then eq. (3.1) is satisfied for /n(0 — 60y) with

Q1(¢7 C~L) = _Mil[*’zhz + XQEJMJZ;/2]7 QZ( 7C~L7 ) = _Mil[AQIQ;? C~L) (A10>

7j=1
x N N o x N
+  AYM;Q1(Y,a) + Quj(v, a) My +;Bjb} 2+ b Mygtp /6]
j=1 7,k=1
P

Proof: Let M(A) = n~' ™, 0m(z,0)/00. A Taylor expansion with Lagrange

remainder gives,

0 = 1(fo) + M(0o)(0 — o) + *(@- — 00)[0M (6)/00,](0 — 60) /2 (A.11)
+ = (B; — 60) (B — Oxo) [0* M () /96,06,] (8 — 6,) /6.

3,k=1
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By T, M, the CLT, and the Lipschitz hypothesis,

|0°31(8)/00x06; — Misl| < [10°M (8)/06,:08; — 9% M (60) /06:06; | + ||0° M (60) /06x06; — M|
X R
< [ d(z)/n]ll6 = boll + Op(n72) = Oy(n~"72).

I
It follows then for M = M (fo) that by adding, subtracting, and solving gives

~

G- 60 — D — MTAG - 00) )i+ (6 — 0,0 M6 —60)/2  (A.12)

+ )_((é] — 9]'0)(Bj/\/%)<é —6p)/2
+ (60 — 00) (Br — o) M;1 (0 — 00) /6] + Oy (n72).

As all the terms except 1/v/n are Op(n~"), it follows that

6 — 80 = b/v/n+ Op(n™).

Next, the last three terms (including the remainder) in eq. (A.12) are O,(n~%/2), and
replacing 6 — 6, by 1Z /+/n in the second and third terms also generates an error that is

0,(n=3/2), we obtain

00y = /- MUAG+ M2+ 0 (A13)

j=1

= /v +Qu(,a)/n + Oy(n~*?).

Finally, replacing 6 — 6, in the second and third terms of eq. (A.12) by ¢/\/n+Q1 (1), @)/n
and in the fourth and fifth terms by 1 //n gives the conclusion. Q.E.D.

Lemma A5: Suppose that Assumptions 1-4 are satisfied and let Sy = (G'W1G) L,
Hy = Ewleil, Py = w1 — WﬁlGHw, ’% = —[H{/V,Pw]/gi, GZ = E[@Gz(ﬁg)/(‘?ﬁ]],

A 1 A 1 A 1
_ _ 0 G; I VN 1 —Xw Hw
M; = LG WE) M==cw A’M T Hy Py,
o 0BG . - El0%gi(B0)/0p08] 0 .
MJ - E[Gg] 0 7(] S p)vMerj - 0 0 7(] S m)
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Then for A = —W—lg(B), 6 = (6’75\’)’, and for ¥, @, and Q1(+,) as in Lemma Aj we
have,

) =00+ /v + Qi(1h, @) /n + Oy(n /).

Proof: Let 6 = (8',X'), Ao = 0, and m(z,0) = —(N0g(z,3)/008, g(z,0) + N[W +
£(2)]). Tt follows from Theorem 3.4 of Newey and McFadden (1994) that § = 6 +
O,(n~%/2). Note that for this choice of m(z, ) we have M; = Om(z;,0y)/00 and M; in
Lemma A4 as in the statement of Lemma A5. Then for m(f) = P m(z;,0)/n, by the

first order conditions for 3, the definition of \, and Assumption 4 we have

A ~ > N
0=m(0) + [0, NW =W = £(z)/n)]' = m(0) + O,(n~3?). (A.14)

7

Then expanding as in eq. (A.13) gives the result. Q.E.D.

Lemma A6: Suppose that Assumptions 1-4 are satisfied and let Q5 = 9[g:(50)9:(Bo)']/0B;,
_ . P _ _
Qﬂj = E[Qiﬂj]7 Qﬂj = i(Qiﬂj - Qﬂj)/\/ﬁ; Qﬂjﬂk = E[a2{gi(ﬁ())gi(ﬁO)/}/aﬁkaﬁj]7 and
let a superscript W denote objects from the conclusion of Lemma A5, that is let )",
MY, MW ZW, and QY (-,) be as there without the superscript W. Also, let 2 =

gig: — —i— b ng egwlw and

X X
Q= Qgeip" e QY (W, a") + T Qe e /2.

j=1 = jk=1

Then Q(B) = Q + 2/ + Q¥ /n + Oy(n=3/?).

Proof: Similarly to the proof of Lemma A4, expanding gives

ap) - Q(ﬂo)JerQB,(ﬂ Bo) + mﬂ,/f B~ Bp) (A1)

J J=

x
+ Qs (B — Bjo) (B — Bro) /2 + Op(n~3/2).

jk=1

By Lemma A5, 3; — Bjo = e}zﬁw/\/ﬁ + Op(n™t) = e}zﬁw/\/ﬁ + e;QW(zﬁwﬁw)/n +
Op(n’3/ 2). The conclusion follows by substituting the first equality for the last two terms
in eq. (A.15) and by substituting the second equality for the second term. Q.E.D.
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M; be as in Lemma A5 with W = Q. Also, let ¢; = —[H’, P|'g; and V=" ,1i/\/n.

A A o
_ 0 G/-EG)
2. ' 2 / -
Bl () = — 0%gi5(6o)/0B08 OE[a 9i5(B0) /080 8 G<m).

Let A = —Q(8)§(0). Then A = O,(n""/?), e.g. as shown in Newey and McFadden
(1994). Then the first order conditions for GMM and Lemma A6 imply

0 = 1m(0) + [0, =N (Q¥/n + O, (n~ )" = m(0) + [0, = NQ%/n)' + Op(n"2).  (A.16)

Let Q1(-,-) and Q21(+,, ) be equal to @)1 and Q2 as given in the conclusion of Lemma
A4, with ¥, M, M;, M, A(z), as specified here (and as in Lemma A5 with W = Q).
Also, let b*(z) be the vector elements of every B;(z) and T' = 6 + QZ/\/H—i— Q1(¢, a)/n+
Qa1 (1, @, 0Y) /0%, Then as —NQ?/n = O,(n"3/?) we can solve for § — 6 as in the

conclusion of Lemma A4 to obtain
0 =T+ M0, NQ%/n) 4+ O,(n?).
Then by A = [0, I,u]t/+/n + O,(n~") we can substitute for A to obtain
0 =T + M~ ‘diag[0, Q) /n*? + O, (n72).

The conclusion then follows by including in b(z) all the components of b'(z) as well as
those of every variable that appears as y/n times a sample average in Q? Then we find

the second order term in the expansion for GMM to be
Q2(,€Zv da B) = Q21(,€Zv da Bl) + M_ldiag[()v Q?]@Z,
giving the conclusion. Q.E.D.

Proof of Theorem 3.4: We apply Lemma A4. Let 0 = (3, X', 6y = (85,0, 0
be the GEL estimator, G;(8) = 0g;(5)/05, and
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m(z0) = p(Xg(3)) S

By Theorem 3.2, 6 = 6 + Op(n*1/2). Also, as shown in the proof of Theorem 3.2,
P .

im(z;,0) = 0 wp.al. Let 2 < ¢ < « for a in Assumption 1(d). Then by Lemma
A1, Assumption 3, and p;(v) three times continuously differentiable on a neighborhood
of 0, m(z;, 0) is three times continuously differentiable on 7,, of Lemma A4, i =1,...,n,
to which we henceforth restrict attention. Let m;(6) = m(z;,0), v;(0) = Ng;(0), h;(0) =
Ov;(0)/00 = (NGi(B), g:(B)'), and h;(6); denote the j element of h;(#). Then
+0a(01(0))u(0),90:(0)/90 + pr (04(0))0hi(0) 00,96

)hi(0)hi(0)" + p1(vi(0))Ohi(6) /00, (A.17)
))hi(8)
(6))hi(
"mi(0)/00k00;00 = pa(vi(0))hi(0)whi(0);hi(0)hi(0) + pa(vi(0))O[hi(0) i (0)hi(0)'] /0
(0))hi(
(6))hi(
(6))hi(

)
)hi(0);hi(0)hi(6) + pa2(vi(0))O[ha(0)hi(0)']/ 06;
+03(vi(0))hi (0)r0[hi (0)hs(0)']/06; + p2(vi(0))9* [1i(0) i (6)'] /061,96

h;
+p3(vi(0))hi(0)hi(6) j0Ri(0) /06 + p2(vi(0))0[hi(0);0h:(0)/06]/ 06,
+p2(v;(0))hi(0),0%hi (0) /00,00 + p1(v;(0))Phi(0) /00, 00,00.

By hypothesis p;(v) is Lipschitz in a neighborhood of zero so that for b; = b(z;),
10 (vi(0)) — pj| < Clui(0)] < ClIAlllg:(B)]| < Cbi|6 — 6ol

Also, by Assumption 3, all of the terms involving h;(f) and its derivatives in the third
derivative for m;(#) are bounded above by Cb} on T,,. Then the norm of the difference of
*m;(0)/06,,00;00 and the same expression with v;(6) replaced by v;(6p) = 0 is bounded
above by Cb?||6 — 6,||. Also, it follows by similar reasoning that the difference of each
expression involving h;(#) and its value at 6y is bounded by Cb/||6 — 6| for some integer
J < 4. Thus, the Lipschitz hypothesis of Lemma A4 holds by E[b?] < oco.

Next, let ¢; = gi(6o) and G; = G;(fy). Note that h;(6y) = (0',g;)', so that by

p1=p2=—1, _ -
A 1 A L]
0 G B 0 G
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and M is nonsingular, as shown in the proof of Theorem 3.2. Now let G = §? 9:(60)/03;08,
gl = 0g;(60)/0B;, t = j — p for j > p, let e, denote the ¢t unit vector, and a t subscript

denote the t** element of a vector. Then evaluate at § = 6, to obtain

A , 1
0 G? .

A Gi 99+ 9:gi .
9?[e;9:(B0)] /003" Gievg; + 9

- ,(J>Dp)
GciGit 0uGi —pagagig. 0 7P

Next, let GI* = 8%g;(60)/03:06;06 and gi* = 8%g;(50)/06,05;. Then for the second

derivatives corresponding to 3, with j < p and k < p,
A

0°ma(6o)/001,00;00 = —

0 Gk (A.20)
. . R . . ) 20
k k k
GI* g"di+ glg" + gFg + gigl”

For the cross partial between \; and 3;, with j <p, k> p, and t =k — p,

 Pgu(Bo)/0B;0808' - Glag! + Glegl + GGl + gu G
gleGi+ gieGl + Giu;Gi + 9uGl —ps[Giujgig + 9u(gl 9 + 9i9])]

For the second partial derivatives between \; and \,, with 7 > p, k > p, t = 7 — p, and

U= k - D,
A 1
—Gleel Gy — Glee,Gi p3(9uGlew + ginGlher) .
o° (00)/00,00,00 = it it g ¢ ¢ A.22
mi(6o) /99406 £39i(git€;Gi + g€} Gi) P49it9inGiJ, ( i )
9it0°9in(80)/0BOB’ + 90 9:t(00)/0BOL  —p3gingin G}
—p39it9inGi 0

Then by the conclusion of Lemma A4, eq. (3.1) is satisfied, for @1, Q2, a(z), and b(z2)
as given in the statement of Lemma A4, and m;(6) and its derivatives as given in this

proof. Q.E.D.

Proof of Theorem 4.1: By Lemma A6 it follows that Assumption 4 is satisfied for

W =Qand & = gigé—Q—Pﬁ-’zl Qﬁj 69-ng¢. Note that E[egngini] = PElg;gi|Hyye; =
F) .

(Hw — H)'e;. Also, for S, = E[0°g;(6)/00603'], the k™ element of = i_, E[G]]Xe;/2

P P . g .
is  h_ eiSkXe; /2 = B tr(Xe;e}Sk)/2 = ax. Then for X = —Q(5)'g(0) the bias of
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0 = (B’ Y ) can be obtained as the expectation of the term from Lemma A5 with W = Q)

giving
A 1A 1
as( _ 0 G H
Bias(0) = E[Q1(¢i,a;)]/n=—-M "{E| G. Q P gi
= A 1A 3 A 1A 1
0 EG] % S, 0 0

B / ' €j/2— J e: /2% /n

o G0 0o YT 0 p J'/ }
Sy E[GiPg,

E|G;Hg;] — a+ Elg;9.Pg;] — ?:1 Qﬂj (Hw — H)lej /n

Then [I,,0]M ! = [X, —H| and the previous equation gives the result. Q.E.D.

Proof of Theorem 4.2: By the proof of Theorem 3.4 6 = (3, \') satisfies eq.
(3.1) with @1 as in the statement of Lemma A4 with ¢(z;) = —[H', P]'g;, for H =
GO A(z) = 0m;i(6)/00 — E[0m;(6,)/96] for Om;(6y)/00 from eq. (A.18), and
M; = E[0°m;(0)/00,;00] for 0*°m;(0y)/00,;00 from eq. (A.19). Note that E[y)] =
diag[%, P] and A '

B E[G,Pg;]
BAGIWI = pia,ng t g.9.Pg)

P P P
Also, L, Pejgij = L, Pejelg; = Pg;, and by symmetry of P, 7L, Gie;jgiPe; =
F)

Ly Gleje Pg; = GiPg;. Then

X / X ! X !
M;E[agilej/2 = M[E,00e;/2+  Mjy, 0, Pl'e;/2

=R i A =t 1A '
X 0 _ X E[Giejg; + 9G] Pe;/2 —E[G}Pg;]
j=1 E[Gg]zej/z j=1 _p3E[gijgig£]Pej/2 —a+ p3E[gigz{Pgi]/2
Then by Lemma A4, Bias(0) is the first p elements of
-1 x /
E[Qi(¢i, ai, Fo)l/n = —M"{E[A(z)] +  M;E[Yabe;/2}/n
A 7=t 1
= —-M! 0 /n. Q.E.D.

—a+ E[G;Hg;] + (14 p3/2)E[g;9.Pg;]

Proof of Theorem 4.5: Note that tr(398%g;;(50)/0808") = q;(x:)tr(Zugs;), so
that a; = Elq;(z:)tr(Sugg)]/2 = Elg;(x:)tr(XH;)]/2. Also, note that G; = qiujp,, so that
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G'O7IG; = Jlu’m Then we have

EG/QilCL = EG/QilE[qltT(EHl)]/2 = EE[CthT(EHl)]/27
Bg = —XE[ugiq;Pqgu;)/n = XE[kiq,Pg]/n,

Bg = XE[dulq,Pg)/n = SE[d;usiq,Pg)/n.

Note next that d; is the mean square projection of d; on g; for the expectation operator £
given by Ela(x;)] = E[o2a(z;)]/E[0?]. Therefore, it follows that E[c?||d;||?] < E[o?||d;|?].
By standard results for matrix norms, |tr(XH;)| < p||SH;|| < p||Z]|||H;||. Then by CS

(@ | g

|Blditr(SH)) 2| < pISIEGdIIE] /o:)/2 < pISI Elo2di]2) Bl HP/o?)/2

< pllEl Elo?lldil*] ElllHill?/a?]/2.

Also, we have for A = sup, ||x(z)/0?(z)||,

1B[did; S|l < ISIEdill*|x:]l) < 121 Elo? d:*]A < [IS[1E[of]ld %A

)

By T and CS we then have

(@] q

|Bias(Be)| < SN0 Elo?|dil?)  El|Hi|2/02]/2 + Elo?|di]|?)A) /n,

giving the first conclusion. For the second conclusion, note that E[o2q,Pq;] = E[g.Pg;] =
m — p, so that for n; = ;X (k; + dijiz;) /0% = €504,

e;(Bias(BGMM) — Bias(Bg1)) = eSNE(ki + diiz;) g, Pqi] /n = E[no?q; Pg)]/n.

The second conclusion then follows from o2¢,Pq; > 0, so that when n; > Cs, E[n;02q;Pq}] >
CyE[07¢;Pg;] = Cy(m — p). Q.E.D.

Proof of Theorem 4.6: The bias formulae follow immediately from Theorems 4.1

and 4.2, since by G; = G,
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R
To obtain the bound, note that differentiating the equality h(3) = r(2)f(z|3)dz under
R
the integral is allowed by the conditions, as is differentiating the identity 1 = f(z|5)dz.
Twice differentiating the second gives E[s;] = 0 and E[F;] = 0. Twice differentiating the

first gives
Z
G = - T(;)[af(zlﬁo)/aﬁ]dz = —E[r(zi)si] = —Elgisi],
a; = —tr(X  1(2)[0°f(2]60)/0B08d2) /2 = —E[rj(z)tr(XF;)]/2 = —Elgitr(XF;)] /2.

Stacking the formulae for a; we find that for 7, = tr(XF;), a = —E[g,7;]/2, so that
Bias(fsr) = ~SElsigi] (Elgigll) " Elgimi] /2n.
Note that 72 < p?||X||?|| F;||?, so that by CS,

(@] (@ |

| Bias(Beo)ll < |21 Ellsi|PIE[F2 /20 < plSI? Elllsi|PIE(|EIP)/20.Q.E.D.

Proof of Theorem 5.1: In the case of GMM, the bias correction takes the form

. P .
BAs(3) = 7(" ,di(B)/n)/n, where di(8) = d(z, () is a vector of products of g(z, 3) and
its derivatives to second order and 7 is a function that is twice continuously differentiable

in a neighborhood of dy = E[d;((y)]. Then by Assumption 3 and a standard expansion,

) >
BAs(8) = (do) /n + 7a(do) ‘ Y7 /n? + Op(n=2), 4] = di(Bo) — do — E[0d;(50)/05)Hy;.

)

Then for ¢, Q;, and Q, from Theorem 3.3,

V(3 = Bo) =t + [Q1(¢, @) — 7(do)] /v + [Q2(, a,b, Fo) + Taldo)d7] /m + Op(n™7%),

. = .
giving the conclusion for GMM. For GEL Bs(3) = 7( ; #;d;(())/n. The conclusion
follows similarly for GEL, with 7 and d(z, 3) corresponding to the bias formula for GEL,

and

Vi = di(Bo) — do — Eldi(Bo)g}] Pg: — E[0d;(50)/00]Hg;. Q.E.D.

Before proving Theorem 6.1, we will prove the following intermediate result:
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Lemma A7: If the hypotheses of Theorem 6.1 are satisfied and z; has finite support

{Z1,..., Z;} then for the bias corrected estimators, = — Zgy, is positive semi-definite.

Proof: Let n; =
MLE given by

» 1 1(% = Z;) and consider the multinomial, moment restricted

. > > X
Bt = arg . _ Inax n;InIl;, st.  1g(Z;,8) =0, II; =1

B,,..., Iy j=1 J=1 j=1

By standard theory for MLE B is consistent and there is neighborhood N of (g
such that w.p.a.l BML is the unique 8 in N solving the first order conditions. Also,

(jle n;Inll; is a monotonic increasing transformation of P‘j]:1 n;In(Il;/n;). Let I; =
{i : zi = Z;}. Note that holding II; > 0 fixed, by strict concavity the maximum of

P
ier; In(m;) subject to II; = ;e m is nyIn(IL;/n;). Then, similarly to Section 2.3 of

Owen (2001),

BML = arg max In(m;)
BEB,m1,...,mn j=licl;
X X >
s.t. H]g(Z],ﬂ> = 0, Hj = 1, H]‘ = e (A23)
j=1 j=1 i€lj
X X X
= arg max In(m;),st.  mg(z,0)=0, m=1
BEB,m1,...,Tn i1 i=1 i1
Therefore, w.p.a.l BML = BMD for h(r) = —In(7). Now consider BEL defined as the

solution to eq. (2.2). By Theorem 3.1, Bpr is consistent, so that Bpr, € int(B) and ) exists
w.p.a.l. Also, similarly to the proof of Theorem 3.1 it follows that P?:l p2(N§:)3:d/n
is nonsingular so that all the hypotheses of Theorem 2.2 are satisfied, w.p.a.1. Then
by consistency, BEL € N and by Theorem 2.2 has the same first order conditions as
BML = BMD, SO BML = BEL, w.p.a.1l. Furthermore, from Corollary 4.3 we know that

there are known functions 7(d) and d(z, 5) with

Bias(Bpr) = 7(E[d(z,5)])/n = B(Ily, ..., 0, Go) /n,

>
B(Hla"wHJ:ﬂ) = 7_( H]d(Zjvﬂ»

J=1
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A

Then by 7; = ﬁj/nj and B = Bur = B,
ps(3) = T(H #id(2:,8)) /n = T(j_l 11,d(Z;, 8))/n = B(L, ..., 11, B) /n.

Thus, the EL bias estimate B‘ﬁ!s(ﬁ) equals the MLE bias estimate obtained by plugging

the MLE into the bias formula. Since EL equals MLE, and the EL bias correction equals

the MLE bias correction, the bias corrected EL estimator is equal to the bias corrected

MLE.

Next we show that the Pfanzagl and Wefelmeyer (1978) (PW henceforth) conditions
for third order efficiency of MLE relative to the other estimator are satisfied. We consider
a reparameterization as in Lemma 1 of Chamberlain (1987), where it is shown that there
exists a J — (m — p) — 1 subvector v of IT = (I, ..., II ;)" such that for 6 = (3',7')’, there
is I1(0) = (I11(0), ..., I1;(#))" and an open set O containing 6y with

I1;(0)g(Z;, 6) = 0,11;(6) = C >0,

j=1

X
I1;(0)0* In1L;(0)/000¢" : is nonsingular.

j=1
Consider the multinomial log likelihood #(z, ) = szl 1(z = Z;) In1I;(#). In the notation
of PW, the score vector is I(z,0) = szl 1(z = Z;)I1;(0)~'011;(0)/06. Then it follows
from the implicit function theorem similarly to Lemma 1 of Chamberlain (1987) that
I1(0) is four times continuously differentiable with Lipschitz fourth derivative, giving L,
and M, of PW. Conditions i), i), iii), and I3 of PW follow similarly, so that [(-,-) satisfies
all the conditions of Theorem 1’ of PW. Furthermore, it follows by B being equal to the
MLE, as shown above, and by invariance of the MLE to reparameterization, that there
is 4 such that w.p.a.1, 6 = (@’, 7') satisfies P?:l 1(z;, é) = 0. Therefore, all the conditions
of Theorem 1’ of PW for the MLE and the likelihood are satisfied.

Next, consider the other GMM or GEL estimator 3. Let § = (3',%),.5)- It follows
by Theorem 3.3 or 3.4 and the previous paragraph that the estimator has a stochastic
expansion as in eq. (3.1). Then eq. (3.1) of PW is satisfied, without the remainder

condition (which we will not need). By Lemma A5 all the terms in the expansion are
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polynomials in means of random variables, with coefficients that are Lipschitz in 6,
so that the Condition B requirements on p.5 of PW are satisfied. Furthermore, the
normalizations required by PW for the random variables in the expansion can be satisfied
by adding and subtracting appropriate terms (including the mean square projections
given there). Then the expansion for  satisfies all the conditions of PW.

Finally, we show how the results of PW can be adapted to show that the higher order
variance of the bias corrected MLE is less than or equal to that of any one of the other
estimators. To do this, let Q; = Ql(lﬁ,&, Fy), Qy = Q2(1;75L, b, Fy) be the terms in the

stochastic expansion of any of the estimators and
?:1/;—1—@1/\/7;4-@2/71

be the expansion without the remainder. Also, for any positive definite matrix A let
L(u) =« Au. Then, as noted in Remark 16 of PW (see also Rothenberg, 1984, p.904), for
the polynomial (quadratic) loss function L(u) and the polynomial (in 1), , B) stochastic
expansion Y, the expected loss computed from a formal Edgeworth expansion equals

E[L(Y)] 4 o(n™"). Then, as in the square brackets on the top of p. 25 of PW,

Z
E[LY)] = ¥n(u,v,w)L(uw)dudvdw + o(n™ "),

where x,(u,v,w) is given in eq. (6.15) of PW. It then follows as in the remainder of
R

the argument on pp.25-26 of PW that ¥, (u, v, w)L(u)dudvdw + o(n~1) is minimized at

the bias corrected MLE. It is also the case that by the expression for the higher order

variance = in Section 6,

E[/AY] = tr(A%),
E[QAQ\]/n + 2B/ AQi]/V/n + 2E[(/ AQz] /n = tr(AZ)/n + o(n™"),
E[QyAQs] /n® + 2E[Q1AQe]/n*? = o(n™?),

so that
E[L(Y)] = tr(AX) + tr(AZ)/n +o(n™").
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Subtracting, we obtain

Z
Xn(u, v, w) L(u)dudvdw = tr(AY) + tr(AZ)/n+o(n™ ).

Therefore, tr(AX)+ tr(AZ)/n is minimized at the bias corrected MLE. Since ¥ is the
same for each estimator, it follows that tr(AZ)/n is minimized at the bias corrected MLE,
and thus

0 <tr(AZ) —tr(A=ZgL) = tr(AA),A == — ZgL.

Since this inequality holds for any positive definite matrix A it follows that A is positive
semi-definite. (For A = BAB’ with B'B = I and A a diagonal matrix of eigenvalues of
Alet A = B(eje; +¢ Pk;ﬁj exey,) B’ for any € > 0, so that tr(AA) = Aj; +¢ Pk# A >0
for any € > 0 implies Aj; > 0.) Q.E.D.

Proof of Theorem 6.1: By Lemma A7 it suffices to show that there is a distri-
bution with finite support {Z1, ..., Z;} such that Assumptions 1-4 are satisfied and both
=g and = have the same values as under the true distribution. To do this, we show that
there is a vector of known functions V(z,3) and known functions 7g.(-) and 7(-) such

that
=rr = 1eL(E[V (2, 00)]),2 = 7(E[V (2, 5o)]). (A.24)

For GEL, it follows as in the proof of Theorem 3.4 that eq. (A.12) is satisfied with
0 = (0, N) and m(z;, 0) as given in the proof of Theorem 3.4. Then, from the higher order
variance formula given in Rilstone et. al. (1996), it follows that the higher order variance
is a known function of expectations of first, second, and third derivatives of m(z;, #) with
respect to 6, evaluated at the truth (forming the constant coefficients in the expansion),
the covariance of m(z;,0y) with itself and with its derivative with respect to 6, (forming
limy, .o Var(Q1)), third moments of m(z;, 6y) and the third cross moment of derivatives
of m(z,0) with products of m(z;,6y) (forming lim, .., E[y/nQ14]), and covariance of
m(zi,6p) with itself, its derivatives, and its third derivatives (forming lim, . £ [Qggﬂ’ ]
including the bias correction term in Qg), all of which moments exist by Assumptions

1-4. Let V/(z,6) be any finite vector including all of these functions. Thus, eq. (A.24) is
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satisfied for =g and for any = corresponding to a GEL estimator. For GMM, it follows
by the use of at least two iterations that the estimator has the same asymptotic expansion
as an estimator solving eq. (3.2) with B = Bamu, i.e. that is fully iterated. This then is
an M-estimator with m(z,6) = (Ndg(z, 3)/08, g(z,8)' (1+Ng(z, 5))". It follows similarly
to the proof of Theorem 3.4 that eq. (A.12) is satisfied, so that eq. (A.24) is satisfied for
= corresponding to a GMM estimator.
Next, by Lemma 3 of Chamberlain (1987) there is a distribution with support {71, ..., Z;}

Ijoa(Z;),

_ P
and probabilities IT;o of each Z; such that for the expectation Efa(z)] = 7_;

E[g(zaﬂOﬂ = E[g(Z,ﬁ[))]:O,

E[0g(z, $0)/08] = El0g(z, $o)/9B], Elg(2, 50)g(z, Fo)'] = Elg(z, Bo)g(z, fo)'];
ElV(z f)] = E[V(z )], E[b(2)] = E[b()].

Consider now the case where z;, (i = 1,...,n), are i.i.d. with distribution F. By con-
struction this discrete distribution has the same =g and = as the true distribution. By
E[b(2)] = E[b(2)] < oo it follows that Assumptions 1-4 are satisfied for this distribution.
Then by Lemma A7 it follows that =g, < Z. Q.E.D.

Proof of Theorem 6.2: Let ¢;(8) = qi(y; — «}3). Note that, by comparing
the proof of Theorems 3.3 and 3.4, the M and ); for GMM and GEL are identical.
Also, in Lemma A6, Qg = E[—2qq/ziu;] = 0, so that ¢ = g;g, — Q. It then follows
that the A(z) in the statement of Lemma A4 for GMM and GEL are identical to one
another. Furthermore, it is straightforward to show that M; = 0 for both GMM and
GEL. Therefore, Ql(@z,d) coincides for the two estimators. For MM and pGEL | et
ISMM — Oy (1), a, bMM) and QSEE = Q4(1), a, b9FL) denote the second order terms for
GMM and GEL respectively. From the form of = given in Section 6 we see that the

difference in higher order variances for GMM and GEL estimators of § reduces to
Eamm — Egpr = D + D', D = [1,,0] lim E[(Q5™ — QFF")¢/|[1,, 0]'.

Thus, it suffices just to calculate the difference of second order terms. Furthermore,

by A and Q; identical for GMM and GEL, the first term in the formula for Qs in eq.
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(A.10) is identical for GMM and GEL. Also, for GEL M; = 0 for all j so that we
only have to calculate the last two terms in Q, for GEL, namely szl zﬁjéﬂﬁ/ 2 and
P;{kzl QZJ]‘QZJijki/NJ/ﬁ For GMM, le(z) =0 and M, = 0 (by linearity of m;(6)) from the
proof of Theorem 3.3. In addition for GMM, by efficiency of 8, ﬁw from Lemma A6 is
equal to v, so that Q¢ = Pg’:l ng e;zﬁ + P?,k:l Qa5 e}zﬁje;zﬁk/z Let ¢# = [I,,0]¢ and
Y* = [0, Iy,]1). We have

x i~ -~ x e e~
I, 0| E[M ~*diag[0, ~ Qa5 070 /20001, 0] = —H =~ Qgs, [0 "]
7,k=1 7,k=1
= O(n’Q)7

where the last equality follows by existence of fourth moments of g; and by ¢* and ¢*
having zero asymptotic covariance. Therefore, for M;;, and Bj from GEL, we have, by

[Ipa O]Mil = [Ev _H]a

D = Di+ Dy, Dy = lim E[Di], Dy = lim E[D,],

~ - x _ _ . ~n—>o~o x

Dy = [S,—H{Teum + ¥ Bjb/230%, Tanum = diaglo, Q010
=1 =1

) = ~J ) ) J

D, = [¥,-HJ Pk Mjab /6397

k=1
Consider D;. Note that for j < p and Qig; = 0[9:(50)9:(50)']/0B; as defined above, from
eq. (A.19), B; = —diag|0,Qg,], so that
X o X .
V; Bjip/2 = —diag|0, Qﬁj¢j]¢/2 = —Temm/2.
j=1 i=1

Note also that for 7 > 0,

A 1 A |
D QU I . > . 0 . ~
A B9 _ A B9 _
‘B .. p - . ~ ~ 2 =-T 2.
j=1 ke 0 v/ j=1 Vi (165, .., Qgpe;] v aarrf
Then,
. b . X oL
Tayvnr + VB /2 = Toum/2+ U7 Bpijh/2
j:1 fl 1 A P !
X g 0 > 2 595G/

= @E;‘\Bp-&-j I ,&A/Z ==
=1 m

J

A 7
. 2.
i1 % —pP3 igijgigz{/\/ﬁ 4 /

J
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Then using g; = q;u;, G; = —q;x}, and letting 7; = —G'Q 1 q;0?, and K; = ¢/ Pg;, so that
WP = Sz /o2, it follows by E[¢*)?] = 0 and fourth moments bounded that
A

P ) 1
Dy = (S -H]lim B[ g} 20U/ e o

n—se L T ps Tt VD

28 2 2 4 4
= Y {2E[(uj/07)qixiq;Pe;zi] + psE(€; /07 )qijZiqi Pe; ;] } 5 /2

j=1

= S{E[KxZ) + (p3/2) E|(pas/ 07 KiTiT] } 2.

Next, consider D,. Let Pji, denote the (j, k)™ element of P. We have by linearity of
9:(B) in B, eq. (A.22),

A 1
2 208 —Glejel G — GlepeG;
PoMy ik [5,0] = PyE Gk T ket 5
k=1 eMotsipk[2,0) ikl [~ p39i(9ii€xGi + gineiGi + 9159 G:) ]
’ ' A 1
_ 28 N 2E x4 G
=1 ! 3,03E[0'i2(']ixiQijQik]
3ps B0} Kigixy]
Pm Pp / /
Also, by eq. (A.21), 7., q;Pe; = Pg, and_ §_; wge X = a3,
A 1 A 1
KX 0 X Gleijgl + +G G,
M, ey = — E eI Jr Pe;e, X
Jj=lk=1 rokep o j=1 k:lA[ _p3[Gijk:gig£ +gz‘lj(gfgi +9¢gf/)] | .

_RX 2B[migiqial
k=1 303E[0¢2Qi'(éqz‘j$ik]
2FE [ K;zx)]
3ps B[} Kigi]
Note that for j,k < p, for GEL in a linear model the left block of Mj; is zero, so that

Pejel %

M;[3,0]" = 0 and hence M, E[1);;] = 0. Also, by standard V-statistic calculations

J

and Mjk = Mkj7

A !

. X T 7 ~~/3/ X E
Dy = [S-H] Jim Bl b Mudi®)f6 = [, ~H{ Bl M
J.k=1 j,k=1
X ﬂ/
+2 M E[i)ij| E[bity; 1} /6

k=1 A 1 A 1

> b )X 0 ,
= [X,-HH{ PjiMpjpk 0 +2 M jk P ejeps}/6

Jk=1 Jj=1lk=1

= —X{E[Kzx;] + (3p3/2)E[K;Z;x;] } .
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Then summing D, and D, gives the first conclusion. For the second conclusion, note that
K; < ¢7'q; < Oqi(Elaigi]) ' < C¢(m)"? for ((m) = {sup,ex q(2) (Elaiqi]) " a(2)}>.
Then since —G'Q~! are the population least squares coefficients from a regression of

2
x;/of on q;,

|E[Kizi(z; — )]

IN

E(K ||zl ") Bl — z:l*] < CC(m) Elllwil ") B0} | (-G'Q)gs — xi/ 7|1

IN

CCm)E(|(-G'Q q;) — x:/07|I°] < CCm)Elllymgi — s/ ]|"] — 0.

It follows similarly that E[K;z;(Z; — z;)'] — 0, giving the second conclusion. Q.E.D.

References

Abowd, J. and D. Card (1989), "On the Covariance Structure of Earnings and
Hours Changes,” Econometrica 57, 411-445.

Altonji, J. and L.M. Segal (1996): ”Small Sample Bias in GMM Estimation of

Covariance Structures,” Journal of Economic and Business Statistics 14, 353-366.

Amemiya, T. (1980): " The n~2-order Mean Square Errors of the Maximum Likelihood
and Minimum Logit Chi-Square Estimators,” Annals of Statistics 8, 488-505.

Amemiya, T. (1983): ”Partially Generalized Least Squares and Two-Stage Least

Squares Estimators,” Journal of Econometrics 23, 275-283.

Back, K., and D. Brown (1993): ”Implied Probabilities in GMM Estimators,”
Econometrica 61, 971-976.

Bonnal, H., and E. Renault (2001): ”Minimum Chi-Square Estimation with Con-
ditional Moment Restrictions,” working paper, C.R.D.E., Université de Montréal.
Paper presented at the 2001 Canadian Econometric Study Group Conference, Uni-

versity of Waterloo.

Brown, B.W. and W.K. Newey (1992): “Bootstrapping for GMM”, mimeo, M.I.T.

[43]



Brown, B.W. and W.K. Newey (1998): ”Efficient Semiparametric Estimation of
Expectations,” Econometrica 66, 453-464.

Chamberlain, G. (1982): "Multivariate Regression Models for Panel Data,” Journal
of Econometrics 18, 5-42.

Chamberlain, G. (1987): ”Asymptotic Efficiency in Estimation with Conditional

Moment Restrictions,” Journal of Econometrics 34, 305-334.

Corcoran, S.A. (1998): “Bartlett Adjustment of Empirical Discrepancy Statistics”,
Biometrika 85, 967-972.

Cragg, J.G. (1983): ”"More Efficient Estimation in the Presence of Heteroskedasticity
of Unknown Form,” Econometrica 51, 751-763.

Cressie, N., and T. Read (1984): “Multinomial Goodness-of-Fit Tests”, Journal of
the Royal Statistical Society Series B 46, 440-464.

Donald, S.G. and W.K. Newey (2000): ”A Jackknife Interpretation of the Contin-
uous Updating Estimator,” Fconomics Letters 67, 239-244.

Donald, S.G., G.W. Imbens, and W.K. Newey (2002): ”Choosing the Number
of Instruments for GMM and GEL Estimators,” working paper, Department of

Economics, M.L.T..

Hahn, J., J.A. Hausman, and G. Kuersteiner (2001): ”"Bias Corrected Instru-
mental Variables Estimators for Panel Data,” working paper, Department of Eco-

nomics, M.I.T..

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments
Estimators”, Econometrica 50, 1029-1054.

Hansen, L.P. and K.J. Singleton. (1982): ”Generalized Instrumental Variables
Estimation of Nonlinear Rational Expectations Models,” Econometrica 50, 1269-

1286.

[44]



Hansen, L.P., J. Heaton and A. Yaron (1996): “Finite-Sample Properties of
Some Alternative GMM Estimators”, Journal of Business and Economic Statistics

14, 262-280.

Holtz-Eakin, D., W.K. Newey, and H.S. Rosen (1988), ”Estimating Vector
Autoregressions With Panel Data,” Econometrica 56, 1371-1396.

Horowitz, J.L. (1998): ”Bootstrap Methods for Covariance Structures,” Journal of
Human Resources 33, 38-61.

Imbens, G.W. (1997): ”One-Step Estimators for Over-Identified Generalized Method
of Moments Models,” Review of Economic Studies 64, 359-383.

Imbens, G.W., R.H. Spady and P. Johnson (1998): ”Information Theoretic Ap-

proaches to Inference in Moment Condition Models,” Econometrica 66, 333-357.

Imbens, G.W. and R.H. Spady (2001): ”"The Performance of Empirical Likelihood
and Its Generalizations,” paper presented at 2001 NSF-Berkeley Econometrics Sym-

posium on “Identification and Inference for Econometric Models”.

Judge, G. and R. Mittelhammer (2001): ”Empirical Evidence Concerning the
Finite Sample Performance of EL-Type Structural Equation Estimators,” paper
presented at NSF-Berkeley Symposium on “Identification and Inference for Econo-

metric Models”.

Kezdi, G., J. Hahn, and G. Solon (2001): ”Jackknife Minimum Distance Estima-

tion,” mimeo, Department of Economics, Brown University.

Kitamura, Y., and M. Stutzer (1997): “An Information-Theoretic Alternative to
Generalized Method of Moments Estimation”, Econometrica 65, 861-874.

Koenker, R., J.A.F. Machado, C.L. Skeels, and A.H.l. Welsh (1994): ”Mo-
mentary Lapses: Moment Expansions and the Robustness of Minimum Distance

Estimators,” Econometric Theory 10, 172-197.

[45]



Nagar, A.L. (1959): ”The Bias and Moment Matrix of the General k-Class Estimators

of the Parameters in Simultaneous Equations”, Econometrica 27, 573-595.

Newey, W.K. (1997): ”Convergence Rates and Asymptotic Normality for Series Es-

timators,” Journal of Econometrics 79, 147-168.

Newey, W.K. and D. McFadden (1994): ”Large Sample Estimation and Hypothesis
Testing,” in Engle, R. and D. McFadden, eds., Handbook of Econometrics, Vol. 4,
New York: North Holland.

Newey, W.K., J.J.S. Ramalho, and R.J. Smith (2001): ”Asymptotic Bias for
GMM and GEL Estimators with Estimated Nuisance Parameters,” Festschrift in

honor of Tom Rothenberg, forthcoming.

Owen, A. (1988): ”Empirical Likelihood Ratio Confidence Intervals for a Single Func-
tional,” Biometrika 75, 237-249.

Owen, A. (2001): Empirical Likelihood, New York: Chapman and Hall.

Pfanzagl, J. and W. Wefelmeyer (1978): ” A Third-Order Optimum Property of
the Maximum Likelihood Estimator,” Journal of Multivariate Analysis 8, 1-29.

Qin, J. and Lawless, J. (1994): “Empirical Likelihood and General Estimating
Equations”, Annals of Statistics 22, 300-325.

Ramalho, J.J.S. (2001): Alternative Estimation Methods and Specification Tests for
Moment Condition Models, unpublished Ph.D. thesis, Department of Economics,
University of Bristol.

Rao, C.R. (1963): ”Criteria of Estimation in Large Samples,” Sankhya, Series A 25,
189-206.

Rao, C.R. (1973): Linear Statistical Inference and Its Applications, New York: Wiley.

[46]



Rilstone, P., V.K. Srivastava, and A. Ullah (1996): ”The Second-order Bias
and Mean-Squared Error of Nonlinear Estimators,” Journal of Econometrics 75,

369-395.

Robinson, P.M. (1988): "The Stochastic Difference Between Econometric Statistics,”
Econometrica 56, 531-548.

Rothenberg, T.J. (1984): ” Approximating the Distributions of Econometric Estima-
tors and Test Statistics,” in Griliches, Z. and M.D. Intriligator, eds., Handbook of
Econometrics, Vol. 2, New York: North-Holland.

Rothenberg, T.J. (1996): ”Empirical Likelihood Parameter Estimation Under Mo-

ment Restrictions,” seminar notes, Harvard/M.I.T. and Bristol.

Smith, R. J. (1997): “Alternative Semi-Parametric Likelihood Approaches to Gener-
alized Method of Moments Estimation”, Economic Journal 107, 503-519.

Smith, R. J. (2001): “GEL Methods for Moment Condition Models”, working paper,

Department of Economics, University of Bristol.

[47]



