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Abstract

We develop and solve analytically an investment model with fixed adjust-
ment costs and complete irreversibility that reproduces observed investment
dynamics at the micro-level. We impose a minimal set of restrictions on tech-
nology and uncertainty. Most of the results duplicate or generalize earlier
findings that have been established either by simulations or under contrefac-
tual assumptions.

JEL: C61, D21 and E2
Keywords: Investment, Adjustment Costs, Irreversibility, Dynamic Pro-

gramming

1 Introduction

It is well-known that investment is lumpy at the plant-level with long periods of
inactivity punctuated by infrequent and large adjustments. For example, [17] docu-
ment that more than half of continuing and large U.S. manufacturing establishments
exhibit capital growth close to 50 percent in a single year and that between 25 and
40 percent of an average plant’s gross investment over the seventeen year period
considered is concentrated in a single year period.

To replicate observed microeconomic investment patterns satisfactorily, it is nec-
essary to consider fixed adjustment costs and irreversibility.1 The former are inde-
pendent of the level of investment and incurred whenever investment is nonzero. A

∗nicolas r@ifs.org.uk. The author is grateful to Jean-Marc Robin, Cuong Le Van, François
Gourio, Simon Gilchrist, Russell W. Cooper and Daniel Hamermesh for helpful discussions and
Ben Skrainka for his corrections. The author thanks seminar and conference participants at the
62nd ESEM, the 11th Real Options Conference at Berkeley, Université Paris 1 and University of
Texas at Austin. All errors are our own.

1 [24] and [26] survey the literature on adjustment costs. While still widely used for their
tractability, convex adjustment costs models imply a smooth and continual adjustment to shocks
that is at odds with the data.
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plant could avoid them by not investing at all. The latter depict a resale price of
capital less than its current acquisition price. Capital specificity, lemons effects, and
market thiness are important causes of irreversibility.

This paper analytically characterizes investment dynamics with fixed adjustment
costs and complete irreversibilty under a minimal set of restrictions on technology
and uncertainty. In this way our analysis cover a wide class of problems.

An important restriction we impose throughout the paper is complete irreversibil-
ity: installed capital is valuable only to the extent that it is used in production. This
approach describes many observed situations well since plants sell capital very rarely.
Scarce episodes of negative investment are usually interpreted as depreciation and
obsolescence of existing capital stock. It may also concern distressed firms (See [30]
for a concrete example). In this case, capital sales and investments are two separate
activities that do not interact. Only the latter is part of regular productive activi-
ties. In most empirical analysis, the dynamics of dis-investment is either estimated
separately (See [3] for example) or neglected.

The following definition gives a formal derivation of observed investment policy
and introduces notation that will be defined more precisely below.

Definition 1 An investment policy, denoted i, is a state-dependent (S, s) policy if
there exists a target function and a threshold function, denoted S and s, that do not
depend on past levels of capital, denoted k, and such that

i(A, k) =

{
0 if k > s(A)
S(A) − k if k < s(A)

where A denotes the state of the world

Under such a policy, given the state of the world A, inaction is optimal when
past level of capital (k) is above the threshold (s). Otherwise an investment episode
occurs and may be important if the target (S) is sufficiently different from k.

Several investment models establish the optimality if state-dependent (S, s) poli-
cies either by simulations or under contrefactual assumptions. We believe that an-
other investment model is needed for at least four reasons. First, a substantive
difference between our approach and the theoretical literature is that we consider a
true fixed-cost in the sense that it does not depend on the scale of operation. It al-
lows the range of inaction to be wider for smaller plants. The main motivation is the
stylised fact that smaller plants are characterized by substantially more intermittent
investment. For example, [27] found that the frequency of zero investment for small
plants is more than two times than for large plants.2 Their empirical analysis sup-
ports the existence of a purely fixed cost component, unrelated to plant size.3 We

2This is also true for labor. [28] found that the frequency of episodes characterized by no
employment changes decreases markedly with size. In principle, our model could be used in a
labor context but the absence of job destruction would be inappropriate.

3Financial constraints are not the most likely explanation: they found a similar pattern in
small-plants belonging to multi-plants large firms and also when they split the sample according
to criteria correlated with the probability of financing constraints. Indivisibilities may also play a
role.
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are not aware of another characterization of optimal investment policy in this frame-
work. [18] studies a special case where S = s4 which arise when adjustment costs are
linear but not fixed. In [2], there is a fixed cost and inaction may be optimal, but no
lumpiness in the sense that S = s because of their continuous-time setting, in which
costs are proportional to the duration of the investment flow. In [14] and [13], a
scale-dependent fixed cost reflects forgone profits due to production loss associated
with installation of capital and is such that fixed investment costs are proportional
to the existing capital stock. This property implies that fixed costs do not become
irrelevant as the firm grows.

Second, our results hold for a wide-class of technologies, with very few restrictions
on the nature of the uncertainty confronting the plant. In comparison, the existing
literature always assumes normality. However in many economic situations, fat tails
and asymmetries suggest that normality is too restrictive. Also, most papers use a
geometric Brownian motion for tractability. Recent development of tests for units
roots using panel data (See for example [22]) demonstrate that in most situations
the presence of a unit root is rejected. While the optimal policy is stated without
functional forms assumptions in [2], the rest of their analysis and all the associated
papers use specific functions and homogeneity assumptions on technology. As stated
by [4]: estimation of production functions has a long history in applied economics
... Unfortunately, this history cannot be deemed an unqualifed success, as many of
the econometric problems that hampered early estimation are still an issue today.
Characterizing optimal policies without relying on any specific functional form is
desirable.

Third, despite the non-differentiability and the discontinuity of the one-period
profit function, the value function is continuous and differentiable almost everywhere
except at the threshold s(A) where it admits unequal left and right derivatives. Many
have left the question of differentiability to further research and we are not aware
of another proof in a dynamic programming model with fixed cost. An analytical
expression for the marginal value of capital is derived and interpreted. The optimal
investment policy depends simultaneously on the marginal value of capital and the
total value of capital.

Fourth, analytical results have only been given in continuous-time.5 Yet, there
is growing research that demonstrates the advantages of working in discrete-time
(See [11] for an extensive discussion).

To summarize, this paper provides an explanation for observed investment pol-
icy under either less restrictive or more realistic assumptions that has been done
before. Why is this important ? Aside generalizing earlier findings, we highlight
implications for three strands of literature. First, it is related to the empirical liter-
ature on investment dynamics.6 Since observations are available at equally spaced
moments in time, the analysis is naturally in discrete-time. Reduced-form empirical
papers customarily argue that an (S, s) policy is optimal. In structural models, sev-

4This paper deals with positive and negative demand for inputs and an arbitrary number of
factors.

5 [14] is an exception: their model considers a very specific shock process, scale-dependent fixed
costs, and imposes homogeneity assumptions.

6See [10] for a recent survey.
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eral studies discuss the optimality of inaction and jumps in the investment process
using numerical procedures. But both lack formal proof: either the (S, s) policy is
observed in numerical examples or they refer the reader to theoretical paper done in
continuous-time. Our main proposition, which establishes that the optimal policy
is of the (S, s) form, can serve as a theoretical reference for empirical papers.

Also, the characterization of the optimal investment policy helps the identifica-
tion strategy. In methods relying on user-designated moments, it helps understand-
ing the link between those moments and structural parameters. For example, the
serial-correlation in investment rates is a widely-used moment. Yet, we show that it
does not permit to identify non-convex adjustment costs.

Some papers attempt to estimate variants of our framework using maximum
likelihood and share the common feature of reducing the problem to a dynamic
discrete choice model. For example, [31] estimates a labor demand model with fixed
costs. The continuous decision (how much to invest) is estimated non-parametrically
and it is the discrete decision (whether to adjust or not) that identify the structural
parameters. By full-characterizing the optimal policy, we can form a likelihood for
the investment choice using a selection model: one equation for whether or not
to invest and one equation for how much to invest.7 Recovering the structural
parameters would then involve both continuous and discrete control variables which
may avoid important information losses.

Second, knowledge of the structure of the value functions aid the design of
approximation algorithms to estimate them. Using value function iteration, we
show that restricting the search to policies of the (S,s) form reduces drastically the
computational-time required to solve the model.

Lastly, our results have implications for the literature on investment-cash flows
sensitivities which uses [25] as a benchmark. The latter assumes a perfectly competi-
tive firm, a constant-returns-to-scale production function and convex investment ad-
justment costs that are homogeneous of degree one in investment and capital. [25]’s
model implies that the optimal investment-capital ratio depends only on Tobin’s
average q, defined as the ratio of the value of the firm to the replacement cost of
its capital stock. This prediction has generally been rejected by empirical studies,
which show that cash flows and other measure of current profitability have a strong
predictive power for investment after controlling for Tobin’s q. These findings are
usually interpreted as the presence of financial frictions. Recent papers have chal-
lenged this interpretation.8 They shows that much of the significance of cash flow
variables in conventional estimates of Tobin’s q investment equations occurs because
the strong assumptions necessary to make investment depend only on average q do
not hold in the data. If one follows this literature, an solution (actually infeasible)
would be to replace average q (observable) by marginal q (unobservable) in regres-
sions. We show that, without financing constraints, the optimal investment policy
depends simultaneously on marginal and average q. It follows that focusing on these
reduced-form investment equation is quite problematic.

The rest of the paper is organized as follows. Section 2 presents the model.

7 [6] approach incorporates continuous and discrete choices and could be used to estimate the
value function which belong to the set of covariates in both equation.

8A few examples are [21], [16] and [7].
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Section 3 derives the optimal decision rule. Section 4 establishes the differentiability
of the value function and re-formulates investment policy in terms Tobin’s average
and marginal q. Section 5 concludes. All proofs are in the Appendix.

2 The Model

In this section, we introduce the model and impose assumptions under which the
(S, s) policy is optimal. For the sake of notational simplicity, we consider a ver-
sion of the model where parameters are constant over time, the horizon is infinite
and the stochastic process is stationary and univariate. Section 2.3 relaxes some
assumptions.

2.1 Assumptions

Time is discrete and indexed by t. At each period, the plant decides to invest or
not (it ≥ 0) over an infinite time horizon. Her decision depends on kt the level
of capital inherited from the previous period, and At an observable and univariate
shock to the profitability of the plant at the beginning of period t. The latter
combines product demand, productivity of inputs, and prices of flexibles factors
(wages, energy prices,etc...) conditions.9. The one-period profit function is:

π(A, k, i) = R(A, k + i) − C(i) (1)

R(A, k) represents reduced-form profits and incorporates the optimal choice of flexi-
ble factors. It is based on underlying production and cost functions where all flexible
factors of production (labor, working time,etc.) have been optimized out (See Sec-
tion 3.4 for a formal analysis.). The simplest representation is: R(A, k) = Akα − rk

where α is the curvature of the production function and r is the user-cost of capi-
tal. Usually, one assumes that investment becomes productive with one period lag.
Since it would complicate the notation without reversing the results,10 assume it is
immediately productive.

C(i) is the adjustment cost function:

C(i) =

{
F + pi if i > 0
0 if i = 0

(2)

where F and p represent, respectively, fixed and linear adjustment costs. The fixed
cost creates a discontinuity in C(·) at 0: C(0) = 0 while limi→0+ C(i) > 0. We
present the timing of the model and then the technical assumptions that will be
used in the proofs.

Assumption 1 Timing of the model and State Space

9See [19] for an empirical attempt to decompose these shocks.
10The consequences of a delay between the purchase and the availability of investment are well-

understood. It increases the expected gap between actual and desired capital. When deciding
whether to invest and the optimal amount of investment, the level of profitability considered is not
the actual value but rather the expected value at the time where investment will be productive.
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1. At the beginning of the period, the manager knows his past input level (kt ∈ K ⊂R+) and current level of profitability (At ∈ A) where A is a compact subset ofR+

2. Given (kt, At) the manager decides to invest or not (it ≥ 0)

3. The level of capital at the start of the next period, t + 1, is:

kt+1 = (1 − δ)(kt + it) (3)

where δ is a positive and constant depreciation rate.11

4. New value of profitability are drawn from a Markov transition function Z : A ×
A −→ [0, 1] where (A,A) is a measurable space.

Assumption 2 The plant is risk-neutral and discounts future profits at a constant
rate β ∈ (0, 1).

Assumption 3 Z(At+1, ·) is continuous and stochastically increasing in the first-
order stochastic dominance sense for every At+1 ∈ A.

Assumption 4 R is jointly continuous and concave for each (A, k) ∈ (A,K) and
R(·, k) is increasing for every k ∈ K.

Under the assumption of risk-neutrality, the plant’s objective is to maximize its
expected net present value which is the discounted sum of one-period profits net of
adjustment costs. A follows an exogenous and stationary Markov process. Tech-
nology improvements and adoption can easily be introduced in the model (See [12]
among others). If the latter render the problem nonstationary, [9] show how non-
stationary models can be reduced to stationary ones by appropriate reformulation.
While exogeneity may appear as an important restriction on the learning process,
it is consistent with the empirical literature, at least for some industries.12 An em-
pirically relevant interpretation of Assumption 4 is that at the beginning of her life,
the manager draws a permanent level of profitability from which actual profitability
can deviate according to a Markovian process. Z can be thought-of as conditional
on the initial conditions. Furthermore, in Section 2.3, we shows that the optimality
of an (S, s) policy holds with almost no restrictions on the form of uncertainty.

From Assumption 3, there is a positive persistence of the shocks: high values of
profitability today are more likely to be associated with high values of profitability
tomorrow. The transition function Z(A′, A) satisfies the Feller property: it guaran-
tees that the expectation function, used later in the Bellman equation, is bounded
and continuous. Note that the Normality assumption is not necessary. It represents
an improvement compared to continuous-time models where Brownian shocks and
boundary conditions are necessary to obtain solutions.

11To be consistent with the assumption that investment is immediately productive, depreciation
is proportional to both accumulated capital and investment.

12 [29] find that manufacturer sales appears to be Markovian whereas retailer sales do not.
Using a sample of Texas Bars, [1] find that Non-Markovian dynamics arise from permanent and
unobservable differences across entrepreneurs’ choices of their firms’ intended scales
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The profit function includes flows payments on capital such as maintenance costs
or commitments associated with the purchase of capital. Combined with decreas-
ing returns and/or some degree of monopoly power, R(A, ·) is concave in k. The
latter may appear to strong in that it is imposed for every level of profitability. [5]
presents a generalization of stochastic technology where although the production
process exhibits decreasing returns-to-scale in some average sense, it may enjoy in-
creasing returns for some favorable resolutions of the uncertainty. At the cost of
further notational and regularity assumptions, the results of the present paper can
be extended to such a situation.

Finally, to save on notation, we ruled out the existence of convex adjustment
costs. This assumption is very convenient but unecessary for ours results to holds.
And as discussed below, decreasing-returns and convex adjustment costs impact
similarily investment patterns.

2.2 The Dynamic Programming Problem

Given the law of motion of capital kt+1 = (1−δ)(kt+it) and k0, a manager chooses the
sequence of investment {it}

∞
t=0 to maximize the present discounted value of current

and future profits:

sup
{it}∞t=0

E

[
∞∑

t=0

βtπ(At, kt, it)

]
(4)

In Appendix A, we show that the objective function defined in (4) is well-defined
and the capital state space is compact. The latter is not ad-hoc assumption: the
capital stock can not take negative values and investing when capital is above a
particular value (denoted k̃) can not be optimal. We now write the model as a
dynamic programming problem and its standard recursive formulation.

Define the value function V(At, kt) at period t, as the discounted expected value
of current and future cash-flows:

V (At, kt) = sup
{ij}∞j=t

E

[
∞∑

j=t

βj−tπ(Aj , kj, ij)|kt, At

]
(5)

From standard results in dynamic programming theory, we focus on stationary and
Markovian policies. The value function V (A, k) is given by the solution to Bellman’s
equation:

V (A, k) = sup
0≤i≤k̃−k

[W (A, k + i) − C(i)] (6)

where

W (A, k) ≡ R(A, k) + β

∫

A

V (A′, k(1 − δ))Z(dA′, A) (7)

W can be interpreted as the value of the plant when investing today is not allowed
and the optimal policy is followed in all future periods. While the next proposition
may appear technical, it is of interest because it shows that the presence of the fixed
costs does not affect the existence and uniqueness of a solution Bellman’s equation.
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More importantly the value function is continuous despite the discontinuity in the
one-period profit function. Note that Proposition 1 requires few assumptions about
the stochastic process.

Proposition 1 V is unique, jointly continuous in (A, k) and increasing in A

Proof see Appendix A �

Following a standard argument, in the remainder of the paper, the operator sup is
replaced by the operator max. Let O : A×K → K denote the policy correspondence
for the set of solution to (6):

O(A, k) =
{

k′ ∈ [k, k̃] : V (A, k) = W (A, k′) − C(k′ − k)
}

(8)

Next Corollary is a consequence of the Maximum Theorem,

Corollary 1 O(A, k) is non-empty, compact-valued, and upper-hemi-continuous.

2.3 A More General Framework

We impose assumptions that are strong enough to be tractable for empirical work.
However, it should be clear that almost no restrictions have to be imposed on the
form or nature of the uncertainty confronting the plant. The model allows non-
stationary and multivariate shocks, a horizon of arbitrary length and time-varying
parameters. Consider the probability space (A,F , P ) and filtration F =

⋃
t Ft where

Ft represents the information available at time t. Let A ∈ A be the state of the
world. The one-period profit function in period t is denoted Rt(A, k). For each
t ∈ {1, . . . , T}, Rt is jointly measurable, Rt(·, k) is Ft-measurable for each k ∈ R+

and Rt(A, ·) is concave for each A ∈ A. The adjustment costs function can be
generalized to a function with time-varying parameters: C(it) = ptit + FtI{it 6= 0}.
It is necessary to assume that the discounted fixed cost sequences {βt−1Ft}

T+1
t=1 are

non-increasing in t, which holds trivially when these costs are fixed over-time.
Under standard regularity conditions, for all t ∈ {1, . . . , T}, the value function

Vt is jointly measurable and is given by the solution to Bellman’s equation:

Vt(At, kt) = sup
it≥0

{Rt(At, kt + it) − Ct(it) + βE [Vt+1 (At+1, (kt + it)(1 − δ)) |Ft]}

The final-period value function VT+1 is assumed jointly measurable and VT+1(A, ·)
is FT+1-concave (cf. infra) for each A ∈ A. It is straightforward to see that most of
the result holds in the more general framework presented here.

3 Optimal Decision Rule

The discontinuity of the one-period profit function (due to the fixed adjustment cost)
implies that the value function is not concave. Traditional dynamic programming
arguments are not available. Nevertheless the concept of F -concavity introduced
by [32] can be used to characterize the optimal decision rule.
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3.1 Mathematical Background

There is two equivalent ways to define F -concavity.

Definition 2

1. a real-valued function g is called F -concave for F ≥ 0, if for any z ≥ 0, b > 0
and any y,

g(y + z) − F ≤ g(y) +
z

b
(g(y)− g(y − b))

2. a real-valued function g is called F -concave for F ≥ 0, if for any x0 ≤ x1 and
λ ∈ [0, 1],

g((1 − λ)x0 + λx1) ≥ (1 − λ)g(x0) + λg(x1) − λF

The Next Proposition’s proof can be found in [32], except the last property whose
proof is available from the author upon request.

Proposition 2

1. A concave function is 0-concave and hence also F -concave for all F ≥ 0

2. If {gn(x)} is a sequence of F -concave functions and g = limn→∞ gn is the
pointwise limit of these functions, and if |g(x)| < ∞ for all x, then g is F -
concave

3. If f(x) is F -concave, where F ≥ 0, then the function

g(x) = max
y≥x

{f(y) − FI{y > x}}

is also F -concave

3.2 Optimality of an (S, s) Policy

Essentially, we tailor the arguments for a class of commodity price speculation prob-
lems in [23] to derive the optimality of an (S, s) investment policy.

Proposition 3 For any (A, k) ∈ A ×K, the functions V and W are F -concave in
k and the optimal decision rule i(A, k) takes the form of a state-dependent (S, s)
policy:

i(A, k) =

{
0 if k > s(A)
S(A) − k if k < s(A)

(9)

where the functions S(A) and s(A) are given by:

S(A) = min arg max
0≤k≤k̃

[W (A, k) − pk] (10)

s(A) = min
(
k ∈ [0, k̃] : W (A, k) ≥ W (A, S(A)) − p[S(A) − k] − F

)
(11)

The value function V can be expressed as:

V (A, k) =

{
W (A, S(A)) − F − p[S(A) − k] if k ∈ [0, s(A)]
W (A, k) otherwise

(12)

9
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Figure 1: Value Function and Optimal Decision Rule

Proof See Apprendix C �

The optimal policy depicts in Proposition 3 coincides with the observed patterns
of investment: several periods of inaction, when k > s(A), followed by bursts of
capacity adjustment, when k jumps to S(A).

Defining a target S(A) and a threshold s(A), the optimization problem is sepa-
rated in two parts: choosing an optimal level of investment ignoring the fixed cost,13

and deciding whether or not to incur the fixed costs and invest at all. Note that
s(A) ≤ S(A) because s(A) is defined as the smallest point where optimal investment
is zero.

To handle the case where there are multiple maximizing values, the target S(A)
is defined as the smallest value of the policy correspondence O(A).

An important contribution of this paper is that no functional forms (nor cali-
bration) are imposed and there is no need for numerical procedures to obtain the
result.

For illustrative purposes, we plot the value of inaction (noted W or V i) as a
concave function of k (the green line). The value of ordering (noted V a) is a linear
function of k (the blue line). The value function is the maximum of the two curves.
The linearity is due to linear adjustment costs. At the target levels, the gap between
the value of inaction and the value of an (optimal) adjustment is exactly equals to
the fixed adjustment cost. Without linear adjustment costs, the value of ordering
would equate the value of inaction evaluated at the target level minus the fixed cost.

Between s(A) and S(A), the marginal gain of adjusting employment is superior
to its marginal costs, p. Graphically, the slope of the green curve is bigger than

13It does not appear in the definition of S(A). Yet it impacts on S(A) through its effect on the
value function.
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Figure 2: Value Function and Optimal Decision Rule

the slope of the blue curve 14. However, inaction is optimal because the total gain
of adjusting employment is inferior to its total cost. After S(A), both total and
marginal gains are less than their respective costs.

At the level of previous capital in which the plant is indifferent between adjust-
ment and non-adjustment, the level of capital chosen, if the plant adjusts, is larger
than previous capital. Irreversibility alone does not produce this phenomena. This
is due to the presence of a fixed cost the plant aims to avoid incurring too frequently.
Furthermore the magnitude of adjustment (when it occurs) must be large enough
to create a total profit gain sufficient to offset the total cost. When there is no
fixed cost, the decision-marker evaluates marginal gains only and the latter effect
vanishes.

Next corollorary directly follows from Proposition 3. We discuss informally its
proof because it gives insights onto investment behavior.

Corollary 2 k is not an argument of the target function S.

Corollary 2 says that as long as investment is strictly positive, the level of capital
is chosen independently of its lagged value. In other words, there is no partial
adjustment: if the manager decides to adjust, he directly jumps to the target without
smoothing. To understand this property, consider the definition of the investment
policy when there is an adjustment: i(A, k) = min arg max0<i≤k̃−k[W (A, k + i)−pi].
Using a simple variable change k′ = k+i, k does not appear in the objective function

maxk<k′≤k̃ [W (A, k′) − pk′] but it does in the set over which to optimize: k′ ∈]k, k̃].
Indeed, this is a problem only if S(A) < k. A situation like the one in the Figure
3.2 is conceivable: if a negative investment level were allowed, it would be the arg
max of the objective function). Because it is not, the plant prefers to invest (and
choose the optimal level of capital belonging to the admissible state space, say k∗∗)
rather than staying inactive.

However this situation is not possible. For all (A, k, i) ∈ A×(S(A), k̃]×(0, k̃−k],
W (A, k) − pk being F -concave, it holds:

W (A, k + i) − p(k + i) − F ≤ W (A, k) − pk

+
z

k − S(A, k)
[W (A, k) − pk − W (A, S(A)) + pS(A)]

Since the term on the right hand side of the above inequality is non-positive, the
value of inaction W (A, k) is larger than the value of investing any positive amount.

This property is interesting for empirical analysis. To evaluate the empirical plau-
sibility of investment models with non-convexities in adjustment costs, the serial-
correlation of investment rates is a widely-used moment in the empirical literature.

14The differentiability of the value function is established in Section 4.1
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Standard Algorithm 547.3 sec
(S,s) Algorithm 6.7 sec

Table 1: Computational-Time

But given the preceding result, it is not an appropriate moment to identify irre-
versibility and fixed costs. Then, it may reflect either persistence of the shock
process, convex adjustment costs or a plant fixed-effect.

3.3 Numerical Solution

Even in times of increasing computer-power, a potential value of our approach is
that it allows to reduce the computational costs. Under the assumptions made,
when one solves the model numerically, he can restricts his attention to policies of
the (S, s) form. To evaluate those gains, we solve the model using value function
iteration. Since the algorithm is well-known, we do not discuss the details.

We first use the standard version of the algorithm: at each iteration of the
Bellman equation, for each point of the productivity grid, the value of choosing a
particular point in the capital grid is evaluated and the maximum over all those
points is chosen as the optimal policy. We then use the structure of the value
function to solve the model. Using Corollary 2, at each iteration of the Bellman
equation, for each point of the productivity grid, it is sufficient to look at any point
of the capital state space to find the optimal target (S). Hence during the search of
the optimal value of capital, the number of operations is divided by the size of the
capital grid. To compute the value function, we use Proposition 3.

Cash-flows are specified as R(A, k) = Akα − rk. r is such that the steady-state
capital be 700. log(A) follows an AR(1) with persistence ρ and standard deviation
σ. We use a standard calibration: α = 0.6, β = 0.98, p = 0.02, F = 3.5, ρ = 0.9 and
σ = 0.3. Table 3.3 reports the computational-time for a reasonable sized grid (300
points for capital and 20 points for productivity) and convergence criteria (1e − 6).

Taking into account the structure of the optimal policy lead to a drastic reduction
of the computational-time that is divided by about 80. The number of iterations
before convergence is the same. The computational gain comes for the way the value
function is solved. Our findings are limited to value function iteration which is a
natural benchmark. We are optimistic that restricting the search to policies of the
(S, s) could be shown to alleviate the computational burden for alternative solution
methods, but we leave this for future research.

3.4 Flexible Inputs

For the optimal investment policy analysis, flexible (in the sense of adjusted at no
costs) inputs are unimportant because their choice is purely static: it has no dynamic
implications. Since every period the plant chooses its optimal level at no cost, past
level of these inputs will not impact their current level. However, it is necessary to
assume that after having made the optimal choices for these factors, the one-period
profit function remains concave in (A, k) jointly. For example, add to the preceding

12



model a single flexible factor (say l) which enter the one-period profit function and
is costless to adjust. Also to be more realistic15, assume that some part of the shock
is not observed until after the investment decision is made and that the flexible
factor is chosen after the rigid one. Formally, consider a point in time t + b between
period t and t + 1 ie. b ∈ (0, 1). Assume, that during t and t + b, the plant gets
new informations on the profitability of the current period: an i.i.d shock that affect
profits (say µ) occurs. Denote by R̃(A, k, l, µ) the profit-function and assume it is
jointly continuous and concave in its arguments. The first-order condition for l is

Rl = 0. Using the Implicit Function Theorem, l∗k(A, k, µ) = − R̃lk(A,k,l,µ)

R̃ll(A,k,l,µ)
. When the

profit function has positive (negative) derivatives so that its inputs are economic
complements (substitutes), a higher optimal level of the dynamic inputs justifies a
higher (lower) level of the static input. This can explain the negative correlation
of hours and employment growth at the plant level observed in [15]. Applied to
this framework, the number of employees is the rigid factor and working time is the
flexible one. Following a positive shock, if the number of employees stays constant
(because of adjustment costs), then working time increases to accomodate shocks.
But if the plant hires new workers then workng-time eventually stays at its regular-
level.

Building on the preceding example, the general formula for reduced-form profits
is:

R(A, k) =

∫
max

h
R̃(A, k, h, µ)Fµ(dµ) (13)

where h is an arbitrary vector of flexible inputs, µ is an i.i.d shock with cdf Fµ.

4 Marginal and Average Value of Capital

The aim of this section is to characterize the optimal policy in terms of the marginal
and average value of capital, also known as marginal and average q. As an inter-
mediary step, we show that the value function is differentiable a.e. except at the
threshold level where it admits unequals left and right derivatives. It holds despite
the non-differentiability and the discontinuity of the one-period profit function.

4.1 Differentiability of the Value Function

To make possible the analysis in terms of marginal and average q, we henceforth
assume that the reduced-form profit function is differentiable. Obviously differen-
tiability of the one-period profit function is necessary to expect differentiability of
the value function. Supermodularity says that the marginal productivity of capital
is increasing in profitability.

Assumption 5 R is differentiable and supermodular for each (A, k) ∈ (A×K)

15Notably, to avoid a deterministic relatonship between the two factors.
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Proposition 4 V (A, ·) is differentiable in k almost everywhere on the domain K\s(A)
for every A ∈ A. The partial derivative obeys the equation:

Vk(A, k) = Rk(A, k+i(A, k))+β(1−δ)

∫
Vk(A

′, (1−δ)(k+i(A, k)))Z(dA′, A) (14)

which can be decomposed as:

Vk(A, k) =

{
p if k < s(A)
Rk(A, k) + β(1 − δ)

∫
Vk(A

′, (1 − δ)k)Z(dA′, A) if k > s(A)
(15)

Corollary 3 For every A ∈ A, the target S(A) satisfies

Rk(A, S(A)) + β(1 − δ)

∫
Vk(A

′, S(A)(1 − δ))Z(dA′, A) = p (16)

Corollary 4 The functions S and s are non-decreasing

Proof See Appendix D �

Despite the non-differentiability and the discontinuity of the one-period profit
function, Proposition 4 establishes the differentiability of the value function almost
everywhere except at the threshold where it admits unequals left and right deriva-
tives. The thrust of our proof is to consider a finite-version of the model and to
show that the sequence of derivatives associated with each finite horizon converge
uniformly. From the convergence of the value function, the result follows.

The interpretation of Corollary 3 is the usual one: if the plant decides to invest,
it equates marginal gains from adjustment to its marginal costs. Note that the
fixed cost does not appear explictly in first-order condition. However, it impacts the
target indirectly through its effects on the value function.
Corollary 4 illustrates a simple principle: when profitability is high, the optimal
level of investment and the probability of investing is higher. The intution is that
the marginal value of capital increases in productivity and that a plant with higher
current productivity is more likely to have better realisations of productivity in the
future. Following a positive shock, the plant becomes more willing to invest (the
threshold s rises) and wants to invest more (the target S rises).

To compute the derivative with respect to capital of the value function, we solve
recursively the function W . Define a(k) = min{A ∈ A|W (A, k) ≥ W (A, S(A)) −
p[S(A) − k] − F}. Since limj→∞ βj‖W j‖ = 0, it follows that:

W (A0, k)

= R(A0, k) + β

∫ a(k(1−δ))

A

R(A1, k(1 − δ))Z(dA1, A0)

+β

∫ Ā

a(k(1−δ))

[W (A1, S(A1)) − pS(A1) + pk(1 − δ) − F ]Z(dA1, A0)

+

∞∑

j=2

βj

(
j−1∏

l=1

Z([A, a(k(1 − δ)l)], Al−1)

)
(

∫ a(k(1−δ)j )

A

R(Aj , k(1 − δ)j)Z(dAj, Aj−1)

+

∫ Ā

a(k(1−δ)j )

[
W (Aj, S(Aj)) − pS(Aj) + pk(1 − δ)j − F

]
Z(dAj, Aj−1)) (17)
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An analytic expression for the marginal value of capital is given in Appendix D.
It can be decomposed in three components. The first component is the discounted
sum of marginal product of capital times the probability of non-adjustment. The
effect of an additional unit of capital lasts when the plant adjusts and chooses a
new level of capital, the target, which has been proven independent of past values of
capital. Consequently one additional unit of capital has an effect until the point in
time where there is another adjustment. At this exact point in time, one additional
unit of capital reduces by p the amount of linear adjustment costs.

The preceding effect would be the only one if probabilities of investing in the
future were constant. However, changes in k alter the time of the next adjustment.
The two other effects take this into account. An increase in capital decreases the
probability of an adjustment in the future. There is a loss of the future marginal
gains to adjust. Yet by definition, if the plant actually adjusts both total gains of
adjustment and the marginal gains of adjustment are larger than their respective
costs. The third effect is positive. By increasing capital, the plant reduces its
probabilities of adjusting in the future which increase the number of periods where
the accumulated capital will have an impact on the marginal value of the plant.

4.2 Investment, Marginal and Average Value of Capital

The optimal policy can be formulated in terms of the marginal and the average
value of capital. Define the average value of capital, also known as Tobin’s q, as
Q(A, k) = W (A,k)

pk
. Define the marginal value of capital, also known as marginal q,

as q(A, k) = Wk(A,k)
p

. It is implicit in this subsection that p > 0. The case p = 0 is
left to the reader. Proofs in this subsection follow from preceding results and are
therefore omitted:

Corollary 5 For every A ∈ A, S(A) is such that q(A, S(A)) = 1

So as long as investment is positive, investment only depends on marginal q. This
holds whether fixed costs are postive or not. Yet, fixed costs impact on marginal q

dynamics:

Proposition 5 If F = 0, for every (A, k) ∈ A×K, q(A, k + i(A, k)) ≤ 1 and

q(A, k + i(A, k)) =

{
q(A, k) if q(A, k) ≤ 1
1 if q(A, k) > 1

(18)

Proposition 6 If F > 0, for every (A, k) ∈ A×K

q(A, k + i(A, k)) =

{
q(A, k) if Q(A, k) > 1 + (Q(A, S(A)) − 1)S(A)

k
− F

pk

1 otherwise
(19)

Corollary 6 If F > 0, for every A ∈ A, there exists k ∈ (s(A), S(A)) such that
q(A, k + i(A, k)) > 1
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Proposition 5 is a standard result from the investment literature: it is profitable
to invest if and only if marginal q is larger than 1. Since marginal costs of adjusting
are constant, an inaction region appears even if there are no fixed costs.

The analog of Proposition 5 exists in investment models with constant return-to-
scale and convex adjustment costs. There the latter prevent investment from going
to infinity. Decreasing return-to-scale and/or market power (Assumption 4) has the
same effect here. A crucial difference is that convex adjustment costs generate a
smooth and continuous adjustment to shocks for which there is little evidence in the
data while decreasing return-to-scale and/or market power do not.

With a positive fixed cost, the probability of an adjustment depends only on
Tobin’s average q. It entirely explains the decision to adjust or not. Then, the
optimal amount of investment is entirely determined by Tobin’s marginal q, which
is a sufficient statistic for the marginal gains of an adjustment. With a positive
fixed cost, in some state, the plant may not wish to adjust its capital stock even if
the marginal q is larger than 1. This is in contrast with the result of the literature
which state that marginal q always remains below 1 since when it cross this threshold,
marginal gains of an adjustment are larger than marginal costs and the plant adjusts
its capital stock to its desired level. Yet because of the fixed cost, total gains from
adjustment have to be larger than total costs for the plant to adjust. Such a situation
appears when the beginning of the period capital lies above the threshold s(A) but
below the target S(A).

Because of decreasing returns to investment and/or market power, marginal and
average q are not the same (See [25]). While we present an analytic expression for
both, respectively, in Equation 17 and Appendix D, we are not able to character-
ize the way the two expressions differ. Nevertheless, cash-flows are correlated with
both. So the significance of cash-flows in standard reduced-form regressions may
not reflect finance constraints. The link between cash-flows and investment is thor-
oughly investigated by [16]: the response of investment to cash-flow indicates the
additional information, relative to average q, contained in this variable for forecast-
ing future profitability. We confirm their result analytically while their analysis
uses simuation.

In Equation 19, the fixed cost is divided by the level of the capital stock which
captures the level of operation. It follows that fixed costs matter more for small
plants. Thus, the model delivers a inaction region wider for small plants in agreement
with recent empirical evidence (cf. supra).

5 Conclusion

This paper proves the high degree of generality of (S, s) policies in an model of
investment with a fixed cost independent of plant-size. We establish uniqueness,
continuity and differentiability (except at the threshold) of the value function. The
optimal policy is characterized analytically and depends simultaneously on marginal
and average q.

There are several immediate extensions to this paper. We do not analyse dis-
investment episodes. This should not be an assumption but rather a feature of the
model. Yet, it creates technical difficulties. The value function is not F -concave and
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the optimal policy is no longer guaranteed to be of the (S, s) form. Also, capital is not
an homogeneous good and modelling capital heterogeneity is a relatively unexplored
line of research. [20] considers a form of K-convexity in ℜn. Yet, this notion persists
after a dynamic programming iteration only in very special cases. We leave this for
future research.
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Appendices

All results should be understood to hold under the assumptions in the text.

A Proof of Proposition 1

Lemma 1 (4) exists and is less than infinity

Proof Consider a plant which faces no adjustment costs. Then, it easy to see that
solving (4) is equivalent to solving a sequence of static decision problems. R(A, ·)
has a global maximizer for every A ∈ A and the expected discounted profits of such
a plant is finite. Hence if the supremum exists, it must be finite. Normalizing the
initial capital stock to 0, the sequence it = 0 for all t ≥ 0 yields a return of 0. We
found an investment sequence which yields a value greater than −∞ which shows
that the supremum exists. �

Given Lemma 1, we can define the supremum function associated with (4), say
V ∗.

Lemma 2 There exists k̃ < ∞ such that for every t ∈ N, kt ≤ k̃.

Proof For every A ∈ A, define k̃(A) as R(A, k̃)−F−pk̃+E [
∑∞

t=1 βtR(At, kt + it)] =

0. Let {kt(At)}
∞
t=0 be a sequence such that Pr

[
kt(At) > k̃(At)

]
> 0 for some

t > 0. Then we prove that V ∗ >
∑∞

j=0 βjΠ(Aj, kj, ij). Without loss of gener-

ality, suppose that k1 = i0 > k̃(A1). From the definition of k̃(A1), R(A1, k1) −
F − pk1 + E [

∑∞
t=1 βtR(At, kt + it)] < 0. Because sup

{it}∞t=1

E [
∑∞

t=1 βtΠ(At, kt, it)] ≤

E [
∑∞

t=1 βtR(At, kt + it)] and V ∗ ≥ 0 (See Proof of Lemma 1), it follows:

V ∗ > R(A1, k1) − F − pk1 + sup
{it}∞t=1

E

[
∞∑

t=1

βtΠ(At, kt, it)

]

Finally, let k̃ = maxA∈A k̃(A). �

The following sets are defined under the usual sup-norm ‖ ·‖. Let BAK be
the set of bounded functions V : A × K −→ R. Let CAK be the set of con-
tinuous functions V : A × K −→ R. The operator associated to Bellman equa-
tion 6: T (V ) = V . The value function can be re-written as: V = max {V a, V i}
where V a(A, k) = sup0≤i≤k̃−k {W (A, k + i) − C(i)} and V i(A, k) = W (A, k). we
show that the operator T maps CAK into itself and has a unique fixed point V

in CAK. It is easy to show that T satisfies Blackwell’s sufficient conditions for a
contraction mapping. Since BAK is complete, T has a unique fixed point V in
BAK. Consider V ∈ CAK. By Lemma 9.5 in [34] and Assumption 3, V ∈ CAK ⇒[∫

A
V (A′, (1 − δ)(k + i))Z(dA′, A)

]
∈ CAK ⇒ V i ∈ CAK. By the theorem of the

maximum, V a(A, k) ∈ CAK. Because the operator max is continuous, T (V ) ∈ CAK

and T maps CAK into itself. Under Assumptions 3 and 4, V (·, k) is increasing for
every A ∈ A.
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B Proof of Proposition 3

Lemmas 3-6 and their proofs mimic analogous Lemmas in [23]. Therefore, proofs of
Lemma 4 and 6 are omitted. Yet, we show that Lemma 4 is a straightforward con-
sequence of a property of F -concave functions while [23] prove it in their framework
only.

Define the operators Γ and Λ by:

Γ(W )(A, k) = max
0≤i≤k̃−k

[W (A, k + i) − C(i)] (20)

Λ(V )(A, k) = R(A, k) + β

∫

A

V (A′, k)Z(dA′, A) (21)

Let FAK denote the class of functions V (A, k) which are continuous16 in A and k,
and F -concave as a function of k ∈ K for all A ∈ A. Lemma 3 proves that if W (A, k)
is F -concave, so is V . Lemma 4 proves the optimality of an (S, s) policy. Lemmas
5 and 6 show that the composition operators Λ ◦ Γ and Γ ◦ Λ map FAK into FAK.

Lemma 3 If W ∈ FAK, then V = Γ(W ) ∈ FAK.

Proof Consider W (A, k) ∈ FAK. Then, W (A, k) − pk ∈ FAK. Note that

V (A, k) =

(
max
k′≥k

[W (A, k′) − pk′ − FI{k′ > k}]

)
+ pk (22)

where the first term is F -concave as a function of k ∈ K for all A ∈ A by Proposition
2.3 and so is the second term. �

Lemma 4 If W (A, k) ∈ FAK, then the solution to the functional equation (6) takes
the form of a state-dependent (S,s) policy as described by Equations 9, 10 and 11.

Lemma 5 Λ ◦ Γ maps FAK into FAK.

Proof By Lemma 3 if U ∈ FKC, then V = Γ(U) ∈ FKC. By Lemma 4, there exist
functions S and s : A → R satisfying 0 ≤ s(A) ≤ S(A) ≤ k̃ for which V = Γ(U)
can be represented as

Γ(U)(A, k) =

{
U(A, S(A)) − F − p(S(A) − k) if k ∈ [0, s(A)]
U(A, k) otherwise

Since positive linear combinations and point-wise limits of F -concave functions
are F -concave, it follows that

∫
A

V (A′, k(1 − δ))Z(dA′, A) ∈ FAK. Finally, Λ ◦
Γ(U)(A, k) = R(A, k) + β

∫
A

V (A′, k(1 − δ)Z(dA′, A) ∈ FAK. �

Lemma 6 The function V (A, ·) and W (A, ·) are F -concave function of k ∈ K for
all A ∈ A.

16Continuity of V and W has already been proved.
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C Proof of Proposition 4

Lemma 7 V (A, k) is supermodular in (A, k)

Proof Let SAK be the set of continuous, supermodular function V : A×K −→ R

and such that V (·, k) is non-decreasing for each k ∈ K. We show that T maps SAK

into itself. Consider V ∈ SAK. V can be written as V (A, k′) = maxk′∈[k,k̃][W (A, k′)−

C(k′ − k)]. For a function on R2, increasing differences is equivalent to supermod-
ularity. We need to show that

∫
V (A′, k′)Z(dA′, A) satisfies increasing differences

in (A, k′). Consider A1 > A2 and k′
2 > k′

1. It holds: V (A2, k
′
2) − V (A2, k

′
1) ≥

V (A1, k
′
2) − V (A1, k

′
1) which means that the function V (·, k′

2) − V (·, k′
1) is non-

decreasing for every k′
2 > k′

1. Combined with Z(A′, ·) stochastically increasing,
it follows:
∫

[V (A′, k′
2) − V (A′, k′

1)] Z(dA′, A2) ≥

∫
[V (A′, k′

2) − V (A′, k′
1)] Z(dA′, A1)

which means that
∫

V (A′, k′)Z(dA′, A) satisfies increasing differences in (A, k′).
Combined with R(A, k′) supermodular in (A, k′) (by assumption) and −C(k′ − k)
is supermodular in (k, k′) (as it is linear), W (A, k′) − C(k′ − k) is supermodular in
(A, k′, k). Maximizing over k′ preserves supermodularity in the remaining variables
(A, k) ( [35]). Consequently, V = T (V ) is supermodular in (A, k). �

Lemma 8 S is a non-decreasing function.

Proof Following an approach simliar to Lemma 7 it can be shown that W (A, k)−pk

is supermodular in (A, k). From [35], the set of optimal solutions is non-decreasing
in A. S(A) being the lowest element of the set, the result follows. �

Consider a sequence of J + 1 period problems, J ∈ N with value functions
satisfying: V J+1(A, k) = max{kt}

J+1

t=1
E0

∑J

t=0 βtπ(At, kt, kt+1 − kt). The sequence

V j+1(A, k) is generated by iterating on V 0(A, k) with the operator T , i.e.,

V j+1(A, k) = max
kj≥k

[
R(A, kj) − C(kj − k) + β

∫
V j(A′, kj(1 − δ))Z(dA′, A)

]

= T j+1V 0(A, k)

where kj is the optimal choice of capital for the j + 1 period problem. Clearly
V 0(A, k) = 0. Define W j(A, k) = R(A, k) + β

∫
V j(A′, k(1 − δ))Z(dA′, A) and

accordingly Sj , sj, and aj , for each j = 0, 1, . . . , J . Using Proposition 3, it holds:

V j+1(A, k) =

{
W j(A, Sj(A)) − F − pSj(A) + pk if k ≤ sj(A)
W j(A, k) if k ≥ sj(A)

kj(A, k) =

{
Sj(A) if k < sj(A)
k if k > sj(A)

Lemma 9 For j ≥ 0, V j+1(A, ·) is differentiable with respect to k almost everywhere
on the domain K\sj(A) for every A ∈ A
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Proof By induction, If k < sj(A), the first-order necessary condition for the max-
imum problem on the right-hand side is:

Rk(A, kj) − p + β(1 − δ)

∫
V

j
k (A′, (1 − δ)kj)Z(dA′, A) = 0

using the dominated convergence theorem. Then V j+1(A, k) is differentiable in k

with its derivative given by: V
j+1
k (A, k) = p. Plugging in the first-order condition

gives Equation 14. If k > sj(A), V j+1(A, k) = R(A, k) + β(1 − δ)
∫

V j(A′, k(1 −
δ))Z(dA′, A) and consequently, V j+1(A, k) is differentiable in k with derivative given
by Equation 14. �

Corollary 7 For all j ≥ 0, Sj(·) and sj(·) are non-decreasing

Proof For the sequence of function {Sj}j≥0, the proof uses repeatedly Lemma
8. Consider the case j = 0. Since RkA ≥ 0 and Rk(A, s0(A)) > p, (s0)′(A) =
RA(A,S0(A))−RA(A,s0(A))

Rk(A,s0(A))−p
≥ 0. Now consider j ≥ 0. If sj(A) = Sj(A), the result

is immediate so we only consider sj(A) < Sj(A). Using [8], V (·, k) is differentiable
with respect to A almost everywhere for every k ∈ K. Differentiating W j(A, sj(A))−
W j(A, Sj(A)) + F + pSj(A) − psj(A) = 0, it holds:

(sj)′(A) =
W

j
A(A, Sj(A)) − W

j
A(A, sj(A))

W
j
k (A, sj(A)) − p

if W
j
k (A, sj(A)) 6= p

The numerator is non-negative from the supermodularity of W j. W j(A, k) − pk

being differentiable with respect to k almost everywhere, we use the definition of F -
concavity for differentiable function: W j(A, S(A)) − pS(A) − F ≤ W j(A, sj(A)) −
psj(A)+(Sj(A)−sj(A))(W j

k (A, sj(A))−p) which is equivalent to W
j
k (A, sj(A)) ≥ p.

If the inequality is strict, (sj)′(A) ≥ 0. Otherwise, (sj)′(A) goes to infinity. �

Proposition 7 V (A, ·) is differentiable with respect to k almost everywhere on the
domain K\s(A) for every A ∈ A

Proof For every n ∈ N, a sequence of derivatives can be defined recursively as
W n+1

k (A, k) = D(W n
k )(A, k) where the operator D satisfies:

D(W n
k )(A, k) = Rk(A, k) + β(1 − δ) ·[∫ an(k(1−δ))

A

W n
k (A′, k(1 − δ))Z(dA′, A) + pZ(

[
an(k(1 − δ)), Ā

]
, A)

]

and,

∥∥D(W 1
k ) − D(W 0

k )
∥∥ = ‖

∫ a1(k(1−δ))

A

[
W 1

k (A′, k(1 − δ)) − W 0
k (A′, k(1 − δ))

]
Z(A′, A)

+

∫ a1(k(1−δ))

a0(k(1−δ))

{
W 0

k (A′, k(1 − δ)) − p
}

Z(A′, A)‖ · β(1 − δ)

≤ β(1 − δ)
(
‖W 1

k − W 0
k ‖ + ‖W 0

k − p‖
)
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Proceeding inductively, for every n ∈ N, ‖W n+1
k −W n

k ‖ ≤ β(1−δ)
(
‖W n

k − W n−1
k ‖ + ‖W n−1

k − p‖
)
.

Solving Recursively, for every n ∈ N,

‖W n+1
k − W n

k ‖ ≤ βn(1 − δ)n‖W 1
k − W 0

k ‖ +
n−1∑

i=0

‖W n−i−1
k − p‖βi(1 − δ)i

It is well known since [33] that the sequence of functions {Sj}∞j=0 converges uniformly
to S. Since the sequence of {W j(A, k)}∞j=0 converges to W and W is continuous,
the sequence of functions {sj}∞j=0 and {aj}∞j=0 converges uniformly, respectively, to s

and a. Given η > 0, it exists Nη such that ‖an+1−an‖ ≤ η for every integer n ≥ Nη.
Hence, for every integer n ≥ Nη:

∫ an+1(k(1−δ))

an(k(1−δ))

[W n
k (A′, k(1 − δ)) − p] Z(A′, A) ≤ ‖W n

k − p‖ ·

‖Z(
[
an(k(1 − δ)), an+1(k(1 − δ))

]
, A)‖

which implies:

∥∥∥W Nη+2
k − W

Nη+1
k

∥∥∥ ≤ β(1 − δ)‖W
Nη+1
k − W

Nη

k ‖

+β(1 − δ)‖W
Nη

k − p‖‖Z(
[
aNη(k(1 − δ)), aNη+1(k(1 − δ))

]
, A)‖

Define

Tη = (β(1 − δ))Nη ‖W 1
k − W 0

k ‖ + MNη

g(n) = β(1 − δ)‖W n
k − p‖‖Z(

[
an(k(1 − δ)), an+1(k(1 − δ))

]
, A)‖

It holds: ‖W
Nη+2
k −W

Nη+1
k ‖ ≤ β(1− δ) [Tη + g(Nη)]. By induction, for every j ∈ N,

‖W
Nη+j+1
k − W

Nη+j

k ‖ ≤ βj(1 − δ)jTη +

j−1∑

i=1

βi(1 − δ)ig(Nη + j − i)

Given ε > 0, there exist Nε, η and Nη such that ε > βj(1 − δ)jTη +
∑j

i=1 βi(1 −
δ)ig(Nη + j − i) for all j ≥ Nε −Nη. Hence, the sequence {W j

k (A0, k)}∞j=0 converges
uniformly. From the point-wise convergence of {W j(A0, k)}∞j=0, the result follows.

�
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D The Marginal value of capital

Wk(A0, k)

= Rk(A0, k) + β(1 − δ)[

∫ a(k(1−δ))

A

Rk(A1, k(1 − δ)) +

∫ Ā

a(k(1−δ))

p]Z(dA1, A0)

+a′(k(1 − δ))z(a(k(1 − δ)), A0) · [R(a(k(1 − δ)), k(1 − δ))

−[W (a(k(1 − δ)), S(a(k(1 − δ)))) − pS(a(k(1 − δ))) + pk(1 − δ) − F ]

+
∞∑

j=2

(β(1 − δ))j

(
j−1∏

l=1

Z([A, a(k(1 − δ)l)], Al−1)

)
·

[

∫ a(k(1−δ)j )

A

Rk(Aj , k(1 − δ)j) +

∫ Ā

a(k(1−δ)j )

p]Z(dAj , Aj−1)

+a′(k(1 − δ)j)z(s−1(k(1 − δ)j), Aj−1) · [R(a(k(1 − δ)j), k(1 − δ)j)

−[W (a(k(1 − δ)j), S(a(k(1 − δ)j))) − pS(a(k(1 − δ)j)) + pk(1 − δ)j − F ]]

+

j−1∏

l=2

z(a(k(1 − δ)l), Al−1)

Z([A, a(k(1 − δ)l)], Al−1)
· (

∫ a(k(1−δ)j )

A

R(Aj, k(1 − δ)j)Z(dAj , Aj−1)

+

∫ Ā

a(k(1−δ)j )

[W (Aj, S(Aj)) − pS(Aj) + pk(1 − δ)j − F ]Z(dAj, Aj−1))
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