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Abstract

While the literature on nonclassical measurement error traditionally relies on the
availability of an auxiliary dataset containing correctly measured observations, we es-
tablish that the availability of instruments enables the identification of a large class
of nonclassical nonlinear errors-in-variables models with continuously distributed vari-
ables. Our main identifying assumption is that, conditional on the value of the true
regressors, some “measure of location” of the distribution of the measurement error
(e.g. its mean, mode or median) is equal to zero. The proposed approach relies on the
eigenvalue-eigenfunction decomposition of an integral operator associated with specific
joint probability densities. The main identifying assumption is used to “order” the
eigenfunctions so that the decomposition is unique. We propose a convenient sieve-
based estimator, derive its asymptotic properties and investigate its finite-sample be-
havior through Monte Carlo simulations. An example of application to the relationship
between earnings and divorce rates is also provided.
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1 Introduction

In recent years, there has been considerable progress in the development of inference meth-

ods that account for the presence of measurement error in the explanatory variables in

nonlinear models (see, for instance, Chesher (1991), Lewbel (1996), Chesher (1998), Lewbel

(1998), Hausman (2001), Chesher (2001), Chesher, Dumangane, and Smith (2002), Hong

and Tamer (2003), Carrasco and Florens (2005)). The case of classical measurement errors,

in which the measurement error is either independent from the true value of the mismeasured

variable or has zero mean conditional on it, has been thoroughly studied. In this context,

approaches that establish identifiability of the model, and provide estimators that are either

consistent or root n consistent and asymptotically normal have been devised when either

instruments (Hausman, Newey, Ichimura, and Powell (1991), Hausman, Newey, and Powell

(1995), Newey (2001), Wang and Hsiao (1995), Schennach (2004b)), repeated measurements

(Hausman, Newey, Ichimura, and Powell (1991), Hausman, Newey, and Powell (1995), Li

(2002), Schennach (2004a), Schennach (2004c)) or validation data (Hu and Ridder (2004))

are available.

However, the are a number of practical applications where the assumption of classical

measurement error is not appropriate (Bound, Brown, and Mathiowetz (2001)). In the case

of discretely distributed regressors, instrumental variable estimators that are robust to the

presence of such “nonclassical” measurement error have been developed for binary regressors

(Mahajan (2006), Lewbel (2006)) and general discrete regressors (Hu (2005)). Unfortunately,

these results cannot trivially be extended to continuously distributed variables, because

the number of nuisance parameters needed to describe the measurement error distribution

(conditional on given values of the observable variables) becomes infinite. Identifying these

parameters thus involves solving operator equations that exhibit potential ill-defined inverse

problems (similar to those discussed in Carrasco, Florens, and Renault (2005), Darolles,

Florens, and Renault (2002), and Newey and Powell (2003)).

In the case of continuously distributed variables (in both linear or nonlinear models), the
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only approach capable of handling nonclassical measurement errors proposed so far has been

the use of an auxiliary dataset containing correctly measured observations (Chen, Hong, and

Tamer (2005), Chen, Hong, and Tarozzi (2005)). Unfortunately, the availability of such a

clean data set is the exception rather than the rule. Our interest in instrumental variables

is driven by the fact that instruments suitable for the proposed approach are conceptually

similar to the ones used in conventional instrumental variable methods and researchers will

have little difficulty identifying appropriate instrumental variables in typical datasets.

Our approach relies on the observation that, even though the measurement error may not

have zero mean conditional on the true value of the regressor, perhaps some other measure

of location, such as the median or the mode, could still be zero. This type of nonclassical

measurement error has been observed, for instance, in the self-reported income found in the

Current Population Survey (CPS).1 Thanks to the availability of validation data for one of

the years of the survey, it was found that, although measurement error is correlated with

true income, the median of misreported income conditional on true income is in fact equal

to the true income (Bollinger (1998)). In another study on the same dataset, it was found

that the mode of misreported income conditional on true income is also equal to the true

income (see Bound and Krueger (1991) and Figure 1 in Chen, Hong, and Tarozzi (2005)).

There are numerous plausible settings where the conditional mode, median, or some

other quantile, of the error could be zero even though its conditional mean is not. First,

if respondents are more likely to report values close to the truth than any particular value

far from the truth, then the mode of the measurement error would be zero. This is a very

plausible form of measurement error that even allows for systematic over- or underreporting.

In addition, data truncation usually preserves the mode, but not the mean, provided the

truncation is not so severe that the mode itself is deleted. This assumption regarding the

mode can be viewed as a generalization of the assumption, used by Mahajan (2006) and

Lewbel (2006) in the simple misclassified binary variable case, that survey respondents are

1Bureau of Labor Statistics and Bureau of Census, http://www.bls.census.gov/cps/cpsmain.htm
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more likely to report the truth than to lie. Of course, in the continuous case covered here,

this assumption is particularly weak, since there are an infinite number of alternatives and

respondents would literally have to collude on misreporting in a similar way in order to

violate the mode assumption.

Second, if respondents are equally likely to over- or under-report, but not by the same

amounts on average, then the median of the measurement error is zero. This could occur

perhaps because the observed regressor is a nonlinear monotonic function (e.g., a logarithm)

of some underlying mismeasured variable with symmetric errors. Such a nonlinear function

would preserve the zero median, but not the zero mean of the error. Another important case

is data censoring, which also preserves the median, as long as the upper censoring point is

above the median and the lower censoring point is below the median.

Third, in some cases, a quantile other than the median might be appropriate. For in-

stance, tobacco consumption is likely to be either truthfully reported or under-reported and,

in that case, the topmost quantile of the error conditional on the truth would plausibly equal

true consumption.

In order to encompass practically relevant cases such as these, which so far could only

have been analyzed in the presence of auxiliary correctly measured data, our approach relies

on the general assumption that some given “measure of location” (e.g. the mean, the mode,

the median, or some other quantile) characterizing the distribution of the observed regressor

conditional on the true regressor is left unaffected by the presence of measurement error.

This framework is also sufficiently general to include measurement error models in which the

true regressor and the errors enter the model in a nonseparable fashion.

The paper is organized as follows. We first provide a general proof of identification be-

fore introducing a semiparametric sieve estimator that is shown to be root n consistent and

asymptotically normal. Our identification is fully nonparametric and therefore establishes

identification in the presence of measurement error of any model that would be identified in

the absence of measurement error. Our estimation framework encompasses models which,
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when expressed in terms of the measurement error-free variables, take the form of either para-

metric likelihoods or (conditional or unconditional) moment restrictions and automatically

provides a corresponding measurement error-robust semiparametric instrumental variable es-

timator. This framework therefore addresses nonclassical measurement error issues in most

of the widely used models, including probit, logit, tobit and duration models, in addition to

conditional mean and quantile regressions, as well as nonseparable models (thanks to their

relationship with quantile restrictions). The finite sample properties of the estimator are

investigated via Monte Carlo simulations, while the usefulness of our approach is motivated

through a simple example of an application to the study of the relationship between divorce

rates and income, which is measured with possibly nonclassical error.

2 Identification

The “true” model is defined by the density of the dependent variable y conditional on

the true regressor x∗, denoted fy|x∗ (y|x∗). However, x∗ is not observed, only its error-

contaminated counterpart, x, is observed. In this section, we rely on the availability of an

instrument (or a repeated measurement) z to show that fy|x∗ (y|x∗) and, more generally,
fyx∗ (y, x

∗), is identified from the knowledge of the joint density of all observed variables

fyxz (y, x, z). Our treatment can be straightforwardly extended to allow for the presence of

a vector w of additional correctly measured regressors, merely by conditioning all densities

on w. Although we consider scalar-valued x∗ in the sequel, for the sake of simplicity of

exposition, our general approach is clearly applicable to multivariate settings, and we will

note whenever the multivariate extension requires special attention. Also, the instrument z is

considered univariate here, but multivariate instruments Z can easily be used, for instance,

simply by defining z as the predicted value of the least-squares projection of x on Z.
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2.1 Basic integral relationships

To state our identification result, we start by making natural assumptions regarding the

conditional densities of all the variables of the model. Let Y, X , X ∗ and Z denote the

supports of the densities of the random variables y, x, x∗ and z, respectively.

Assumption 1 (i) fy|xx∗z (y|x, x∗, z) = fy|x∗ (y|x∗) for all (y, x, x∗, z) ∈ Y × X × X ∗ × Z
and (ii) fx|x∗z (x|x∗, z) = fx|x∗ (x|x∗) for all (x, x∗, z) ∈ X ×X ∗ ×Z.

Remark: Assumption 1(i) indicates that x and z do not provide any more information about

y than x∗ already provides, while Assumption 1(ii) specifies that z does not provide any more

information about x than x∗ already provides. The first assumption could be interpreted as a

standard exclusion restriction, that is, z does not affect y directly, but only through its effect

on x∗. The second assumption implies that the instrument contains no information regarding

the measurement error, once the value of x∗ is known. Conditional independence restrictions

are widely used in the recent econometrics literature (e.g. Holderlein and Mammen (2006),

Heckman and Vytlacil (2005), Altonji and Matzkin (2005)). Our assumptions regarding

the instrument z are sufficiently general to encompass both the repeated measurement and

the instrumental variable cases in a single framework. In the repeated measurement case,

having the measurement error on the two measurements z and x be mutually independent

conditional on x∗ will be sufficient to satisfy Assumption 1. Note that while we will refer to

y as the “dependent variable”, it should be clear that it could also contain another error-

contaminated measurement of x∗ or even a type of instrument that is “caused by” x∗, as

discussed further in Section 2.4 and in Chalak and White (2006). Finally, note that our

assumptions allow for the measurement error (x− x∗) to be correlated with x∗, which is

crucial in the presence of potentially nonclassical measurement error.
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Assumption 1 implies that

fyx|z (y, x|z) =

Z
fyxx∗|z (y, x, x∗|z) dx∗

=

Z
fy|xx∗z (y|x, x∗, z) fxx∗|z (x, x∗|z) dx∗

=

Z
fy|x∗ (y|x∗) fxx∗|z (x, x∗|z) dx∗

=

Z
fy|x∗ (y|x∗) fx|x∗z (x|x∗, z) fx∗|z (x∗|z) dx∗

=

Z
fy|x∗ (y|x∗) fx|x∗ (x|x∗) fx∗|z (x∗|z) dx∗

or

fyx|z (y, x|z) =
Z

fx|x∗ (x|x∗) fy|x∗ (y|x∗) fx∗|z (x∗|z) dx∗. (1)

To facilitate the proof of identification, is it useful to note that any function of two variables

can be associated with an integral operator. For instance, the function fyx|z (y, x|z) (for a
fixed y) can be associated with the operator Ly;x|z, defined as

Ly;x|zg =
Z

fyx|z (y, ·|z) g (z) dz.

The notation emphasizes that y is regarded as a parameter on which Ly;x|z depends, while

the operator itself maps functions of z onto functions of x. More specifically, this operator

maps the function g (z) onto the function
£
Ly;x|zg

¤
(x) =

R
fyx|z (y, x|z) g (z) dz. Similarly,

we define the operators Lx|z, Lx|x∗ , Lx∗|z, and Ly;x∗|x∗ as

Lx|zg =

Z
fx|z (·|z) g (z) dz

Lx|x∗g =

Z
fx|x∗ (·|x∗) g (x∗) dx∗

Lx∗|zg =

Z
fx∗|z (·|z) g (z) dz

Ly;x∗|x∗g = fy|x∗ (y|·) g (·) .

Note that Ly;x∗|x∗ operator is a “diagonal” operator2 since it is just a multiplication by a

function (for a given y), i.e.
£
Ly;x∗|x∗g

¤
(x∗) = fy|x∗ (y|x∗) g (x∗). By calculating Ly;x|zg for

2The rationale behind the notation Ly;x∗|x∗ is that this operator can also be written as
£
Ly;x∗|x∗g

¤
(u) =R

fyx∗|x∗ (y, u|x∗) g (x∗) dx∗ =
R
fy|x∗ (y|x∗) δ (u− x∗) g (x∗) dx∗ = fy|x∗ (y|u) g (u), where δ (·) denotes a

Dirac delta function.
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an arbitrary absolutely integrable3 function g (·), we can find an operator equation that is
equivalent to Equation (1):

£
Ly;x|zg

¤
(x) =

Z
fyx|z (y, x|z) g (z) dz

=

Z Z
fx|x∗ (x|x∗) fy|x∗ (y|x∗) fx∗|z (x∗|z) dx∗g (z) dz

=

Z
fx|x∗ (x|x∗) fy|x∗ (y|x∗)

Z
fx∗|z (x∗|z) g (z) dzdx∗

=

Z
fx|x∗ (x|x∗) fy|x∗ (y|x∗)

£
Lx∗|zg

¤
(x∗) dx∗

=

Z
fx|x∗ (x|x∗)

£
Ly;x∗|x∗Lx∗|zg

¤
(x∗) dx∗

=
£
Lx|x∗Ly;x∗|x∗Lx∗|zg

¤
(x) , (2)

where we have used, (i) Equation (1), (ii) an interchange of the order of integration (justified

by the absolute integrability of the integrand, by Fubini’s Theorem), (iii) the definition of

Lx∗|z, (iv) the definition of Ly;x∗|x∗ operating on the function
£
Lx∗|zg

¤
and (v) the definition

of Lx|x∗ operating on the function
£
Ly;x∗|x∗Lx∗|zg

¤
.

Equation (2) thus implies the following operator equivalence

Ly;x|z = Lx|x∗Ly;x∗|x∗Lx∗|z. (3)

By integration over y we similarly get

Lx|z = Lx|x∗Lx∗|z, (4)

since
R
Ly;x|zdy = Lx|z and

R
Ly;x∗|x∗dy = I, the identity operator.

2.2 Injectivity

Our method of proof will require the following assumption.

Assumption 2 Lx|z and Lx|x∗ are injective.

3It is sufficient to consider absolutely integrable functions because, in the case of an integral operator
having a probability density as its kernel, such as Ly;x|z, we have fyx|z (y, x|z0) = limn→∞ Ly;x|zgn,z0 where
gn,z0 (z) = n1

¡|z − z0| ≤ n−1
¢
, a sequence of absolutely integrable functions. The kernel fyx|z (y, x|z0) of

this integral operator is therefore uniquely determined by evaluating this limit for all values of z0.
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An operator L is said to be injective if its inverse L−1 is defined over the range of the

operator L (see Section 3.1 in Carrasco, Florens, and Renault (2005)). In a finite-dimensional

space, the qualifier “injective” is synonymous with “invertible”, but in an infinite-dimensional

space the distinction is needed to account for the fact that inverses are often defined only

over a restricted domain. As discussed in Carrasco, Florens, and Renault (2005), the weaker

notion of injectivity is the concept needed to establish identification. In our setup, the

inverses are guaranteed to be defined over a sufficiently large domain because the results

of the inversions (such as L−1x|x∗Lx|z = Lx∗|z, from Equation (4)) always yield a well-defined

integral operator. Assumption 2 could also be stated in terms of the injectivity of Lx∗|z

and Lx|x∗: Since Lx|z = Lx|x∗Lx∗|z under Assumption 1, injectivity of Lx∗|z and Lx|x∗ implies

injectivity of Lx|z and Lx|x∗ .

Intuitively, Lx|x∗ (or Lx|z) will be injective if there is enough variation in the density of x

for different values of x∗ (or z). For instance, a simple case where Assumption 2 is violated is

when fx|x∗ (x|x∗) or fx|z (x|z) are uniform. In general, however, Assumption 2 is quite weak
and numerous results enabling its verification under more primitive conditions exist in the

literature.

First, Assumption 2 is related to the identification conditions employed in Newey and

Powell (2003) (see Proposition 2.1). Newey and Powell’s assumption has the general form

“for all g (z) (for which E [g (z) |x] is defined) E [g (z) |x] = 0 implies that g (z) = 0.” If

the densities of x and z are bounded and nonvanishing over the interior of their respective

supports, then this condition is equivalent4 to
R
g (z) fx|z (x|z) dz = 0 implies that g (z) = 0,

which is equivalent to Lx|z being injective. A similar reasoning applies to Lx|x∗, provided

that the marginal densities of x and x∗ are bounded and nonvanishing on their respective

supports. A nice consequence of this connection is that known results regarding the so-called

completeness of exponential families of distributions can be used to formulate primitive con-

ditions for operators to be injective (as in Newey and Powell (2003)). Under the assumption

4E [g (z) |x] = f−1x (x)
R
g (z) fz (z) fx|z (x|z) dz = 0 ⇔

R
(g (z) fz (z)) fx|z (x|z) dz = 0 if 0 < fx (x) < ∞

and 0 < fz (z) <∞ over the interior of their respective supports.
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that all conditional densities involved are bounded, the weaker notion of bounded complete-

ness (as discussed in Blundell, Chen, and Kristensen (2003)) can also be used to find more

general families of distributions leading to injective operators.

An alternative way to verify Assumption 2 under primitive conditions is to follow the

approach taken in Darolles, Florens, and Renault (2002) by constructing a so-called singular

value decomposition of the operators of interest and by verifying that none of the singular

values vanish. We illustrate the approach for the Lx|z operator – a similar treatment will

apply to Lx|x∗. Let Hq denote the Hilbert space associated with the inner product

hg, hiq =
Z

g (z)h (z) (q (z))−2 dz

where g, h and q are functions from R to R and q (z) is nonvanishing. The idea is then to

note that Lx|z is a compact operator, when viewed as a mapping from Hq to H1, where q (z)

is selected so that Z Z
f2x|z (x|z) q2 (z) dxdz <∞. (5)

The condition (5) implies that Lx|z is a Hilbert-Schmidt operator, which is necessarily com-

pact (see Theorem 2.32 in Carrasco, Florens, and Renault (2005)). This in turn implies the

existence of a singular value decomposition,

Lx|zg =
∞X
i=1

φiµi hψi, giq

where {µi} is a sequence of non-negative5 real numbers, {φi} is an orthonormal basis of H1

and {ψi} is an orthonormal basis of Hq. With this representation in hand, the inverse is

simply given by

L−1x|zg =
∞X
i=1

µ−1i ψi hφi, gi1

and a sufficient condition of injectivity is that µi > 0 for all i. Note that having positive

singular values µi does not exclude that µi → 0 as i → ∞ and the inverses of Lx|x∗ or Lx|z

will generally not be continuous. However, as mentioned earlier, for identification purpose,

5A negative µi can always be avoided by replacing ψi by −ψi.
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injectivity is sufficient, whether or not the inverse is continuous (Carrasco, Florens, and

Renault (2005)).

It is tempting to draw an analogy between injectivity of an operator and invertibility of a

matrix. However, this analogy is dangerous if taken too literally. For instance, the fact that

a matrix needs to be square to be invertible does not in any way imply that the support of

the kernel of the Lx|x∗ operator needs to be square for Lx|x∗ to be injective. Fundamentally,

this can be the case, because, for instance, the cardinality of the [−1, 1] interval is the same
as the [−2, 2] interval, since they can be put into a one-to-one correspondence through the
mapping x 7→ 2x. The same reasoning does not apply in the discrete case associated with a

rectangular matrix.

In the case where x∗ and x are multivariate (and of the same dimension, by construc-

tion), the assumption of injectivity of Lx|x∗ generalizes very naturally. Injectivity of Lx|z

in multivariate settings is also natural if the dimensions of x and z are the same. If the

dimension of z is less than the dimension of x∗ or if z contains too many colinear elements,

identification will not be possible, as expected. If the dimension of z exceeds the dimension

of x, some elements of z can be dropped for the purpose of establishing identification, since

identification with a subset of the available instruments trivially implies identification for

the full set of instruments.6

2.3 Eigenvalue-Eigenfunction decomposition

Having motivated the assumption that Lx|x∗ and Lx|z are injective, we are ready to prove

identification of our model. Since Lx|x∗ is injective, Equation (4) can be written as

Lx∗|z = L−1x|x∗Lx|z (6)

6If one wishes to state an identification result that explicitly allows for overidentification (i.e. allowing
for the dimension of z to exceed the dimension of x), the assumption of injectivity of Lx|z must be replaced
by the assumption of injectivity of Lx|zL∗x|z, where ∗ denotes the adjoint, it order to be able to invoke
generalized inverses.
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and this expression for Lx∗|z can be substituted into Equation (3) to yield

Ly;x|z = Lx|x∗Ly;x∗|x∗L−1x|x∗Lx|z (7)

Since Lx|z is injective we also have7

Ly;x|zL−1x|z = Lx|x∗Ly;x∗|x∗L−1x|x∗. (8)

The operator Ly;x|zL−1x|z is defined in terms of densities of the observable variables x, y

and z and can therefore be considered known. Equation (8) states that the known operator

Ly;x|zL−1x|z admits a spectral decomposition taking the form of an eigenvalue-eigenfunction de-

composition.8 The eigenvalues of the Ly;x|zL−1x|z operator are given by the “diagonal elements”

of the Ly;x∗|x∗ operator (i.e.
©
fy|x∗ (y|x∗)

ª
for a given y and for all x∗) while the eigenfunc-

tions of the Ly;x|zL−1x|z operator are given by the kernel of the integral operator Lx|x∗, i.e.©
fx|x∗ (·|x∗)

ª
for all x∗. Although Equation (8) establishes the existence of an eigenvalue-

eigenfunction decomposition (which is no trivial matter since, in general, Ly;x|zL−1x|z is a

nonnormal and noncompact operator), it does not prove that this decomposition is unique.

Fortunately, only a few more assumptions are sufficient to guarantee a unique decomposition,

thereby establishing that the model is identified.

Theorem XV.4.5 in Dunford and Schwartz (1971) provides necessary and sufficient con-

ditions for the existence of a unique representation of the so-called spectral decomposition

of a linear operator. If a bounded operator T can be written as T = A +N where A is an

7To allow for overidentification (i.e. the dimension of z exceeding the dimension of x), Equation
(8) must be slightly modified. Applying L∗x|z from the right on each side of Equation (7) yields

Ly;x|zL∗x|z = Lx|x∗Ly;x∗|x∗L−1x|x∗Lx|zL
∗
x|z. If Lx|zL

∗
x|z is invertible we also have Ly;x|zL

∗
x|z
³
Lx|zL∗x|z

´−1
=

Lx|x∗Ly;x∗|x∗L−1x|x∗ . The remainder of the treatment thus follows, replacing each occurence of Ly;x|zL
−1
x|z by

Ly;x|zL∗x|z
³
Lx|zL∗x|z

´−1
.

8A spectral decomposition of an operator T takes the form of an eigenvalue-eigenfunction decomposition
when (T − λI) is not one-to-one for all eigenvalues λ in the spectrum. This can be verified to be the case here,
because all eigenfunctions are well-behaved functions that are mapped to 0 under (T − λI). An example of
a spectral decomposition that is not an eigenvalue-eigenfunction decomposition would be one where some
of the eigenfunctions lie outside the space of functions considered (e.g. can only be reached by a limiting
process).

12



operator of the form

A =

Z
σ

λP (dλ) (9)

where P is a projection-valued measure9 supported on the spectrum σ, a subset of the

complex plane, and N is a “quasi-nilpotent” operator commuting with A, then this repre-

sentation is unique. The result is applicable to our situation (with T = Ly;x|zL−1x|z), in the

special case where N = 0 and σ ⊂ R. The spectrum σ is simply the range of fy|x∗ (y|x∗),
that is,

©
fy|x∗ (y|x∗) : x∗ ∈ X ∗

ª
. The projection-valued measure P assigned to any subset Λ

of R is

P (Λ) = Lx|x∗IΛL−1x|x∗ (10)

where the operator IΛ is defined via

[IΛg] (x
∗) = 1

¡
fy|x∗ (y|x∗) ∈ Λ

¢
g (x∗) .

Note that it can easily be verified that P (Λ) is idempotent using Equation (10). An equivalent

way to define P (Λ) is by introducing the subspace

S (Λ) = span©fx|x∗ (·|x∗) : x∗ such that fy|x∗ (y|x∗) ∈ Λ
ª

(11)

for any subset Λ of the spectrum σ. The projection P (Λ) is then uniquely defined by speci-

fying that its range is S (Λ) and that its null space is S (σ\Λ).
The fact that

R
σ
λP (dλ) = Lx|x∗Ly;x∗|x∗L−1x|x∗, thus connecting Equation (8) with Equation

(9), can be shown by noting that

P (dλ) ≡
µ

d

dλ
P ([−∞, λ])

¶
dλ = Lx|x∗

µ
dI[−∞,λ]

dλ
dλ

¶
L−1x|x∗

and that Z
σ

λP (dλ) = Lx|x∗
µZ

σ

λ
dI[−∞,λ]

dλ
dλ

¶
L−1x|x∗,

9Just like a real-valued measure assigns a real number to each set in some field, a projection-valued
measure, assigns a projection operator to each set in some field (here, the Borel σ-field). A projection
operator Q, is one that is idempotent, i.e. QQ = Q.
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where the operator in parenthesis can be obtained by calculating its effect on some function

g (x∗), as follows·Z
σ

λ
dI[−∞,λ]

dλ
dλg

¸
(x∗) =

Z
σ

λ
d

dλ
1
¡
fy|x∗ (y|x∗) ∈ [−∞, λ]

¢
g (x∗) dλ

=

Z
σ

λδ
¡
λ− fy|x∗ (y|x∗)

¢
g (x∗) dλ

= fy|x∗ (y|x∗) g (x∗)

=
£
Ly;x∗|x∗g

¤
(x∗) .

where we have used that the differential of a step function 1 (λ ≤ 0) is a Dirac delta δ (λ),
which has the property that

R
δ (λ)h (λ) dλ = h (0) for any function h (λ) continuous at

λ = 0, and, in particular, for h (λ) = λ. Hence, we can indeed conclude that
R
σ
λP (dλ) =

Lx|x∗Ly;x∗|x∗L−1x|x∗.

The result that the representation T =
R
σ
λP (dλ) is unique requires that the operator T

be bounded. Since the operator T is bounded (in a suitably defined operator norm) if the

largest element of the spectrum is bounded,10 the following condition is sufficient to ensure

that T is bounded in our case:

Assumption 3 supy∈Y supx∗∈X∗ fy|x∗ (y|x∗) <∞.

Note that, for the purpose of establishing identification, there is no requirement that

fy|x∗ (y|x∗) be nonzero or bounded away from zero, because our approach does not involve

inverting the T operator.

2.4 Uniqueness

Having established uniqueness of the decomposition (9) does not yet imply that the repre-

sentation (8) is unique. The situation is analogous to standard matrix diagonalization, where

eigenvectors are (i) unique only up to scale (or up to a linear combination when eigenvalues

10This follows from Lemma XVIII.2.2 in Dunford and Schwartz (1971), setting σ to be the whole spectrum,
so that the restriction of the operator to the subspace of its domain associated with σ is, in fact, the whole
domain of the operator (in Dunford and Schwartz’s notation E (σ)X = X and T |E (σ)X = T |X = T ).
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are degenerate) and (ii) can be “pasted” in any order to form a transformation matrix. In the

present, more complex, context of operator diagonalization, these issues can be summarized

as follows:

1. Each eigenvalue λ is associated with a unique subspace S ({λ}), for S (·) as defined in
Equation (11). However, there are multiple ways to select a basis of functions whose

span defines that subspace.

(a) Each basis function can always be multiplied by a constant.

(b) Also, if S ({λ}) has more than one dimension (i.e. if λ is degenerate), a new basis
can be defined in terms of linear combinations of functions of the original basis.

2. There is a unique mapping between λ and S ({λ}), but one is free to index the eigen-
values by some other variable (here x∗) and represent the diagonalization by a function

λ (x∗) and the family of subspaces S ({λ (x∗)}). The choice of the mapping λ (x∗) is

not unique.11

We first address issue 1a, namely that the kernel of the operator Lx|x∗ could be replaced

by fx|x∗ (x|x∗) s (x∗) for some nonvanishing function s (x∗) without changing the value of

P (Λ) in Equation (10). Fortunately, the fact that
R
fx|x∗ (x|x∗) dx = 1 requires the function

s (x∗) to be equal to 1 everywhere and this ambiguity is therefore avoided.

The potential presence of degenerate eigenvalues (issue 1b above), which introduces an

ambiguity among the various possible linear combinations between the eigenfunctions as-

sociated with duplicate eigenvalues, can be avoided under the following, relatively weak,

assumption.

Assumption 4 For all x∗1, x
∗
2 ∈ X ∗, the set

©
y : fy|x∗ (y|x∗1) 6= fy|x∗ (y|x∗2)

ª
has positive prob-

ability whenever x∗1 6= x∗2.

11This nonuniqueness is even more severe than in the matrix diagonalization case. For matrices, it is
sufficient to place the eigenvectors in the correct order. For operators, once the order of the eigenfunctions
is set, it is still possible to parametrize them in multiple ways (e.g. index them by x∗ or by (x∗)3), as shown
in Appendix A.
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Remark: This assumption is weaker than the monotonicity assumptions typically made in

the nonseparable error literature (e.g., Chernozhukov, Imbens, and Newey (2006), Matzkin

(2003)), since the whole conditional distribution of y at different values of the regressors

would have to agree perfectly in order for this condition to be violated. In particular, the

presence of conditional heteroskedasticity can be sufficient in the absence of monotonicity.

Assumption 4 circumvents the duplicate eigenvalues issue by simultaneously making use of

more than one value of the dependent variable y. The idea is that the operator Lx|x∗ defining

the eigenfunctions does not depend on y while the eigenvalues given by fy|x∗ (y|x∗) do depend
on y. Hence, if there is an eigenvalue degeneracy involving two eigenfunctions fx|x∗ (·|x∗1) and
fx|x∗ (·|x∗2) for some value of y, we can look for another value of y that does not exhibit this
problem to resolve the ambiguity. By piecing together the information regarding fx|x∗ (x|x∗)
obtained for different values of y it is possible to uniquely reconstruct Lx|x∗ .

Formally, this can be shown as follows. Consider a given eigenfunction fx|x∗ (·|x∗) and
let D (y, x∗) =

©
x̃∗ : fy|x∗ (y|x̃∗) = fy|x∗ (y|x∗)

ª
, the set of other values of x∗ indexing eigen-

functions sharing the same eigenvalue. Any linear combination of functions fx|x∗ (·|x̃∗) for
x̃∗ ∈ D (y, x∗) is a potential eigenfunction of Ly;x|zL−1x|z. However, if there exists a set Y

such that v (x∗) = ∩y∈Y span
³©

fx|x∗ (·|x̃∗)
ª
x̃∗∈D(y,x∗)

´
is one dimensional, then the set v (x∗)

will uniquely specify the eigenfunction fx|x∗ (·|x∗) (after normalization to integrate to 1). We
now proceed by contradiction and show that if, for any possible choice of the set Y , v (x∗) is

never one dimensional, then Assumption 4 is violated. Indeed, if v (x∗) has more than one

dimension, it must contain at least two eigenfunctions, say fx|x∗ (·|x∗) and fx|x∗ (·|x̃∗). This
implies that ∩y∈YD (y, x∗) must at least contain the two points x∗ and x̃∗. By the definition
of D (y, x∗), we must have that fy|x∗ (y|x∗) = fy|x∗ (y|x̃∗) for all y ∈ Y . Since this would

have to hold for any set Y , we have that fy|x∗ (y|x∗) = fy|x∗ (y|x̃∗) almost everywhere under
fy (y),12 thus violating Assumption 4.

12Two densities can differ on a set of probability zero and still define the same probability measure.
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Remark: In the special case of binary y, Assumption 4 amounts to a monotonicity as-

sumption (e.g. P [y = 0|x∗] is strictly monotone in x∗). When x∗ is multivariate, while the

outcome variable is still binary, it will be necessary to define y to be a vector containing

auxiliary variables in addition to the binary outcome, in order to allow for enough variation

in the distribution of y conditional on x∗ to satisfy Assumption 4. Each of these additional

variables need not be part of the model of interest per se, but does need to be affected by

x∗ is some way. In that sense, such a variable is a type of “instrument”, although it differs

conceptually from conventional instruments, as it would typically be “caused by x∗” instead

of “causing x∗”. See Chalak and White (2006) for a discussion of this type of instrument.

Finally, we address issue 2, namely that the way one chooses to index the eigenvalues

and eigenfunctions is not unique. Instead of indexing them by x∗, one could have chosen

another variable x̃∗ related to x∗ by some one-to-one piecewise differentiable function R, that

is, x∗ = R (x̃∗). The kernels of the operators defining the eigenvalues and the eigenfunctions

would then become fy|x∗ (y|R (x̃∗)) and fx|x∗ (·|R (x̃∗)), respectively. This counterexample is
fully developed in Appendix A. Fortunately, the issues of the uniqueness of the indexing of

the eigenfunctions can be resolved with the following assumption.

Assumption 5 There exists a known functional M such that M
£
fx|x∗ (·|x∗)

¤
= x∗ for all

x∗ ∈ X ∗.

M is a very general functional that maps a univariate density to a real number (or a

vector, if x∗ is multivariate) and that defines some measure of location. Examples of M

include, but are not limited to, the mean, the mode, or the τ quantile, corresponding to the

following definitions of M , respectively,

M [f ] =

Z
xf(x)dx

M [f ] = argmax
x

f(x) (12)

M [f ] = inf

½
x∗ :

Z
1 (x ≤ x∗) f(x)dx ≥ τ

¾
. (13)
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Assumption 5 resolves the ordering/indexing ambiguity because

M
£
fx|x̃∗ (·|x̃∗)

¤
=M

£
fx|x∗ (·|R (x̃∗))

¤
= R (x̃∗) ,

which is only equal to x̃∗ if R is the identity function.

2.5 Summary

We now have all the ingredients needed to establish identification. Assumption 1 lets us

obtain the integral Equation (1) relating the joint densities of the observable variables to the

joint densities of the unobservable variables. This equation admits an equivalent operator

representation (3). Under regularity conditions implying injectivity of some of the operators

involved, the identification problem can be cast into the form of an operator diagonalization

problem (Equation (8)), in which the operator to be diagonalized is defined in terms of ob-

servable densities, while the resulting eigenvalues and eigenfunctions provide the unobserved

joint densities of interest. To ensure uniqueness of the eigenvalue-eigenfunction decomposi-

tion, we employ four techniques. First, a powerful result from spectral analysis (Theorem

XV 4.5 in Dunford and Schwartz (1971)) guarantees a unique representation of an operator

as a linear combination of projections, under a weak boundedness assumption. Second, the

a priori arbitrary scale of the eigenfunctions is fixed by the requirement that densities must

integrate to one. Third, to avoid any ambiguity in the definition of the eigenfunctions when

degenerate eigenvalues are present, we use the fact that the eigenfunctions found must be

consistent across different values of the dependent variable y. Finally, in order to uniquely

determine the ordering of the eigenvalues and eigenfunctions, we invoke the assumption that

some measure of location is left unaffected by the measurement error. These steps ensure

that the diagonalization operation uniquely specifies the unobserved densities fy|x∗ (y|x∗)
and fx|x∗ (x|x∗) of interest. We can also show that fyx∗ (y, x∗) is identified by noting that, (i)
by Equation (6), fx∗|z (x∗|z) is identified, (ii) fx∗ (x∗) =

R
fx∗|z (x∗|z) fz (z) dz where fz (z) is

observed and that (iii) fy,x∗ (y, x∗) = fy|x∗ (y|x∗) fx∗ (x∗). We can then summarize the results
of this section in the following Theorem.
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Theorem 1 Under Assumptions 1-5, the knowledge of the conditional density fyx|z (y, x|z)
uniquely determines fy|x∗ (y|x∗), fx|x∗ (x|x∗), and fx∗|z (x∗|z). Moreover, the knowledge of
fyxz (y, x, z) uniquely determines fyx∗ (y, x∗).

While Theorem 1 establishes identification, we can also show that the model is actually

overidentified, thus permitting a test of the model. Equation (1), upon which Theorem 1 is

based, relates a function of 3 variables to a triplet of functions of 2 variables. Since the set

of functions of 3 variables is much “larger” than the set of triplets of functions of 2 variables,

there exist densities fyx|z (y, x|z) that cannot be generated by Equation (1), a telltale sign
of an overidentifying restriction. The availability of more than one valid instrument offers

further opportunities to test the model’s assumptions.

It is important to note that, although our proof of identification relies on the relatively

abstract operation of finding an eigenvalue-eigenfunction decomposition of an operator, the

estimation procedure need not parallel this approach. The diagonalization identity (8) in fact

provides the same information as the initial Equation (1) and a valid estimation procedure

can be based on solving Equation (1) for the unknown fx|x∗ (x|x∗) fy|x∗ (y|x∗) and fx∗|z (x∗|z)
under the constraints imposed by Assumption 5. Our proof is, however, essential to establish

that this solution exists and is unique, thus justifying such a simplified estimation procedure.

3 Estimation using sieve maximum likelihood

3.1 Definitions

Having shown that all the conditional densities fy|x∗, fx|x∗, and fx∗|z are identified from

the observed conditional density fyx|z (y, x|z), we now propose a sieve-based estimator (e.g.
Grenander (1981), Shen (1997), Chen and Shen (1998), Ai and Chen (2003)) and derive its

asymptotic properties. For simplicity, we consider y, x, x∗, and z to be scalars, although our

treatment can easily be extended to multivariate settings. The support of all variables y, x∗,

x, z is allowed to be unbounded, i.e., to be the whole real line.
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Consider a latent model in the form of a conditional density as follows:

fy|x∗(y|x∗; θ0). (14)

The model also could be conditional on any number of other, correctly measured, variables,

although this is not explicitly considered here, for simplicity. The model depends on a po-

tentially infinite-dimensional parameter θ0 ∈ Θ = B ×M, which is decomposed as
¡
bT0 , η0

¢T
,

where b0 ∈ B ⊂ Rdb is the parameter vector of interest and η0 ∈M is a potentially infinite-

dimensional nuisance parameter. Naturally, we assume
¡
bT0 , η0

¢T
are identified if fy|x∗ is

identified, i.e., that the parametrization (14) does not include redundant degrees of freedom.

The sets B andM will be defined formally below.

This framework nests two main subcases of interest. First, setting θ0 ≡ bT0 covers

the parametric likelihood case (which then becomes semiparametric once we account for

measurement error). Second, models defined via moment restrictions E [m (y, x∗, b) |x∗] =
0 can be considered by defining instead a family of densities fy|x∗ (y|x∗; b, η) such thatR
fy|x∗ (y|x∗; b, η)m (y, x∗, b) dy = 0 for all b and η, which is clearly equivalent to impos-

ing a moment condition. For example, in a nonlinear regression model y = g (x∗, b) + � with

E (�|x∗) = 0, we have fy|x∗ (y|x∗; b, η) = f�|x∗ (y − g (x∗, b) |x∗) . The infinite-dimensional
nuisance parameter η is the conditional density f�|x∗ (·|·), constrained to have zero mean.
Another important example is the quantile regression case (where the conditional density

f�|x∗ (·|·) is constrained to have its conditional τ -quantile equal to 0). Quantile restrictions
are useful, as they provide the fundamental concept enabling a natural treatment of nonsep-

arable models (e.g. Chesher (2003)). More examples of a partition of θ into
¡
bT , η

¢T
can be

found in Shen (1997). In this paper, we consider η to be a function defined as η (·, ·) : U 7→ R

with U ⊂ R2. Such a setup is reasonable because fy|x∗ itself can be treated as an infinite-
dimensional unknown parameter and fy|x∗ was shown to be nonparametrically identified.

Any user-specified fy|x∗ (y|x∗; b, η) is a particular case of this fully nonparametric case.
Our sieve estimator is based on the following expression for the observed density (from
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Equation (1))13

fyx|z (y, x|z;α0) =
Z
X∗

fy|x∗(y|x∗; θ0)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗. (15)

The unknown α0 in the density function fyx|z includes θ0 and density functions fx|x∗ and fx∗|z,

i.e., α0 =
¡
θ0, fx|x∗, fx∗|z

¢T
. The estimation procedure basically consists of replacing fx|x∗,

fx∗|z (and fy|x∗ if it contains an infinite dimensional nuisance parameter η) by truncated series

approximations and optimizing all parameters within a semiparametric maximum likelihood

framework. The number of terms kept in the series approximations is allowed to grow with

sample size at a controlled rate.

Our asymptotic analysis relies on standard smoothness restrictions (e.g. Ai and Chen

(2003)) on the unknown functions η, fx|x∗ and fx∗|z. To describe them, let ξ ∈ V ⊂ Rd,

a = (a1, . . . , ad)
T , and

∇ag(ξ) ≡ ∂a1+...+adg(ξ)

∂ξa11 . . . ∂ξadd

denote the (a1 + . . .+ ad)-th derivative. Let k·kE denote the Euclidean norm. Let γ denote
the largest integer satisfying γ > γ. The Hölder space Λγ(V) of order γ > 0 is a space of

functions g : V 7→ R such that the first γ derivatives are bounded, and the γ-th derivative

are Hölder continuous with the exponent γ − γ ∈ (0, 1], i.e.,

max
a1+...+ad=γ

|∇ag(ξ)−∇ag(ξ0)| ≤ c (kξ − ξ0kE)γ−γ

for all ξ, ξ0 ∈ V and some constant c. The Hölder space becomes a Banach space with the
Hölder norm as follows:

kgkΛγ = sup
ξ∈V

|g(ξ)|+ max
a1+...+ad=γ

sup
ξ 6=ξ0∈V

|∇ag(ξ)−∇ag(ξ0)|
(kξ − ξ0kE)γ−γ

.

To facilitate the treatment of functions defined on noncompact domains, we follow the tech-

nique suggested in Chen, Hong, and Tamer (2005), introducing a weighting function of the

13After multiplication by fz (z) on each side of Equation (15), one obtains an alternative expression,
fyxz (y, x, z;α0) =

R
X∗ fyx∗(y, x

∗; θ0)fx|x∗(x|x∗)fz|x∗(z|x∗)dx∗, which proves useful if the model specifies
fyx∗ (y, x

∗) instead fy|x∗ (y|x∗). The remainder of our treatment can be easily adapted to cover this case as
well.
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form ω (ξ) =
¡
1 + kξk2E

¢−ς/2
, ς > γ > 0 and defining a weighted Hölder norm as kgkΛγ,ω ≡

kg̃kΛγ for g̃ (ξ) ≡ g (ξ)ω (ξ). The corresponding weighted Hölder space is denoted by Λγ,ω(V)
while a weighted Hölder ball can be defined as Λγ,ω

c (V) ≡ {g ∈ Λγ,ω(V) : kgkΛγ,ω ≤ c <∞}.
We assume the functions η, fx|x∗, and fx∗|z belong to the setsM, F1, and F2 respectively,

defined below.

Assumption 6 η ∈ Λ
γ1,ω
c (U) with γ1 > 1;14

Assumption 7 f1 ∈ Λ
γ1,ω
c (X ×X ∗) with γ1 > 1 and

R
X f1(x|x∗)dx = 1 for all x∗ ∈ X ∗;

Assumption 8 f2 ∈ Λ
γ1,ω
c (X ∗ ×Z) with γ1 > 1 and

R
X∗ f2(x

∗|z)dx∗ = 1 for all z ∈ Z.

M = {η (·, ·) : Assumption 6 holds.} ,

F1 = {f1 (·|·) : Assumptions 2, 5, and 7 hold.} ,

F2 = {f2 (·|·) : Assumptions 2, 8 hold.} ,

The condition kfkΛγ1 ,ω ≤ c <∞ is necessary for the method of sieve, which we will use

in the next step. In principle, one can solve for the true value α0 =
¡
θ0, fx|x∗, fx∗|z

¢T
as

follows

α0 = argmax
α=(θ,f1,f2)

T∈A
E

µ
ln

Z
X∗

fy|x∗(y|x∗; θ)f1(x|x∗)f2(x∗|z)dx∗
¶
, (16)

where A = Θ×F1×F2 with Θ = B ×M. Let pknj (·) be a sequence of known univariate basis
functions, such as power series, splines, Fourier series, etc. To approximate functions of two

variables, we use tensor-product linear sieve basis, denoted by pkn (·, ·) = (pkn1 (·, ·) , pkn2 (·, ·) ,
..., pknkn (·, ·))T . In the sieve approximation, we consider η, f1 and f2 in finite dimensional

spacesMn, F1n and F2n, where15

Mn =
n
η (ξ1, ξ2) = pkn (ξ1, ξ2)

T δ for all δ s.t. assumption 6 holds.
o

F1n =
©
f(x|x∗) = pkn(x, x∗)Tβ for all β s.t. assumptions 2, 5, and 7 hold.

ª
,

F2n =
©
f(x∗|z) = pkn(x∗, z)Tγ for all γ s.t. assumptions 2, 8 hold.

ª
.

14If η is a density function, certain restrictions should be added to assumption 6 analogous to those in
assumptions 8 and 7.
15For simplicity, the notation pkn (·, ·) implicitly assumes that the sieve for η, f (x|x∗) and f (x∗|z) are the

same, although this can be easily relaxed.
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Therefore, we replaceM×F1×F2 withMn×F1n×F2n in the optimization problem, and
then estimate α0 by bαn as follows:

bαn =
³bθn, bf1n, bf2n´T = argmax

α=(θ,f1,f2)
T∈An

1

n

nX
i=1

ln

Z
X∗

fy|x∗(yi|x∗; θ)f1(xi|x∗)f2(x∗|zi)dx∗. (17)

where An = Θn × F1n × F2n with Θn = B ×Mn. In practice, the above integral can be

conveniently carried out though either one of a number of numerical techniques, including

Gaussian quadrature, Simpson’s rules, Importance Sampling or Markov Chain Monte Carlo.

In the sequel, we simply assume that this integral can be evaluated, for a given sample and a

given truncated sieve, with a numerical accuracy that is far better than the statistical noise

associated with the estimation procedure.

This setup is the same as in Shen (1997). We also use techniques described in Ai and

Chen (2003) to state more primitive regularity conditions. In their paper, there are two

sieve approximations: One is used to directly estimate the conditional mean as a function

of the unknown parameter, the other is the sieve approximation of the infinite-dimensional

parameter estimated through the maximization procedure. Our setup is, in some ways,

simpler than in Ai and Chen (2003), because all the unknown parameters in α are estimated

through a single-step semiparametric sieve MLE (Maximum Likelihood Estimator). Since

our estimator takes the form of a semiparametric sieve estimator, the very general treatment

of Shen (1997) and Chen and Shen (1998) can be used to establish asymptotic normality

and root n consistency under a very wide variety of conditions, including dependent and

nonidentically distributed data. However, for the purpose of simplicity and conciseness, this

section provides specific sufficient regularity conditions for the i.i.d. case.

The restrictions in the definitions of F1n and F2n are easy to impose on a sieve estimator.
We have the sieve expressions of f1 and f2 as follows:

f1(x|x∗) =
inX
i=0

jnX
j=0

βijpi(x− x∗)pj(x∗), f2(x
∗|z) =

inX
i=0

jnX
j=0

γijpi(x
∗ − z)pj(z). (18)

where pi(.) are user-specified basis functions. Define kn = (in + 1) (jn + 1) and assume that

in/jn is bounded and bounded away from zero for all n. We also define the projection of the
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true value α0 onto the space An associated with kn:

Πnα ≡ αn ≡ argmax
αn=(θ,f1,f2)

T∈An

E

µ
ln

Z
X∗

fy|x∗(y|x∗; θ)f1(x|x∗)f2(x∗|z)dx∗
¶
.

and we let the smoothing parameter kn → ∞ as the sample size n → ∞. The restrictionR
X f1(x|x∗)dx = 1 in the definition of F1n implies

Pjn
j=0

³Pin
i=0 βij

R
E pi(ε)dε

´
pj(x

∗) = 1

for all x∗, where ε = x − x∗. Suppose p0(.) is the only constant in pj(.). That equation

implies that
Pin

i=0 βi0
R
E pi(ε)dε = 1 and

Pin
i=0 βij

R
E pi(ε)dε = 0 for j = 1, 2, ..., jn. Similar

restrictions can be found for
R
X∗ f2(x

∗|z)dx∗ = 1. Moreover, the identification assumption
5 also implies restrictions on the sieve coefficients. For example, consider the zero mode

case. If the mode is unique and not at a boundary, we then have ∂
∂x
fx|x∗(x|x∗) = 0 if

and only if x = x∗. The restriction ∂
∂x
fx|x∗(x|x∗)

¯̄
x=x∗ = 0 in the definition of F1n impliesPjn

j=0

³Pin
i=0 βij

∂pi(0)
∂x

´
qj(x

∗) = 0. Since it must hold for all x∗, we have additional jn con-

straints
Pin

i=0 βij
∂pi(0)
∂x

= 0 for j = 1, 2, ..., jn. Similar restrictions can be found for the zero

mean and the zero median cases. In all three cases, the assumption 5 can be expressed as lin-

ear restrictions on β, which are easy to implement. See Appendix C for an explicit expression

for the restrictions in the case where Fourier series are used in the sieve approximation.

3.2 Consistency

We use the results in Newey and Powell (2003) to show consistency of the sieve estimator.

Define D ≡ (y, x, z) for y ∈ Y, x ∈ X , and z ∈ Z. The random variables x, y and z can

have unbounded support R. Following Ai and Chen (2003), we first show consistency under

a strong norm k·ks as a stepping stone to establishing a convergence rate under a suitably
constructed weaker norm. Let

kαks = kbkE + kηk∞,ω + kf1k∞,ω + kf2k∞,ω

where kgk∞,ω ≡ supξ |g(ξ)ω (ξ)| with ω (ξ) =
¡
1 + kξk2E

¢−ς/2
, ς > γ1 > 0. We make the

following assumptions:
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Assumption 9 i) the data {(Yi,Xi, Zi)
n
i=1} are i.i.d.; ii) the density of D ≡ (y, x, z) , fD,

satisfies
R
ω (D)−2 fD(D)dD <∞.

Assumption 10 i) b0 ∈ B, a compact subset of Rb. ii) assumptions 6-8 hold for (b, η, f1, f2)

in a neighborhood of α0 (in the norm k·ks).

Assumption 11 i) E
h¡
ln fyx|z(D)

¢2i
is bounded; ii) there exists a measurable function

h1 (D) with E
©
(h1 (D))

2ª <∞ such that, for any α = (θ, f1, f2)
T ∈ A,¯̄̄̄

¯f
|1|
yx|z (D,α, ω̄)

fyx|z(D,α)

¯̄̄̄
¯ ≤ h1 (D) ,

where f |1|yx|z (D,α, ω̄) is defined as d
dt
fyx|z(D;α+ tω̄)

¯̄
t=0

with each linear term, i.e., d
dθ
fy|x∗,

f1, and f2, replaced by its absolute value, and ω (ξ, x, x∗, z) = [1, ω−1 (ξ) , ω−1((x, x∗)T ),

ω−1((x∗, z)T )]T with ξ ∈ U . (The explicit expression of f |1|yx|z (D,α, ω̄) can be found in equation

47 in the proof.)

Assumption 12 kΠnα0 − α0ks = o (1) (as kn →∞) and kn/n→ 0.

Assumption 9 is commonly used in cross-sectional analyses. Assumption 9(ii) is a typical

condition on the tail behavior on the density, analogous to Assumption 3.2 in Chen, Hong,

and Tamer (2005). Assumption 10 imposes restrictions on the parameter space. Detailed

discussions on this assumption can be found in Gallant and Nychka (1987). Assumption

11 imposes an envelope condition on the first derivative of the log likelihood function, and

guarantees a Hölder continuity property for the log likelihood. Assumption 12 states that

the sieve can approximate the true α0 arbitrarily well, in order the control the bias, while

ensuring that the number of terms in the sieve grows slower than the sample size, in order

to control the variance. We show consistency in the following Lemma.

Lemma 2 Under assumptions 1-5 and 9-12, we have kbαn − α0ks = op(1).

Proof. See the appendix.
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Consistency under the norm k·ks is the first step needed to obtain the asymptotic prop-
erties of the estimator. In order to proceed towards our main semiparametric asymptotic

normality and root n consistency result, we then need to establish convergence at the rate

op
¡
n−1/4

¢
in a suitable norm. In order to achieve this convergence rate under relatively weak

assumptions, we employ a device introduced by Ai and Chen (2003) and employ a weaker

norm k·k, under which op
¡
n−1/4

¢
convergence is easier to establish.

We now recall the concept of pathwise derivative, which is central to the asymptotics

of sieve estimators. Consider α1, α2 ∈ A, and assume the existence of a continuous path
{α (τ) : τ ∈ [0, 1]} in A such that α (0) = α1 and α (1) = α2. If ln fyx|z(D, (1− τ)α0+ τα) is

continuously differentiable at τ = 0 for almost all D and any α ∈ A, the pathwise derivative
of ln fyx|z(D,α0) at α0 evaluated at α− α0 can be defined as

d ln fyx|z(D,α0)

dα
[α− α0] ≡ d ln fyx|z(D, (1− τ)α0 + τα)

dτ

¯̄̄̄
τ=0

(19)

almost everywhere (under the probability measure of D). The pathwise derivative is a linear

functional that approximates ln fyx|z(D,α0) in the neighborhood of α0, i.e. for small values

of α− α0. Note that this functional can also be evaluated for other values of the argument.

For instance, by linearity,

d ln fyx|z(D,α0)

dα
[α1 − α2] ≡ d ln fyx|z(D,α0)

dα
[α1 − α0]− d ln fyx|z(D,α0)

dα
[α2 − α0] . (20)

In our setting, the pathwise derivative at α0 is as follows (from Equation (15)):

d ln fyx|z(D,α0)

dα
[α− α0] (21)

=
1

fyx|z(D,α0)

½Z
X∗

d

dθ
fy|x∗(y|x∗; θ0) [θ − θ0] fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗+

+

Z
X∗

fy|x∗(y|x∗; θ0)
£
f1(x|x∗)− fx|x∗(x|x∗)

¤
fx∗|z(x∗|z)dx∗ +

+

Z
X∗

fy|x∗(y|x∗; θ0)fx|x∗(x|x∗)
£
f2(x

∗|z)− fx∗|z(x∗|z)
¤
dx∗
¾
.
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Note that the denominator fyx|z(D,α0) is nonzero with probability 1. We use the Fisher

norm k·k defined as

kα1 − α2k ≡
vuutE

(µ
d ln fyx|z(D,α0)

dα
[α1 − α2]

¶2)
(22)

for any α1, α2 ∈ A. In order to establish the asymptotic normality of bbn, one typically needs
that bαn converges to α0 at a rate faster than n−1/4. We need the following assumptions to

obtain this rate of convergence:

Assumption 13 kΠnα0 − α0k = O
³
k
−γ1/d1
n

´
= o

¡
n−1/4

¢
with d1 = 2 and γ1 > d1,16 for

γ1 as in Assumptions 6-8.

Assumption 14 i) there exists a measurable function c(D) with E {c(D)4} <∞ such that¯̄
ln fyx|z(D;α)

¯̄ ≤ c(D) for all D and α ∈ An; ii) ln fyx|z(D;α) ∈ Λγ,ω
c (Y ×X ×Z) for some

constant c > 0 with γ > dD/2, for all α ∈ An, where dD is the dimension of D.

Assumption 15 A is convex in α0, and fy|x∗(y|x∗; θ) is pathwise differentiable at θ0.

Assumption 16 For some c1, c2 > 0,

c1E

µ
ln

fyx|z(D;α0)
fyx|z(D;α)

¶
≤ kα− α0k2 ≤ c2E

µ
ln

fyx|z(D;α0)
fyx|z(D;α)

¶
. (23)

holds for all α ∈ An with kα− α0ks = o(1).

Assumption 17
¡
knn

−1/2 lnn
¢
sup(ξ1,ξ2)∈(U∪(X×X∗)∪(X∗×Z))

°°pkn (ξ1, ξ2)°°2E = o (1).

Assumption 18 lnN (ε,An) = O (kn ln (kn/ε)) where N (ε,An) is the minimum number of

balls (in the k·ks norm) needed to cover the set An.

Assumption 13 controls the approximation error of Πnα0 to α0 and the selection of kn. It

is usually satisfied by using sieve functions such as power series, Fourier series, etc. (see

16In general, d1 = max {dim(U),dim(X ×X ∗),dim(X ∗ ×Z)} .
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Newey (1995) and Newey (1997) for more discussion.) Assumption 14 imposes an envelope

condition and a smoothness condition on the log likelihood function. Assumption 15 implies

that the norm k·k is well-defined. DefineK (α, α0) = E
³
ln

fyx|z(D;α0)
fyx|z(D;α)

´
, which is the Kullback-

Leibler discrepancy. Assumption 16 implies that k·k is a norm equivalent to the (K (·, ·))1/2

discrepancy on An. Under the norm k·k, the sieve estimator can be shown to converge at
the requisite rate op(n−1/4).

Theorem 3 Under assumptions 1-5 and 9-18, we have kbαn − α0k = op(n
−1/4).

Proof. See the appendix.

It may appear surprising at first that such a fast convergence rate could be obtained in

a nonparametric estimation problem that includes, as a special case, models traditionally

handled through deconvolution approaches and that are known to be prone to slow conver-

gence issues (e.g. Fan (1991)). These issues can be circumvented, thanks to the fact that the

Fisher norm downweighs each dimension of the estimation error α̂−α0 according to its own

standard error. In other words, more error is tolerated along the dimensions that are more

difficult to estimate. Assumption 16 does impose a limit on how weak the Fisher norm can

be, however. In the limit where the Fisher norm becomes singular (i.e. completely insensitive

to some dimensions of α), the local quadratic behavior of the objective function is lost and

Assumption 16 no longer holds.

Thanks to the Fisher norm’s downweighting property, as the number of terms in the sieve

increases, each new degree of freedom that gets included in the estimation problem does not

appear increasingly difficult to estimate. A relatively fast convergence in the Fisher norm

is therefore possible and does not conflict with slower convergence obtained in some other

norm. Naturally, for the same reason, convergence in the Fisher norm is not a very useful

concept for the sole purpose of establishing a nonparametric convergence result. In nonpara-

metric settings, convergence in some well-understood Lp norm would be a more useful result.

However, our ultimate goal is to establish the asymptotics for some parametric component

of our semiparametric model. In that context, the Fisher norm is a very useful device that
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was employed in Ai and Chen (2003) and that guarantees the important intermediate results

of op
¡
n−1/4

¢
convergence under rather weak conditions.

3.3 Asymptotic Normality

We follow the semiparametric MLE framework of Shen (1997) to show the asymptotic nor-

mality of the estimator bbn. We define the inner product
hv1, v2i = E

½µ
d ln fyx|z(D,α0)

dα
[v1]

¶µ
d ln fyx|z(D,α0)

dα
[v2]

¶¾
. (24)

Obviously, the weak norm k·k defined in Equation (22) can be induced by this inner product.
LetV denote the closure of the linear span ofA− {α0} under the norm k·k (i.e.,V = Rdb×W
withW ≡M×F1 ×F2−

n¡
η0, fx|x∗, fx∗|z

¢To
) and define the Hilbert space

¡
V, h·, ·i¢ with

its inner product defined in Equation (24).

As shown above, we have

d ln fyx|z(D,α0)

dα
[α− α0] =

d ln fyx|z(D,α0)

db
[b− b0] +

d ln fyx|z(D,α0)

dη
[η − η0] + (25)

+
d ln fyx|z(D,α0)

df1

£
f1 − fx|x∗

¤
+

d ln fyx|z(D,α0)

df2

£
f2 − fx∗|z

¤
.

For each component bj of b, j = 1, 2, ..., db, we define w∗j ∈W as follows:

w∗j ≡
¡
η∗j , f

∗
1j, f

∗
2j

¢T
(26)

= argmin
(η,f1,f2)

T∈W
E

½µ
d ln fyx|z(D,α0)

dbj
− d ln fyx|z(D,α0)

dη
[η] +

−d ln fyx|z(D,α0)

df1
[f1]− d ln fyx|z(D,α0)

df2
[f2]

¶2)
.

Define w∗ =
¡
w∗1, w

∗
2, ..., w

∗
db

¢
,

d ln fyx|z(D,α0)

df

£
w∗j
¤
=

d ln fyx|z(D,α0)

dη

£
η∗j
¤
+

d ln fyx|z(D,α0)

df1

£
f∗1j
¤
+ (27)

+
d ln fyx|z(D,α0)

df2

£
f∗2j
¤
,

d ln fyx|z(D,α0)

df
[w∗] =

µ
d ln fyx|z(D,α0)

df
[w∗1] , ...,

d ln fyx|z(D,α0)

df

£
w∗db
¤¶

,
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and the row vector

Gw∗(D) =
d ln fyx|z(D,α0)

dbT
− d ln fyx|z(D,α0)

df
[w∗] . (28)

We want to show that bbn has a multivariate normal distribution asymptotically. It is
well known that if λT b has a normal distribution for all λ, then b has a multivariate normal

distribution. Therefore, we consider λT b as a functional of α. Define s(α) ≡ λT b for λ ∈ Rdb

and λ 6= 0. If E
£
Gw∗(D)

TGw∗(D)
¤
is finite positive definite, then the function s(α) is

bounded, and the Riesz representation theorem implies that there exists a representor v∗

such that

s(α)− s(α0) ≡ λT (b− b0) = hv∗, α− α0i (29)

for all α ∈ A. Here, v∗ ≡ ¡v∗b
v∗f

¢
, v∗b = J−1λ, v∗f = −w∗v∗b , with J = E

£
Gw∗(D)

TGw∗(D)
¤
.

Under suitable assumptions made below, the Riesz representor v∗ exists and is bounded.

As mentioned in Begun, Hall, Huang, and Wellner (1983), v∗f corresponds to a worst

possible direction of approach to
¡
η0, fx|x∗, fx∗|z

¢
for the problem of estimating b0. In the

language of Stein (1956), v∗f yields the most difficult one-dimensional sub-problem. Equation

(29) implies that it is sufficient to find the asymptotic distribution of hv∗, bαn − α0i to obtain
that of λT

³bbn − b0
´
under suitable conditions. We denote

d ln fyx|z(D,α)

dα
[v] ≡ d ln fyx|z(D,α+ τv)

dτ

¯̄̄̄
τ=0

a.s. D for any v ∈ V. (30)

For a sieve MLE, we have that

hv∗, bαn − α0i = 1

n

nX
i=1

d ln fyx|z(Di, α0)

dα
[v∗] + op

¡
n−1/2

¢
(31)

Note that
³
d ln fyx|z(D,α)

dα
[v∗]
´
= Gw∗(D)J

−1λ. Thus, by the classical central limit theorem, the

asymptotic distribution of
√
n
³bbn − b0

´
is N (0, J−1). In fact, the matrix J is the efficient

information matrix in this semiparametric estimation, under suitable regularity conditions

given in Shen (1997).

We now present the sufficient conditions for the
√
n−normality of bbn. Define

N0n ≡
©
α ∈ An : kα− α0ks ≤ υn, kα− α0k ≤ υnn

−1/4)
ª

(32)
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with υn = o (1) and N0 the same way with An replaced by A. Note that N0 still depends
on n. For α ∈ N0n we define a local alternative α∗ (α, εn) = (1− εn)α + εn (v

∗ + α0) with

εn = o
¡
n−1/2

¢
. Let Πnα

∗ (α, εn) be the projection of α∗ (α, εn) onto An.

Assumption 19 i) E
£
Gw∗(D)

TGw∗(D)
¤
exists, is bounded and is positive-definite; ii) b0 ∈

int (B) .

Assumption 20 There exists a measurable function h2 (D) with E {h2 (D))2} < ∞ such

that, for any α = (θ, f1, f2)
T ∈ N0,¯̄̄̄

¯f
|1|
yx|z (D,α, ω̄)

fyx|z(D,α)

¯̄̄̄
¯
2

+

¯̄̄̄
¯f

|2|
yx|z (D,α, ω̄)

fyx|z(D,α)

¯̄̄̄
¯ < h2 (D) , (33)

where f |2|yx|z (D,α, ω̄) is defined as d2

dt2
fyx|z(D;α+ tω̄)

¯̄̄
t=0

with each linear term, i.e., d
dθ
fy|x∗,

d2

dθ2
fy|x∗, f1, and f2, replaced by its absolute value. (The explicit expression of f

|2|
yx|z (D,α, ω̄)

can be found in equation 63 in the proof.)

We introduce the following notations for the next assumption: for ef = η, f1, or f2,

d ln fyx|z(D,α0)

d ef £
pkn
¤
=

µ
d ln fyx|z(D,α0)

d ef £
pkn1
¤
,
d ln fyx|z(D,α0)

d ef £
pkn2
¤
, ...,

d ln fyx|z(D,α0)

d ef £
pknkn
¤¶T

,

(34)
d ln fyx|z(D,α0)

db
=
³

d ln fyx|z(D,α0)

db1
,

d ln fyx|z(D,α0)

db2
, ...,

d ln fyx|z(D,α0)

dbdb

´T
,

d ln fyx|z(D,α0)

dα

£
pkn
¤
=

Ãµ
d ln fyx|z(D,α0)

db

¶T

,

µ
d ln fyx|z(D,α0)

dη

£
pkn
¤¶T

,

,

µ
d ln fyx|z(D,α0)

df1

£
pkn
¤¶T

,

µ
d ln fyx|z(D,α0)

df2

£
pkn
¤¶T

!T

,

and

Ωkn = E

(µ
d ln fyx|z(D,α0)

dα

£
pkn
¤¶µd ln fyx|z(D,α0)

dα

£
pkn
¤¶T

)
.

Assumption 21 The smallest eigenvalue of the matrix Ωkn is bounded away from zero, and°°pknj °°∞,ω
<∞ for j = 1, 2, ..., kn uniformly in kn.
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Assumption 22 There is a v∗n =
¡

v∗b
−(Πnw∗)v∗b

¢ ∈ An− {Πnα0} such that kv∗n − v∗k = o(n−1/4).

Assumption 23 For all α ∈ N0n, there exists a measurable function h4 (D) with E |h4 (D)| <
∞ such that ¯̄̄̄

d4

dt4
ln fyx|z(D;α+ t (α− α0))

¯̄̄̄
t=0

≤ h4(D) kα− α0k4s . (35)

Assumption 19 is essential to obtain root n consistency since it ensures that the asymptotic

variance exists and that b0 is an “interior” solution. Assumption 20 imposes an envelope

condition on the second derivative of the log likelihood function. This condition is related

to the stochastic equicontinuity condition A in Shen (1997). The condition guarantees the

linear approximation of the likelihood function by its derivative near α0. That condition

can be replaced by a stronger condition that fyx|z(D,α) is differentiable in quadratic mean.

Assumption 21 is similar to Assumption 2 in Newey (1997). Intuitively, Assumptions 21

and 23 are used to characterizes the local quadratic behavior of the criterion difference, i.e.,

condition B in Shen (1997) and can be simplified to: For all α ∈ N0n,

E

µ
ln

fyx|z(D,α0)

fyx|z(D,α)

¶
=
1

2
kα− α0k2 (1 + o(1)) . (36)

Assumption 22 states that the representor can be approximated by the sieve with an asymp-

totically negligible error, which is an important necessary condition for the asymptotic bias

of the sieve estimator itself to be asymptotically negligible. A detailed discussion of these

assumptions can be found in Shen (1997) and Chen and Shen (1998). By theorem 1 in Shen

(1997), we show that the estimator for the parametric component b0 is
√
n consistent and

asymptotically normally distributed.

Theorem 4 Under assumptions 1-5, 9-16 and 19-23,
√
n
³bbn − b0

´
d→ N (0, J−1) where

J = E
£
Gw∗(D)

TGw∗(D)
¤
for Gw∗(D) given in Equation (28).

Proof. See the appendix.

Achieving the level of generality provided by Theorem 4 forces us to state some of our

regularity conditions is a relatively high-level form, as is often done in the sieve estimation
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literature (e.g. Ai and Chen (2003), Shen (1997), Chen and Shen (1998)). However, once

the type of sieve and the particular form of fy|x∗ (y|x∗; θ) are specified, more primitive as-
sumptions can be formulated, using some of the techniques found in Blundell, Chen, and

Kristensen (2003), for instance.

It is known that obtaining a root n consistency and asymptotic normality result for a

semiparametric estimator in the context of classical errors-in-variable models demands a

balance between the smoothness of the measurement error and of the densities (or regres-

sion functions) of interest (e.g. Taupin (1998), Schennach (2004a)). Our treatment, when

specialized to classical measurement errors, does not evade this requirement. When the

measurement error densities are “too smooth” and the functions of interest are “not smooth

enough” to guarantee root n consistency and asymptotic normality, this will manifests itself

as a violation of one of our assumptions. If the failure is first-order, i.e. due to the inexistence

of an influence function with bounded variance, then a bounded Riesz representor v∗ will fail

to exist and Assumptions 19 and 22 will not hold. If the failure is of a “higher-order” nature,

i.e. when nonlinear remainder terms in the estimator’s stochastic expansion are not negligi-

ble, then either one of Assumptions 20, 21 or 23 will not hold. Intuitively, this represents a

case where the local quadratic behavior of the objective function is lost.

4 Simulations

This section considers the performance of the proposed estimator with simulated data. For

simplicity, we set θ0 ≡ b0 and consider a parametric probit model

fy|x∗(y|x∗) = [Φ(a+ bx∗)]y [1− Φ(a+ bx∗)]1−y (37)

where (a, b) is the unknown parameter vector and Φ(.) is the standard normal cdf. In

the simulation, we generate the latent variable and instrumental variable as follows: z ∼
N(1, (0.7)2) and x∗ = z + 0.3(e− z) with an independent e ∼ N(1, (0.7)2). The distribution

of both z and η are truncated on [0, 2], for simplicity in the implementation. The conditional
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density of the measurement error ε ≡ x− x∗ can be written as fε|x∗(ε|x∗) = fx|x∗(x∗+ ε|x∗),
which depends on x∗. As shown before, the identification conditions imposed on fx|x∗ may

allow for correlations between the measurement error and the true value in a very general way.

We give five examples below. In the simulation of each example, there are 2000 observations

with 1000 repetitions. A Fourier series is used, where each term is of the form cos (kπε/l)

or sin (kπε/l) with l = 2. We consider three estimators. First, the model is estimated with

the measurement error ignored. This estimator is expected to be inconsistent. Second, we

estimate the model using the accurate, measurement error-free data. This estimator is just

the standard MLE of the probit model. It should be consistent and efficient but, of course,

infeasible since the data is actually measured with error. The third estimator is the proposed

sieve MLE, which is consistent and feasible in the presence of measurement error. It should

have a larger variance than the second estimator, but a much smaller bias than the first

estimator. For each estimator, we present the mean, the standard deviation (std. dev.),

and the square root of the mean squared error (RMSE). We are now ready to present the

performance of the estimator with five examples.

Example I (a heteroskedastic error with zero mean): Consider a measurement error as

follows:

x = x∗ + σ(x∗)ν (38)

with x∗ ⊥ ν, E(ν) = 0, and σ(.) > 0 being an unknown non-stochastic function. These

assumptions can also be written asE(x−x∗|x∗) = 0, i.e., the measurement error is conditional
mean independent of the true value. The identification condition is also satisfied because it

can verified that x∗ =
R
xfx|x∗(x|x∗)dx. The error structure in the simulation is Fν(ν) = Φ(ν)

with σ(x∗) = 0.5 exp(−x∗). The simulation results are in Table 1.
Example II (a heteroskedastic error with mean shift): In this example, we relax the as-

sumption that E(ν) = 0 in (38) so that the measurement error may have a systematic mean

shift. We can decompose the observed x as follows:

x = x∗ + µνσ(x
∗) + σ(x∗) (ν − µν) (39)
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Table 1: Simulation results, a heteroskedastic error with zero mean (n=2000, reps=1000)
a = −1 b = 1

mean std. dev. RMSE mean std. dev. RMSE
ignoring meas. error -0.7601 0.0759 0.2516 0.7601 0.0686 0.2495
accurate data -0.9974 0.0823 0.0824 0.9989 0.0766 0.0766
Sieve MLE -0.9556 0.1831 0.1884 0.9087 0.1315 0.1601
smoothing parameters: in = 6, jn = 6 in f1; in = 3, jn = 2 in f2;

where µν = E (ν) is unknown. The first term is the true value x∗. The second term is

the systematic x∗-dependent mean shift of the error. The third term is a heteroskedastic

error with zero mean. Because x∗ ⊥ ν, we have fx|x∗(x|x∗) = 1
σ(x∗)fν

³
x−x∗
σ(x∗)

´
, where fν is

the density function of ν. In this setup, the identification restrictions on fx|x∗(x|x∗) can be
straightforwardly converted into restrictions on fν.

We first consider the zero mode case. The zero mode condition on fx|x∗ holds if the

density fν has its unique mode at zero. In the simulation, we let fν(ν) = exp [ν − exp(ν)]
with σ(x∗) = 0.5 exp(−x∗). The simulation results are in Table 2.
Second, we consider the zero median case, in which the median of the distribution of ν

is zero and the density fx|x∗ has median at x∗. In the simulation, we let the cdf of ν be

Fν(ν) =
1

π
arctan

·
1

2
+
1

2
exp (ν)− exp (−ν)

¸
+
1

2
(40)

with σ(x∗) = 0.5 exp(−x∗). Note that this distribution is not symmetric around the median
zero. The simulation results are in Table 3.

Table 2: Simulation results, a heteroskedastic error with zero mode (n=2000, reps=1000)
a = −1 b = 1

mean std. dev. RMSE mean std. dev. RMSE
ignoring meas. error -0.5676 0.0649 0.4372 0.6404 0.0632 0.3651
accurate data -1.0010 0.0813 0.0813 1.0030 0.0761 0.0761
Sieve MLE -0.9575 0.2208 0.2249 0.9825 0.1586 0.1596
smoothing parameters: in = 6, jn = 3 in f1; in = 3, jn = 2 in f2;

Example III (a nonadditive error with zero mode): An error equation like (38) is usually set

up for convenience. The additive structure (38) with x∗ ⊥ ν may not always be appropriate
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Table 3: Simulation results, a heteroskedastic error with zero median (n=2000, reps=1000)
a = −1 b = 1

mean std. dev. RMSE mean std. dev. RMSE
ignoring meas. error -0.6514 0.0714 0.3559 0.6375 0.0629 0.3679
accurate data -1.0020 0.0796 0.0796 1.0020 0.0747 0.0748
Sieve MLE -0.9561 0.2982 0.3014 0.9196 0.2734 0.2850
smoothing parameters: in = 8, jn = 8 in f1; in = 3, jn = 2 in f2;

in applications. Therefore, we now consider a nonseparable example, where it is more natural

to specify fx|x∗(x|x∗) directly for the purpose of generating the simulated data. Let

fx|x∗(x|x∗) =
g(x, x∗)R∞

−∞ g(x, x∗)dx
(41)

g(x, x∗) = exp

½
h(x∗)

·µ
x− x∗

σ(x∗)

¶
− exp

µ
x− x∗

σ(x∗)

¶¸¾
It is easy to show that fx|x∗ has the unique mode at x∗ for any h(x∗) > 0. Thus the

model is identified with this error structure. When h(x∗) = 1, this density becomes the

density generated by equation (38) with ν having an extreme value distribution. Furthermore,

the fact that identification holds for a general h(x∗) means the independence assumption

x∗ ⊥ ν in (38) is not necessary. We can deal with more general measurement error using

the estimator in this paper. In the simulation, we use σ(x∗) = 0.5 exp(−x∗) and h(x∗) =

exp(−0.1x∗). The simulation results are in Table 4.

Table 4: Simulation results, nonadditive error with zero mode (n=2000, reps=1000)
a = −1 b = 1

mean std. dev. RMSE mean std. dev. RMSE
ignoring meas. error -0.5167 0.0611 0.4871 0.5834 0.0590 0.4208
accurate data -1.0010 0.0813 0.0813 1.0030 0.0761 0.0761
Sieve MLE -0.9232 0.2010 0.2152 0.9430 0.1440 0.1549
smoothing parameters: in = 7, jn = 3 in f1; in = 3, jn = 2 in f2;

Example IV (a nonadditive error with zero median): Similar to example III, we consider a

nonadditive error with zero median. We let the cdf corresponding to fx|x∗ be

Fx|x∗(x|x∗) = 1

π
arctan

½
h(x∗)

·
1

2
+
1

2
exp

µ
x− x∗

σ(x∗)

¶
− exp

µ
−x− x∗

σ(x∗)

¶¸¾
+
1

2
(42)
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with h(x∗) > 0. Note Fx|x∗(x∗|x∗) = 1
2
for any h(x∗). Moreover, this distribution is not sym-

metric around x∗, and x∗ is not the mode either. When h(x∗) = 1, the error structure is the

same as in (38). In the simulation, we use σ(x∗) = 0.5 exp(−x∗) and h(x∗) = exp(−0.1x∗).
The simulation results are in Table 5.

Table 5: Simulation results, nonadditive error with zero median (n=2000, reps=1000)
a = −1 b = 1

mean std. dev. RMSE mean std. dev. RMSE
ignoring meas. error -0.6351 0.0734 0.3722 0.6219 0.0647 0.3836
accurate data -1.0010 0.0802 0.0802 1.0020 0.0752 0.0753
Sieve MLE -0.9741 0.2803 0.2815 0.9342 0.2567 0.2650
smoothing parameters: in = 8, jn = 8 in f1; in = 3, jn = 2 in f2;

Example V (an always-underreporting error): In some applications, it is reasonable to

assume that respondents always underreport, i.e., x ≤ x∗. In other words, x∗ is the 100-th

percentile of fx|x∗(x|x∗). We have shown that the model is also identified in this case. In the
simulation, we consider

fx|x∗(x|x∗) = 1

σ(x∗)
exp

µ
x− x∗

σ(x∗)

¶
I(x ≤ x∗) (43)

where I (.) is an indicator function and σ(x∗) = 0.5 exp(−x∗). The simulation results are in
Table 6.

Table 6: Simulation results, an always-underreporting error (n=2000, reps=1000)
a = −1 b = 1

mean std. dev. RMSE mean std. dev. RMSE
ignoring meas. error -0.5562 0.0601 0.4478 0.693 0.0632 0.3134
accurate data -1.0010 0.0813 0.0813 1.003 0.0761 0.0761
Sieve MLE -0.9230 0.2389 0.2510 1.071 0.2324 0.2429
smoothing parameters: in = 4, jn = 6 in f1; in = 3, jn = 2 in f2;

The simulation results in Table 1-6 show that out proposed estimator performs well

under different identification conditions. The sieve estimator has a smaller bias than the

first estimator, which ignores the measurement error. As expected, the sieve estimator has
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a larger variance than the other two estimators in all the examples. This is due to the

nonparametric estimation of the infinite dimensional functions. However, the overall root

mean square error (RMSE) for the sieve estimator dominates the RMSE of the other two

estimators.

5 Empirical Illustration

The section illustrates the usefulness of our sieve estimator with actual empirical data. We are

interested in the impact of earnings on the probability of divorcing. Let yi be a dichotomous

variable equal to 0 if individual i is married and equal to 1 if that individual is divorced or

separated. We thus use a probit model as follows

f(yi|x∗i ) = [Φ(a+ bx∗i )]
yi [1− Φ(a+ bx∗i )]

1−yi , (44)

where x∗i is individual i’s personal earnings. Since it is widely recognized that earnings, de-

noted, x∗i is subject to measurement error that may be nonclassical in nature (e.g. Bollinger

(1998), Bound and Krueger (1991), Chen, Hong, and Tamer (2005)), this represents a nat-

ural application of the proposed method. The instrumental variable z used is the predicted

earnings in the regression of reported income on demographic variables, i.e., education, occu-

pation, race, age, and region. Since z is a predicted value from a regression, it is reasonable

to assume that the least-squares projection has purged the instruments from components

that would affect divorce rates directly (instead of indirectly through their effect on income).

Hence, our exclusions restrictions (Assumption 1) are plausibly satisfied.

The population we study includes men and women who were married and working in

1999-2003. We use a survey sample from the March Supplement of the 1999-2003 Current

Population Survey. We keep only individuals who were observed for two consecutive years

and who were married during the first year. To avoid the pitfall that changes in marital

status can cause changes in income (e.g. women tend to have to go back to work and men

may work less after a divorce.), we use personal earnings reported during the first year as
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a regressor and marital status in the second year as a dependent variable. The descriptive

statistics in Table 7 shows that 3.5% of married men with jobs got divorced in the next year.

That divorce rate is 5.7% for women.

Table 7: Descriptive statistics.
male female

1999-2004 mean std. dev. mean std. dev.
marital status (divorced=1) .035 .185 .057 .233
age 45.2 11.3 43.2 10.7
race (white=1) .89 .31 .88 .33
occupation (labor intensive=0) .62 .48 .92 .27
earnings (thousands)* 53.3 55.5 27.2 30.5
sample size 50188 41851
* in 2002 dollars

The parameters of the model are estimated under three identification assumptions, namely,

that the measurement error has zero mode, zero mean, or zero median. We apply the model

separately to the male and the female subsamples (see Table 8). The empirical results in-

dicate that an increase in earnings decreases the probability of divorcing for both men and

women. However, the effect is statistically significant for men only.

The behavior of our various estimates agrees very well with known features of measure-

ment error in earnings. As mentioned in the introduction, Bollinger (1998) has shown that,

for men, the median of the measurement error in earnings is close to zero while Bound and

Krueger (1991) point out that the mode of the measurement error in earnings is close to

zero for men. Our results show that, for men, the zero mode and zero median estimates are

indeed very similar (and, in fact, not statistically significantly different from one another). In

contrast, the estimate based on a zero mean assumption is statistically significantly different

from the estimates based on mode and median restrictions. This strongly supports the view

that the estimates based on mode and median assumptions should both be correct but not

the one based on the mean. For women, the situation is different: Bollinger (1998) shows

that women’s reporting errors on earnings are much smaller and nearly classical and that
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the mean, mode and median restriction are all plausible. Accordingly, the point estimates

obtained for women are not statistically significantly different from one another (although

the coefficients themselves are not significantly different from zero, so this is not a very

stringent test).

It is also possible to test for the presence of measurement error by comparing the point

estimates obtained with and without correction for measurement error. For men, the null

hypothesis of no measurement error can be rejected at the 5% significant level under the

zero mode and zero median assumptions, which are presumably the most plausible. For

women, the results are not significant, but this is not surprising given that the measurement

error is known to be smaller for women and given that the coefficients themselves are not

significantly different from zero.

In summary, this simple empirical illustration illustrates that our estimator performs as

it should with real data.

Table 8: Earnings vs marital status.

a b test for meas. error∗

1999-2004 coef. std. dev. coef. std. dev. statistics p-value
male (n=50188)
ignoring meas. error -1.327 0.1008 -0.0458 0.0096
zero mode -0.757 0.2164 -0.1050 0.0247 7.38 0.025
zero mean -1.387 0.2132 -0.0408 0.0244 0.884 0.643
zero median -0.710 0.2280 -0.1091 0.0260 16.29 0.00029
female (n=41851)
ignoring meas. error -1.484 0.0793 -0.0095 0.0081
zero mode -1.355 0.1244 -0.0229 0.0140 1.333 0.513
zero mean -1.483 0.1723 -0.0099 0.0195 0.074 0.964
zero median -1.386 0.0961 -0.0198 0.0108 1.045 0.593
smoothing parameters: in = 5, jn = 5 in f1; in = 3, jn = 2 in f2.

∗The test statistics is
³bβie − bβsv´T V −1 ³bβie − bβsv´ ∼ X 2

2 , where bβie is the estimator with
error ignored, bβsv is the sieve MLE, and V is the variance-covariance matrix of

³bβie − bβsv´.
The null hypothesis is that there is no error in x.
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6 Conclusion

This paper represents the first treatment of wide class of nonclassical nonlinear errors-in-

variables models with continuously distributed variables using instruments (or repeated mea-

surements). The instruments must satisfy the intuitive requirement that they provide no more

information regarding the variables of interest than the true regressors do. Our main identi-

fying assumption exploits the observation that, even though the measurement error may not

have zero mean conditional on the true value of the regressor, perhaps some other measure

of location, such as the median or the mode, could still be zero. This type of nonclassical

measurement error has been clearly observed, for instance, in the self-reported income found

in the Current Population Survey (CPS), thanks to the exceptional availability of validation

data for this dataset. More generally, there are numerous plausible settings where the con-

ditional mode, median, or some other quantile, of the error could be zero even though its

conditional mean may not.

Under suitable regularity conditions, we show that the identification problem can be cast

into the form of an operator diagonalization problem in which the operator to be diagonalized

is defined in terms of observable densities, while the resulting eigenvalues and eigenfunctions

provide the unobserved joint densities of the variables of interest, including the unobserved

error-free regressor. Our main identifying assumption is used to “index” the eigenfunctions

so that the decomposition is unique.

We propose a sieve-based semiparametric estimator that is relatively simple to implement.

This framework is shown to nest the two main subcases of interest, namely models that,

in the absence of measurement error, would take the form of a parametric likelihood or

a set of moment conditions. The estimator of the parameters of interest is shown to be

root n consistent and asymptotically normal despite the presence of the infinite-dimensional

nuisance parameters associated with the measurement error distributions. The finite-sample

behavior of the proposed estimator is investigated through Monte Carlo simulations. An

example of application to the relationship between earnings and divorce rates is also provided.
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Appendix 46

A Nonuniqueness of the indexing of the eigenvalues

Let x∗ and x̃∗ be related through x∗ = R (x̃∗), where R (x̃∗) is a given piecewise differentiable

function. We now show that, without Assumption 5, models in which x∗ or x̃∗ are the

unobserved true regressors are observationally equivalent, because

Lx|x̃∗Ly;x̃∗|x̃∗L−1x|x̃∗ = Lx|x∗Ly;x∗|x∗L−1x|x∗,

where the operators Ly;x̃∗|x̃∗ and Lx|x̃∗ are defined as follows£
Ly;x̃∗|x̃∗g

¤
(x̃∗) = fy|x̃∗ (y|x̃∗) g (x̃∗)£

Lx|x̃∗g
¤
(x) =

Z
fx|x̃∗ (x|x̃∗) g (x̃∗) dx̃∗.

We first note that the operators Ly;x̃∗|x̃∗ and Lx|x̃∗ can also be written in terms of fy|x∗ and

fx|x∗ as £
Ly;x̃∗|x̃∗g

¤
(x̃∗) = fy|x∗ (y|R (x̃∗)) g (x̃∗)£

Lx|x̃∗g
¤
(x) =

Z
fx|x∗ (x|R (x̃∗)) g (x̃∗) dx̃∗.

It can be verified (by calculating Lx|x̃∗L−1x|x̃∗g) that L
−1
x|x̃∗ is given byh

L−1x|x̃∗g
i
(x̃∗) = r (x̃∗)

h
L−1x|x∗g

i
(R (x̃∗)) .

where r (x̃∗) = dR (x̃∗) /dx̃∗ whenever this differential exists and r (x̃∗) = 0 otherwise.17 We

can then calculateh
Lx|x̃∗Ly;x̃∗|x̃∗L−1x|x̃∗g

i
(x) =

Z
fx|x∗ (x|R (x̃∗)) fy|x∗ (y|R (x̃∗)) r (x̃∗)

h
L−1x|x∗g

i
(R (x̃∗)) dx̃∗

=

Z
fx|x∗ (x|R (x̃∗)) fy|x∗ (y|R (x̃∗))

h
L−1x|x∗g

i
(R (x̃∗)) dR (x̃∗)

=

Z
fx|x∗ (x|x∗) fy|x∗ (y|x∗)

h
L−1x|x∗g

i
(x∗) dx∗ (substituting x∗ = R (x̃∗) )

=
h
Lx|x∗Ly;x∗|x∗L−1x|x∗g

i
(x) .

It follows that indexing the eigenfunctions by x̃∗ or x∗ produces observationally equivalent

models but imply different joint densities of x and of the true regressor (x∗ or x̃∗).

17Since R (x̃∗) is piecewise differentiable, dR (x̃∗) /dx̃∗ exists almost everywhere and the points where it
does not will not affect the value of the integral.
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B Proofs

Proof of Lemma 2. First note that Assumptions 1-5 imply that the model is identified so

that α0 is uniquely defined. We prove the results by checking the conditions in Theorem 4.1

in Newey and Powell (2003). Their assumption1 on identification of the unknown parameter

is assumed directly. We assume kn → ∞ and kn/n → 0 in assumption 12 so that the

relevant part of their assumption 2 is satisfied. Note that we do not have any “plug-in”

nonparametric part in the likelihood function. The first part of their condition 3 is assumed

in our assumption 11(i). For the rest of their condition 3, we consider pathwise derivative

ln fyx|z (D;α1)− ln fyx|z (D;α2) (45)

=
d ln fyx|z(D,α0)

dα
[α1 − α2]

=
d

dt
ln fyx|z (D;α0 + t (α1 − α2))

¯̄̄̄
t=0

,

where α0 = (θ, f1, f2)
T is a mean value between α1 and α2. Let α1 = (θ1, f11, f21)

T and

α2 = (θ2, f12, f22)
T , we have

d

dt
ln fyx|z (D;α0 + t (α1 − α2))

¯̄̄̄
t=0

(46)

=
1

fyx|z(D,α0)

½Z
d

dθ
fy|x∗(y|x∗; θ) (θ1 − θ2) f1(x|x∗)f2(x∗|z)dx∗+

+

Z
fy|x∗(y|x∗; θ) [f11 − f12] f2(x

∗|z)dx∗ +

+

Z
fy|x∗(y|x∗; θ)f1(x|x∗) [f21 − f22] dx

∗
¾
.

The bounds can be found as follows:¯̄̄̄
d

dt
ln fyx|z (D;α0 + t (α1 − α2))

¯̄̄̄
t=0

(47)

≤ 1¯̄
fyx|z(D,α0)

¯̄ ½Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)f2(x∗|z)

¯̄̄̄
dx∗ kθ1 − θ2ks +

+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗) f2(x∗|z)

¯̄
dx∗ kf11 − f12ks +

+

Z ¯̄
fy|x∗(y|x∗; θ)f1(x|x∗)ω−1 (x∗, z)

¯̄
dx∗ kf21 − f22ks

¾
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≤ 1¯̄
fyx|z(D,α0)

¯̄ ½Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)f2(x∗|z)

¯̄̄̄
dx∗+

+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗) f2(x∗|z)

¯̄
dx∗ +

+

Z ¯̄
fy|x∗(y|x∗; θ)f1(x|x∗)ω−1 (x∗, z)

¯̄
dx∗
¾
kα− α0ks

≡
¯̄̄̄
¯f

|1|
yx|z (D,α0, ω̄)

fyx|z(D,α0)

¯̄̄̄
¯ kα− α0ks ,

where f |1|yx|z (D,α0, ω̄) is defined as d
dt
fyx|z(D;α0 + tω̄)

¯̄
t=0
with each linear term, i.e., d

dθ
fy|x∗,

f1, and f2, replaced by its absolute value. The function ω̄ is defined as

ω (ξ, x, x∗, z) =
h
1, ω−1 (ξ) , ω−1

³
(x, x∗)T

´
, ω−1

³
(x∗, z)T

´iT
with ξ ∈ U . Therefore, our assumption 11(ii), i.e., E

µ
f
|1|
yx|z(D,α0,ω̄)

fyx|z(D,α0)

¶2
≤ E (h1(D))

2 < ∞,

implies that ln fyx|z (D,α) is Hölder continuous in α. Therefore, their condition 3 holds.

Assumption 10 guarantees that A is compact under the norm k·ks, which is their condition
4. From Chen, Hansen, and Scheinkman (1997), for any α ∈ A

kα−Πnαks ≤ kη −Πnηks + kf1 −Πnf1ks + kf2 −Πnf2ks (48)

= O
¡
k−γ1/d1n

¢
with d1 = 2. Therefore, their condition 5 is satisfied with our assumption 12. A similar proof

can also be found in that of Lemma 3.1 and Proposition 3.1 in Ai and Chen (2003).

Proof of Theorem 3. First note that Assumptions 1-5 imply that the model is identified

so that α0 is uniquely defined. We prove the results by checking the conditions in Theorem

3.1 in Ai and Chen (2003). Note that there are two different estimated criterion functions,

i.e., Ln (α) and bLn (α) in their appendix B (page 1825). In our setup, we do not have

that distinction and their proof still applies with Ln (α) =
1
n

Pn
i=1 ln fyx|z(Di, α). From the

proof of lemma 2, assumptions 11 and 13 imply their condition 3.5(iii), i.e., kα−Πnαk =
o
¡
n−1/4

¢
. Assumption 3.6(iii), 3.7 and 3.8 in Chen and Shen (1998) are assumed directly

in our assumptions 14, 17 and 18, respectively. According to its expression, fyx|z(D;α) is

pathwise differentiable at α0 if fy|x∗(y|x∗; θ) is pathwise differentiable at θ0. Therefore,

assumption 15 implies their condition 3.9(i). Condition 3.9(ii) in Ai and Chen (2003) is

assumed directly in assumption 16. Thus, the results of consistency follow.

Proof of Theorem 4. First note that Assumptions 1-5 imply that the model is identified

so that α0 is uniquely defined. We prove the results by checking the conditions in theorem 1
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in Shen (1997). We define the remainder term as follows:

r [α− α0,D] ≡ ln fyx|z(D,α)− ln fyx|z(D,α0)− d ln fyx|z(D,α0)

dα
[α− α0] . (49)

We also define µn(g) =
1
n

Pn
i=1 [g(D,α)−Eg(D,α)] as the empirical process induced by g.

We have the sieve estimator bαn for α0 and a local alternative α∗ (bαn, εn) = (1− εn) bαn +

εn (v
∗ + α0) with εn = o

¡
n−1/2

¢
. Let Πnα

∗ (α, εn) be the projection of α∗ (α, εn) to An.

First of all, the Riesz representor v∗ is finite because the matrix J is invertible and w∗ is

bounded. Second, equation (4.2) in Shen (1997), i.e.¯̄̄̄
s(α)− s(α0)− ds(α)

dα
[α− α0]

¯̄̄̄
≤ c kα− α0kω , (50)

as kα− α0k → 0, is required by theorem 1 in that paper, and holds trivially in our paper

with ω =∞ because we have s(α) ≡ λT b.

Third, condition A in Shen (1997) requires

sup
α∈N0n

µn (r [α− α0, D]− r [Πnα
∗ (α, εn)− α0,D]) = Op

¡
ε2n
¢
. (51)

By the definition of r [α− α0,D], we have

µn (r [α− α0, D]− r [Πnα
∗ (α, εn)− α0,D]) (52)

= µn

½µ
ln fyx|z(D,α)− ln fyx|z(D,α0)− d ln fyx|z(D,α0)

dα
[α− α0]

¶
−
µ
ln fyx|z(D,Πnα

∗ (α, εn))− ln fyx|z(D,α0)− d ln fyx|z(D,α0)

dα
[Πnα

∗ (α, εn)− α0]

¶¾
= µn

µ
ln fyx|z(D,α)− ln fyx|z(D,Πnα

∗ (α, εn))− d ln fyx|z(D,α0)

dα
[α−Πnα

∗ (α, εn)]
¶
.

The Taylor expansion gives

ln fyx|z(D,α)− ln fyx|z(D,Πnα
∗ (α, εn)) (53)

=
d ln fyx|z(D,Πnα

∗ (α, εn))
dα

[α−Πnα
∗ (α, εn)] +

+
1

2

d2 ln fyx|z(D, eα1)
dαdαT

[α−Πnα
∗ (α, εn) , α−Πnα

∗ (α, εn)] ,

where eα1 is a mean value between α and Πnα
∗ (α, εn). Therefore, we have

µn (r [α− α0, D]− r [Πnα
∗ (α, εn)− α0,D]) (54)

= µn

µ
d ln fyx|z(D,Πnα

∗ (α, εn))
dα

[α−Πnα
∗ (α, εn)]− d ln fyx|z(D,α0)

dα
[α−Πnα

∗ (α, εn)]
¶
+

+µn

µ
1

2

d2 ln fyx|z(D, eα1)
dαdαT

[α−Πnα
∗ (α, εn) , α−Πnα

∗ (α, εn)]
¶
.
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Since

α−Πnα
∗ (α, εn) = εnΠn (α− α0 − v∗) ,

the right-hand side of equation 54 equals

= µn

µ
d2 ln fyx|z(D,α1)

dαdαT
[α−Πnα

∗ (α, εn) ,Πnα
∗ (α, εn)− α0]

¶
+

+µn

µ
1

2

d2 ln fyx|z(D, eα1)
dαdαT

[εnΠn (α− α0 − v∗) , εnΠn (α− α0 − v∗)]
¶

= µn

µ
d2 ln fyx|z(D,α1)

dαdαT
[εnΠn (α− α0 − v∗) ,Πnα

∗ (α, εn)− α0]

¶
+

+µn

µ
1

2

d2 ln fyx|z(D, eα1)
dαdαT

[εnΠn (α− α0 − v∗) , εnΠn (α− α0 − v∗)]
¶

= εnµn

µ
d2 ln fyx|z(D,α1)

dαdαT
[Πn (α− α0 − v∗) , εnΠn (v

∗ + α0 − α) + (α− α0)]

¶
+ε2nµn

µ
1

2

d2 ln fyx|z(D, eα1)
dαdαT

[Πn (α− α0 − v∗) ,Πn (α− α0 − v∗)]
¶

= εnµn

µ
d2 ln fyx|z(D,α1)

dαdαT
[Πn (α− α0 − v∗) , α− α0]

¶
+

−ε2nµn
µ
1

2

d2 ln fyx|z(D,α1)

dαdαT
[Πn (α− α0 − v∗) ,Πn (α− α0 − v∗)]

¶
+

+ε2nµn

µ
1

2

d2 ln fyx|z(D, eα1)
dαdαT

[Πn (α− α0 − v∗) ,Πn (α− α0 − v∗)]
¶

= A1 +A2 +A3, (55)

where α1 a mean value between α0 and Πnα
∗ (α, εn). We consider the term A1 as follows:

sup
α∈N0n

A1 = εn sup
α∈N0n

µn

µ
d2 ln fyx|z(D,α1)

dαdαT
[Πn (α− α0 − v∗) , α− α0]

¶
. (56)

Let α1 =
¡
θ, f1, f2

¢
and vn = Πn (α− α0 − v∗) =

³
[vn]θ , [vn]f1 , [vn]f2

´
. We consider the
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term ¯̄̄̄
sup
α∈N0n

d2 ln fyx|z(D,α1)

dαdαT
[vn, α− α0]

¯̄̄̄
(57)

≤ sup
α∈N0n

¯̄̄̄
1

fyx|z(D,α1)

d2fyx|z(D,α1)

dαdαT
[vn, (α− α0)] +

−d ln fyx|z(D,α1)

dα
[vn]

d ln fyx|z(D,α1)

dα
[α− α0]

¯̄̄̄
≤ sup

α∈N0n

µ¯̄̄̄
1

fyx|z(D,α1)

d2fyx|z(D,α1)

dαdαT
[vn, (α− α0)]

¯̄̄̄
+

+

¯̄̄̄
d ln fyx|z(D,α1)

dα
[vn]

¯̄̄̄ ¯̄̄̄
d ln fyx|z(D,α1)

dα
[α− α0]

¯̄̄̄¶
.

We need to find the bounds on three terms in the absolute value. We have

d ln fyx|z(D,α1)

dα
[α− α0] (58)

=
1

fyx|z(D,α1)

½Z
d

dθ
fy|x∗(y|x∗; θ) (θ − θ0) f1(x|x∗)f2(x∗|z)dx∗+

+

Z
fy|x∗(y|x∗; θ)

£
f1 − fx|x∗

¤
f2(x

∗|z)dx∗ +

+

Z
fy|x∗(y|x∗; θ)f1(x|x∗)

£
f2 − fx∗|z

¤
dx∗
¾
.

Therefore, the term
¯̄̄
d ln fyx|z(D,α1)

dα
[α− α0]

¯̄̄
can be bounded through¯̄̄̄

d ln fyx|z(D,α1)

dα
[α− α0]

¯̄̄̄
(59)

≤ 1¯̄
fyx|z(D,α1)

¯̄ ½Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)f2(x∗|z)

¯̄̄̄
dx∗ kθ − θ0ks +

+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗) f2(x∗|z)

¯̄
dx∗

°°f1 − fx|x∗
°°
s
+

+

Z ¯̄
fy|x∗(y|x∗; θ)f1(x|x∗)ω−1 (x∗, z)

¯̄
dx∗

°°f2 − fx∗|z
°°
s

¾
≤

¯̄̄̄
¯f

|1|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯ kα− α0ks ,

where f |1|yx|z (D,α1, ω̄) is define in assumption 11 and equation 47. Similarly, we also have¯̄̄̄
d ln fyx|z(D,α1)

dα
[vn]

¯̄̄̄
≤
¯̄̄̄
¯f

|1|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯ kvnks (60)
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with

kvnks = kΠn (α− α0 − v∗)ks (61)

≤ kv∗nks + kΠn (α− α0)ks <∞.

We then consider the term 1
fyx|z(D,α1)

d2fyx|z(D,α1)

dαdαT
[vn, (α− α0)] as follows:

1

fyx|z(D,α1)

d2fyx|z(D,α1)

dαdαT
[vn, (α− α0)] (62)

=
1

fyx|z(D,α1)

½Z
d2

dθ2
fy|x∗(y|x∗; θ) [vn]θ (θ − θ0) f1(x|x∗)f2(x∗|z)dx∗+

+

Z
d

dθ
fy|x∗(y|x∗; θ) [vn]θ

£
f1 − fx|x∗

¤
f2(x

∗|z)dx∗ +

+

Z
d

dθ
fy|x∗(y|x∗; θ) [vn]θ f1(x|x∗)

£
f2 − fx∗|z

¤
dx∗

+

Z
d

dθ
fy|x∗(y|x∗; θ) (θ − θ0) [vn]f1 f2(x

∗|z)dx∗ +

+

Z
fy|x∗(y|x∗; θ) [vn]f1

£
f2 − fx∗|z

¤
dx∗ +

+

Z
d

dθ
fy|x∗(y|x∗; θ) (θ − θ0) f1(x|x∗) [vn]f2 dx∗ +

+

Z
fy|x∗(y|x∗; θ)

£
f1 − fx|x∗

¤
[vn]f2 dx

∗
¾
.

Therefore, the term
¯̄̄

1
fyx|z(D,α1)

d2fyx|z(D,α1)

dαdαT
[vn, (α− α0)]

¯̄̄
can be bounded through¯̄̄̄

1

fyx|z(D,α1)

d2fyx|z(D,α1)

dαdαT
[vn, (α− α0)]

¯̄̄̄
(63)

≤ 1¯̄
fyx|z(D,α1)

¯̄ ½Z ¯̄̄̄
d2

dθ2
fy|x∗(y|x∗; θ)ω−1 (ξ)ω−1 (ξ) f1(x|x∗)f2(x∗|z)

¯̄̄̄
dx∗ k[vn]θks kθ − θ0ks+

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ)ω−1 (x, x∗) f2(x∗|z)

¯̄̄̄
dx∗ k[vn]θks

°°f1 − fx|x∗
°°
s
+

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)ω−1 (x∗, z)

¯̄̄̄
dx∗ k[vn]θks

°°f2 − fx∗|z
°°
s

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ)ω−1 (x, x∗) f2(x∗|z)

¯̄̄̄
dx∗ kθ − θ0ks

°°°[vn]f1°°°s +
+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗)ω−1 (x∗, z)

¯̄
dx∗

°°°[vn]f1°°°s °°f2 − fx∗|z
°°
s
+

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)ω−1 (x∗, z)

¯̄̄̄
dx∗ kθ − θ0ks

°°°[vn]f2°°°s +
+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗)ω−1 (x∗, z)

¯̄
dx∗

°°f1 − fx|x∗
°°
s

°°°[vn]f2°°°s
¾
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≤ 1¯̄
fyx|z(D,α1)

¯̄ ½Z ¯̄̄̄
d2

dθ2
fy|x∗(y|x∗; θ)ω−1 (ξ)ω−1 (ξ) f1(x|x∗)f2(x∗|z)

¯̄̄̄
dx∗+

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ)ω−1 (x, x∗) f2(x∗|z)

¯̄̄̄
dx∗ +

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)ω−1 (x∗, z)

¯̄̄̄
dx∗

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ)ω−1 (x, x∗) f2(x∗|z)

¯̄̄̄
dx∗ +

+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗)ω−1 (x∗, z)

¯̄
dx∗ +

+

Z ¯̄̄̄
d

dθ
fy|x∗(y|x∗; θ)ω−1 (ξ) f1(x|x∗)ω−1 (x∗, z)

¯̄̄̄
dx∗ +

+

Z ¯̄
fy|x∗(y|x∗; θ)ω−1 (x, x∗)ω−1 (x∗, z)

¯̄
dx∗
¾
kα− α0ks kvnks

≡
¯̄̄̄
¯f

|2|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯ kα− α0ks kvnks ,

where f |2|yx|z (D,α1, ω̄) is defined in assumption 20. Plug-in the bounds in equations 59, 60,

and 63 back to equation 57, we have¯̄̄̄
sup
α∈N0n

d2 ln fyx|z(D,α1)

dαdαT
[vn, (α− α0)]

¯̄̄̄
(64)

≤ sup
α1∈N0n

¯̄̄̄¯f
|1|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯
2

+

¯̄̄̄
¯f

|2|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯
 kα− α0ks kvnks

≤ h2 (D) kα− α0ks kvnks .

By the envelope condition in assumption 20, equation 56 becomes

sup
α∈N0n

A1 (65)

= εnOp

¡
n−1/2

¢s
E

µ
sup
α∈N0n

d2 ln fyx|z(D,α1)

dαdαT
[Πn (α− α0 − v∗) , (α− α0)]

¶2
≤ εnOp

¡
n−1/2

¢q
E (h2 (D))

2 kα− α0ks kvnks
= Op

¡
ε2n
¢
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with kα− α0ks = o(1). The last two terms A2 and A3 in equation 55 are bounded as follows:¯̄̄̄
sup
α∈N0n

A2

¯̄̄̄
(66)

= ε2n

¯̄̄̄
sup
α∈N0n

µn

µ
1

2

d2 ln fyx|z(D,α1)

dαdαT
[Πn (α− α0 − v∗) ,Πn (α− α0 − v∗)]

¶¯̄̄̄

≤ ε2n
1

2
µn

¯̄̄̄¯f
|1|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯
2

+

¯̄̄̄
¯f

|2|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

¯̄̄̄
¯
 kΠn (α− α0 − v∗)k2s

≤ ε2n
1

2
Op (E |h2(D)|) kΠn (α− α0 − v∗)k2s

= Op

¡
ε2n
¢

The same result holds for
¯̄
supα∈N0n A3

¯̄
, and therefore, condition A in Shen (1997) holds.

Fourth, condition B requires

sup
α∈N0n

·
E

µ
ln

fyx|z(D,α0)

fyx|z(D,Πnα∗ (α, εn))

¶
−E

µ
ln

fyx|z(D,α0)

fyx|z(D,α)

¶
+ (67)

−1
2

¡kα∗ (α, εn)− α0k2 − kα− α0k2
¢¸
= O

¡
ε2n
¢
.

As corollary 2 in Shen (1997) points out that condition B can be replaced by condition B’

as follows:

E

µ
ln

fyx|z(D,α0)

fyx|z(D,α)

¶
=
1

2
kα− α0k2 (1 + o(hn)) . (68)

with some positive sequence {hn}→ 0 as n→∞. We consider the Taylor expansion

E
£
ln fyx|z(D,α))− ln fyx|z(D,α0)

¤
(69)

= E

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶
+
1

2
E

µ
d2 ln fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¶
+

+
1

6
E
d3

dt3
ln fyx|z(D;α0 + t (α− α0))

¯̄̄̄
t=0

+

+
1

24
E
d4

dt4
ln fyx|z(D;α+ t (α− α0))

¯̄̄̄
t=0

,

where α is a mean value between α and α0.

As for the leading terms on the right-hand side, we have η satisfying
R
Y

∂
∂η
fy|x∗(y|x∗; θ)dy =

0,
R
Y

∂2

∂η2
fy|x∗(y|x∗; θ)dy = 0, and

R
Y

∂3

∂η3
fy|x∗(y|x∗; θ)dy = 0 for all θ ∈ Θ, and f1, f2 satisfying
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R
X f1(x|x∗)dx = 1 and

R
X∗ f2(x

∗|z)dx = 1. It is then tedious but straightforward to show 18

E

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶
= 0, (70)

E

µ
1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¶
= 0,

E

·
1

fyx|z(D,α0)

d3fyx|z(D,α0)

dα3
[α− α0, α− α0, α− α0]

¸
= 0.

Therefore,

E

µ
d2 ln fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¶
(71)

= E

·
1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α, α]−

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶¸
= −E

·µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶¸
= − kα− α0k2 .

Therefore, equation 69 becomes

E
£
ln fyx|z(D,α))− ln fyx|z(D,α0)

¤
(72)

= −1
2
kα− α0k2 + 1

6
E
d3

dt3
ln fyx|z(D;α0 + t (α− α0))

¯̄̄̄
t=0

+

+
1

24
E
d4

dt4
ln fyx|z(D;α+ t (α− α0))

¯̄̄̄
t=0

.

For the second term on the right-hand side, we have

d3

dt3
ln fyx|z(D;α0 + t (α− α0))

¯̄̄̄
t=0

(73)

= E

·
1

fyx|z(D,α0)

d3fyx|z(D,α0)

dα3
[α− α0, α− α0, α− α0]

¸
+

−3E
·
d ln fyx|z(D,α0)

dα
[α− α0]

1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¸
+

+2E

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶3
= B1 +B2 +B3.

18We abuse the notation d3 ln fyx|z
dα3 to stand for the third order derivative with respect to a vector α.
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Again, it is straightforward to show B1 = 0. The term B2 is bounded as follows:

E

·
d ln fyx|z(D,α0)

dα
[α− α0]

1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¸
(74)

≤ E

·¯̄̄̄
d ln fyx|z(D,α0)

dα
[α− α0]

¯̄̄̄ ¯̄̄̄
1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¯̄̄̄¸

≤
"
E

¯̄̄̄
1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¯̄̄̄2#1/2 "
E

¯̄̄̄
d ln fyx|z(D,α0)

dα
[α− α0]

¯̄̄̄2#1/2

=

"
E

¯̄̄̄
1

fyx|z(D,α0)

d2fyx|z(D,α0)

dαdαT
[α− α0, α− α0]

¯̄̄̄2#1/2
kα− α0k

≤
E ¯̄̄̄¯f

|2|
yx|z (D,α0, ω̄)

fyx|z(D,α0)

¯̄̄̄
¯
2
1/2 kα− α0k2s kα− α0k

≤ £
E |h2(D)|2

¤1/2 kα− α0k2s kα− α0k .

For the term B3, we have

B3 ≤ E

¯̄̄̄
d ln fyx|z(D,α0)

dα
[α− α0]

¯̄̄̄3
(75)

≤
"
E

¯̄̄̄
d ln fyx|z(D,α0)

dα
[α− α0]

¯̄̄̄4#1/2 "
E

¯̄̄̄
d ln fyx|z(D,α0)

dα
[α− α0]

¯̄̄̄2#1/2

=

"
E

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶4#1/2
kα− α0k

≤
E ¯̄̄̄¯f

|1|
yx|z (D,α0, ω̄)

fyx|z(D,α0)

¯̄̄̄
¯
4
1/2 kα− α0k2s kα− α0k

≤ £
E |h1(D)|4

¤1/2 kα− α0k2s kα− α0k .

Note that E |h2(D)|2 <∞ implies E |h1(D)|4 <∞. Therefore, equation 72 becomes

E
£
ln fyx|z(D,α))− ln fyx|z(D,α0)

¤
(76)

= −1
2
kα− α0k2 +O

¡kα− α0k2s kα− α0k
¢
+

+
1

24
E
d4

dt4
ln fyx|z(D;α+ t (α− α0))

¯̄̄̄
t=0

.
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By assumption 23, we have

E
d4

dt4
ln fyx|z(D;α+ t (α− α0))

¯̄̄̄
t=0

(77)

≤ E

¯̄̄̄
d4

dt4
ln fyx|z(D;α+ t (α− α0))

¯̄̄̄
t=0

≤ E |h4(D)| kα− α0k4s
= O

¡kα− α0k4s
¢
, (78)

and therefore,

E
£
ln fyx|z(D,α0))− ln fyx|z(D,α)

¤
=
1

2
kα− α0k2 (1 +O (hn)) , (79)

with

hn =
kα− α0k2s
kα− α0k +

kα− α0k4s
kα− α0k2

.

Next, we show that kα−α0k2s
kα−α0k → 0 as n → ∞. We will need the convergence rate of the

sieve coefficients. Therefore, we define for α ∈ N0n
α =

¡
bT , Πnη, Πnf1, Πnf2

¢T
(80)

=
¡
bT , pkn (ξ1, ξ2)

T δ, pkn (x, x∗)T β, pkn (x∗, z)T γ
¢T

,

Πnα0 =
¡
bT0 , Πnη0, Πnfx|x∗, Πnfx∗|z

¢T
=

¡
bT0 , pkn (ξ1, ξ2)

T δ0, pkn (x, x∗)T β0, pkn (x∗, z)T γ0
¢T

,

where pkn’s are kn-by-1 vectors i.e., pkn (·, ·) =
¡
pkn1 (·, ·) , pkn2 (·, ·) , ..., pknkn (·, ·)

¢T
. Note

that all the vectors are column vectors. We also define the vector of the sieve coefficients as

αc =
¡
bT , δT , βT , γT

¢T
, (81)

αc
0 =

¡
bT0 , δT0 , βT0 , γT0

¢T
.

We then have

α− α0 (82)

= α−Πnα0 +Πnα0 − α0

=
¡ ¡

bT − bT0
¢
, pkn (ξ1, ξ2)

T (δ − δ0) , pkn(x, x∗)T (β − β0) , pkn(x∗, z)T (γ − γ0)
¢

+Πnα0 − α0.

Suppose that

kα− α0k = O
¡
n−1/4−ς0

¢
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with some small ς0 > 0. By assumption 13 and equation 48, we let

kΠnα0 − α0ks = O
¡
k−γ1/d1n

¢
= O

¡
n−1/4−ς

¢
(83)

for some small ς > ς0.

We then show kαc − αc
0kE = O

¡
n−1/4−ς0

¢
from kα− α0k = O

¡
n−1/4−ς0

¢
. For any α ∈

N0n, we have

|kα− α0k− kΠnα0 − α0k| ≤ kα−Πnα0k ≤ kα− α0k+ kΠnα0 − α0k . (84)

We have shown that assumption 11 implies E

¯̄̄̄
f
|1|
yx|z(D,α1,ω̄)

fyx|z(D,α1)

¯̄̄̄2
≤ E |h1(D)|2 < ∞. We then

have

kΠnα0 − α0k (85)

≤

vuutE

Ã
f
|1|
yx|z (D,α1, ω̄)

fyx|z(D,α1)

!2
kΠnα0 − α0ks

= O (kΠnα0 − α0ks)
≤ O

¡
k−γ1/d1n

¢
= O

¡
n−1/4−ς

¢
,

and therefore, for some constants 0 < C1, C2 <∞

C1 kα− α0k ≤ kα−Πnα0k ≤ C2 kα− α0k . (86)

Moreover, we define

d ln fyx|z(D,α0)

db
=
³

d ln fyx|z(D,α0)

db1
,

d ln fyx|z(D,α0)

db2
, ...,

d ln fyx|z(D,α0)

dbdb

´T
, (87)

d ln fyx|z(D,α0)

dη

£
pkn
¤
=
³

d ln fyx|z(D,α0)

dη

£
pkn1
¤
,

d ln fyx|z(D,α0)

dη

£
pkn2
¤
, ...,

d ln fyx|z(D,α0)

dη

£
pknkn
¤ ´T

,

d ln fyx|z(D,α0)

df1

£
pkn
¤
=
³

d ln fyx|z(D,α0)

df1

£
pkn1
¤
,

d ln fyx|z(D,α0)

df1

£
pkn2
¤
, ...,

d ln fyx|z(D,α0)

df1

£
pknkn
¤ ´T

,

d ln fyx|z(D,α0)

df2

£
pkn
¤
=
³

d ln fyx|z(D,α0)

df2

£
pkn1
¤
,

d ln fyx|z(D,α0)

df2

£
pkn2
¤
, ...,

d ln fyx|z(D,α0)

df2

£
pknkn
¤ ´T

,

d ln fyx|z(D,α0)

dα

£
pkn
¤

=
h ³

d ln fyx|z(D,α0)

db

´T
,
³
d ln fyx|z(D,α0)

dη

£
pkn
¤´T

,
³
d ln fyx|z(D,α0)

df1

£
pkn
¤´T

,
³
d ln fyx|z(D,α0)

df2

£
pkn
¤´T iT

.
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With the notations above, we have

d ln fyx|z(D,α0)

dα
[α−Πnα0] (88)

=

µ
d ln fyx|z(D,α0)

db

¶T

(b− b0) +

µ
d ln fyx|z(D,α0)

dη

£
pkn
¤¶T

(δ − δ0)

+

µ
d ln fyx|z(D,α0)

df1

£
pkn
¤¶T

(β − β0) +

µ
d ln fyx|z(D,α0)

df2

£
pkn
¤¶T

(γ − γ0)

=

µ
d ln fyx|z(D,α0)

dα

£
pkn
¤¶T

(αc − αc
0) ,

and

kα−Πnα0k2 (89)

= E

(µ
d ln fyx|z(D,α0)

dα
[α−Πnα0]

¶2)

= (αc − αc
0)

T E

(µ
d ln fyx|z(D,α0)

dα

£
pkn
¤¶µd ln fyx|z(D,α0)

dα

£
pkn
¤¶T

)
(αc − αc

0)

≡ (αc − αc
0)

T Ωkn (α
c − αc

0) .

The matrix Ωkn is positive definite with its smallest eigenvalue bounded away from zero

uniformly in kn according to assumption 21. Since kα−Πnα0k is always finite, the largest
eigenvalue of Ωkn is finite. Thus, we have for some constants 0 < C1, C2 <∞

C1 kαc − αc
0kE ≤ kα−Πnα0k ≤ C2 kαc − αc

0kE . (90)

Note that C1 and C2 are general constants that may take different values at each appearance.

We then consider the ratio kα−α0k2s
kα−α0k . From equations 86 and 90, we have

kα− α0k ≥ C1 kαc − αc
0kE (91)

and kαc − αc
0kE = O

¡
n−1/4−ς0

¢
. Assumption 21 implies kα−Πnα0k2s ≤ C2 kαc − αc

0k21,
where k·k1 is the L1 vector norm. Thus, we have

kα− α0k2s ≤ kα−Πnα0k2s + kΠnα0 − α0k2s (92)

≤ C2 kαc − αc
0k21 +O

¡
k−2γ1/d1n

¢
≤ C2kn kαc − αc

0k2E +O
¡
n2(−1/4−ς)

¢
.

Since kαc − αc
0kE = O

¡
n−1/4−ς0

¢
and ς > ς0, we have

kα− α0k2s ≤ C2kn kαc − αc
0k2E . (93)
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By equations 91 and 93, we have

kα− α0k2s
kα− α0k ≤ C2kn kαc − αc

0k2E
C1 kαc − αc

0kE
(94)

≤ O (kn kαc − αc
0kE) .

Assumption 13 requires k−γ1/d1n = O
¡
n−1/4−ς

¢
, i.e., kn = n(

1
4
+ς) 1

γ1/d1 . We then have

kn kαc − αc
0kE = O

µ
n
−1
4

³
1− 1

γ1/d1

´
+ς 1

γ1/d1
−ς0
¶

(95)

= o (1)

for ς < 1
4

³
γ1
d1
− 1
´
+ γ1

d1
ς0 with γ1/d1 > 1 in assumption 13. Therefore, equation 79 holds

with the positive sequence {hn} → 0 as n → ∞. That means that condition B’ in Shen
(1997) holds.

Fifth, Condition C in Shen (1997) requires

sup
α∈N0n

kα∗ (α, εn)−Πnα
∗ (α, εn)k = O

¡
n−1/4εn

¢
. (96)

By definition, we have α∗ (α, εn) = (1− εn)α+ εn (v
∗ + α0) with α ∈ N0n . Therefore,

kα∗ (α, εn)−Πnα
∗ (α, εn)k (97)

= εn kv∗ + α0 −Πn (v
∗ + α0)k

≤ εn kv∗ −Πnv
∗k+ εn kα0 −Πnα0k

= O
¡
n−1/4εn

¢
.

The last step is due to assumption 22. Condition C also requires

sup
α∈N0n

µn

µ
d ln fyx|z(D,α0)

dα
[α∗ (α, εn)−Πnα

∗ (α, εn)]
¶
= Op

¡
ε2n
¢
. (98)

The left-hand side equals

εnµn

µ
d ln fyx|z(D,α0)

dα
[v∗ − v∗n]

¶
+ εnµn

µ
d ln fyx|z(D,α0)

dα
[α0 −Πnα0]

¶
. (99)

By the envelope condition in assumption 11, the first term corresponding to v∗ is¯̄̄̄
µn

µ
d ln fyx|z(D,α0)

dα
[v∗ − v∗n]

¶¯̄̄̄
(100)

=

s
E

µ
d ln fyx|z(D,α0)

dα
[v∗ − v∗n]

¶2
Op

¡
n−1/2

¢
= kv∗ − v∗nkOp

¡
n−1/2

¢
= op

¡
n−1/2

¢
,
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and the second term corresponding to α0 is¯̄̄̄
µn

µ
d ln fyx|z(D,α0)

dα
[α0 −Πnα0]

¶¯̄̄̄
(101)

=

s
E

µ
d ln fyx|z(D,α0)

dα
[α0 −Πnα0]

¶2
Op

¡
n−1/2

¢
= kα0 −Πnα0kOp

¡
n−1/2

¢
= op

¡
n−1/2

¢
.

The last step is due to kα0 −Πnα0k = o
¡
n−1/4

¢
. Therefore, condition C in theorem 1 in Shen

(1997) holds. Note that condition C’ in corollary 2 is also satisfied, i.e., kv∗n − v∗k = o(n−1/4)

and o (hn) kα0 −Πnα0k2 = op
¡
n−1/2

¢
.

Finally, condition D in Shen (1997), i.e.,

sup
α∈N0n

µn

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶
= op

¡
n−1/2

¢
, (102)

can be verified as follows: We first have

sup
α∈N0n

¯̄̄̄
d ln fyx|z(D,α0)

dα
[α− α0]

¯̄̄̄
(103)

≤
¯̄̄̄

1

fyx|z(D,α0)

Z
d

dθ
fy|x∗(y|x∗; θ0)ω−1 (ξ) fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗

¯̄̄̄
kθ − θ0ks +

+

¯̄̄̄
1

fyx|z(D,α0)

Z
fy|x∗(y|x∗; θ0)ω−1 (x, x∗) fx∗|z(x∗|z)dx∗

¯̄̄̄ °°f1 − fx|x∗
°°
s
+

+

¯̄̄̄
1

fyx|z(D,α0)

Z
fy|x∗(y|x∗; θ0)fx|x∗(x|x∗)ω−1 (x∗, z) dx∗

¯̄̄̄ °°f2 − fx∗|z
°°
s

≤
¯̄̄̄
¯f

|1|
yx|z (D,α0, ω̄)

fyx|z(D,α0)

¯̄̄̄
¯ kα− α0ks

≤ |h1(D)| kα− α0ks
with E |h1(D)|2 <∞ by the envelope condition in assumption 11. We then have

sup
α∈N0n

µn

µ
d ln fyx|z(D,α0)

dα
[α− α0]

¶
(104)

=

s
E

µ
sup
α∈N0n

d ln fyx|z(D,α0)

dα
[α− α0]

¶2
Op

¡
n−1/2

¢
≤

q
E |h1(D)|2 kα− α0ksOp

¡
n−1/2

¢
= op

¡
n−1/2

¢
.

Thus, condition D in theorem 1 in Shen (1997) holds. Since all the conditions in theorem 1

in Shen (1997) hold, the results of asymptotic normality follow.
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C Restrictions with Fourier series

As shown above, the sieve estimators are as follows:

f1(x|x∗) =
inX
i=0

jnX
j=0

βijpi(x− x∗)qj(x∗), f2(x
∗|z) =

inX
i=0

jnX
j=0

γijpi(x
∗ − z)qj(z). (105)

Let z, x∗ ∈ [0, lx] and (x− x∗) ∈ [−le, le]. We use the Fourier series:

pk(x− x∗) = cos
kπ

le
(x− x∗) or sin

kπ

le
(x− x∗) (106)

pk(x
∗ − z) = cos

kπ

lx
(x∗ − z) or sin

kπ

lx
(x∗ − z)

and qk(x) = cos
kπ
lx
x. For simplicity, we consider the case where in = 3 and jn = 2. Longer

series can be handled similarly. We have

f1(x|x∗) =

µ
a00 + a01 cos

π

lx
x∗ + a02 cos

2π

lx
x∗
¶

(107)

+
3X

k=1

µ
ak0 + ak1 cos

π

lx
x∗ + ak2 cos

2π

lx
x∗
¶
cos

kπ

le
(x− x∗)

+
3X

k=1

µ
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π

lx
x∗
¶
sin

kπ

le
(x− x∗)

Consider the restriction
R
X f1(x|x∗)dx = 1. We can show thatZ

X
f1(x|x∗)dx = 2le

µ
a00 + a01 cos

π

lx
x∗ + a02 cos

2π

lx
x∗
¶

(108)

for all x∗. Therefore, a00 = 1
2le
and a01 = a02 = 0. We can similarly find the sieve expression

of the function f2(x
∗|z) satisfying RX∗ f2(x∗|z)dx∗ = 1.

Next, we consider the identification restrictions on f1(x|x∗). First, in the zero mode case,
we have ∂

∂x
f1(x|x∗)

¯̄
x=x∗ = 0 for all x

∗ with

∂

∂x
f1(x|x∗)

¯̄̄̄
x=x∗

=
3X

k=1

kπ

le

µ
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π

lx
x∗
¶

(109)

Thus, the restrictions on the coefficients are

3X
k=1

kbk0 =
3X

k=1

kbk1 =
3X

k=1

kbk2 = 0. (110)
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Second, if we make the zero mean assumption instead of the zero mode one, we haveR
X (x− x∗)f1(x|x∗)dx = 0 for all x∗ withZ

X
(x− x∗)f1(x|x∗)dx =

3X
k=1

µ
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π

lx
x∗
¶µ
−2l

2
e

kπ
(−1)k

¶
(111)

We have
3X

k=1

(−1)k
k

bk0 =
3X

k=1

(−1)k
k

bk1 =
3X

k=1

(−1)k
k

bk2 = 0. (112)

Third, if we make the zero median assumption, we have
R
X∩{x<x∗} fx|x∗(x|x∗)dx = 1

2
for

all x∗ withZ
X∩{x<x∗}

f1(x|x∗)dx = 1

2
+

3X
k=1

µ
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π

lx
x∗
¶
le
(−1)k − 1

kπ
(113)

Therefore,

3X
k=1

(−1)k − 1
k

bk0 =
3X

k=1

(−1)k − 1
k

bk1 =
3X

k=1

(−1)k − 1
k

bk2 = 0 (114)

Fourth, if x∗ is the 100th percentile of fx|x∗, we assume (x− x∗) ∈ [−le, 0]. The sieve
estimator of f1(x|x∗) is as follows:

f1(x|x∗) =

µ
a00 + a01 cos

π

lx
x∗ + a02 cos

2π

lx
x∗
¶

(115)

+
3X

k=1

µ
ak0 + ak1 cos

π

lx
x∗ + ak2 cos

2π

lx
x∗
¶
cos

kπ

le
(x− x∗)

The restriction
R
X∩{x<x∗} fx|x∗(x|x∗)dx = 1 for all x∗ is equivalent to the restrictions a00 =

1
le
and a01 = a02 = 0.


