
Robinson, Peter M.

Working Paper

Efficient estimation of the semiparametric spatial
autoregressive model

cemmap working paper, No. CWP08/06

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Robinson, Peter M. (2006) : Efficient estimation of the semiparametric spatial
autoregressive model, cemmap working paper, No. CWP08/06, Centre for Microdata Methods and
Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2006.0806

This Version is available at:
https://hdl.handle.net/10419/79350

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2006.0806%0A
https://hdl.handle.net/10419/79350
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

EFFICIENT ESTIMATION OF THE SEMIPARAMETRIC 
SPATIAL AUTOREGRESSIVE MODEL

Peter Robinson

THE INSTITUTE FOR FISCAL STUDIES
DEPARTMENT OF ECONOMICS, UCL

cemmap working paper CWP08/06



E¢ cient Estimation of the Semiparametric
Spatial Autoregressive Model

P.M. Robinson�

Department of Economics, London School of Economics,
Houghton Street, London WC2A 2AE, UK

February 27, 2006

Abstract

E¢ cient semiparametric and parametric estimates are developed for a
spatial autoregressive model, containing nonstochastic explanatory vari-
ables and innovations suspected to be non-normal. The main stress is on
the case of distribution of unknown, nonparametric, form, where series
nonparametric estimates of the score function are employed in adaptive
estimates of parameters of interest. These estimates are as e¢ cient as
ones based on a correct form, in particular they are more e¢ cient than
pseudo-Gaussian maximum likelihood estimates at non-Gaussian distri-
butions. Two di¤erent adaptive estimates are considered. One entails a
stringent condition on the spatial weight matrix, and is suitable only when
observations have substantially many "neighbours". The other adaptive
estimate relaxes this requirement, at the expense of alternative conditions
and possible computational expense. A Monte Carlo study of �nite sample
performance is included.
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1 Introduction

Spatial autoregressive models have proved a popular basis for statistical infer-
ence on spatial econometric data. Much of the spatial statistics literature has
focussed on data recorded on a lattice, that is, it is regularly-spaced in two or
more dimensions. This is an unlikely framework in economics, at best an approx-
imation. Data recorded over geographical space are apt to be very irregularly
spaced, such as at cities or towns, or aggregated across possibly contiguous re-
gions, such as provinces or countries. A recent review of spatial econometrics
is Arbia (2006). A statistical model that adequately describes dependence as a
function of geographic distance is apt to be complicated, especially in the second
kind of situation, and derivations of rules of large sample statistical inference
under plausible conditions di¢ cult; even for time series data, where there is a
single dimension, inference in irregularly-spaced settings is not very well devel-
oped. On the other hand, cross-sectional correlation has been measured as a
function of "economic distance", not necessarily in a geographic setting. Spatial
autoregressive models are applicable in all these circumstances.
We wish to model an n�1 vector of observations y = (y1; :::; yn)T , on a scalar

variate yi, T indicating transposition. We have an n � k matrix of constants
X = (x1; :::; xn)

T , xi being a k � 1 vector, where k � 1. Let " = ("1; :::; "n)
T

be an n� 1 vector of unobservable random variables, that are independent and
identically distributed (iid) with zero mean and unit variance. Let ln be the
n� 1 vector (1; :::; 1)T . Finally, let W be a given n�n "weight" matrix, having
zero diagonal elements and being row-normalized such that elements of each
row sum to 1, so

Wln = ln: (1.1)

We assume that, for some scalars �0, �0 and �0, and some k � 1 vector �0,

y = �0ln + �0Wy +X�0 + �0": (1.2)

Here, �0 and �0 > 0 are unknown nuisance parameters, representing intercept
and scale respectively: they can be estimated, but our focus is on the estimation
of �0 = (�0; �

T
0 )
T , where �0 2 [0; 1) and �0 is non-null. It is taken for granted

that there are no restrictions linking �0; �0 and �0. It is assumed that the
matrix (ln; X) has full column rank for su¢ ciently large n, and because k � 1
there must be at least one non-intercept regressor.
The weight matrix W has to be chosen by the practitioner. In view of

the row-normalization, we can de�ne it in terms of an underlying non-negative
inverse "distance" measure dij such that W has (i; j)-th element

wij =
dij
nP
h=1

dih

: (1.3)

However, the "distance" terminology is not taken to imply thatW is necessarily
a symmetric matrix.
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In general, only large-sample statistical inference can be justi�ed. Here,
though we have mostly suppressed reference to the data size n for the sake of
a concise notation, the row-normalization of W implies that as n!1, y must
be treated like a triangular array. In recent years considerable progress has
been made in the econometric literature on developing asymptotic properties of
various estimates for (1.2).
Ordinary least squares (OLS) comes �rst to mind. The OLS estimate of

�0 in (1.2) (with �0 treated as unknown) is generally inconsistent, because, for
each i, the i-th element of Wy is correlated with "i. This situation contrasts
with the corresponding classical dynamic time series model in which the lagged
dependent variable is uncorrelated with the disturbance. It mirrors the one
identi�ed by Whittle (1954), in case of multilateral autoregressive models on
a lattice. He pointed out that the problem is corrected by using Gaussian
maximum likelihood (ML) estimation: the determinant term in this, which
OLS neglects, has non-negligible e¤ect.
This is the case also in (1.2), and Lee (2004) has established desirable asymp-

totic properties of Gaussian ML here, namely n
1
2 -consistency and asymptotic

normality and e¢ ciency. An alternative, if generally sub-optimal solution, is in-
strumental variables, and this has been justi�ed by Kelejian and Prucha (1998,
1999), Lee (2003), Kelejian, Prucha and Yuzefovich (2003).
On the other hand, returning to OLS, Lee (2002) noticed that this can still

be consistent, and even n
1
2 -consistent and asymptotically normal and e¢ cient

under suitable conditions on W . In particular, he showed that consistency is
possible if the dij in (1.3) are uniformly bounded and the

Pn
j=1 dij tend to

in�nity with n, and n
1
2 -consistent if the latter sums tend to in�nity faster than

n
1
2 .
This can be simply illustrated in terms of a W employed in an empirical

example of Case (1992), and stressed by Lee (2002). Data are recorded across
p districts, in each of which are q farmers. Independence between farmers in
di¤erent districts is assumed, and neighbours at each farm within a district are
given equal weight. Due to (1.1) we have

W = Ip 
 (q � 1)�1
�
lql

T
q � Iq

�
: (1.4)

In this setting, OLS is consistent if

q !1; as n!1; (1.5)

and n
1
2 -consistent if

q=p!1 as n!1: (1.6)

The procedure considered by Lee (2004), on the other hand, was actually
interpreted not just as ML under Gaussianity, but also pseudo-ML under depar-
tures from Gaussianity, as is the case in many other settings. However, though
n
1
2 -consistency and asymptotic normality is relevant in the latter circumstances,
asymptotic e¢ ciency is not. When data-sets are not very large, precision is im-
portant, and since there is often reason not to take Gaussianity seriously, it is
desirable to develop estimates which are e¢ cient in non-Gaussian populations.

3



As is typically the case in time series models, building a non-Gaussian like-
lihood is most easily approached by introducing a non-normal distribution for
the iid "i in (1.2), for example a Student-t distribution. Such a distribution
may also involve unknown nuisance parameters, to be estimated alongside the
original ones. We present limit distributional results for one-step Newton ap-
proximations to ML estimates in this case. However, there is rarely a strong
reason for picking a particular parametric form for the underlying innovation
density, and if this is mis-speci�ed not only would the estimates not be asymp-
totically e¢ cient (or necessarily more e¢ cient than the Gaussian pseudo-ML
estimates of Lee (2004)), but in some cases they may actually be inconsistent.
As in other statistical problems, these drawbacks, as well as possible computa-
tional complications, do much to explain the popularity of Gaussian pseudo-ML
procedures, and approximations to them.
On the other hand, the ability to "adapt" to distribution of unknown form is

well-established in a number of other statistical and econometric models. Here
the density f of "i in (1.2) is regarded as a nonparametric function, so that (1.2)
is a semiparametric model, and f is estimated by smoothing. By a suitable
implementation, it can then be possible to obtain estimates of the parameters
of the model that are n

1
2 -consistent and normal, and asymptotically as e¢ cient

as ones based on a correctly parameterized f . This was demonstrated by Stone
(1975), for the simple location model with iid data, and then by Bickel (1982),
Newey (1988) for regression models with iid errors, and by other authors in
various other models. The main focus of the present paper is to develop such
procedures for e¢ ciently estimating the vector �0 in (1.2). The ability to adapt
in (1.2) is not guaranteed. Our �rst result requires similar conditions on W
to those that Lee (2002) imposed in justifying the n

1
2 -consistency of OLS (i.e.

(1.6) in case (1.4)). Our second result employs a bias-reduced estimate that, in
case (1.4), requires only (1.5), though either W has also to be symmetric (as is
the case in (1.4)) or "i has to be symmetrically distributed.
Our e¢ cient estimates of �0 are described in the following section. Regu-

larity conditions and theorem statements are presented in Section 3. Section 4
consists of a Monte Carlo study of �nite sample behaviour. Proofs are left to
an appendix.

2 E¢ cient Estimates

It is possible to write down an objective function that is a form of likelihood,
employing a smoothed nonparametric estimate of the density f of the "i. How-
ever, not only is this liable to be computationally challenging to optimize, but
derivation of asymptotic properties would be a lengthy business since, as is com-
mon in problems involving implicitly-de�ned extremum estimation, the proof of
n
1
2 -consistency and asymptotic normality has to be preceded by a consistency
proof. The latter can be by-passed by the familiar routine of taking one Newton-
type iterative step, based on the aforementioned "likelihood", from an initial
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n
1
2 -consistent estimate. This strategy is followed virtually uniformly in the
adaptive estimation literature, and we follow it here.
It leads to the need to nonparametrically estimate not f(s), but the score

function

 (s) = �f
0(s)

f(s)
; (2.1)

where throughout the paper the prime denotes di¤erentiation. The bulk of work
on adaptive estimation uses kernel estimates of f and f 0. Kernel estimation is
very familiar in econometrics, and can have important advantages. However,
separate estimation of f and f 0 is necessary, and the resulting estimate of  is
somewhat cumbersome.
More seriously, since f is liable to become small, use of an estimate in the de-

nominator of (2.1) is liable to cause instability. It also causes technical di¢ culty,
and typically some form of trimming is introduced. This requires introduction
of a user-chosen trimming number, itself a disincentive to the practitioner. In
addition, kernel-based adaptive estimates have, for technical reasons, featured
sample-splitting (use of one part of the sample in the nonparametric estimation,
and the other for the �nal parametric estimation) which is wasteful of data and
introduces a further ambiguity, as well as the arti�cial device of discretizing the
initial parameter estimate.
These drawbacks are overcome by employing a series estimate of  , as pro-

posed by Beran (1976) in the context of estimation of the coe¢ cients of a time
series autoregressive model. Let �`(s), ` = 1; 2; :::, be a sequence of smooth
functions. For some user-chosen integer L � 1, de�ne the vectors

�(L)(s) = (�1(s); :::; �L(s))
T
; ��

(L)
(s) = �(L)(s)� E

n
�(L)("i)

o
: (2.2)

Consider for  (s) �rst the parametric form

 (s) = ��
(L)
(s)Ta(L); (2.3)

where a(L) = (a1; :::; aL)
T is a vector with unknown elements. The mean-

correction in (2.2) imposes the restriction E f ("i)g = 0. Under mild conditions
on f , integration-by-parts allows a(L) to be identi�ed by

a(L) =
h
E
n
��
(L)
("i)��

(L)
("i)

T
oi�1

E
n
��
(L)0
("i)
o
: (2.4)

Given a vector of observable proxies ~" = (~"1; :::;~"n)
T , we approximate a(L) by

~a(L)(~"), where, for a generic vector q = (q1; :::; qn)
T
;

~a(L)(q) =W (L)(q)�1w(L)(q); (2.5)

with

W (L)(q) =
1

n

nP
i=1

�(L)(qi)�
(L)(qi)

T ; (2.6)

w(L)(q) =
1

n

nP
i=1

�(L)0(qi); (2.7)
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and

�(L)(qi) = �(L)(qi)�
1

n

nP
j=1

�(L)(qj): (2.8)

Then de�ning

 (L)
�
qi; ~a

(L)(q)
�
= �(L)(qi)

T ~a(L)(q); (2.9)

~ il =  (L)
�
~"i; ~a

(L)(~")
�
is a proxy for  ("i), and is inserted in the Newton step

for estimating the unknown parameters.
However, Beran�s (1976) asymptotic theory assumed that, for the chosen L,

(2.3) correctly speci�es  (s). This amounts almost to a parametric assumption
on f : indeed, if we took L = 1 and �1(s) = s,  (s) given by (2.3) is just the
score function for the standard normal distribution. Newey (1988) considerably
developed the theory by allowing L to go to in�nity slowly with n, so that the
right hand side of (2.3) is an approximation to (an in�nite series representation
of)  (s), and thence (in regression with independent cross-sectional observa-
tions) establishing analogous adaptivity results to those, say, that Bickel (1982)
had, using kernel estimation of  . Robinson (2005) developed Newey�s (1988)
asymptotic theory further, in the context of stationary and nonstationary frac-
tional time series models. In the asymptotic theory, L can be regarded as a
smoothing number analogous to that used in a kernel approach, but no other
user-chosen numbers or arbitrary constructions are required in the series ap-
proach, where indeed some regularity conditions are a little weaker than those
in the kernel-based literature.
We follow the series estimation approach here, and for ease of reference

mainly follow the notation of Robinson (2005). To provide further details for
the adaptive estimation of our �0, consider the n� 1 vector

e(�) = (e1(�); :::; en(�))
T
= (I � �W )y �X�; (2.10)

for � =
�
�; �T

�T
, and any scalar � and k � 1 vector �. From (1.2)

�0" = e(�0)� E fe(�0)g : (2.11)

Accordingly, given an initial estimate ~� of �0, consider as a proxy for the vector
�0" the vector E(~�), where

E(�) = e(�)� ln
1

n

nP
i=1

ei(�): (2.12)

We can estimate �20 by ~�
2 = ~�2(~�); where

~�2(�) =
1

n
E(�)TE(�): (2.13)

Thus our proxy ~" for " is given by

~" = E(~�)=~�: (2.14)
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We �nd it convenient to write

~ iL =
~ iL(

~�; ~�); (2.15)

where
~ iL(�; �) = �

(L) (Ei(�)=�)
T
~a(L) (E(�)=�) : (2.16)

Now introduce the n� (k + 1) matrix of derivatives

e0 =

�
@e(�)

@�
;
@e(�)

@�T

�T
; (2.17)

in which

@e(�)

@�
= �Wy; (2.18)

@e(�)

@�
= �XT ; (2.19)

for all �: With e0i denoting the i-th column of e
0 write

E0i = e0i �
1

n

nP
j=1

e0j : (2.20)

Now de�ne

R =
nP
i=1

E0iE
0T
i ; (2.21)

and

rL(�; �) =
nP
i=1

~ iL(�; �)E
0
i; (2.22)

and let
~

IL(�; �) =
1

n

nP
i=1

~ 
2

iL(�; �); (2.23)

so
~

IL(~�; ~�) estimates the information measure

I = E ("i)
2: (2.24)

Our �rst adaptive estimate of �0 is

�̂A = ~� �
�
~

IL(~�; ~�)R
��1

rL(~�; ~�): (2.25)

(There is a typographical error in the corresponding formula (2.2) of Robinson
(2005): " + " should be "� ":) De�ne

sL(�; �) = rL(�; �) +

�
tr
�
W (In � �W )�1

	
0

�
; (2.26)
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so sL and rL di¤er only in their �rst element. Our second adaptive estimate of
�0 is

�̂B = �̂ �
�
~

IL(~�; ~�)R
��1

sL(~�; ~�): (2.27)

There are some practical issues outstanding. One is the choice of the func-
tions �`(s). As in Newey (1988), Robinson (2005), we restrict to "polynomial"
forms

�`(s) = �(s)`; (2.28)

for some chosen function �(s). For example,

�(s) = s; (2.29)

�(s) =
s

(1 + s2)
1
2

; (2.30)

where the boundedness in (2.30) can help to reduce other technical assumptions.
Next, the choice of L is discussed in some detail by Robinson (2005); asymptotic
theory provides little guidance here, indeed it delivers an upper bound on the
rate at which L can increase with n, but no lower bound. Since the upper bound
is only logarithmic in n, it seems that values of L should be used that are far
smaller than n. Discussion of the choice of ~� is postponed to the following
section.
For completeness, we also consider the fully parametric case, where f(s; �0)

is a prescribed parametric form for f(s), with �0 an unknown m� 1 vector, on
the basis of which de�ne b� = argmin

T

P
i

log f(Ei(e�)=e�; �) for a subset T of Rm,
and, with  (s; �) = (@=@s)f(s; �)=f(s; �)

~

IL(�; �; �) = n�1
P
i

 (Ei(�)=�; �)
2
; (2.31)

rL(�; �; �) =
P
i

 (Ei(�)=�; �)E
0
i(�): (2.32)

De�ne also

sL(�; �; �) = rL(�; �; �) +

�
tr
�
W (In � �W )�1

	
0

�
: (2.33)

Our two parametric estimates are

�̂C = ~� �
�
~

IL(~�; ~�;b�)R��1 rL(~�; ~�;b�); (2.34)

�̂D = ~� �
�
~

IL(~�; ~�;b�)R��1 sL(~�; ~�;b�); (2.35)

the second being a "bias-corrected" version of the �rst.
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3 Asymptotic Normality and E¢ ciency

We introduce �rst the following regularity conditions

Assumption 1: For all su¢ ciently large n, the weight matrix W has non-
negative elements that are uniformly of order O(1=hn), where

hn=n
1
2 !1; as n!1; (3.1)

and has zero diagonal, satis�es (1.1), and is such that the elements of lTnW and
lTnS

�1 are uniformly bounded, where S = In � �0W .

Assumption 2: The elements of the xi are uniformly bounded constants, and
the matrix


 = lim
n!1

1

n

�
(GX�0)

T

XT

�
[GX�0; X] (3.2)

exists and is positive de�nite, where G =WS�1.

Assumption 3: The "i are iid with zero mean and unit variance, and proba-
bility density function f(s) that is di¤erentiable, and

0 < I <1: (3.3)

Assumption 4: �`(s) satis�es (2.28), where �(s) is strictly increasing and
thrice di¤erentiable and is such that, for some � � 0, K <1,

j�(s)j � 1 + jsjK (3.4)���0(s)��+ ���00(s)��+ ���000(s)�� � C
�
1 + j�(s)jK

�
; (3.5)

where C is throughout a generic positive constant.
Denote by � = 1+2

1
2 l 2:414 and ' = (1+ j�(s1)j = f�(s2)� �(s1)g, [s1; s2]

being an interval on which f(s) is bounded away from zero.

Assumption 5:
L!1; as n!1; (3.6)

and either
(i) � = 0, E"4i <1, and

lim
n!1

�
log n

L

�
> 8 flog � +max(log'; 0)g ' 7:05 + 8max (log'; 0) ; (3.7)

or (ii) � > 0 for some ! > 0 the moment generating function E
�
etj"ij

!�
exists

for some t > 0, and

lim inf
n!1

�
log n

L logL

�
> max

�
8K

!
;
4�(! + 1)

!

�
; (3.8)
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or (iii) � > 0, "i is almost surely bounded, and

lim inf
n!1

�
log n

L logL

�
> 4�: (3.9)

Assumption 6: As n!1

~� � �0 = Op(n
� 1
2 ); ~�2 � �20 = Op(n

� 1
2 ): (3.10)

The proof of the following theorem is left to the Appendix.

Theorem A Let (1.2) hold with �0 2 [0; 1), and let Assumptions 1-6 hold.
Then as n!1

n
1
2

�
�̂A � �0

�
!d N

�
0;
�20
I 


�1
�
; (3.11)

where the limit variance matrix is consistently estimated by
�
~�2=

~

IL(~�; ~�)
�
nR�1.

Remark 1 For the Gaussian pseudo-ML estimate, Lee (2004) �nds the limiting
variance matrix to be �2
�1. Since I � 1, �̂A achieves an e¢ ciency improve-
ment over this when "i is non-Gaussian.

Remark 2 Various initial estimates that satisfy Assumption 1 are available
in the literature. This is the case under (3.1) if ~� is the OLS estimate of �0
(see Lee, 2002). Other possibilities are the Gaussian pseudo-ML estimate, and
various IV estimates.

Remark 3 In view of Assumption 2, �0 cannot be the null vector (cf. Lee
(2004)), so Theorem A cannot be used to test �0 = 0, though it can be used
to test exclusion of a proper subset of the elements of xi. It can also be used
to test the hypothesis of no spatial dependence, �0 = 0, and in this case the
limit distribution in the Theorem is true even if (3.1) does not hold, indeed hn
can be regarded as �xed with respect to n, and so designs with only very few
"neighbours" are covered. For non-Gaussian data, the tests provided by the
Theorem are in general expected to be locally more powerful than ones based
on existing estimates.

Remark 4 Assumption 1 is discussed by Lee (2002). In case W is given by
(1.4), hn � q, so condition (3.1) is equivalent to (1.6), and the rest of Assumption
1 is satis�ed.

Remark 5 Assumptions 3-5 are essentially taken from Robinson (2005), where
they are discussed. The main implications are that if we choose bounded �(s)
then a fourth moment condition on "i su¢ ces, with a relatively mild upper
bound restriction on the rate of increase of L (see (i)). For unbounded �(s), we
have a choice between moment generating function (ii) and boundedness (iii)
requirements on "i, where the condition on L is weaker in the latter case, but
still stronger than that of (i) of Assumption 5.
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Remark 6 It would be possible to obtain analogous results for a non-linear
regression extension of (1.2), in which the elements of X�0 are replaced by the
nonlinear-in-�0 functions g(xi;�0), i = 1; :::; n, where g is a smooth function of
known form. With respect to the initial estimate ~� it would seem that non-linear
least squares can be shown to satisfy Assumption 6 under (3.1), by extending
the arguments of Lee (2002).
Remark 7 In practice further iteration of (2.25) may be desirable. This
would not change the limit distribution, but can improve higher-order e¢ ciency
(Robinson, 1988).
By far the most potentially restrictive of the conditions underlying Theorem

1 is (3.1) of Assumption 1. It is never really possible to gauge the relevance of
an asymptotic condition such as this to a given, �nite, data set. However, if, in
the simple case where W is given by (1.4), q is small relative to p, one expects
that �̂A may be seriously biased, and the normal approximation poor; the same
will be true of OLS.
Results of Lee (2004) on the Gaussian pseudo-MLE hint at how it may be

possible to relax (3.1). To best see this we temporarily modify the model (1.2)
to

y = �0Wy + Z0 + �0": (3.12)

If an intercept is allowed, as in (1.2), then ln is a column of Z, Z = (ln; X),
and 0 = (�0; �

T
0 )
T . But it is also possible that no intercept is allowed, unlike

in (1.2), in which case Z = X and 0 = �0 (and �0 = 0). The form (3.12) is
the most usual in the literature. Lee (2004) shows the Gaussian pseudo-MLE

�̂
�
=
�
�̂
�
; ̂�T ; �̂�2

�T
of �0 =

�
�0; 

T
0 ; �

2
0

�T
is n

1
2 -consistent and asymptotically

normal, under mild conditions that do not even require that hn diverge (i.e. in
(1.4), q can remain �xed). However, even under Gaussianity, �̂

�
and �̂�2 are

independent in the limit distribution if hn does not diverge, suggesting that
adaptive estimation of �0; 0 is not possible in this scenario. Lee (2004) �nds,
however, that the limit covariance matrix of �̂

�
simpli�es when

hn !1; as n!1; (3.13)

(i.e. (1.5) under (1.4)). His formulae indicate that
�
�̂
�
; ̂�T

�T
and �̂�2 will then

be asymptotically independent if E
�
"3i
�
lTnGZ0=n ! 0, E

�
"3i
�
lTn =n ! 0, as

n!1. This is true if "i is normally distributed, and somewhat more generally,
e.g. if "i is symmetrically distributed. Reverting now to our model (1.2) and

with (�̂
�
; �̂

�T
; �̂�2) denoting the Gaussian pseudo-MLE of

�
�0; �

T
0 ; �

2
0

�
, analo-

gously
�
�̂
�
; �̂

�T�
and �̂�2 are asymptotically independent if

E("3i )l
T
nGHX�0=n! 0; E("3i )l

T
nHX=n! 0; as n!1; (3.14)

where H = In � lnl
T
n =n. The latter limit always holds (since l

T
nH = 0), indeed

the left hand side is the null vector for all n: The �rst limit holds if W is
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symmetric (because (1.1) then implies lTnW = lTn ), and again the left hand side
is zero for all n. (Such symmetry obtains in (1.4).) Thus if we focus on �0 and
slope parameters only, their estimates are independent of �̂�2 more generally
than Lee (2004) claims, to enhance further the value of his results.
These observations suggest that if we start from a full, but possibly non-

Gaussian likelihood, in the spirit of Whittle (1954), so that it contains a Jaco-
bian factor det

1
2 fIn � �Wg, we will both achieve su¢ cient bias-correction to

enable relaxation of (3.1) to (3.13), and the information matrix block-diagonality
necessary for adaptivity, so long as either W is symmetric or "i is symmetri-
cally distributed (the moments E("3i ) in the above discussion are replaced by
E
�
"i ("i)

2
�
.

The proof of the following theorem is omitted, due to the preceding dis-
cussion, and the fact that our proof of Theorem A focusses on how the bias
problem is resolved by (3.1), and not only is this aspect now unnecessary, but
the remainder of the proof details are partly covered by some given in the proof
of Theorem A, while others are relatively straightforward.

Theorem B Let (1.2) hold with �0 2 [0; 1), and let Assumptions 1-6 hold with
(3.1) relaxed to (3.13), and let either W be symmetric or "i be symmetrically
distributed. Then as n!1;

n
1
2

�b�B � s�!d N

�
0;
�20
I 


�1
�
; (3.15)

where the limit variance matrix is consistently estimated by
�
~�2=

~

IL(~�; ~�)
�
nR�1:

Remark 8 In general �̂B can be expensive to compute because the second
component of sL(�; �) involves the inverse of an n�n matrix. However, in some
special cases it is very simple, e.g. in case W is given by (1.4), we have

tr
�
W (In � �W )�1

	
=

n�

(q � 1 + �)(1� �) : (3.16)

Remark 9 We cannot use OLS for ~�, ~�2 if (3.1) does not hold. We can,
however, use an IV estimate, such as those of Kelejian and Prucha (1998, 1999),
Lee (2003), or the Gaussian pseudo-MLE of Lee (2004).

Remark 10 As in other models, under symmetry of "i it is also possible to
adapt with respect to the estimation of �0 in (1.2).

With respect to �̂C and �̂D we introduce the following additional assump-
tions.

Assumption A7 T is compact and � is an interior point of T .

Assumption A8 For all � 2 T � f�0g, f(s; �) 6= f(s; �0) on a set of positive
measure.

12



Assumption A9 In a neighbourhood N of �0, log f(s; �) is thrice continuously
di¤erentiable in � for all s andZ 1

�1

�
sup
N

���f (k)(s; �)���+ sup
N

���f (k;`)(s; �)���+ sup
N

���f (k;`;m)(s; �)���� ds <1; (3.17)
where f (k), f (k;`), f (k;`;m) represent partial derivatives of f with respect to the
k-th, the k-th and `-th, and the k-th, `-th and m-th elements of � , respectively.

Assumption A10 	 = E
�
(@=@�) log f("i; �0)(@=@�

T ) log f("i; �0)
�
is positive

de�nite.

Theorem C Let (1.2) hold with �0 2 [0; 1); and let Assumptions 1-3 and
6-10 hold. Then as n ! 1, n 1

2 (�̂C � �0)and n
1
2 (b� � �0) converge to indepen-

dent N(0; (�20=I)
�1), and N(0;	�1) vectors respectively, where the limiting

covariance matrices are consistently estimated by
�
~�2=

~

IL(~�; ~�;b�)�nR�1 and
�
n�1

nP
t=1

h
(@=@�) log f

�
Ei(~�)=~�;b��i h(@=@�T ) log f �Ei(~�)=~�2;b��i��1 ;

(3.18)
respectively.

Theorem D Let (1.2) hold with �0 2 [0; 1); and let Assumptions 1-
3 and 6-10 hold with (3.1) relaxed to (3.13), and let either W be symmet-
ric or "i be symmetrically distributed. Then as n ! 1, n 1

2 (�̂D � �0)and
n
1
2 (b� � �0) converge to independent N(0; (�20=I)
�1), and N(0;	�1) vectors
respectively, where the limiting covariance matrices are consistently estimated

by
�
~�2=

~

IL(~�; ~�;b�)�nR�1 and (3.18) respectively.
The proofs would require �rst an initial consistency proof for the implicitly-

de�ned extremum estimate b� , and are omitted because they combine elements
of the proof of Theorem A with relatively standard arguments.
Remark 11 The Gaussian MLE can in general be expensive to compute due to
the determinant factor, as discussed by Kelejian and Prucha (1999). However,
the limit distribution of this estimate is the same as that of �̂C and �̂D when
these are based on f(s; �) = (2�)�1=2 exp(�s2=2);  (s; �) = s: Indeed such �̂D
represents a Newton step to the Gaussian MLE.
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4 Finite Sample Performance

The behaviour of our adaptive estimates in �nite sample sizes was examined
in a small Monte Carlo study. The spatial weight matrix W given by (1.4)
was employed, with three di¤erent choices of (p; q): (8,12), (11,18), (14,28).
These correspond to n = 96, 198 and 392, and are intended to represent a slow
approach to the asymptotic behaviour of (3.1). For each n, scalar explanatory
variables x1; :::; xn were generated as iid uniform (0; 1) observations, and then
kept �xed throughout the study, to conform to the non-stochastic aspect of
Assumption 2. The "i were generated from each of the following 5 distributions.

(a) Normal, "i � N(0; 1);

(b) Bimodal Mixture normal, "i = u=
p
10 where pdf(u) = :5p

2�
exp

�
� (u�3)2

2

�
+

:5p
2�
exp

�
� (u+3)2

2

�
;

(c) Unimodal Mixture normal, "i = u=
p
2:2, where pdf(u) = :05p

50�
exp

�
�u2

50

�
+

:95p
2�
exp

�
�u2

2

�
;

(d) Laplace, f(s) = exp
�
� jsj

p
2
�p
2;

(e) Student t5; "i = u
p
3=5, where u � t5:

These are fairly standard choices in Monte Carlo studies of adaptive estimates.
All of them are scaled to have variance 1, as in Assumption 3. Case (a) has
�nite moments of degree 4 only.
On each of 1000 replications, y was generated from (1.2) with �0 = 0, 0 = 1,

�0 = 1, and with two di¤erent �0 values, 0.4 and 0.8, for each of the 3 n values
and 5 "i distributions. Both �̂A and �̂B were computed in each case, for both
choices (2.29) and (2.30) of �(s) (respectively denoted "1" and "2" in the tables
below), and for L = 1; 2; 4. We took ~� to be OLS.
Lee (2004) featured the design (1.4) in his Monte Carlo study of the Gaussian

MLE. The two experiments are not closely comparable. He employed a wider
range of n and xi, while restricting to Gaussian "i and a single �0 (0:5), and
with no comparison with other estimates. Our study looks at relative e¢ ciency
over a range of distributions, our examination of two values of �0 turns out to
throw light on the bias issue, and we explore aspects of implementation which
do not arise for his estimate. Nevertheless. we shall have occasion to refer to
his results, and make some remarks about computational issues prompted by
both studies.
Monte Carlo bias, variance and mean squared error (MSE) were computed

in each of the 2 � 2 � 2 � 3 � 3 � 5 = 360 cases. In view of the potential
impact of bias, Tables 1 and 2 report Monte Carlo bias of both elements, e�; e�;
of the initial estimate, OLS. For �0 = 0.4 the bias of e� actually increases with
n; suggesting that a faster increase of q=p would give better results here. For
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�0 = 0.8, biases for the smaller n are greater, they fall then rise with a slight
net reduction. We will encounter some consequences of this bias on �̂A and �̂B :
The bias of e� is much smaller, a phenomenon found also for �̂A and �̂B ; and by
Lee (2004) for his estimate.
(Tables 1 and 2 about here)
Each of Tables 3-18 presents one of the rival e¢ ciency measures, relative

variance and relative MSE, comparing one element of �̂A = (b�A; b�A)T with
OLS in one "i distribution, and covers all n; �0; L and �: To conserve on space
we have omitted the normal distribution (a) results. Here, one expects �̂A to
be worse than OLS for all L � 1 when � = (2.30), and to deteriorate with
increaing L when � = (2.29). This turned out to be the case, but though the
ratios peaked at 1:4447 (in case of relative variance of b�A for �0 = 0.8, n = 96;
L = 2; � = (2:30)); they were mostly less than 1:1:
(Tables 3-6 about here)
Tables 3-6 concern the bimodal mixture normal (b). In these (and subse-

quent) tables the ratios of 1 when � = (2.29) and L = 1 re�ect the identity
�̂A = e�: Otherwise, though �̂A is sometimes worse than e� for small L; by L = 4
a clear, sometimes dramatic improvement was registered, especially in the MSE
ratios.
The bimodal mixture normal is perhaps the qualitatively most di¤erent from

the normal of all the distributions, and the potential for e¢ ciency improvement
greatest. Tables 7-18 con�rm this. Nevertheless, except for �0 = 0.8 (in
relative variance Tables 7, 11 and 15), �̂A always beats OLS, to varying degrees.
Some summary statistics based on all the Tables 3-18 are useful. Consider �rst
the property of monotone improvement with increasing n or L (we do not count
cases when, say, there is ultimate improvement without monotonicity). There is
monotone improvement with increasing n in 84 (30 for b�A; 54 for b�A) out of 160
places, with distribution (c) best and (a) worst. There is monotone improvement
with increasing L in 104 (48 for b�A; 56 for b�A) out of 196 places, with (b)
best and (d) worst. In both instances, the number of such improvements was
somewhat greater for �0 = 0.4 than �0 = 0.8. With respect to choice of �;
there is monotone improvement with increasing n in 23 of 64 places for (2.29)
(omitting L = 1 of course) and 62 of 96 for (2.30).
(Tables 7-18 about here)
The disappointing aspects of Tables 7, 11 and 15 serve as a prelude to the

results for �̂B = (b�B ; b�B)Twhen �0 = 0.8. What happens is that the second
("bias correction") component in sL vastly overcompensates for the positive bias
in e� seen in Table 1. The reason is apparent from (3.16). Overestimation of �0
not only increases the numerator but brings the denominator close to zero. In
one place b�B beats OLS, and b�A does so in 46, but these are out of 144 in each
case, and overall the results are too poor to report. However, we present the
results for �0 = 0.4, in Tables 19-26, combining relative variance and MSE in
each table. Of most interest is comparison of �̂B with �̂A. Of the 288 places,
�̂B does best in 124; 93 of these are relative variances, and 70 refer to b�B : The
bias-correction is not very successful even when �0 = 0.4, with e� still largely
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to blame. There is monotone improvement with increasing n in 23 (11 for b�B ;
12 for b�B) out of 96 places, with distribution (c) best (again) and (e) worst,
so �̂B performs worse than �̂A in this respect also. On the other hand, there is
monotone improvement with increasing L in 56 (28 each for b�B and b�B) out of
92 places, with (b) best (again) and the others roughly equal. Again the choice
(2.30) of � fares better than (2.29) with respect to monotone improvement with
increasing n; 16 to 7:
(Tables 19-26 about here)
Clearly �̂D, in particular a Newton approximation to the Gaussian MLE,

will be similarly a¤ected, relative to �̂C . Lee (2004), in his Monte Carlo, used
a search algorithm to compute the Gaussian MLE itself, thereby not risking
contamination by an initial estimate. However, the larger n; and especially
k; the more expensive this approach becomes, and it could prove prohibitive,
especially when W leads to a less tractable det fIn � �Wg than is the case with
(1.4) (see Kelejian and Prucha (1999). Iteration from an initial estimate may
then be preferable (which brings us back to �̂D): On the other hand, the present
paper has stressed ahievement of asymptotic e¢ ciency in a general setting, with
a minimum of computation. In a given practical situation, this may not be the
most relevant goal, and improvements might be desirable, perhaps especially
to �̂B and �̂D; by exercizing greater care in choice of e� (possibly using one
of the instrumental variables estimates in the literature), and continuing the
iterations. This will incur greater computational expense, though updating of
R does not arise. These and other issues might be examined in a subsequent,
more thorough, Monte Carlo study. It is hoped that the present simulations
have demonstrated that the computationally simple estimates �̂A and �̂B ; with
their optimal asymptotic properties in a wide setting, o¤er su¢ cient promise to
warrant such investigation and possible re�nement, and empirical application.

APPENDIX: Proof of Theorem A

By the mean value theorem

�̂A � �0 =

0@Ik+1 � R�1

~

IL(~�; ~�)
�S1L

1A�~� � �0�
� R�1

~

IL(~�; ~�)

�
�S2L(~� � �0) + rL(�0; �0)

	
(A.1)

where �S1L and �S2L are respectively obtained from S1L(�; �) = (@=@�
T )rL(�; �)

and S2L(�; �) = (@=@�)rL(�; �) after evaluating each row at some (possibly dif-

ferent) ��, �� such that
�� � �0 � ~� � �0, j�� � �0j � j~� � �0j. Introduce the

neighbourhood N =
n
�; � : k� � �0k+ k� � �0k � n�

1
2

o
. In view of Assump-
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tions 2 and 3, the proof consists of showing that

sup
N
kSiL(�; �)� SiL(�0; �0)k = op(n); n = 1; 2; (A.2)

sup
N

����~IL(�; �)� IL(�0; �0)���� ! p 0; (A.3)

n�1R ! p 
; (A.4)�
~

IL(�0; �0)R
��1

S1L(�0; �0) ! p Ik+1; (A.5)

n�1SL2(�0; �0) ! p 0; (A.6)
~

IL(�0; �0) ! p I; (A.7)

r1L = op(n
1
2 ); (A.8)

n�
1
2 r2L ! d N (0; �0 I
) ; (A.9)

where
rjL =

P
i

~ iL(�0; �0)E
0
ji; j = 1; 2; (A.10)

in which
P

i denotes
Pn

i=1,

(E011; :::; E
0
1n) = E01 = ��0 (HG"; 0)

T
; (A.11)

(E021; :::; E
0
2n) = E02 = � (HGX�0;HX)

T
: (A.12)

Notice that rL(�0; �0) = r1L + r2L, due to E0 = e0 = E01 + E
0
2, since

e0 = � (G (ln�0 +X�0 + �0") ; X)
T

= �
�
(1� �0)�1 ln�0 +G (X�0 + �0") ; X

�T
: (A.13)

The proof of (A.9) is essentially as in Newey (1988, Theorem 2.3), Robin-
son (2005, Theorem 1) (the weaker conditions in the latter reference being re-
�ected in Assumption 5). The only di¤erence is the triangular array struc-
ture in the �rst element of r2L. This makes no real di¤erence to the proof
that the ~ iL(�0; �0) can be replaced by the  ("i), whence n

� 1
2

P
i  ("i)E

0
2i !d

N
�
0; �20I


�
follows from a triangular-array central limit theorem (such as Lemma

A.2 of Lee, 2002).
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To prove (A.8), write

r1L = �0 (a1 + a2 + a3 + a4; 0)
T (A.14)

aj =
P
i

bji�in; j = 1; :::; 4; (A.15)

�in = "TGT (1i � ln=n) ; (A.16)

b1i =  ("i); (A.17)

b2i = � 
(L)
�
"i; a

(L)
�
�  ("i); (A.18)

b3i =  (L)
�
"i; â

(L)(")
�
� � (L)

�
"i; a

(L)
�
; (A.19)

b4i = ~ 
(L)

i (�0; �0)�  (L)
�
"i; ~a

(L)(")
�
; (A.20)

in which � 
(L) �

"i; a
(L)
�
= ��

(L)
(")Ta(L) (cf. (2.3)) and 1i is the ith column of In

De�ne

tijn = 1
T
j G

T (1i � ln=n) = 1Tj GT 1i �
P̀
1Tj G

T 1`=n; (A.21)

so that
�in =

P
j

tijn: (A.22)

Thus write
a1 =

P
i

 ("i) "itiin +
P
i

 ("i)
P
j 6=i

"jtijn: (A.23)

The absolute value of the �rst term has expectation bounded by

E j ("i)"ij
(P

i

��1Ti GT 1i��+P
i

P
j

��1Ti GT 1j�� =n
)
: (A.24)

For all i; j, Assumption 1 implies

1Ti G
T 1j = 1

T
j WS�11i = O(h

� 1
2

n ) (A.25)

uniformly. (Lee (2002, p.258) gives (A.25) for i = j.) Since the �rst factor in

(A.24) is bounded by
�
E 2("i)E"

2
i

	 1
2 <1 it follows that (A.24) = Op(n=hn).

The second term in (A.23) has mean zero and variance O(n=hn). The proof of
the latter statement is quickly obtained from that of Lemma A.1 of Lee (2002),
which covers

P
i

P
j "i"jtijn: we can replace "i by  ("i), noting

E ("i ("i)) = �
Z
sf 0(s)ds = E

�
"2i
�
; (A.26)

(by integration-by-parts), Assumption 3, and we omit "diagonal terms" i = j of
Lee�s (2002) statistic, to negligible e¤ect, thus implying that we do not require
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E
�
"2i ("i)

2
�
< 1, which would correspond to his condition E

�
"4i
�
< 1. It

follows that a1 = Op

�
n=hn + (n=hn)

1
2

�
= op(n

1
2 ).

Next write
a2 =

P
i

�
(L)
i "itiin +

P
i

�
(L)
i

P
j 6=i

"jtijn; (A.27)

where � (L)i = � 
(L) �

"i; a
(L)
�
� ("i). The square of the �rst term has expectation

bounded by

nE
�
�
(L)2
i

�P
i

t2iin; (A.28)

using the Schwarz inequality. The expectation in (A.28) remains �nite as L!
1, indeed it tends to zero (see Freud, 1971, pp.77-79), as is crucially used in
the proof of (A.9) (see Newey (1988, p.329)). From (A.25), the summands in
(A.28) are uniformly O(h�2n ). From Assumption 3, the second term of (A.27)
has mean zero and variance

P
i

E
�
�
(L)2
i

�
E

 P
j 6=i

"jtjin

!2
+
P
i

P
j

E
�
�
(L)
i "i

�
E
�
�
(L)
j "j

�
tjintijn: (A.29)

The �rst sum is O
�P

i

P
j t
2
jin

�
= O

�
n2=h2n

�
, while the second is

O

 P
i

E
�
�
(L)2
i

�
E"2i

P
j

t2jin

!
= O

 P
i

P
j

t2jin

!
= O

�
n2=h2n

�
(A.30)

also. We have shown that E(a22) = O(n2=h2n), whence a2 = op(n
1
2 ) from As-

sumption 1.
Since

P
i �in � 0, we deduce that

a3 =
n
â(L)(")� a(L)

oT P
i

��
(L)
("i)�in: (A.31)

Proceeding as before, writeP
i

��
(L)
("i)�in =

P
i

��
(L)
("i)"itiin +

P
j 6=i
��
(L)
("i)

P
j 6=i

"jtijn: (A.32)

As in Robinson (2005), introduce the notation

�c = 1 + E j"ij
c
; c � 0; (A.33)

and

�uL = CL; if u = 0; (A.34)

= (CL)uL=!; if u > 0 and Assumption 5(ii) holds, (A.35)

= CL; if u > 0 and Assumption 5(iii) holds, (A.36)
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suppressing reference to C in �uL. With k:k denoting (Euclidean) norm, the
squared norm of the �rst term on the right of (A.32) has expectation bounded
by

P
i

E
��(L)("i)2P

j

t2jjn � Cn2

h2n

LP̀
=1

E�2`("i)

� Cn2

h2n

LP̀
=1

�2�L

� Cn2

h2n
�2�L; (A.37)

using Assumption 4, and then Lemma 9 of Robinson (2005). The second term
of (A.32) has zero mean vector and covariance matrixP

i

E
n
��
(L)
("i)��

(L)
("i)

T
o P
j 6=i

t2ijn

+
P
i

P
j

E
n
��
(L)
("i)"i

o
E
n
��
(L)
("j)"j

oT
tijntjin; (A.38)

which from earlier calculations has norm O
�
n2�2�L=h

2
n

�
. ThusP

i

��
(L)
("i)�in

 = Op

 
n�

1
2

2�L

hn

!
: (A.39)

This is dominated by the bound for the corresponding expression in Robinson
(2005) - see the bottom of p.1820 and the bound top of p.1829, and note that
there was an n�

1
2 factor incorporated. From the rest of the proof for A31 in the

latter reference, it follows that a3 = op(n
1
2 ).

Now write �

a4 =
n
~a(L)(E=�0)� ~a(L)(")

oT P
i

�(L)("i)�in

+~a(L)(E=�0)
T P

i

n
�(L)(Ei=�0)� �(L)("i)

o
�in: (A.40)

By the mean value theorem, with �" = n�1
P

i "i,

�`(Ei=�0)� �`("i) = ��"�0`("i) +
1

2
�"2�00` ("

�
i )�"

2; (A.41)

where j"�i � "ij � jEi=�0 � "ij = j�"j. NowP
i

�0`("i)�in =
P
i

�
�0`("i)� E�0`("i)

	
�in: (A.42)

Proceeding much as before, and from Assumption 3 and (6.23) and Lemma

9 of Robinson (2005), this is Op
��
E�2`("i)

2
	 1
2 n=hn

�
= Op

�
`�

1
2

2�(`+K)n=hn

�
.
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Using j"�i j � j"ij + j�"j and the cr-inequality, and proceeding as in Robinson
(2005, p. 1822),����P

i

�
00

` ("
�
i )�in

���� � C�`+1`2
P
i

n
1 + j"ij�(`�1+2K) + j�"j�(`�1+2K)

o
j�inj : (A.43)

The Scwarz inequality gives

E j�inj � (E�2in)
1=2 � (

P
j

t2ijn)
1=2 � Cn1=2=hn; (A.44)

E(j"ij�(`�1+2K) j�inj) � C�
1=2
2�(`�1+2K)n

1=2=hn; (A.45)

uniformly in i:With �" = Op(n
�1=2); we deduce from the above calculations and

Lemma 9 of Robinson (2005) that����P
i

n
�(L)(Ei=�0)� �(L)("i)

o
�in

���� = Op(C
2�L+1L1=2�

1=2
2�Ln

1=2=hn): (A.46)

Comparison of this and (A.39) with the corresponding bounds in Robinson
(2005, p.1823) indicates that again the latter dominate, so that the rest of
the proof for A41 in the latter reference implies that a4 = op(n

1
2 ) (indeed the

remaining bounds needed are slightly better than those in Robinson (2005),
because of the long range serial dependence complications there).
This completes the proof of (A.8), which is by far the most di¢ cult and

distinctive part of the Theorem proofs, due both to the simultaneity problem
and the n

1
2 normalization. We thus omit the proof of (A.2)-(A.7), of which

indeed (A.4) is in Lee (2002). �
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Table 1
Monte Carlo Bias of OLS estimate of �0

�0 0.4 0.8
n 96 198 392 96 198 392

(a) 0.0436 0.0995 0.1397 0.1373 0.1289 0.1376
(b) 0.0704 0.1029 0.1336 0.1399 0.1296 0.1362
(c) 0.0743 0.1125 0.1384 0.1410 0.1297 0.1364
(d) 0.0414 0.1102 0.1337 0.1370 0.1305 0.1365
(e) 0.0738 0.1056 0.1337 0.1411 0.1295 0.1365

Table 2
Monte Carlo Bias of OLS estimate of �0

�0 0.4 0.8
n 96 198 392 96 198 392

(a) 0.0103 -0.0114 -0.0125 0.0155 -0.0434 -0.0291
(b) -0.0033 -0.0126 -0.0145 -0.0007 -0.0447 -0.0324
(c) -0.0058 -0.0061 0.0011 -0.0029 -0.0381 -0.0163
(d) 0.0041 -0.0147 -0.0151 0.0095 -0.0462 -0.0321
(e) 0.0067 0.0036 -0.0074 0.0091 -0.0272 -0.0243

Table 3
Relative Variance, Var(b�A)=Var(OLS), Bimodal Mixture Normal (b)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 1.0116 0.9978 0.9712 1.0499 1.1077 1.0492

4 0.3165 0.1395 0.1406 0.4688 0.5954 0.7249
1 1.8846 2.3580 2.4790 2.1239 2.2482 2.3935

2 2 1.4788 2.0466 2.0889 2.9373 4.3919 4.5746
4 0.2809 0.0894 0.0972 0.3306 0.4559 0.5405

Table 4
Relative MSE, MSE(b�A)=MSE(OLS), Bimodal Mixture Normal (b)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 1.0084 0.9958 0.9798 0.9737 0.9868 0.9884

4 0.3080 0.1223 0.1051 0.1395 0.0859 0.0644
1 1.9022 2.3733 2.4731 2.1503 2.3157 2.3996

2 2 1.4770 1.9917 2.0356 1.6565 1.8489 1.9748
4 0.2732 0.0773 0.0702 0.0795 0.0480 0.0358
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Table 5
Relative Variance, Var(b�A)=Var(OLS), Bimodal Mixture Normal (b)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 1.0009 0.9986 0.9961 1.0058 1.0077 0.9967

4 0.1822 0.1671 0.1453 0.2187 0.1965 0.1641
1 2.2720 2.4539 2.5556 2.1362 2.3412 2.4658

2 2 1.7792 2.0118 2.2734 1.7425 2.0080 2.2346
4 0.1163 0.1150 0.1109 0.1423 0.1303 0.1164

Table 6
Relative MSE, MSE(b�A)=MSE(OLS), Bimodal Mixture Normal (b)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 1.0011 0.9992 0.9960 1.0059 1.0096 0.9962

4 0.1823 0.1670 0.1444 0.2188 0.1934 0.1590
1 2.2720 2.4527 2.5587 2.1362 2.3333 2.4710

2 2 1.7804 2.0153 2.2745 1.7434 2.0073 2.2307
4 0.1163 0.1150 0.1102 0.1423 0.1282 0.1127

Table 7
Relative Variance, Var(b�A)=Var(OLS), Unimodal Mixture Normal (c)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.8428 0.8339 0.9142 1.6047 1.5192 1.4857

4 0.5876 0.5565 0.5257 1.5906 1.3757 1.4045
1 0.6517 0.5925 0.5392 1.2441 1.1066 1.0893

2 2 0.6763 0.5873 0.5417 1.4211 1.1593 1.1204
4 0.6813 0.6088 0.5495 1.4868 1.2822 1.2687

Table 8
Relative MSE, MSE(b�A)=MSE(OLS), Unimodal Mixture Normal (c)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.8215 0.7971 0.8826 0.6733 0.7395 0.8501

4 0.5736 0.5066 0.4587 0.5081 0.4072 0.3929
1 0.6371 0.5586 0.4922 0.5690 0.4938 0.4491

2 2 0.6581 0.5511 0.4909 0.5653 0.4846 0.4454
4 0.6639 0.5666 0.4909 0.5842 0.4877 0.4400
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Table 9
Relative Variance, Var(b�A)=Var(OLS), Unimodal Mixture Normal (c)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.7637 0.8297 0.9379 0.7717 0.8387 0.9377

4 0.5952 0.5535 0.5717 0.6033 0.5675 0.5765
1 0.6069 0.5739 0.5537 0.6233 0.5860 0.5596

2 2 0.6211 0.5777 0.5608 0.6339 0.5906 0.5659
4 0.6413 0.5854 0.5659 0.6495 0.6078 0.5728

Table 10
Relative MSE, MSE(b�A)=MSE(OLS), Unimodal Mixture Normal (c)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.7637 0.8295 0.9379 0.7717 0.8274 0.9364

4 0.5952 0.5532 0.5719 0.6033 0.5603 0.5737
1 0.6068 0.5736 0.5539 0.6232 0.5804 0.5575

2 2 0.6210 0.5773 0.5610 0.6339 0.5841 0.5637
4 0.6420 0.5852 0.5661 0.6503 0.6001 0.5704

Table 11
Relative Variance, Var(b�A)=Var(OLS), Laplace (d)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9508 0.9891 0.9861 1.0487 1.1435 1.0837

4 0.8036 0.7566 0.7855 1.0686 1.3116 1.3987
1 0.6927 0.6938 0.6990 0.8384 1.0125 1.0672

2 2 0.7034 0.7080 0.7039 0.8984 1.0898 1.1219
4 0.7464 0.6360 0.6049 1.1042 1.4822 1.7349

Table 12
Relative MSE, MSE(b�A)=MSE(OLS), Laplace (d)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9482 0.9800 0.9806 0.8952 0.9530 0.9711

4 0.7980 0.7372 0.7404 0.6839 0.6907 0.6776
1 0.6906 0.6787 0.6733 0.6631 0.6488 0.6357

2 2 0.6998 0.6870 0.6734 0.6412 0.6443 0.6318
4 0.7405 0.5946 0.5395 0.5899 0.5150 0.4590
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Table 13
Relative Variance, Var(b�A)=Var(OLS), Laplace (d)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9771 0.9653 0.9823 0.9843 0.9661 0.9828

4 0.8441 0.7839 0.7763 0.8609 0.7968 0.7861
1 0.7319 0.6929 0.6781 0.7439 0.7110 0.6909

2 2 0.7397 0.6955 0.6781 0.7583 0.7130 0.6914
4 0.7470 0.6471 0.6153 0.7864 0.6957 0.6436

Table 14
Relative MSE, MSE(b�A)=MSE(OLS), Laplace (d)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9773 0.9640 0.9826 0.9849 0.9609 0.9829

4 0.8446 0.7830 0.7765 0.8618 0.7904 0.7839
1 0.7322 0.6928 0.6788 0.7446 0.7092 0.6909

2 2 0.7400 0.6947 0.6794 0.7590 0.7087 0.6924
4 0.7477 0.6461 0.6171 0.7875 0.6867 0.6426

Table 15
Relative Variance, Var(b�A)=Var(OLS), Student t5 (e)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9598 0.8858 0.9760 1.3243 0.9844 1.1553

4 0.9225 0.7550 0.8714 1.5289 1.1056 1.4613
1 0.7993 0.7593 0.8510 1.2130 1.0426 1.3446

2 2 0.8270 0.7716 0.8487 1.4044 1.0608 1.3821
4 0.9127 0.7722 0.8678 1.7733 1.1332 1.5380

Table 16
Relative MSE, MSE(b�A)=MSE(OLS), Student t5 (e)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9497 0.8930 0.9674 0.8999 0.9239 0.9471

4 0.9084 0.7553 0.8017 0.8251 0.7681 0.7261
1 0.7910 0.7555 0.7848 0.7713 0.7502 0.7123

2 2 0.8156 0.7645 0.7834 0.7780 0.7486 0.7117
4 0.9025 0.7690 0.7942 0.8355 0.7675 0.7154
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Table 17
Relative Variance, Var(b�A)=Var(OLS), Student t5 (e)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9188 0.9485 0.9690 0.9245 0.9508 0.9694

4 0.8735 0.8558 0.8035 0.8786 0.8646 0.8098
1 0.8240 0.8178 0.7820 0.8285 0.8240 0.7930

2 2 0.8385 0.8318 0.7841 0.8507 0.8403 0.7942
4 0.9431 0.8807 0.7882 0.9446 0.8862 0.8002

Table 18
Relative MSE, MSE(b�A)=MSE(OLS), Student t5 (e)

�0 0.4 0.8
� L�n 96 198 392 96 198 392

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 2 0.9187 0.9485 0.9694 0.9244 0.9504 0.9703

4 0.8733 0.8557 0.8045 0.8785 0.8630 0.8112
1 0.8239 0.8178 0.7830 0.8284 0.8226 0.7944

2 2 0.8383 0.8318 0.7853 0.8506 0.8384 0.7957
4 0.9428 0.8811 0.7891 0.9441 0.8825 0.8000

Table 19
Relative Variance and MSE of b�B , Bimodal Mixture Normal (b), �0 = 0:4

Var
� L�n 96 198 392

1 0.0697 0.1392 0.1263
1 2 0.0859 0.1615 0.1363

4 0.0878 0.1091 0.1179
1 0.8665 1.2386 1.1801

2 2 1.0812 1.7573 1.8766
4 0.1001 0.0810 0.0911

MSE
96 198 392

1.0148 1.7253 2.1979
0.9207 1.6213 2.1001
0.1195 0.1375 0.1265
6.5737 12.9658 18.5581
3.9639 8.9420 13.9850
0.1225 0.0986 0.0903

Table 20

Relative Variance and MSE of b�B , Bimodal Mixture Normal (b), �0 = 0:4
Var

� L�n 96 198 392

1 0.9205 1.0670 1.0146
1 2 0.9244 1.0629 1.0105

4 0.1752 0.1693 0.1447
1 2.0524 2.8491 2.7023

2 2 1.6370 2.3079 2.3982
4 0.1141 0.1161 0.1106

MSE
96 198 392

0.9322 1.0723 1.0082
0.9368 1.0664 1.0041
0.1761 0.1689 0.1443
2.1118 2.9154 2.6935
1.6769 2.3323 2.3881
0.1145 0.1158 0.1100
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Table 21
Relative Variance and MSE of b�B , Unimodal Mixture Normal (c), �0 = 0:4

Var
� L�n 96 198 392

1 0.7767 0.4680 0.4227
1 2 0.8157 0.5126 0.4754

4 0.7426 0.5508 0.5250
1 1.1995 0.6172 0.5276

2 2 1.1122 0.6027 0.5278
4 0.7258 0.5139 0.4919

MSE
96 198 392

2.7241 2.3638 2.6039
2.1939 1.8923 2.2458
1.6199 1.2681 1.2840
2.3637 1.3202 1.1512
2.2021 1.2739 1.1342
1.4882 1.0777 1.0517

Table 22
Relative Variance and MSE of b�B , Unimodal Mixture Normal (c), �0 = 0:4

Var
� L�n 96 198 392

1 0.9455 1.0254 1.0339
1 2 0.7365 0.8505 0.9685

4 0.5785 0.5561 0.5835
1 0.5926 0.5783 0.5687

2 2 0.6057 0.5824 0.5760
4 0.6272 0.5861 0.5796

MSE
96 198 392

0.9653 1.0421 1.0435
0.7498 0.8725 0.9771
0.5873 0.5653 0.5888
0.6028 0.5884 0.5737
0.6153 0.5925 0.5810
0.6386 0.5960 0.5845

Table 23
Relative Variance and MSE of b�B ; Laplace (d), �0 = 0:4

Var
� L�n 96 198 392

1 0.1770 0.2231 0.2026
1 2 0.1863 0.2444 0.2184

4 0.2149 0.2834 0.2738
1 0.2879 0.2528 0.2259

2 2 0.2691 0.2556 0.2287
4 0.2093 0.3239 0.3242

MSE
96 198 392

1.2049 1.7983 2.2863
1.0836 1.6848 2.1825
0.8740 1.2912 1.6059
0.8644 1.0467 1.1708
0.8038 1.0129 1.1459
0.6072 0.9021 1.0168

Table 24
Relative Variance and MSE of b�B ; Laplace (d), �0 = 0:4

Var
� L�n 96 198 392

1 0.9210 1.0588 1.0240
1 2 0.9092 1.0219 1.0043

4 0.7942 0.8188 0.7880
1 0.6809 0.7219 0.6865

2 2 0.6929 0.7224 0.6876
4 0.7114 0.6687 0.6191

MSE
96 198 392

0.9297 1.0609 1.0168
0.9151 1.0255 0.9972
0.7973 0.8203 0.7824
0.6842 0.7219 0.6817
0.6956 0.7231 0.6829
0.7124 0.6688 0.6152
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Table 25
Relative Variance and MSE of b�B , t5 (e), �0 = 0:4

Var
� L�n 96 198 392

1 0.2615 0.2276 0.2236
1 2 0.2874 0.2411 0.2736

4 0.2938 0.2795 0.3410
1 0.4448 0.3012 0.3692

2 2 0.4248 0.3042 0.3742
4 0.3506 0.3015 0.3655

MSE
96 198 392

1.9481 1.8278 2.3424
1.7639 1.6659 2.1911
1.4688 1.3963 1.8408
1.7832 1.3997 1.7493
1.6570 1.3534 1.7110
1.2127 1.1610 1.5755

Table 26
Relative Variance and MSE of b�B ; t5 (e), �0 = 0:4

Var
� L�n 96 198 392

1 0.9216 1.0587 1.0305
1 2 0.8496 0.9941 0.9974

4 0.8151 0.8931 0.8237
1 0.7657 0.8614 0.7983

2 2 0.7822 0.8730 0.8019
4 0.8860 0.9198 0.8068

MSE
96 198 392

0.9300 1.0817 1.0305
0.8572 1.0156 0.9969
0.8221 0.9098 0.8228
0.7726 0.8782 0.7974
0.7894 0.8890 0.8009
0.8922 0.9371 0.8058
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