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Abstract: I show how to identify and estimate the average partial effect

of explanatory variables in a model where unobserved heterogeneity

interacts with the explanatory variables and may be unconditionally

correlated with the explanatory variables. To identify the population-

averaged effects, I use extensions of ignorability assumptions that are

used for estimating linear models with additive heterogeneity and for

estimating average treatment effects. New estimators are obtained for

estimating the unconditional average partial effect as well as the average

partial effect conditional on functions of observed covariates.



1. INTRODUCTION

Estimating the partial (or ceteris paribus) effect of an explanatory

variable on a response variable is fundamental in the empirical social

sciences. If we assume that all explanatory variables are exogenous, and

that the response variable has a conditional expectation linear in functions

of the explanatory variables, then partial effects are easily estimated by

ordinary least squares.

If the structural equation contains unobserved heterogeneity that is

correlated with the explanatory variable of interest, consistent estimation

becomes more difficult. As a shorthand, I refer to the explanatory variable

as an "endogenous explanatory variable" (EEV) when it is correlated with

unobserved heterogeneity. When the partial effect of the EEV is constant, or

depends only on observed exogenous variables, two single equation approaches

have been used. The first is to find an instrumental variable (IV) for the

EEV and use standard IV methods. This approach has been applied in a variety

of contexts. When the endogenous explanatory variable is binary -- as is

usually the case in the treatment effect literature -- the model is typically

called the dummy endogenous variable model (Heckman (1978)).

A second approach -- which is sometimes only implicit -- is to find

proxy variables for the unobserved heterogeneity and include these in an OLS

regression. The hope is that, by including many controls in the regression,

the partial effect of the variable of interest can be consistently estimated.

An example of this approach is Barnow, Cain, and Goldberger (1980). When the

EEV is binary and denotes program participation, Heckman and Robb (1985) call

the assumptions underlying this approach "selection on observables."
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Identification and estimation become more complicated when the partial

effect depends on unobserved heterogeneity. A simple, but useful, case is

when the endogenous explanatory variable interacts with heterogeneity in a

model linear in the parameters. In this case, the focus is typically on

estimating the average partial effect (APE), which is the partial effect

averaged across the population distribution of the unobserved heterogeneity.

A popular model where the endogenous explanatory variable interacts with

unobserved heterogeneity is the switching regression model (for example,

Maddala (1983) and Heckman and Honoré (1990)), which has received

considerable attention recently in the program evaluation literature. The

EEV in this case is binary, and often represents participation in a program,

in which case the average partial effect is called the average treatment

effect (ATE). When an instrumental variable is available for selection into

the program, two IV methods have been suggested. Angrist (1991) derives

conditions under which the usual IV estimator consistently estimates the ATE;

the key condition is that the probability of participation, conditional on

the exogenous variables and unobserved heterogeneity, as additive in these

two components. Angrist also shows, via simulation, that even when this

assumption does not hold the bias in the standard IV estimator for estimating

the ATE can be small.

The more traditional approach that requires instrumental variables

assumes a parametric model for the participation equation, usually a probit

model (which is not additive in the exogenous variables and unobserved

heterogeneity). After estimation of the probit model, inverse Mills ratio

terms are added to the main regression to correct for endogeneity of program

participation. See, for example, Maddala (1983). For a recent review of IV
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approaches, see Heckman (1997) and Vella and Verbeek (1999).

When the endogenous explanatory variable is continuous, Garen (1984)

proposed an estimation method that consistently estimates the average partial

effect when the EEV interacts with unobserved heterogeneity. Garen assumes

that at least one instrumental variable is available for the endogenous

explanatory variable, and that the EEV has a homoskedastic normal

distribution with linear conditional expectation, given the full set of

exogenous variables. Wooldridge (2003a) shows that the usual IV estimator

that leaves the interaction between the EEV and unobserved heterogeneity in

the error term consistently estimates the APE under substantially weaker

assumptions than imposed by Garen, but a constant conditional covariance

assumption between the EEV and the heterogeneity is still used.

In the binary treatment case, an alternative to instrumental variables

is based on the propensity score -- which is the probability of treatment

conditional on some covariates -- pioneered by Rosenbaum and Rubin (1983). A

key assumption in this method is that the potential outcomes are independent

of the treatment conditional on the set covariates. Rosenbaum and Rubin call

this the ignorability of treatment assumption. Under this assumption --

along with the assumption that the propensity score is strictly between zero

and one for all covariate outcomes -- Rosenbaum and Rubin (1983) show that

the ATE is identified, and they discuss estimation strategies based on the

estimated propensity score. The Rosenbaum and Rubin approach works when the

treatment depends on unobserved heterogeneity; in fact, except for the

counterfactual responses, Rosenbaum and Rubin do not even introduce

unobservables explicitly. Recently, Heckman, Ichimura, and Todd (1997) (HIT

(1997) for short) and Dehejia and Wahba (1999) have shown how to use the
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propensity score approach in economic applications, particularly in the

evaluation of job training programs.

In this paper I derive conditions under which the APE is identified in a

model where an endogenous explanatory variable interacts with unobserved

heterogeneity. The EEV can be discrete or continuous, or have both features.

The model and accompanying assumptions extend models with constant partial

effects under control function specifications, as well as the switching

regression model under the strong ignorability of treatment assumption. The

unified approach leads to new estimators of the APE in the treatment effect

case, as well as new estimators of the APE in cases with non-binary

treatments.

Section 2 presents the model with a single EEV and establishes

identification of the APE conditional on a set of covariates. In fact, the

conditional APE is identical to a certain conditional linear projection

(which is defined in Section 2). This implies identification of the

unconditional APE. Section 3 shows how to estimate the unconditional APE.

This requires estimation of the first two moments of the EEV given the full

set of covariates. I also show that, under particular assumptions concerning

the first two conditional moments of the EEV given the observed covariates,

the standard "kitchen sink" regression that suggests itself from the control

function literature consistently estimates the unconditional APE.

In Section 4 I show how my setup and results relate to the average

treatment effect literature.

Section 5 shows how to estimate an APE conditional on some function of

covariates under linearity assumptions on the CAPE.

Section 6 shows how the assumptions and approach generalize to the case
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of a vector of EEVs, and Section 7 contains an application to estimating the

effect of attendance on course performance. Section 8 contains caveats and

suggestions for future research.

2. THE MODEL AND IDENTIFICATION

Let y be a response variable and w be the explanatory variable of

interest. We are interested in estimating the effect of w on y in the

structural model

E(y|w,c) = a + bw (2.1)

where c _ (a,b) and a and b may depend on observable heterogeneity and

unobservable heterogeneity. To emphasize the individual-specific nature of

the intercept and slope, we can write, for a random draw i from the

population,

E(y |w ,c ) = a + b w . (2.2)i i i i i i

Thus, the model is a simple regression model but with individual-specific

intercept and slope. Importantly, c may contain observed covariates as welli

as unobservabed heterogeneity. The intercept and slope depend on c but noti

on w . For most purposes, the population version of the model in (2.1) isi

most convenient to work with.

By specifying a model for E(y|w,c) we are interested in estimating the

effect of w on the expected value of y, holding the elements in c fixed.

When b depends on unobserved heterogeneity, (2.1) is similar to a standard

random coefficient model, except that we are not specifying how b depends on

either oberved or unobserved heterogeneity. In addition, we do not assume

that c and w are independent, so that b and w are generally correlated.
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(Heckman and Vytlacil (1998) call the model where b is allowed to be

correlated with w the correlated random coefficient model.)

Because b is not constant, and can depend on unobservables, a key

question is: What can we hope to estimate? An important parameter is the

average partial effect (APE) across the entire population:

b _ E(b) _ E(b ). (2.3)i

(For emphasis, we will also call b the unconditional APE, or the UAPE.) The

APE in the population is the focus in the early average treatment effect

literature for binary treatments (Rosenbaum and Rubin (1983)) and continues

to be the focus among some researchers (for example Robins and Greenland

(1996) and Manski (1996)). Especially when the population is restricted in

some sense -- for example, the population might be people with a particular

illness who are eligible for some treatment, or low income people who might

be eligible for job training or subsidized education -- the average effect in

the population can be of considerable interest. (When w represents a binary

treatment, other effects of interest are the average effect of the treatment

on the treated -- see, for example, Heckman (1997) and HIT (1997) -- and the

local average treatment effect -- see Imbens and Angrist (1994) and Angrist,

Imbens, and Rubin (1996). I do not consider those here.)

In many cases we may want to estimate the average effect conditional on

observable covariates. For example, if we are estimating the effect of

another year of education on earnings, we may want to estimate the effect for

low ability people, where ability is measured by test scores (such as IQ).

Or, in evaluating the effects of a job training program, it makes sense to

estimate the effect for low income people -- those people who are likely to

be eligible for such programs in the future.
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It turns out that, if we have a set of covariates, x, that are, in a

precise sense, good predictors of treatment, then we can identify the average

partial effect conditional on x:

E(b|x). (2.4)

(We will call (2.4) a conditional APE, or CAPE, for short.) Because x is

observed, identifiability of (2.4) implies that the UAPE, and APEs

conditional on any subset of x, are identified.

The sense in which the elements of x are suitable proxy variables for c

is given by two assumptions. The first is a redundancy assumption in the

structural conditional expectation:

ASSUMPTION 2.1 The vector x is redundant (or ignorable) given w and c:

E(y|w,c,x) = E(y|w,c) = a + bw. ) (2.5)

The second assumption is a redundancy condition on the heterogeneity in the

first two conditional moments of w:

ASSUMPTION 2.2: In the first two conditional moments of w, c is redundant

given x: (i) E(w|c,x) = E(w|x); (ii) Var(w|c,x) = Var(w|x). )

In the traditional proxy variable setup, the first equality in equation (2.5)

is essentially for free. For example, suppose that y = log(wage), w is

education, and (a,b) are functions of observed productivity characteristics

-- such as experience and job tenure -- and unobserved factors that affect

productivity -- such as "ability" and "motivation." The elements of x would

contain observed productivity factors, such as experience and tenure, but

7



also observed proxies for ability and motivation, such as IQ or other test

scores, and family background variables. Then the first part of (2.5) means

that, once the appropriate productivity factors -- including unobserved

ability and motivation -- are controlled for, proxies for ability do not

appear in (2.5). This essentially defines what we mean by "ability" and

"motivation" in a wage equation.

In some cases, a restrictive feature of Assumption 2.1 is the linearity

in conditional expectation in the treatment variable, w (unless w is binary).

It turns out that the conditional mean assumption can be replaced by an

assumption about a conditional linear projection, which I define later. The

conditional expectation version is more natural and gives the equation a

structural interpretation, and I will mostly focus on it.

As we will see in Section 4 when we discuss the binary treatment case,

Assumption 2.1 follows under an "ignorability of treatment" assumption, in

the conditional mean sense.

Assumption 2.2 is a conditional moment independence assumption: the

first two moments of w given (c,x) do not depend on c = (a,b). Effectively,

we need the elements of x to be good enough predictors of w. (Of course,

when c and x overlap -- as they would in most applications -- these

overlapping elements are allowed to show up in E(w|x) and Var(w|x).)

In the common coefficient case, where b = b (a constant), Assumption 2.2

can be weakened. It is sufficient to assume that the linear projection of w

on a and x depends only on x; this is similar to Barnow, Caine, and

Goldberger (1980), who make the same assumption based on linear conditional

expectations. When b is not constant, we generally need a stronger

assumption, such as that in Assumption 2.2.
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A different approach is to assume that w is redundant in E(a|w,x) and

E(b|w,x), and then to work off of E(y|w,x). When redundancy is stated in

terms of linear projections and b is constant, there is no difference in the

two approaches. Or, if we assume that w and c are independent conditional on

x, both sets of redundancy conditions are implied. Generally, however,

Assumption 2.2 is different from assuming redundancy of w in E(a|w,x) and

E(b|w,x).

I prefer to state the redundancy (or ignorability) conditions as in

Assumption 2.2 for a couple of reasons. First, because a and b are

unobserved, we have no guidance for modeling E(a|x) and E(b|x). While a

nonparametric approach can be adopted, that would be more difficult than an

approach based on Assumption 2.2, as we will see in Section 3. Second, using

Assumption 2.2, we will be able to obtain fairly straightforward estimators

of b (as well as the APE conditional on covariates in Section 5). Third, we

will be able to determine when an OLS regression with sufficient controls

consistently estimates b.

In the context of policy evaluation, x typically contains information on

previous y outcomes as well as other characteristics prior to some baseline

date. Then Assumption 2.2 has a natural interpretation: participation in a

program (or amount of participation) is determined by past observable

outcomes and characteristics. Conditional on these covariates, the

unobserved heterogeneity no longer matters in determining treatment, w.

In order to show that Assumptions 2.1 and 2.2 identify the APE

conditional on x, we introduce the following definition.
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DEFINITION 2.1: The linear projection of y on w, conditional on x, is

defined by

L(y|w;x) = a(x) + b(x)w, (2.6)

where

b(x) _ Cov(w,y|x)/Var(w|x) (2.7)

and

a(x) = E(y|x) - b(x)E(w|x). (2.8)

For short, we say that (2.6) is the CLP of y on w, given x. )

A conditional linear projection is similar to the unconditional linear

projection. The only difference is that the expectations, variance, and

covariance are conditional on x. Wooldridge (1999) uses CLPs to obtain

estimating equations for multiplicative, unobserved effects panel data models

under conditional mean, variance, and covariance assumptions.

We can now state the main identification result.

PROPOSITION 2.1: Under Assumptions 2.1 and 2.2, E(b|x) is the slope

coefficient in the CLP of y on w, given x.

PROOF: Let m(x) _ E(w|x) and w(x) _ Var(w|x). By Assumption 2.2, these also

are also the moments conditional on (c,x). Now, b(x) in (2.7) can be written

as

b(x) = E[(w - m(x))y|x]/w(x). (2.9)

Under Assumption 2.1 we can write

y = a + bw + u, E(u|w,c,x) = 0. (2.10)

Therefore,
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(w - m(x))y = (w - m(x))a + b(w - m(x))w

+ (w - m(x))u. (2.11)

By (2.10), the third term on the right hand side of (2.11) has zero

expectation conditional on x. By Assumption 2.2, the first term also has

zero expectation conditional on x because E[(w - m(x))|x,a] = 0. Therefore,

taking the expectation of (2.11) conditional on x gives

E[(w - m(x))y|x] = E[E{bW(w - m(x))w|c,x}|x]

= E[bWE{(w - m(x))w|c,x}|x]

= E[bWVar(w|x)|x] = E(b|x)w(x).

It follows that E(b|x) is equal to (2.9) provided that w(x) > 0. This

completes the proof. )

It is easy to see that E(a|x) is in fact the intercept in the CLP of y on w

given x, but we will not use this fact. Also, the same result holds if we

replace Assumption 2.1 with the assumption that x is redundant in a CLP

rather than the conditional expectation: L(y|w;c,x) = L(y|w;c) _ a + bw,

where the last expression just defines L(y|w;c) = L(y|w;a,b). The proof goes

through because if u in (2.10) is defined as the conditional linear

projection error, we still have E(u|c,x) = 0 and E(wu|c,x) = 0 (see

Wooldridge (1999, Lemma 4.1)). These imply that the last term in (2.11)

still has zero mean conditional on x; the other terms are not affected.

Because y, w, and x are, by assumption, observable, we can estimate

Cov(w,y|x) and Var(y|x) consistently given a random sample from the relevant

population. Therefore, E(b|x) is identified -- in a nonparametric sense --

and it follows by iterated expectations that E[b|q(x)] is identified for any

known function q(W) of x. In many cases, we might choose q(x) to be a low-
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dimensional function of x -- maybe a scalar function, or even a binary

indicator. For example, in a job training evaluation, we may want to

estimate the APE for people whose pre-training earnings are below a certain

threshold (in which case q(x) would simply be a binary indicator for pre-

training earnings being below the appropriate threshold). Or, we might

choose q(x) to be a set of mutually exclusive, exhaustive binary indicators

for pre-training income levels, in which case we are estimating an average

treatment effect for each income class.

It also follows that the unconditional APE, b _ E(b), is identified

under Assumptions 2.1 and 2.2, provided we have a random sample. We now turn

to estimation of b.

3. ESTIMATING THE UNCONDITIONAL APE

3.1. Estimation Under Random Sampling

Proposition 2.1 implies that, given a random sample, we can consistently

estimate the UAPE by estimating the CLP of y on w, given x, and then

averaging across x. This procedure turns out to be more complicated than

necessary. We can estimate b by estimating E(w|x) and Var(w|x) only.

PROPOSITION 3.1: Under Assumptions 2.1 and 2.2,

b = E{[w - m(x)]y/w(x)}. (3.1)

PROOF: From Proposition 2.1, E(b|x) = E{[w - m(x)]y/w(x)|x}, and so the

result follows by iterated expectations: b = E[E(b|x)] = E{[w -
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m(x)]y/w(x)}. )

Equation (3.1) suggests a simple estimation strategy, given a random

sample on (y,w,x). The difficulty is in estimating E(w|x) and Var(w|x), but

^ ^
consistent estimation is possible very generally. Let m(x) and w(x) be

consistent estimators of the conditional mean and variance functions. Then,

under weak conditions, a consistent estimator of b is

^
n [w - m(x )]y^ -1 i i ib = n S --------------------------------------------------------------------. (3.2)

^i=1 w(x )i

^
Estimating the asymptotic variance of b is complicated by the estimation of m

^
and w. When m and w are parametric models, the asymptotic variance of b can

be obtained by the delta method, which is conveniently implemented using the

method of moments approach in Newey and McFadden (1994). Bootstrapping

methods can also be readily applied.

In many cases the nature of w will suggest plausible functional forms

for E(w|x) and Var(w|x). When w is roughly continuous, E(w|x) = xR and

2
Var(w|x) = t may be reasonable assumptions; x can be augmented with squares,

cross products, and other nonlinear functions. When w is a count variable,

2
E(w|x) = exp(xR) and Var(w|x) = s exp(xR) are standard assumptions from the

generalized linear models literature. When w is continuous and nonnegative,

2 2
popular assumptions are E(w|x) = exp(xR) and Var(w|x) = t [exp(xR)] . A more

flexible approach that encompasses both the count and nonnegative continuous

cases is E(w|x) = exp(xR) and Var(w|x) = exp(xL), where L varies freely from

R. A variety of estimation methods can be used for all of these models,

including maximum likelihood, quasi-maximum likelihood, nonlinear least

squares, and generalized method of moments.
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When w is a binary variable -- for example, representing treatment or

program participation -- the framework is essentially the same as Rosenbaum

and Rubin (1983) (RR for short). Once we model the propensity score, P(w =

1|x), we have E(w|x) and Var(w|x). RR suggest using a flexible logit model.

We study the relationship between the current setup and the treatment effect

literature in the next section.

There are many other consistent estimators of b under Assumptions 2.1

and 2.2. For example, define a weighted population residual, r, by

r _ [w - m(x)]/w(x). (3.3)

(Notice that r is divided by Var(w|x), not the conditional standard

1/2
deviation, [Var(w|x)] ; thus, r is not what is usually called a

"standardized" or "Pearson" residual.) Two useful facts about r follow from

Assumption 2.2:

E(r|c,x) = [E(w|c,x) - m(x)]/w(x) = 0 (3.4)

and

E(rWw|c,x) = E[(w - m(x))w|c,x]/w(x) = Var(w|c,x)/w(x) = 1. (3.5)

Equation (3.5), along with Proposition 3.1, implies that

b = E(rWy)/E(rWw). (3.6)

Interesting, the formula in (3.6) is the population analog of an instrumental

variables estimator, where r is the instrument for w. Therefore, we can use

as an estimator of b the IV estimator the equation

y = bw + e, (3.7)

where r is used as an IV for w. Naturally, we operationalize the approach by

defining

^ ^ ^
r _ [w - m(x )]/w(x ). (3.8)i i i i

Estimating b by applying IV to (3.7) should be viewed merely as a
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computational devise. The IV, r, is constructed under the ignorability

assumptions in Assumption 2.2, and does not come from the usual kind of

exogeneity and exclusion restrictions that are used to obtain IVs.

Nevertheless, the label "IV estimator" is a convenient one.

Because of (3.4) -- which implies that r is uncorrelated with any

function of x -- in (3.2) we can subtract off any function of x from y, for

example an estimate of E(y|x). In fact, we can construct an entire class of

estimators for b that are conveniently obtained as instrumental variables

estimators. To define the estimators, we start with (3.7), where e _ (b -

b)w + a + u. Under Assumption 2.1, r is uncorrelated with u [because

E(u|w,c,x) = 0 and r is a function of (w,x)]. Assumption 2.2 implies that r

and a are uncorrelated, and that

E[rW(b - b)w] = E{E[rW(b - b)w|c,x]}

= E[E(rWw|c,x)(b - b)] = E(b - b) = 0, (3.9)

where the second to last equality follows from (3.5). Therefore, E(rWe) = 0.

Now, for any row vector function g(x) of x (including a constant), write the

linear projection of e on g(x) in error form as

e = g(x)Q + v, E[g(x)’v] = 0. (3.10)

Substituting this into (3.7) gives the equation

y = bw + g(x)Q + v. (3.11)

Because E(r|x) = 0 and r is uncorrelated with e, r is uncorrelated with v;

g(x) is uncorrelated with v by definition of a linear projection. Therefore,

the vector [r,g(x)] is a valid set of instruments for equation (3.11).

Because E(rWw) = 1, these instruments clearly satisfy the property that they

are sufficiently correlated with the explanatory variables.

Generally, w is correlated with v, and so OLS estimation of (3.11) does
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not consistently estimate b. We provide conditions below under which OLS

estimation of (3.11) does consistently estimate b.

^
It is not clear that obtaining b as an IV estimator from (3.11) is any

better than just using (3.2). Including g(x) in (3.11) may help in that it

reduces the error variance, but the efficiency question is complicated by the

need to estimate m and w.

One apparent advantage of using the IV version of the estimator is only

superficial. Namely, using IV software immediately provides us with a

^
standard error for b. Unfortunately, the usual IV standard error, or even

that made robust to heteroskedasticity, is not generally asymptotically

valid: the conditions under which we can ignore estimation error in the

instruments are not met in equation (3.11). Provided the models for E(w|x)

-----
and Var(w|x) are correctly specified, the IV estimator is rn-consistent and

asymptotically normal under Assumptions 2.1 and 2.2. It is likely that this

is generally true when fully nonparametric procedures are used for E(w|x) and

Var(w|x), but establishing sufficient conditions, along with estimable

asymptotic variances, are topics for future research.

An interesting question is: when does a standard linear regression,

using x and functions of x as controls, produce a consistent estimator of b?

Such regressions are suggested by the standard econometric practice of

including numerous controls, in a flexible way, to estimate the causal effect

of a single explanatory variable. Informally, such regressions are called

"kitchen sink regressions." The next proposition is very useful for

determining when other estimators available in the literature are consistent

for b.
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PROPOSITION 3.2: Under Assumptions 2.1 and 2.2, assume that Var(w|x) _ w(x)

is uncorrelated with b. Then

2b = E[(w - m(x))y]/E[(w - m(x)) ]. (3.12)

PROOF: Write y as in (3.7), with e = (b - b)w + a + u, and multiply through

by w - m(x). Taking expectations and using the fact that w - m(x) is

uncorrelated with a (under Assumption 2.2) and u (under Assumption 2.1) gives

2
E[(w - m(x))y] = bE[(w - m(x)) ] + E[(b - b)((w - m(x))w].

The last term can be written as

E[(b - b)E{(w - m(x))w|c,x}] = E[(b - b)w(x)],

where w(x) = E[(w - m(x))w|c,x] under Assumption 2.2. It follows immediatly

that, if w(x) is uncorrelated with b, then

2
E[(w - m(x))y] = bE[(w - m(x)) ],

2
which completes the proof under the minor assumption E[(w - m(x)) ] > 0. )

Equation (3.12) shows that, under Assumptions 2.1, 2.2, and the added

assumption that Var(w|x) uncorrelated with b, the APE b is the coefficient on

w in the population regression of y on w and m(x); this follows by the usual

partialling out interpretation of linear projections, where we first partial

^
out m(x) from w. Given a consistent estimator m of m, a consistent estimator

of b is obtained from

^y on w , m(x ), i = 1,...,n.i i i

Robinson’s (1988) approach to estimating partial linear models can be used to

obtain an estimator with a straightforward asymptotic variance: regress y -i

^ ^
E(y |x ) on w - E(w |x ), where the conditional expectations can bei i i i i

estimated by a variety of methods. However, the previous analysis shows that
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consistency of Robinson’s estimator for b hinges on the assumption that w(x)

is uncorrelated with b.

Proposition 3.2 has an immediate corollary:

COROLLARY 3.1: Suppose that E(w|x) = g(x)D and Var(w|x) is uncorrelated with

b. Then the coefficient on w in the OLS regressioni

y on w , g(x ) (3.13)i i i

is a consistent estimator of b.

PROOF: This follows from equation (3.12). By the partialling out result for

linear projections, if E(w|x) = g(x)D = L[w|g(x)], then the plim of the OLS

~ 2
estimator, say b, is E{[w - g(x)D]y}/E{[w - g(x)D] } = E{[w - m(x)]y}/E{[w -

2m(x)] }. )

Corollary 3.1 is somewhat surprising. It shows that, even if b is not

constant in the structural model (2.1), and even though it may be correlated

with x, a standard "kitchen sink" regression consistently estimates the

population average, E(b), whenever E(w|x) is linear in the functions of x

that appear in the regression, and Var(w|x) is uncorrelated with b.

2
Sufficient for the latter condition is Var(w|x) = t . A nice feature of

regression (3.13) is that valid standard errors are easy to obtain: the

^
usual heteroskedasticity-robust standard error of b is valid. As is well-

known, if E(w|x) has enough smoothness, it can be approximated arbitrarily

well by models of the form g(x)D provided g(x) is chosen appropriately.

If we were to actually impose homoskedasticity in estimating Var(w|x),

then the OLS estimator from (3.13) is algebraically identical to the IV
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estimate applied to (3.11), with

^ ^
r = w - g(x )R, (3.14)i i i

^
where R is from the OLS regression w on g(x ). (There is no need to dividei i

^2
by the variance estimate, t , as it cancels out in the formula.) The proof

is a straightforward exercise in least squares mechanics. One practical

implication is that, because the usual heteroskedasticity-robust standard

errors from (3.13) are valid under the assumptions of Corollary 3.1, the

standard errors obtain from the IV approach in the general case may be

roughly valid for modest forms of heteroskedasticity.

In the general case, the form of the estimator of b makes it clear that

different ways of estimating m and w can lead to similar estimates of b. If

^ ^ ^ ~ ~ ~
r _ [w - m(x )]/w(x ) and r _ [w - m(x )]/w(x ) are similar for all ii i i i i i i i

(where "^" and "~" denote two different esimators of the conditional mean,

E(w|x), and the conditonal variance, Var(w|x)), then the estimates of b will

be similar. Flexible methods for estimating m and w can lead to similar

fitted values, in which case we do not expect very different estimates of b.

However, the choice between a global method -- such as series regressions --

and a local method -- such as polynomial splines -- may lead to different

mean and variance estimates.

If E(w|x) is well-approximated by g(x)R and Var(w|x) is roughly

constant, a kitchen sink regression will give estimates similar to more

complicated ways of estimating r. We can use a Hausman (1978) test to

formally compare the kitchen sink estimate of b to either (3.2) or to an IV

estimate obtained from (3.11). Because OLS is not necessarily relatively

efficient under the assumptions made, the traditional form of the Hausman

^
test is not always valid. A simple test is to add r to the kitchen sinki
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regression (3.13) and do a heteroskedasticity-robust t test. (Naturally, if

^
r is constructed as in (3.14), there is nothing to test.)i

3.2. Sample Selection Issues

The previous analysis assumes that we have a random sample from the

relevant population. Sometimes, due to sample selection or missing data, we

may not have a random sample. Before we discuss conditions under which

sample selection does not affect consistency of the estimators in Section

3.1, it is important to know what does not constitute a sample selection

problem.

In model (2.1), we are free to specify the underlying population, a

point that is important because the unconditional APE depends on how the

population is defined. For example, we may want to estimate the effect of

hours in a job training program for workers with low pre-training earnings.

If (2.1) holds for all workers, and previous earnings are contained in x,

then it holds for low wage workers in particular. Or, if we want to estimate

the return to education for those with no more than a high school education,

(2.1) holds in the subpopulation if it holds for the population of all

workers.

Selecting the population of interest based on w may appear to be a

problem for satisfying Assumption 2.2. However, if we strengthen Assumption

2.2 and assume that w and c are independent conditional on x, then w and c

are independent conditional on x in a subsample determined by w (such as w <

12, if w is highest grade completed). Of course, the conditional mean and

variance of w given x will depend on the subpopulation, but these can be
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estimated quite generally. We assume that, once the population satisfying

Assumptions 2.1 and 2.2 has been specified, we can estimate E(w|x) and

Var(w|x) given a random sample from that population.

The problem is more difficult if, after specifying the population, we

cannot get a random sample from that population. However, several common

sources of selection do not cause problems. To see why, let s denote a

binary indicator which is unity if the random draw from the population is

used in estimation. (In other words, for each i, s determines whetheri

observation i is used.) Assuming for the moment that m and w are known, we

have the following modified assumptions:

ASSUMPTION 3.1: E(y|w,c,x,s) = E(y|w,c) = a + bw. )

ASSUMPTION 3.2: (i) E(w|c,x,s) = E(w|x); (ii) Var(w|c,x,s) = Var(w|x). )

Assumption 3.1 rules out selection depending on y once w and c have been

netted out; Assumption 3.2 rules out selection correlated with w after x has

been controlled for. Together, Assumptions 3.1 and 3.2 allow selection to

depend on (c,x). However, because b can be correlated with x, it would be

surprising if 3.1 and 3.2 were sufficient to ignore the sample selection

issue. In fact, we need a third assumption.

ASSUMPTION 3.3: The selection indicator s is uncorrelated with b. )

For generality, we study the IV estimator from (3.11).
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PROPOSITION 3.3: Under Assumptions 3.1, 3.2, and 3.3, estimation of (3.11)

using IVs {r,g(x)}, restricted to the selected sample, is consistent.

PROOF: The equation on the selected subpopulation can be written as

sWy = bsWw + sWe,

where e = (b - b)w + a + u, as in equation (3.6). The population version of

the estimation problem is IV estimation of

sWy = bsWw + sWg(x)Q + sWv,

where we write the linear projection of sWe on sWg(x) as sWe = sWg(x)Q + sWv.

By definition, sWg(x) is orthogonal to sWv. Now, we show that sWr is

orthogonal to sWg(x) and sWe. From Assumption 3.2, E(r|c,x,s) = 0, which

means that sWr is uncorrelated with sWg(x) and sWa. Next, Assumption 3.1

implies that E(u|w,c,x,s) = 0, which means that E(sWrWu) = 0. Finally, we

must show that E[sWrW(b - b)w] = 0. But

E[sWrW(b - b)w] = E[sWE(rWw|c,x,s)(b - b)]

= E[sW(b - b)] = 0,

where the second to last equality follows from E(rWw|c,x,s) = 1 under

Assumption 3.2. The last equality follows from Assumption 3.3. This

completes the proof. )

A typical application of these results is when y is not observed for a

subset of the random sample from the population. Then, E(w|x) and Var(w|x)

can be estimated using the whole sample, but equation (3.2) (or an IV version

of the estimator) can be computed only using the subsample that contains

information on y. Provided that the reasons y is missing are not

systematically related to b, y (after w, c have been netted out), and w
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(after x has been netted out), the IV estimators from the previous subsection

are consistent. Of course, if b = b is constant, Assumption 3.3 is

superfluous.

Another possibility is that we are missing information on some elements

of x for a subset of the population. Then, we are restricted to the

subsample in both stages. For example, if w is education and x contains IQ

score, IQ may be missing for part of the sample. If IQ is missing

nonrandomly, this could lead to bias because b -- which might depend on

unobserved ability -- would generally be correlated with IQ. In this paper I

do not investigate sample selection corrections that could remove the bias.

4. RELATIONSHIP TO THE AVERAGE TREATMENT EFFECT LITERATURE

The identification and estimation results of the previous two sections

can be applied to average treatment effects. Although (2.1) appears to

impose a functional form concerning the relationship between the response y

and the treatment w, it is nonrestrictive when w is binary. In this section

I show how the binary treatment case, under conditional mean independence

assumptions, can be cast as a model satisfying Assumptions 2.1 and 2.2.

The treatment effect literature begins from a counterfactual. Each

member of the population has two potential outcomes: y , the outcome without0

treatment, and y , the outcome under treatment. For every member of the1

population, we observe only one of these. We can write the observable

response as

y = (1 - w)y + wy . (4.1)0 1

The averge treatment effect conditional on x is defined as

23



ATE(x) = E(y - y |x). (4.2)1 0

Rosenbaum and Rubin (1983) focus on estimating the unconditional ATE,

ATE = E(y - y ). (4.3)1 0

As mentioned in the introduction, Rosenbaum and Rubin assume that (y ,y ) and0 1

w are independent conditional on x. A weaker assumption suffices for

identifying the ATE:

ASSUMPTION 4.1: y and y are mean independent of w, conditional on x. )0 1

As a practical matter, there may not be much difference between Assumption

4.1 and RR’s statement of the ignorability assumption.

To see how to define a and b under Assumption 4.1, write

u _ y - E(y |x), u _ y - E(y |x),0 0 0 1 1 1

so that

E(u |w,x) = E(u |w,x) = 0.0 1

Plugging into (4.1) and rearranging gives

y = E(y |x) + [E(y |x) - E(y |x)]w + (1 - w)u + wu0 1 0 0 1

_ a + bw + u, (4.4)

where a _ E(y |x), b _ [E(y |x) - E(y |x)], and u _ (1 - w)u + wu . Since0 1 0 0 1

E(u|w,x) = 0 and c is a function of x, E(y|w,c,x) = a + bw + E(u|w,x) = a +

bw, and so Assumption 2.1 holds with these choices of a and b. Assumption

2.2 holds trivially because a and b are deterministic functions of x. Notice

that the coefficient b on w in (4.4) is the ATE conditional on x.

Because w is a binary variable, E(w|x) and Var(w|x) are determined by

the propensity score, P(w = 1|x) = p(x). The variable r in (3.1) becomes r =

[w - p(x)]/{p(x)[1 - p(x)]}, where we assume 0 < p(x) < 1 for all x.
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Therefore, the estimate of b, the average treatment effect, is

^
n [w - p(x )]y^ -1 i i ib = n S -----------------------------------------------------------------------------. (4.5)

^ ^i=1 p(x )[1 - p(x )]i i

Interestingly, after simple algebra, (4.5) can be shown to be identical to

the Horvitz and Thomson (1952) (HT) estimator for nonrandom sample selection;

see also Rosenbaum (1987). Recently, Hirano, Imbens, and Ridder (2003) have

studied the HT estimator in the context of treatment effects. They show

^
that, when p(x) is a series estimator, (4.5) achieves the semiparametric

efficiency bound obtained by Robins and Rotnitzky (1995) and Hahn (1998). A

suprising feature of these estimators is that the estimator that uses the

^
true propensity score, p(x), in place of p(x), is less asymptotically

efficient.

Rosenbaum and Rubin (1983) proposed two approaches to estimating the ATE

using an estimated propensity score. The first approach, and that preferred

by Rosenbaum and Rubin (1983), uses matching on the propensity score. See

HIT (1997) for a description and asymptotic properties of some estimators.

A second approach is more comparable to (4.5). RR (1983, Corollary 4.3)

essentially propose the regression

^ ^ ^
y on 1, w , p , w (p - m ), i = 1,...,n, (4.6)i i i i i p

^ ^ ^
where p = p(x ) is the estimated propensity score for individual i and m isi i p

^ ^
the sample average of the p . The coefficient on w (say b) is the estimatei i

^
of the ATE. As discussed by RR, consistency of b is guaranteed only if we

assume that E[y |w = 1,p(x)] and E[y |w = 0,p(x)] are linear functions of1 0

p(x).

We can use Proposition 3.2 to determine when just adding the estimated

propensity score produces a consistent estimator of b: if p(x)[1 - p(x)] is
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uncorrelated with b = E(y |x) - E(y |x) = ATE(x), the regression1 0

^
y on 1, w , p , i = 1,...,n (4.7)i i i

consistently estimates b. This is interesting: while we often expect p(x)

to be positively correlated with ATE(x) -- that is, the probability of

treatment is perhaps positively correlated with the expected gains to

treatment -- a quadratic function of p(x), p(x)[1 - p(x)], might not be

highly correlated with ATE(x).

Of course, (4.5) consistently estimate b without any additional

restrictions, and it is no more difficult to compute or to use for inference.

It follows from the general results in Wooldridge (2003b) that ignoring the

estimated propensity score, using (4.5), (4.6), or (4.7), results in

conservative standard errors.

5. ESTIMATING A CONDITIONAL APE

We now consider estimating the average partial effect conditional on

some subset (or function) of x. The model is still given by (2.1), and we

still make Assumptions 2.1 and 2.2. Now, we focus on estimating the

conditional APE, E(b|q), where q _ q(x) is a known function of x. As an

example, in evaluating a training program, training status might depend on

pre-training wage, which would be in x. The variable q (a scalar) might be

pre-training wage, or a dummy variable indicating whether the pre-training

wage is below a certain level. Then, we are interested in the APE

conditional on pre-training wage or conditional on pre-training wage being

below a certain threshold. Or, in estimating the return to education, q

might be IQ score or an indicator that the score is below a certain level.
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Then, we estimate the APE of education for those with different measured

abilities. More generally, we can define q to be a 1 * m set of mutually

exclusive, exhaustive indicators -- defined in terms of observed IQ, or pre-

training earnings, say -- and then we estimate an APE for each segment of the

population.

ASSUMPTION 5.1: For q a 1 * m known function of x,

E(b|q) = qD, (5.1)

where D is an m * 1 vector of parameters and we assume that E(q’q) is

nonsingular. )

When we add Assumption 5.1 to the assumptions in Section 2, we can easily

identify D.

PROPOSITION 5.1: Under Assumptions 2.1, 2.2, and (5.1),

-1 -1D = [E(q’q)] E(rq’y) = [E(rq’wq)] E(rq’y). ) (5.2)

PROOF: Write b = qD + h, E(h|q) = 0. Then, as in the proof of Proposition

3.1, write

y = wqD + a + wWh + u,

where E(u|w,c,x) = 0. Multiplying this equation through by rq’ and taking

expectations gives

E(rq’y) = [E(rwq’q)]D + E(raq’) + E(rwhq’) + E(ru q’).1

The second expectation on the right hand side is zero because E(r|c,x) = 0

and a and q are functions of (c,x). The last expectation is zero because

E(u |w,c,x) = 0, and r and q are functions of (w,x). Finally,1

27



E(rwhq’) = E[E(rw|c,x)hq’] = E(hq’) = 0, (5.3)

where the last equality follows because E(h|q) = 0. We have shown that

E(rq’y) = [E(rwq’q)]D.

Now, because of (3.5), E(rwq’q) = E(q’q) by iterated expectations, and this

completes the proof. )

Interestingly, the last equality in (5.3) holds even if h is only

uncorrelated with q, which means that we can always consistently estimate the

coefficient vector in the linear projection of b on q. In some leading

cases, the linear projection and conditional expectation are the same,

including when q contains unity -- as it always should -- and mutually

exclusive, exhaustive dummy variables. In any case, we can always

consistently estimate L(b|q) without the additional assumption (5.1).

Equation (5.2) suggests an IV estimator of D: estimate

y = wqD + e (5.4)

using IVs rq. We can also use the same argument from Section 3.1 to add any

function of x to this equation. In other words, estimate

y = wqD + g(x)Q + v (5.5)

using IVs {rq,g(x)}, where e = g(x)Q + v and E[g(x)’v] = 0. To

operationalize the procedure, r has to be estimated, but the methods

described in Section 3 apply here, too.

6. MULTIPLE ENDOGENOUS EXPLANATORY VARIABLES

Extending the previous methods to a vector of endogenous explanatory

variables, w, is, in principle, straightforward, assuming that we can
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estimate E(w|x) and Var(w|x). We now write the structural model as

E(y|w,c) = a + wb, (6.1)

where w is a 1 * k vector and b is a k * 1 vector. The key assumptions are

identical to Assumptions 2.1 and 2.2, except that the scalar w is replaced

with the vector w. We still refer to these as Assumptions 2.1 and 2.2.

Allowing for a vector in (6.1) considerably expands the scope of models.

For example, suppose that v is a scalar and the structural model is

2
E(y|z,c) = a + b z + b z , (6.2)1 2

so that the model is quadratic in the explanatory variable of interest, z.

2
model (6.2) can be written as in (6.1) with w = (z,z ). Estimating E(w|x)

and Var(w|x) means that we must estimate the first four moments of z given x.

We might do this by estimating a very flexible model for the distribution of

z given x, and then extracting the first four moments.

Model (6.1) also includes the treatment effect setup with multiple

treatment states. For example, a person may participate full time, part

time, or not at all in a training program. Then, w could contain two

indicators for full time participation. Or, w could contain indicators for

participation in different programs that are not mutually exclusive. In such

examples, the practical difficulty is estimating E(w|x) and Var(w|x).

Multinomial response models, such as multinomial logit or probit, can be used

with flexible functions of x.

The following proposition is a straightforward extension of Proposition 2.1:

PROPOSITION 6.1: Under Assumptions 2.1 and 2.2 (but where w is now a

vector), E(b|x) is the slope coefficient in the CLP of y on w, given x. In
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other words, provided Var(w|x) _ )(x) is nonsingular,

-1
E(b|x) = )(x) Cov(w,y|x) (6.3)

-1
= )(x) E{[w - M(x)]’y|x}, (6.4)

where M(x) _ E(w|x).

PROOF: First, the equivalence between (6.3) and (6.4) is immediate. Next,

by Assumption 2.2, M(x) = E(w|x,c) and )(x) = Var(w|x,c). Under Assumption

2.1 we can write

y = a + wb + u, E(u|w,c,x) = 0. (6.5)

Therefore,

[w - M(x)]’y = [w - M(x)]’a + [w - M(x)]’wb

+ [w - M(x)]’u. (6.6)

By (6.5), the third term on the right hand side of (6.6) has zero expectation

conditional on x. By Assumption 2.2, the first term also has zero

expectation given x because E{[w - M(x)]|x,a} = 0. Therefore, taking the

expectation of (6.6) conditional on x gives

E{[w - M(x)]’y|x} = E(E{[w - M(x)]’w|x,c}b|x)

= E(E{[w - M(x)]’w|x}b|x)

= E[Var(w|x)b|x] = )(x)E(b|x).

It follows that E(b|x) is equal to (6.4) provided that )(x) is positive

definite. This completes the proof. )

As in the scalar case, it follows by iterated expectations that

-1B = E[E(b|x)] = E{)(x) [w - M(x)]’y}, (6.7)

and so a consistent estimator of B is

n^ -1 ^ -1 ^B = n S {)(x ) [w - M(x )]’y }, (6.8)i i i i
i=1
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^ ^
for suitable estimators M(W) and )(W).

For some purposes, especially for the case of multiple treatments, it is

convenient to express the equation of interest without necessarily having an

intercept, as in

E(y|w,c) = wc, (6.9)

where now w is 1 * (k + 1) and c is (k + 1) * 1. For example, let w be a set

of mutually exclusive treatment indicators, w _ (w ,w ,...,w ), where w0 1 k 0

might correspond to no treatment. Let y , y , ..., y denote the0 1 k

counterfactual outcomes and assume, as in Section 4, that each y is meanj

independent of w, conditional on x. Then we can write

y = w E(y |x) + w E(y |x) + ... + w E(y |x) + u, (6.10)0 0 1 1 k k

where u = w u + w u + ... + w u . It follows under the conditional mean0 0 1 1 k k

independence assumption that E(u|w,x) = 0, which means we can take c _

[E(y |x),E(y |x),...,E(y |x)], which shows that Assumption 2.1 holds. As in0 1 k

the scalar case, Assumption 2.2 holds by construction since c is a function

of x.

A very slight modification of the proof of Proposition 6.1 gives

-1
E(c|x) = [*(x)] E(w’y|x), (6.11)

where *(x) _ E(w’w|x). By the usual iterated expectations argument, the

APEs, G _ E(c), can be obtained as

-1G = E{[*(x)] w’y}. (6.12)

Estimation is now straightforward, once *(x) has been estimated.

Why might we use (6.11)? In the case of mutually exclusive, exhaustive

treatments, (6.11) gives a simple way to derive the multivariate extension of

the Horvitz-Thompson estimator. (We could use (6.8), but it is much more

tedious.) When w is defined as the the vector of mutually exclusive
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treatment indicators, with w = 1 indicating no treatment, w’w is simply the0

th(k + 1) * (k + 1) diagonal matrix with j diagonal element w , since w w =j j h

2
0, h $ j, and w = w . Therefore, *(x) is the (k + 1) * (k + 1) diagonalj j

thmatrix with j diagonal

p (x) _ P(w = 1|x) > 0, j = 1,...,k, (6.13)j j

the probability of receiving treatment level j as a function of the

-1 th
covariates. Therefore, [*(x)] w’y is the (k + 1) * 1 vector with j

element w y/p (x), which means the estimator of g isj j j

n^ -1 ^g = n S [w y /p (x )], (6.14)j ij i j i
i=1

which is simply the average of outcomes over treatment level j, weighted by

the inverse of the propensity score for treatment level j. Since g =j

^
E[E(y |x)] = E(y ), g is a consistent estimator of the expected level underj j j

treatment regime j; it is the standard inverse probability weighted

estimator. The treatment effect for treatment level j, compared with no

treatment (j = 0), is consistently estimated as

^ ^ ^b = g - g , (6.15)j j 0

^ ^ ^ ^
where p (x) = 1 - p (x) - ... - p (x) is used in obtaining g . Depending on0 1 k 0

^
the nature of the treatments, the p could come from an unordered multinomialj

response model, such as multinomial logit or probit, or an ordered response

model, such as ordered logit or probit. It is easy seen that when k = 1,

(6.15) reduces to the Horvitz-Thompson estimator in (4.5).

Estimating conditional APEs is also a straightforward extension of the

methods in Section 5.
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7. APPLICATION

We apply the previous methods to estimating the effect of class

attendence on final exam performance in principles of microeconomics. The

data were collected by Ronald C. Fisher and Carl E. Liedholm, both of whom

taught Economics 201 during Fall 1996 at Michigan State University.

Attendance was taken electronically, using a card reader monitored by

teaching assistants. The identical final exam was given in all sections of

the course.

The variable to be explained is the standardized final exam score

(stndfnl) and the key explanatory variable w is the fraction of courses

attended (atndrte). The elements of x include prior grade point average, ACT

score, the squares and cubes of these, and binary indicators for first-year

and second-year studentas. The sample size used is n = 680.

The estimated coefficient on the attendance rate from the "kitchen sink"

^
OLS regression is b = .667 (standard error = .240), where the standard error,

and all that follow, are robust to heteroskedasticity. To apply the

estimator in (3.2), we need models for E(w|x) and Var(w|x). Because atndrte

is bounded between zero and one, E(w|x) is specified as the logistic function

-- with the same x as in the OLS regression. The logit quasi-MLE is used to

estimate the parameters of the conditional mean [see Papke and Wooldridge

(1996)]. A choice for the variance is less obvious function. In order to

keep the variance estimates nonnegative, we use an exponential function that

includes as explanatory variables a cubic in the estimated mean function.

The parameters are estimated using the Poisson QMLE, since this is fully

robust to distributional misspecification and easy to obtain in Stata 7.0.
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^
Given the mean and variance estimates, we construct r as in (3.8) and,i

^
rather than compute (3.2), we use r as an IV for w in y = bw + ei i i i i

^
(without a constant). This gives b = .730 (standard error = .363). This is

somewhat larger than the OLS estimate, and, not surprisingly, it has a

notably larger standard error.

When estimating a conditional APE, the different estimation strategies

do give markedly different results. Suppose we want to know the APE at

various values of prior grade point averages. As the sample average prior

GPA is about 2.6, we write E(b|prigpa) = d + d (prigpa - 2.6), so that d is0 1 0

the partial effect of atndrte at the average of prigpa. To estimate d and0

d by OLS, we include atndrte and the interaction atndrte(prigpa - 2.6) in1

the regression, along with the other controls. We obtain

^
E(b|prigpa) = .815 + .581 (prigpa - 2.6), (7.1)

(.251) (.444)

which suggests that the CAPE increases with prior GPA, although the effect is

only significant at the 20 percent level.

When we apply the estimator from Section 5 -- specifically, equation

(5.5) with the controls listed above in g(x) -- we obtain

^
E(b|prigpa) = .679 + 1.325 (prigpa - 2.6). (7.2)

(.283) (.466)

Now the CAPE depends very strongly on prigpa, and the t statistic is very

significant, too (t = 2.85). To test whether the two sets of parameter

^ ^
estimates differ significantly, r and r (prigpa - 2.6) -- the instrumentsi i i

^
used for atndrte and r (prigpa - 2.6) -- are added to the regression used toi i i

obtain (7.1). This gives a regression-based Hausman test with two degrees-of-

freedom. The heteroskedasticity-robust test -- more precisely, the F-type

exclusion restriction statistic reported by Stata 7.0 -- gives a p-value of

.0046, which shows that the two estimates are statistically different, too.
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8. CONCLUSIONS

I have shown how to estimate average partial effects, both

unconditionally and conditional on a set of observed covariates, in a model

with a nonconstant partial effect. The partial effect is allowed to depend

on unobserved heterogeneity as well as on observed covariates. The key

requirements are specification of a structural conditional expectation that

is linear in the endogenous explanatory variable and the presence of good

proxy variables for unobserved heterogeneity. Also, the mean and variance of

the EEV, conditional on the set of covariates, need to be estimated. Here, I

have focused on flexible parametric methods, but it seems reasonable to

-----
expect rn-asymptotically normal estimation of b when nonparametric methods

are used.

A sensible way to view the new estimators of the APE is that they are

extensions of the standard "kitchen sink" regressions that are used when the

treatment effect is assumed constant. In the special case of a linear,

homoskedastic model for w given x, the particular kitchen sink regression

turns out to be consistent, even if b is not constant. We also showed that,

under the weaker assumption that Var(w|x) is uncorrelated with the slope b,

^
an OLS regression that simply adds the estimated mean function, E(w|x),

consistently estimates b.

A limitation of this paper in the scalar case is that, except in the

case of a binary treatment, the model imposes a particular functional form on

how the EEVs affect the outcome. Nevertheless, this is often what economists

have in mind when a partial effect depends on unobserved heterogeneity. To
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some extent the functional form can be made more flexible by adding

polynomials in the EEVs and using the methods of Section 6; certainly the

multiple treatment effect case can be handled in this way.

The approach to estimating conditional APEs in Section 5 is simple, but

assumes that E(b|q) is linear in parameters. [Alternatively, we always

consistently estimate L(b|q).] Because the CAPEs are nonparametrically

identified, a useful topic for future research is to obtain estimators and

asymptotic results for an interesting class of CAPEs.

The nonrandom sample selection problem also deserves further study

because whether some data are missing may be systematically related to the

random slope, b.
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