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Qihua Wang, Oliver Linton and Wolfgang Härdle ∗

Abstract
We develop inference tools in a semiparametric partially linear regression

model with missing response data. A class of estimators is defined that in-
cludes as special cases: a semiparametric regression imputation estimator, a
marginal average estimator and a (marginal) propensity score weighted esti-
mator. We show that any of our class of estimators is asymptotically normal.
The three special estimators have the same asymptotic variance. They achieve
the semiparametric efficiency bound in the homoskedastic Gaussian case. We
show that the Jackknife method can be used to consistently estimate the
asymptotic variance. Our model and estimators are defined with a view to
avoid the curse of dimensionality, that severely limits the applicability of ex-
isting methods. The empirical likelihood method is developed. It is shown
that when missing responses are imputed using the semiparametric regres-
sion method the empirical log-likelihood is asymptotically a scaled chi-square
variable. An adjusted empirical log-likelihood ratio, which is asymptotically
standard chi-square, is obtained. Also, a bootstrap empirical log-likelihood
ratio is derived and its distribution is used to approximate that of the imputed
empirical log-likelihood ratio. A simulation study is conducted to compare the
adjusted and bootstrap empirical likelihood with the normal approximation
based method in terms of coverage accuracies and average lengths of confi-
dence intervals. Based on biases and standard errors, a comparison is also
made by simulation between the proposed estimators and the related estima-
tors.
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1 Introduction

In many scientific areas, a basic task is to assess the simultaneous influence of several

factors (covariates) on a quantity of interest (response variable). Regression mod-

els provide a powerful framework, and associated parametric, semiparametric and

nonparametric inference theories are well established. However, in practice, often

not all responses may be available for various reasons such as unwillingness of some

sampled units to supply the desired information, loss of information caused by un-

controllable factors, failure on the part of investigator to gather correct information,

and so forth. In this case, the usual inference procedures cannot be applied directly.

Let X be a d-dimensional vector of factors and Y be a response variable influ-

enced by X. In practice, one often obtains a random sample of incomplete data

(Xi, Yi, δi), i = 1, 2, . . . , n,

where all the X ′
is are observed and δi = 0 if Yi is missing, otherwise δi = 1. It is

desired to estimate the mean of Y , say θ. This kind of sampling scheme can arise

due to double or two-stage sampling, where first a complete sample of response

and covariate variables is obtained and then some additional covariate values are

obtained, perhaps because it is expensive to acquire more Y ′s.

A common method for handling missing data in a large data set is to impute

(i.e., fill in) a plausible value for each missing datum, and then analyze the result

as if they were complete. Commonly used imputation methods for missing response

include linear regression imputation (Yates (1993); Healy and Westmacott (1996)),

kernel regression imputation (Cheng (1994)), ratio imputation (Rao (1996)) and

among others. Cheng (1994) applied kernel regression imputation to estimate the

mean of Y , say θ. Cheng (1994) imputed every missing Yi by kernel regression

imputation and estimated θ by

θ̂c =
1

n

n∑

i=1

{δiYi + (1− δi)m̂n(Xi)},

where m̂n(·) is the Nadaraya-Watson kernel estimator based on (Xi, Yi) for i ∈ {i :

δi = 1}. Under the assumption that the Y values are missing at random (MAR),

Cheng (1994) established the asymptotic normality of a trimmed version of θ̂c and
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gave a consistent estimator of its asymptotic variance. An alternative to imputation

is the propensity score based methods that are very popular in applied studies, espe-

cially in measuring ‘treatment effects’, following the influential paper by Rosenbaum

and Rubin (1983). See Heckman, Ichimura, and Todd (1998) for a recent discussion

from an economists point of view and a semiparametric application to the evalua-

tion of social programs. Hahn (1998) has established the semiparametric efficiency

bound for estimation of θ, and he constructs an estimator based on the propensity

score P (x) that achieves the bound. Actually, Cheng’s estimator is also asymptoti-

cally efficient. With the nonparametric kernel regression imputation scheme, Wang

and Rao (2002a) develop imputed empirical likelihood approaches for constructing

confidence intervals of θ.

In practice, however, the nonparametric kernel regression imputation estimator

of Cheng and the imputed empirical likelihood may not work well because the di-

mension of X may be high and hence the curse of dimensionality may occur, Stone

(1980). Although this does not affect the first order asymptotic theory, it does show

up dramatically in the higher order asymptotics, see Linton (1995) for example.

More importantly, dimensionality substantially affects the practical performance of

estimators, and the reliability of the asymptotic approximations. Similar comments

apply to the propensity score weighting methods when the propensity score itself

depends on many covariates. Without further restrictions nonparametric regression

methods only work well in low dimensional situations. Indeed, much recent work in

statistics has been devoted to intermediate structures like additivity, index models,

or semiparametric functional form, in which the curse of dimensionality is mitigated.

See for example Hastie and Tibshirani (1990) for a discussion.

Wang and Rao (2001, 2002b) considered the linear regression models and devel-

oped the empirical likelihood inference by filling in all the missing response values

with linear regression imputation. In many practical situations, however, the lin-

ear model is not complex enough to capture the underlying relation between the

response variables and its associated covariates.

A natural compromise between the linear model and the fully nonparametric

model, is to allow only some of the predictors to be modelled linearly, with oth-
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ers being modelled nonparametrically. This motivates us to consider the following

semiparametric regression model:

Yi = X>
i β + g(Ti) + εi, (1.1)

where Y ′
i s are i.i.d. scalar response variables, X ′

is are i.i.d. d-variable random

covariate vectors, T ′
is are i.i.d. d∗-variable random covariate vectors, the function

g(·) is unknown and the model errors εi are independent with conditional mean zero

given the covariates. Clearly, the partially linear models contain at least the linear

models as a special case. Suppose that the model is linear, but we specify it as

partially linear models. The resulting estimator based on the partially linear model

is still consistent. Hence, the partially linear model is a flexible one and allows one

to focus on particular variables that are thought to have very nonlinear effects. The

partially linear regression model was introduced by Engle, Granger, Rice and Weiss

(1986) to study the effect of weather on electricity demand. The implicit asymmetry

between the effects of X and T may be attractive when X consists of dummy or

categorical variables, as in Stock (1989). This specification arises in various sample

selection models that are popular in econometrics, see Ahn and Powell (1993), and

Newey, Powell, and Walker (1990). In fact, the partially linear model has also been

applied in many other fields such as biometrics, see Gray (1994), and have been

studied extensively for complete data settings, see Heckman (1986), Rice (1986),

Speckman (1988), Cuzick (1992), Chen (1988) and Severini, Staniswalis (1994).

In this paper, we are interested in inference on the mean of Y , say θ, when

there missing responses in the semiparametric regression model (1.1). Specifically,

we consider the case where some Y -values in a sample of size n may be missing,

but X and T are observed completely. That is, we obtain the following incomplete

observations

(Yi, δi, Xi, Ti), i = 1, 2, . . . , n

from model (1.1), where all the X ′
is and T ′

is are observed and δi = 0 if Yi is missing,

otherwise δi = 1. Throughout this paper, we assume that Y is missing at random

(MAR). The MAR assumption implies that δ and Y are conditionally independent

given X and T . That is, P (δ = 1|Y, X, T ) = P (δ = 1|X,T ). MAR is a common
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assumption for statistical analysis with missing data and is reasonable in many

practical situations, see Little and Rubin (1987,Chapter 1).

We propose several estimators of θ in the partially linear model that are simple

to compute and do not rely on high dimensional smoothing, thereby avoiding the

curse of dimensionality. Our class of estimators includes an imputation estimator

and a number of propensity score weighting estimators. Under the model specifi-

cation the estimators are consistent and asymptotically normal. We obtain their

asymptotic distribution and provide consistent variance estimators based on the

jacknife method. We also show that a special subclass of our estimators are semi-

parametrically efficient in the special case that εi are homoskedastic and Gaussian.

When the model specification (1.1) is incorrect, our estimators are inconsistent; we

characterize their biases. One of the efficient estimators has a version of the double

robustness property of Scharfstein, Rotnizky, Robins (1999).

We also develop empirical likelihood and bootstrap empirical likelihood methods

that deliver better inference than standard asymptotic approximations. Though em-

pirical likelihood approaches are also developed with the nonparametric imputation

scheme of Cheng in Wang and Rao (2002a) and linear regression imputation scheme

in Wang and Rao (2001, 2002b), this paper uses semiparametric regression impu-

tation scheme and use semiparametric techniques to develop an adjusted empirical

likelihood and a partially smoothed bootstrap empirical likelihood. The developed

partially smoothed bootstrap empirical likelihood method has an advantage over the

adjusted empirical likelihood. That is, it avoids estimating the unknown adjusting

factor. This is especially attractive in some cases when the adjustment factor is

difficult to estimate efficiently. This method is also very useful for the problem con-

sidered by Wang and Rao (2002a) since the adjusted factors are difficult to estimate

well for nonparametric regression imputation scheme because of “curse of dimen-

sionality”. Unfortunately, Wang and Rao (2002a,b) do not develop such a method.

Wang and Rao (2001) considers a different inference problem from this paper. They

do not consider inference on the response mean, but develops empirical likelihood

inference for regression coefficient only in linear regression models with fixed design.

The empirical likelihood method, introduced by Owen (1988), has many advan-
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tages over normal approximation methods and the usual bootstrap approximation

approaches for constructing confidence intervals. For example, the empirical likeli-

hood confidence intervals do not have a predetermined shape, whereas confidence

intervals based on the asymptotic normality of an estimator have a symmetry implied

by asymptotic normality. Also, empirical likelihood confidence intervals respect the

range of the parameter: if the parameter is positive, then the confidence intervals

contains no negative values. Another preferred characteristic is that the empiri-

cal likelihood confidence interval is transformation respecting; that is, an empirical

likelihood confidence interval for φ(θ) is given by φ applied to each value in the

confidence interval for θ.

2 Estimation

In this section we define the estimators that we will analyze in this paper. We first

describe how to estimate the regression function.

Premultiplying (1.1) by the observation indicator we have

δiYi = δiX
>
i β + δig(Ti) + δiεi,

and taking conditional expectations given T we have

E [δiYi|Ti = t] = E
[
δiX

>
i |Ti = t

]
β + E [δi|Ti = t] g(t),

from which it follows that

g(t) = g2(t)− g1(t)
>β, (2.1)

where

g1(t) =
E [δX|T = t]

E [δ|T = t]
and g2(t) =

E [δY |T = t]

E [δ|T = t]
.

It follows that

δi [Yi − g2(Ti)] = δi [Xi − g1(Ti)]
> β + δiεi, (2.2)

which suggests that an estimator of β can be based on a least squares regression

using δi = 1 observations and estimated gj(·), j = 1, 2.
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Let K(·) be a kernel function and hn be a bandwidth sequence tending to zero

as n →∞, and define the weights

Wnj(t) =
K

(
t−Tj

hn

)

n∑
j=1

δjK
(

t−Tj

hn

) .

Then g̃1n(t) =
n∑

j=1
δjWnj(t)Xj and g̃2n(t) =

n∑
j=1

δjWnj(t)Yj are consistent estimates

of g1(t) and g2(t) respectively. From (2.2), the estimator of β is then defined as the

one satisfying:

min
β

n∑

i=1

δi{(Yi − g̃2n(Ti))− (Xi − g̃1n(Ti))β}2. (2.3)

From (2.3), it is easy to obtain that the estimator of β is given by

β̂n =

[
n∑

i=1

δi{(Xi − g̃1n(Ti))(Xi − g̃1n(Ti))
>}

]−1 n∑

i=1

δi{(Xi − g̃1n(Ti))(Yi − g̃2n(Ti))}

based on the observed triples (Xi, Ti, Yi) for i ∈ {i : δi = 1}. This is like the Robinson

(1988) estimator of β except that it is based on the complete subsample [note also

that gj are not simple conditional expectations as in his case]. (2.1) suggests that

an estimator of g(t) can be defined to be

ĝn(t) = g̃2n(t)− g̃>1n(t)β̂n

by replacing β, g1(t) and g2(t) in (2.1) by β̂n, g̃1n(t) and g̃2n(t).

We now turn to the estimation of θ. Consider now the general class of estimators

θ̂ =
1

n

n∑

i=1

δiYi

P ∗
n(Xi, Ti)

+
1

n

n∑

i=1

(
1− δi

P ∗
n(Xi, Ti)

)
(X>

i β̂n + ĝn(Ti)),

where P ∗
n(x, t) is some sequence of quantities with probability limits P ∗(x, t). We

are particularly interested in some special cases. First, when P ∗
n(x, t) = 1, we have

the regression imputation estimator of θ:

θ̂I =
1

n

n∑

i=1

{δiYi + (1− δi)(X
>
i β̂n + ĝn(Ti))}.

When P ∗
n(x, t) = ∞, we have the marginal average estimator

θ̂MA =
1

n

n∑

i=1

(X>
i β̂n + ĝn(Ti)),
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which just averages over the estimated regression function. Define the marginal

propensity score P1(t) = P (δ = 1|T = t).When P ∗
n(x, t) = P̂1(t) =

∑n
j=1 δjK

(
t−Tj

hn

)
/

n∑
j=1

K
(

t−Tj

hn

)
,

we have the (marginal) propensity score weighted estimator

θ̂P1 =
1

n

n∑

i=1

[
δiYi

P̂1(Ti)
+

(
1− δi

P̂1(Ti)

)
(X>

i β̂n + ĝn(Ti))

]
.

Estimator θ̂P1 is different from the usual propensity score weighting method that

uses an estimator of the full propensity score. Let θ̂∗ denote either θ̂I , θ̂MA, or

θ̂P1 . These estimators only rely on one-dimensional smoothing operations and are

explicitly defined. These two properties are desirable from a computational and

statistical point of view.

The marginal average and imputation estimators do not depend on any ‘estimate’

of the propensity score, and so are intellectually less demanding. One computational

advantage of the imputation estimator is that in case the data are augmented with

additional single Y observations, the extra values can be directly included in the

average of the observed Y ’s.

The class of estimators {θ̂} also includes the unrestricted estimate of the propen-

sity score

θ̂P =
1

n

n∑

i=1

Yiδi

P̂ (Xi, Ti)
+

1

n

n∑

i=1

(
1− δi

P̂ (Xi, Ti)

)
{Xiβ̂n + ĝn(Ti)}.

when P ∗
n(x, t) = P̂ (x, t), where P̂ (x, t) a high-dimensional kernel estimator of the

propensity score defined by

P̂ (x, t) =

∑n
j=1 δjW

(
x−Xj

bn
, t−Tj

bn

)

∑n
j=1 W

(
x−Xj

bn
, t−Tj

bn

)

with W (·, ·) the weighting function and bn the bandwidth sequence. However, this

estimator depends on high dimensional smoothing. The well known “curse of di-

mensionality” may restrict the use of this estimator.

Suppose we have an auxiliary semiparametric or parametric model for P (x, t)

denoted Pτ (x, t), where τ can contain finite dimensional and infinite dimensional

parameters, Bickel, Klaassen, Ritov, and Wellner (1993), and let P̂τ̂ (x, t) be an

estimate of Pτ (x, t). Define

θ̂Pτ̂
=

1

n

n∑

i=1

Yiδi

P̂τ̂ (Xi, Ti)
+

1

n

n∑

i=1

(
1− δi

P̂τ̂ (Xi, Ti)

)
{Xiβ̂n + ĝn(Ti)}.
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A leading case would be the parametric probit model. In this case, P̂τ̂ (x, t) is easy

to compute and likely to have a distribution well approximated by its limit. Semi-

parametric cases of interest include where the index inside the probit link function is

allowed to be partially linear or the semiparametric index model. In either of these

cases the method need not require high dimension smoothing operations. However,

the estimation procedure to obtain τ̂ can be quite complicated - it usually involves

nonlinear optimization of a criterion function, and if it also contains nonparamet-

ric estimators then the properties may be poor [reference to the average derivative

case]. In this case, the probability limits P ∗(x, t) depend on the estimation method;

when a likelihood method is used, P ∗(x, t) is the Kullback-Liebler minimizing dis-

tance from P (x, t) - it can be a quite complicated function different from any of the

special cases listed above.

3 Asymptotic Normality

We next state the properties of θ̂ with P ∗
n(x, t) ∈ {1,∞, P̂1(t), P̂n(x, t)} and propose

consistent variance estimators. Let P1(t) = P (δ = 1|T = t), P (x, t) = P (δ = 1|X =

x, T = t), m(x, t) = x>β + g(t), and σ2(x, t) = E[(Y −X>β− g(T ))2|X = x, T = t].

Then define u(x, t) = x− g1(t), Σ = E[P (X, T )u(X,T )u(X,T )>],

Theorem 3.1. Under all the assumptions listed in the Appendix except for

condition (C.K)iii, we have

√
n(θ̂ − θ)

L−→ N(0, V ),

where

V = E
[
(π0(X, T ) + π1(X,T ))2P (X,T )σ2(X, T )

]
+ var[m(X, T)].

with π0(x, t) = 1
P1(t)

and π1(x, t) = E
[
u(X, T )>

]
Σ−1u(x, t) when P ∗

n(x, t) ∈ {1,∞, P̂1(t)},
and π0(x, t) = 1

P (x,t)
and π1(x, t) = 0 when P ∗

n(x, t) is taken to be P̂ (x, t).

Our estimators θ̂∗, for which P ∗
n(x, t) ∈ {1,∞, P̂1(t)}, have a common asymptotic

variance V ∗ = V with π0(x, t) = 1
P1(t)

and π1(x, t) = E
[
u(X, T )>

]
Σ−1u(x, t). The

asymptotic equivalence result is similar to that obtained in Cheng (1994, Theorem

2.1) between the marginal average and the imputation estimator. It is interesting
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that the marginal propensity score weighting estimator also shares this distribution.

The estimators may differ in their higher order properties. The full propensity score

weighting estimator with P ∗
n(x, t) = P̂n(x, t) has a different asymptotic variance

from our estimators θ̂∗.

If P (x, t) is specified to be a parametric or semiparametric model Pτ (x, t), θ̂P
τ̂

can be proved to be asymptotically normal with zero mean and the same asymptotic

variance as θ̂P if τ is estimated consistently with an appropriate rate. However, the

conditions to prove the asymptotic normality depend on the specified model for

P (x, t). We don’t investigate the asymptotic property of the estimator further here.

To define a consistent estimator of V , we may first define estimators of P (x, t),

P1(t), σ2(x, t) and g1(t) by kernel regression method and then define a consistent

estimator of V by “plug in” method. However, this method may not estimate V

well when the dimension of X is high. This can be avoided because both P (x, t)

and σ2(x, t) only enter in the numerator and can be replaced by squared residuals

or the indicator function where appropriate.

An alternative is the jackknife variance estimator. Let θ̂(−i) be θ̂ based on

{(Yj, δj, Xj, Tj)}j 6=i for i = 1, 2, . . . , n. Let Jni be the jackknife pseudo-values. That

is,

Jni = nθ̂ − (n− 1)θ̂(−i), i = 1, 2, · · · , n

Then, the jackknife variance estimator can be defined as:

V̂nJ =
1

n

n∑

i=1

(Jni − J̄n)2,

where J̄n = n−1 ∑n
i=1 Jni.

Theorem 3.2. Under assumptions of Theorem 3.1, we have

V̂nJ
p−→ V.

By Theorem 3.1 and 3.2, the normal approximation based confidence interval

with confidence level 1 − α is θ̂ ±
√

V̂nJ

n
u1−α

2
, where u1−α

2
is the 1 − α

2
quantile of

standard normal distribution.
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3.1 Efficiency

We assume throughout this section that the partial linear structure is true. We

compare the efficiency of our estimators θ̂∗ with other members of θ̂ and with esti-

mators that do not consider the partially linear structure. Specifically, consider the

class of estimators

θ̃ =
1

n

n∑

i=1

Yiδi

P ∗
n(Xi, Ti)

+
1

n

n∑

i=1

(
1− δi

P ∗
n(Xi, Ti)

)
m̂n(Xi, Ti),

where m̂n(Xi, Ti) is the nonparametric regression kernel estimator of the regression

of Y on (X,T ). This class includes Cheng’s (1996) estimator when P ∗
n(Xi, Ti) = ∞,

the imputation estimator when P ∗
n(Xi, Ti) = 1, and a full propensity score weighting

estimator when P ∗
n(Xi, Ti) = P̂ (Xi, Ti). Let θ̃∗ denote either of these three special

cases. These three nonparametric estimators are all asymptotically equivalent and

equivalent to an estimator θ̃HIR = n−1 ∑n
i=1 Yiδi/P̂ (Xi, Ti) due to Hirano et al.

(2000). The common asymptotic variance denoted V ∗
UR is

V ∗
UR = E

[
σ2(X,T )

P (X,T )

]
+ var[m(X, T)].

This is exactly the semiparametric efficiency bound of Hahn (1998) for the case

where m(x, t) is unrestricted. Hence, all three nonparametric estimators are asymp-

totically efficient in the sense of Hahn (1998) in this more general model. However,

the restrictions implied by the partially linear structure reduce the semiparametric

efficiency bound. Therefore, the nonparametric estimators θ̃ are not asymptotically

efficient for the partially linear model. Another disadvantage of the three nonpara-

metric estimators is that they require a high-dimensional smoothing operation to

compute the regression of Y or δ on X, T . Therefore, their actual distributions may

be very different from that predicted by the asymptotic theory due to the curse of

dimensionality. Our estimators θ̂∗ all make use of the partial linear structure in the

conditional mean and hence it is possible for them to be more efficient. We show

two efficiency results for our estimators θ̂∗.

Theorem 3.3 Suppose that ε is conditionally homoskedastic with σ2(x, t) = σ2,

where σ is a constant. Then

V ∗ ≤ V ∗
UR. (3.2)
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The equality holds only when (δ/P (X, T )− δ/P1(T ))ε = aδ(X − g1(T ))ε + b.

This shows that our estimator is asymptotically more efficient than the three

nonparametric estimators for the special case of homoskedasticity. It also holds in

this case that V ∗ is the smallest V in our class θ̂.

Theorem 3.4. When ε is i.i.d. Gaussian, V ∗ is the semiparametric efficiency

bound, and V ∗ ≤ V ∗
UR.

This shows that the proposed estimators θ̂∗ are asymptotically efficient for this

special case. They have lower variance than any other member of θ̂ or θ̃.

We now discuss the efficiency bound in the general heteroskedastic case. It is pos-

sible that V ∗ is the semiparametric efficiency bound in the general case with ε|X, T

unrestricted other than its mean being zero. However, note that in the presence of

heteroskedasticity, the Robinson type least squares estimator of β is inefficient; the

efficient estimator is a weighted least squares version of this where the weights are

some consistent estimate of σ−2(x, t), a high dimensional problem. We speculate

that the semiparametric efficiency bound for θ in that case is very complicated and

that, significantly, the efficient score function (Bickel, Klaassen, Ritov, and Well-

ner (1986)) would require estimation of the high dimensional regression functions

P (x, t) and σ2(x, t) as well as perhaps solving an integral equation. See inter alia:

Nan, Emond, and Wellner (2000), Rotnizky and Robins (1997), Scharfstein, Rot-

nizky, and Robins (1997), Robins, Hsieh, and Newey (1995), Robins, Rotnizky, and

Zhao (1994). Thus, we are left with the trade-off between the promise of large sam-

ple efficiency and the practical reality imposed by the curse of dimensionality, which

says that an enormous sample may be needed in order to achieve those gains. In

practical situations, it may be preferable to have an estimator that only depends on

one dimensional smoothing operations. This is certainly a view commonly expressed

in applied statistics, see for example Hastie and Tibshirani (1990) and Robins and

Ritov (1997). In addition, our estimators are very simple to compute and are ex-

plicitly defined.

Finally, consider the estimator θ̂P
τ̂
. As we have shown, θ̂P

τ̂
may have the same

asymptotic variance as θ̂P . Hence, this estimator is generally inefficient and less

efficient than our estimators θ̂∗ at least for the main case we consider.
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3.2 Robustness

Suppose that the partially linear model assumption (1.1) may be incorrect. Let

m∗(x, t) be the probability limit of x>β̂n + ĝn(t), and recall that P ∗(x, t) is the

probability limit of P ∗
n(x, t). Then

p lim
n→∞ θ̂ =θ + E

[(
P ∗(X,T )− P (X,T )

P ∗(X, T )

)
(m∗(X,T )−m(X, T ))

]
.

This shows that the bias of any member of the class θ̂ depends on both m∗(X, T )−
m(X, T ) and P ∗(X, T )−P (X, T ). Specifically, the three estimators in θ̂∗ are asymp-

totically biased and have different biases

p limn→∞ θ̂P1 = θ + E
[(

1− P (X,T )
P1(T )

)
(m∗(X, T )−m(X,T ))

]

p limn→∞ θ̂I = θ + E [(1− P (X, T )) (m∗(X, T )−m(X, T ))]

p limn→∞ θ̂MA = θ + E [(m∗(X, T )−m(X,T ))] .

(3.1)

Likewise

p lim
n→∞ θ̂Pτ = θ + E

[(
Pτ (X, T )− P (X,T )

Pτ (X, T )

)
(m∗(X, T )−m(X,T ))

]
.

There is no necessary ranking among the magnitudes of the biases, nor specific

predictions about their directions. However, when P (x, t) is close to 1 the bias of

θ̂I is likely to be smaller than the bias of θ̂MA, while when P (X,T ) does not vary

much about its conditional mean P1(T ), the bias of θ̂P1 is small. When Pτ (X, T ) is

a good approximation to P (X, T ), the bias of θ̂Pτ is likely to be small.

The two estimators θ̂P1 and θ̂Pτ have a credible ‘double robustness’ property,

namely that even if the mean specification is incorrect, i.e., m(x, t) 6= β>x + g(t),

θ̂P1 is still consistent provided that P (X,T ) = P1(T ) a.s., while θ̂Pτ is consistent

whenever P (X,T ) = Pτ (X, T ) a.s. This property has been discussed by Scharf-

stein, Rotnizky, Robins (1999). The other estimators θ̂I and θ̂MA do not share this

property.

4 Estimated, Adjusted and Bootstrap Empirical

Likelihood

In this section and the next we provide methods to conduct global inference on

θ using empirical likelihood and bootstrap empirical likelihood. Specifically, we

12



consider the problem of testing H0 : θ = θ0, where θ0 is a specific value. This sort

of application arises a lot in the program evaluation literature, see Hahn (1998).

The methods we develop are preferable to the naive confidence intervals developed

in section 2 as is well known from other contexts. We also show the advantages of

these refined methods in simulations below.

4.1 Estimated and adjusted empirical likelihood

Here, we derive an adjusted empirical likelihood (ADEL) method to develop global

inference for θ. Let Ỹi = δiYi + (1 − δi){X>
i β + g(Ti)}. We have EỸi = θ0 under

the MAR assumption if θ0 is the true value of θ. This implies that the problem of

testing H0 : θ = θ0 is equivalent to testing EỸi = θ0. If β and g(·) were known, then

one could test EỸi = 0 using the empirical likelihood of Owen (1990):

ln(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

piỸi = θ,
n∑

i=1

pi = 1, pi > 0, i = 1, 2, . . . , n}.

It follows from Owen (1990) that, under H0 : θ = θ0, ln(θ) has an asymptotic central

chi-square distribution with one degree of freedom. An essential condition for this

result to hold is that the Ỹ ′
i s in the linear constraint are i.i.d. random variables.

Unfortunately, β and g(·) are unknown, and hence ln(θ) cannot be used directly to

make inference on θ. To solve this problem, it is natural to consider an estimated

empirical log-likelihood by replacing β and g(·) with their estimators. Specifically,

let Ŷin = δiYi + (1 − δi){X>
i β̂n + ĝn(Ti)}. An estimated empirical log-likelihood

evaluated at θ is then defined by

l̂n(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

piŶin = θ,
n∑

i=1

pi = 1, pi > 0, i = 1, 2, . . . , n}. (4.1)

By using the Lagrange multiplier method, when min1≤i≤n Ŷin < θ < max1≤i≤n Ŷin

with probability tending to one, l̂n(θ) can be shown to be

l̂n(θ) = 2
n∑

i=1

log(1 + λ(Ŷin − θ)), (4.2)

where λ is the solution of the equation

1

n

n∑

i=1

(Ŷin − θ)

1 + λ(Ŷin − θ)
= 0. (4.3)
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Unlike the standard empirical log-likelihood ln(θ), l̂n(θ) is based on Ŷ ′
ins that

are not independent. Consequently, l̂n(θ) does not have an asymptotic standard

chi-square distribution. Actually, l̂n(θ) is asymptotically distributed as a scaled

chi-squared variable with one degree of freedom. Theorem 4.1 states the result.

Theorem 4.1. Assuming conditions of Theorem 2.1. Then, under H0 : θ = θ0,

l̂n(θ)
L−→ V (θ)

Ṽ (θ)
χ2

1,

where χ2
1 is a standard chi-square variable with one degree of freedom, V (θ) is defined

in Theorem 3.1 and Ṽ (θ) = E[P (X, T )σ2(X, T )] + V ar(X>β + g(T )).

By Theorem 4.1, we have under H0 : θ = θ0

γ(θ)l̂n(θ)
L−→ χ2

1, (4.4)

where γ(θ) = Ṽ (θ)/V . If one can define a consistent estimator, say γn(θ), for γ(θ),

an adjusted empirical log-likelihood ratio is then defined as

l̂n,ad(θ) = γn(θ)l̂n(θ) (4.5)

with adjustment factor γn(θ). It readily follows from (4.4) and (4.5), l̂n,ad(θ0)
L−→ χ2

1

under H0 : θ = θ0.

A consistent estimator of γn(θ) can be defined as

γn(θ) =
Ṽn(θ)

V̂nJ

where V̂nJ is defined in Section 2 and

Ṽn(θ) =
1

n

n∑

i=1

(Ŷin − θ)2. (4.6)

It should be pointed out that it may increase efficiency that we leave θ in γn(θ) not

to be estimated.

Theorem 4.2. Assume the conditions in Theorem 2.1. Then, under H0 : θ = θ0

l̂n,ad(θ0)
L−→ χ2

1.
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From Theorem 4.2, it follows immediately that an approximation 1−α confidence

region for θ is given by {θ : l̂n,ad(θ) ≤ χ2
1,α} where χ2

1,α is the upper α percentile of

the χ2
1 distribution. Theorem 4.2 can also be used to test the hypothesis H0 : θ = θ0.

One could reject H0 at level α if l̂n,ad(θ0) > χ2
1,α.

4.2 Partially Smoothed Bootstrap Empirical Likelihood

Next, we develop a bootstrap empirical likelihood method. Let {(X∗
i , T ∗

i , δ∗i , Y
∗
i ), 1 ≤

i ≤ m} be the bootstrap sample from {(Xj, Tj, δj, Yj), 1 ≤ j ≤ n}. Let Ŷ ∗
im be the

bootstrap analogy of {Ŷin}. Then, the bootstrap analogy of l̂n(θ) can be defined to

be

l̂∗m(θ̂n) = 2
m∑

i=1

log{1 + λ∗m(Ŷ ∗
im − θ̂n)},

where λ∗ satisfies

1

m

m∑

i=1

Ŷ ∗
im − θ̂n

1 + λ∗(Ŷ ∗
im − θ̂n)

= 0.

To prove that the asymptotic distribution of l̂∗m(θ̂n) approximates to that of

l̂n(θ) with probability one, we need that T ∗
1 , . . . , T ∗

m have a probability density. This

motivates us to use smooth bootstrap. Let T ∗∗
i = T ∗

i + hnζi for i = 1, 2, . . . ,m,

where hn is the bandwidth sequence used in Section 2 and ζi, i = 1, 2, . . . , m are

independent and identically distributed random variables with common probability

density K(·), the kernel function in Section 2. We define l̂∗∗m (θ̂) to be l̂∗m(θ̂) with

T ∗
i replaced by T ∗∗

i for 1 ≤ i ≤ m. This method is termed as partially smoothed

bootstrap since it used smoothed bootstrap sample only partially.

Theorem 4.3. Assuming conditions of Theorem 2.1 and condition (C.K)iii. Then,

under H0 : θ = θ0, we have with probability one

sup
x
|P (l̂n(θ) ≤ x)− P ∗(l̂∗∗m (θ̂n) ≤ x)| → 0

as n →∞ and m →∞, where P ∗ denotes the bootstrap probability.
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The bootstrap distribution of l̂∗∗m (θ̂n) can be calculated by simulation. The result

of Theorem 4.3 can then be used to construct a bootstrap empirical likelihood confi-

dence interval for θ. Let c∗α be the 1−α quantile of the distribution of l̂∗∗m (θ̂n). We can

define a bootstrap empirical log-likelihood confidence region to be {θ : l̂n(θ) ≤ c∗α}.
By Theorem 4.3, the bootstrap empirical likelihood confidence interval has asymp-

totically correct coverage probability 1− α.

Compared to the estimated empirical likelihood and the adjusted empirical likeli-

hood, an advantage of the bootstrap empirical likelihood is that it avoids estimating

the unknown adjusting factor. This is especially attractive in some cases when the

adjustment factor is difficult to estimate efficiently.

5 Simulation Results

We conducted a simulation to analyze the finite-sample performances of the proposed

estimators θ̂I , θ̂MA and θ̂P1 and the weighted estimator θ̂P and θ̂Pτ given in Section 2,

and compare the two empirical likelihood methods, namely the adjusted empirical

likelihood and the partly smoothed bootstrap empirical likelihood, with the normal

approximation-based method in terms of coverage accuracies of confidence intervals.

The simulation used the partial linear model Y = X>β + g(T ) + ε with X

and T simulated from the normal distribution with mean 1 and variance 1 and the

uniform distribution U [0, 1] respectively, and ε generated from the standard normal

distribution, where β = 1.5, g(t) = 3.2t2 − 1 if t ∈ [0, 1], g(t) = 0 otherwise. The

kernel function was taken to be K(t) = 15
16

(1− 2t2 + t4) if |t| ≤ 1, 0 otherwise, and

the bandwidth hn was taken to be n−2/3.

We generated 5000 Monte Carlo random samples of size n = 30, 60 and 100

based on the following three cases respectively:

Case 1: P (δ = 1|X = x, T = t) = 0.8+0.2(|x−1|+|t−0.5| if |x−1|+|t−0.5| ≤ 1,

and 0.95 elsewhere;

Case 2: P (δ = 1|X = x, T = t) = 0.9−0.2(|x−1|+|t−0.5|) if |x−1|+|t−0.5| ≤ 4,

and 0.1 elsewhere;

Case 3: P (δ = 1|X = x, T = t) = 0.6 for all x and t.

The average missing rates corresponding to the above three cases are approxi-
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mately 0.10, 0.25 and 0.40 respectively.

For calculating θ̂P , P̂ (x, t) was taken to be the nonparametric kernel estimator

given by

P̂ (x, t) =

n∑
i=1

δiK1

(
x−Xi

h1,n

)
K2

(
t−Ti

h2,n

)

n∑
i=1

K1

(
x−Xi

h1,n

)
K2

(
t−Ti

h2,n

)

where K1(u) = −15
8
u2 + 9

8
if |u| ≤ 1, 0 otherwise; K2(v) = 15

16
(1− 2t2 + t4) if |v| ≤ 1,

0 otherwise and h1,n = h2,n = n−
1
3 .

Let θ̂P
τ̂
,1 be θ̂P

τ̂
with

P̂ (x, t) = 0.8 + 0.2(|x− X̄|+ |t− T̄ |) if |x− X̄|+ |t− T̄ | ≤ 1, and 0.95 elsewhere

for case 1;

P̂ (x, t) = 0.9− 0.2(|x− X̄|+ |t− T̄ |) if |x− X̄|+ |t− T̄ | ≤ 4, and 0.1 elsewhere

for case 2 and

P̂ (x, t) = 0.6 for case 3, respectively, where X̄ = n−1 ∑n
i=1 Xi and T̄ = n−1 ∑n

i=1 Ti.

Let θ̂P
τ̂
,2 be θ̂P

τ̂
with P̂ (x, t) taken to be

P̂ (x, t) = exp{−(|x− X̄|+ |t− T̄ |)} if |x− X̄|+ |t− T̄ | ≤ 2, and 0.70 elsewhere

for all the three cases considered here. Clearly, θ̂P
τ̂
,2 is defined based on an incorrectly

specified propensity score model.

From the 5000 simulated values of θ̂I , θ̂MA, θ̂P1 , θ̂P , θ̂P
τ̂
,1 and θ̂P

τ̂
,2, we calculated

the biases and standard errors of the six estimators. These simulated results are

reported in Tables 5.1 and 5.2.

Insert Tables 5.1 and 5.2 here

From Tables 5.1 and 5.2, we observe:

(a) Biases and SE decrease as n increases for every fixed censoring rate. Also,

SE increases as the missing rate increases for every fix sample size n.

(b) θ̂I , θ̂MA, θ̂P1 have smaller SE than θ̂P , θ̂P
τ̂
,1 and θ̂P

τ̂
,2. θ̂P and θ̂P

τ̂
,1 have less

SE than θ̂P
τ̂
,2. Generally, θ̂P and θ̂P

τ̂
,2 also have bigger bias than other estimators,

and θ̂P
τ̂
,2 has bigger bias than θ̂P . This suggests that our estimators and θ̂P

τ̂
,1

outperform θ̂P and θ̂P
τ̂
,2, and our estimators perform better than θ̂P

τ̂
,1 in terms of

17



SE. From the simulation results, the weighted estimator θ̂P
τ̂
,2 doesn’t perform well

if the propensity score is incorrectly specified.

For nominal confidence level 1−α = 0.95, using the simulated samples, we calcu-

lated the coverage probabilities and the average lengths of the confidence intervals,

which are reported in Table 5.3. For convenience, in what follows AEL represents

the adjusted empirical likelihood confidence interval given in subsection 4.1. BEL

denotes the smoothed bootstrap empirical likelihood confidence intervals given in

subsections 4.2. NA denotes the normal approximation based confidence intervals

given in Section 2 based on θ̂I .

Insert Table 5.3 here

From Table 5.3, we observe the following:

(1) BEL does perform competitively in comparison to AEL and NA since BEL

has generally higher coverage accuracies but only slightly bigger average lengths.

NA has higher slightly coverage accuracy than AEL. But. it does this using much

longer intervals. This implies that AEL might be preferred over NA.

(2) BEL has generally higher coverage accuracy, but bigger slightly average

length than AEL and NA as n = 60 and 100. This suggests, for n = 60 and

100, BEL performs relatively better. For n = 30, AEL might be preferred since it

has much smaller average length and the coverage accuracy is also not so low.

(3) All the coverage accuracies increase and the average lengths decrease as n

increases for every fixed missing rate. Clearly, the missing rate also affects the

coverage accuracy and average length. Generally, the coverage accuracy decreases

and average length increases as the missing rate increases for every fixed sample

size.

Appendix A: Assumptions and Proofs of Theorems 3.1, 3.2,

3.3 and 3.4

Denote by g1r(·) the rth component of g1(·). Let ‖ · ‖ be the Euclid norm. The

following assumptions are needed for the asymptotic normality of θ̂n.

(C.X): supt E[‖X‖2|T = t] < ∞,
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(C.T): The density of T , say r(t), exists and satisfies

0 < inf
t∈[0,1]

r(t) ≤ sup
t∈[0,1]

r(t) < ∞.

(C.Y): supx,t E[Y 2|X = x, T = t] < ∞.

(C.g): g(·), g1r(·) and g2(·) satisfy Lipschitz condition of order 1.

(C.P1): i: P1(t) has bounded partial derivatives up to order 2 almost surely.

ii: infx,t P (x, t) > 0.

(C.Σ) Σ = E[P (X, T )u(X,T )u(X,T )>] is a positive definite matrix.

(C.K)i: There exist constant M1 > 0,M2 > 0 and ρ > 0 such that

M1I[|u| ≤ ρ] ≤ K(u) ≤ M2I[|u| ≤ ρ].

ii: K(·) is a kernel function of order 2.

iii: K(·) has bounded partial derivatives up to order 2 almost surely.

(C.W)(i): The kernel function W (·) is a bounded kernel function with bounded

support and bounded variation.

(ii): W (·) is a kernel of order k(> d + 1).

(C.hn): nhn →∞ and nh2
n → 0.

(C.bn): nb2(d+1)
n / log n →∞ and nb2k

n → 0.

REMARK: Condition (C.T) implies that T is a bounded random variable on

[0, 1]. (C.K)i implies that K(·) is a bounded kernel function with bounded support.

Proof of Theorem 3.1. (i) We prove Theorem 3.1 for θ̂I . For θ̂I , we have

θ̂I = 1
n

n∑
i=1
{δiYi + (1− δi)(X

>
i β + g(Ti))}

+ 1
n

n∑
i=1

(1− δi)X
>
i (β̂n − β) + 1

n

n∑
i=1

(1− δi)(ĝn(Ti)− g(Ti)).
(A.1)

Note that

β̂n − β = Σ−1 1

n

n∑

i=1

δi [Xi − g1(Ti)] εi + op(n
−1/2). (A.2)

1

n

n∑

i=1

(1−δi)(ĝn(Ti)−g(Ti)) =
1

n

n∑

j=1

δjεj
(1− P1(Tj))

P1(Tj)
− 1

n

n∑

j=1

(1−δj)g1(Tj)(β̂n−β)+op(n
−1/2)

(A.3)

By (A.1), (A.2) and (A.3), we get

θ̂I − θ = 1
n

∑n
i=1

{
δi

P1(Ti)
+ E[u(X, T )>]Σ−1δi(Xi − g1(Ti))

}
εi

+ 1
n

∑n
i=1(X

>
i β + g(Ti)− θ) + op(n

−1/2),
(A.4)
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By (A.4) and the central limit theorem, θ̂I has the stated asymptotic normality.

(ii) We prove Theorem 3.1 for θ̂MA. For θ̂MA, we have

θ̂MA−θ =
1

n

n∑

i=1

(X>
i β+g(Ti))−θ+E(X)>(β̂n−β)+

1

n

n∑

i=1

(ĝn(Ti)−g(Ti))+op(n
−1/2),

(A.5)

where

1
n

n∑
i=1

(ĝn(Ti)− g(Ti)) = 1
n

n∑
i=1

∑n
j=1 δjWnj(Ti)εj − 1

n

n∑
i=1

∑n
j=1 δjWnj(Ti)X

>
j (β̂n − β) + op(n

−1/2)

= 1
n

n∑
i=1

εi
δi

P1(Ti)
− E[g1(Ti)

>](β̂n − β)+op(n
−1/2).

(A.6)

Therefore, (A.2), (A.5) and (A.6) together prove

θ̂MA − θ = 1
n

n∑
i=1

εi
δi

P1(Ti)
+ E(u(X, T ))>Σ−1 1

n

n∑
i=1

δi [Xi − g1(Ti)] εi

+ 1
n

n∑
i=1

(X>
i β + g(Ti)− θ)+op(n

−1/2).
(A.7)

This together with central limit theorem proves Theorem 3.1 for θ̂MA.

(iii) We prove Theorem 3.1 for θ̂P1 . For θ̂P1 , we have

θ̂P1 = θ + 1
n

n∑
i=1

δiεi

P1(Ti)
+ 1

n

n∑
i=1

δiεi{P̂1(Ti)−P1(Ti)}
P 2

1 (Ti)

+ 1
n

n∑
i=1

(X>
i β + g(Ti)− θ)

+ 1
n

n∑
i=1

(
1− δi

P1(Ti)

)
X>

i (β̂n − β)

+ 1
n

n∑
i=1

(
1− δi

P1(Ti)

)
(ĝn(Ti)− g(Ti)) + op(n

−1/2)

= θ + Tn1 + Tn2 + Tn3 + Tn4 + Tn5 + op(n
−1/2).

(A.8)

For Tn5, we have

Tn5 = 1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
εj

− 1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
g1(Tj)

>(β̂n − β) + op(n
− 1

2 )

(A.9)

Note thatE
[
1− δi

P1(Ti)
|Ti

]
= 0. We have

1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
εj

= 1
n

n∑
j=1

δjεj
1

nh

n∑
i=1

(
1− δi

P1(Ti)

) K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
= op(n

−1/2)

(A.10)
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and

1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
g1(Tj)

>

= 1
n

n∑
j=1

δjg1(Tj)
> 1

nh

n∑
i=1

(
1− δi

P1(Ti)

) K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
= op(1)

(A.11)

(A.9), (A.10) and (A.11) together with the fact that β̂n − β = Op(n
− 1

2 ) prove

Tn5 = op(n
− 1

2 ). (A.12)

Furthermore, E
[(

1− δi

P1(Ti)

)
Xi

]
= E [(X − g1(T ))] so that the term

Tn4 =
1

n

n∑

i=1

(
1− δi

P1(Ti)

)
X>

i (β̂n − β) = E
[
(X − g1(T ))>

]
(β̂n − β) + op(n

−1/2).

(A.13)

For Tn2, we have

Tn2 =
1

n

n∑

j=1

[δj − P1(Tj)]
1

nh

n∑

i=1

δiεi

P 2
1 (Ti)

K
(

Ti − Tj

hn

)
1

fT (Ti)
+ op(n

− 1
2 ) = op(n

−1/2).

(A.14)

(A.8), (A.12),(A.13) and (A.14) together prove

θ̂P1 − θ = 1
n

n∑
i=1

δiεi

P1(Ti)
+ 1

n

n∑
i=1

X>
i β + g(Ti)− θ

+E [(X − g1(T ))]> Σ−1 1
n

n∑
i=1

δi [Xi − g1(Ti)] εi + op(n
−1/2).

(A.15)

This together central limit theorem proves Theorem 3.1 for θ̂P1 .

(iv) We prove Theorem 3.1 for θ̂P . For simplicity, let Zi = (Xi, Ti). Observe that

θ̂P =
1

n

n∑

i=1

δiYi

P̂ (Zi)
+

1

n

n∑

i=1

(1− δi

P̂ (Zi)
)(X>

i β̂n + ĝn(Ti)). (A.16)

Next, we prove
1

n

n∑

i=1

(1− δi

P̂ (Zi)
)(X>

i β̂n + ĝn(Ti)) −→ 0. (A.17)

By assumptions (C.W), (C.bn), (C.K), (C.hn), (C.T) and (C.r), it can be proved

that

n−1
n∑

i=1

(
1− δi

P̂ (Zi)

)
(X>

i β̂n + ĝn(Ti))

= n−1
n∑

i=1

(
1− δi

P (Zi)

)
(X>

i β + g(Ti)) + n−1
n∑

i=1

δi(P̂ (Zi)−P (Zi))
P 2(Zi)

(X>
i β + g(Ti)) + op(n

− 1
2 )

(A.18)
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Let Ln2 be the second term of the right hand side of the equality in (A.18). Then

Ln2 = n−1
n∑

j=1
(δj − P (Zj))(nbd+1

n )−1
n∑

i=1

δiW

(
Zi−Zj

bn

)
(X>

i β+g(Ti))

P 2(Zi)f(Zi)

= n−1
n∑

j=1

δj−P (Zj)

P (Zj)
(X>

j β + g(Tj)) + op(n
− 1

2 ).

(A.19)

where f(z) is probability density of Z and f̂n(z) = 1

nbd+1
n

∑n
i=1 W

(
z−Zi

bn

)
.

(A.18) and (A.19) together prove (A.17). The first term in (A.16) is just θ̃HIR,

which is proved by Hirano et al (2000) to be asymptotically normal with mean zero

and variance VP = E
[

σ2(X,T )
P (X,T )

]
+ V ar[m(X, T )]. This proves Theorem 3.1.

Proof of Theorem 3.2. Similar to (A.4),(A.8),(A.15) and Hirano et al (2000), we

can get

V̂nJ =
1

n

n∑

i=1

(η(Yi, δi, Xi, Ti)− 1

n

n∑

i=1

η(Yi, δi, Xi, Ti))
2 + op(1).

where η(Y, δ,X, T ) = (π0(X, T )+π1(X, T ))δε+m(X, T )−θ with π0(x, t) and π(x, t)

defined in Section 3. This proves V̂nJ
p→ V (θ).

Proof of Theorem 3.3. Under conditions of Theorem 3.3, we have

V ∗ = σ2E
[

1
P1(T )

]
+ σ2E[u(X, T )>]Σ−1E[u(X, T )] + var[m(X, T)]

V ∗
UR = σ2E

[
1

P (X,T )

]
+ var[m(X, T)].

Note that

σ2E [u(X, T )] = σ2E
[(

δ
P (X,T )

− δ
P1(T )

)
δ (X − g1(T ))

]

= cov
((

δ
P(X,T)

− δ
P1(T)

)
ε, δ (X− g1(T)) ε

)

because E[δ (X − g1(T )) /P1(T )] = 0 and E[δ (X − g1(T )) /P (X,T )] = E[X −
g1(T )]. Furthermore,

σ2E[u(X, T )>](σ2Σ)−1σ2E[u(X, T )]

var
((

δ
P(X,T)

− δ
P1(T)

)
ε
) ≤ 1, (A.20)

because the left hand side is a squared correlation. Then note that

var

[(
δ

P(X, T)
− δ

P1(T)

)
ε

]
= σ2E

[
1

P(X, T)
− 1

P1(T)

]
. (A.21)

Combining (A.20) and (A.21) we have

σ2E[u(X,T )>]Σ−1E[u(X, T )] ≤ σ2E

[
1

P (X, T )
− 1

P1(T )

]
,
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i.e., V ∗ ≤ V ∗
UR as claimed in Theorem 3.3. Clearly, the equality holds only when

(δ/P (X,T )− δ/P1(T ))ε = aδ(X − g1(T ))ε + b, where both a and b are constants.

Proof of Theorem 3.4. We follow the approach of Bickel, Klaassen, Ritov, and

Wellner (1993, section 3.3), as applied by Hahn (1998). The log density of (Y, δ,X, T )

is

log fβ,g,fε,P,fX,T
(Y, δ,X, T ) = δ log fε(Y − βX − g(T )|X, T ) + δ log P (X,T )

+(1− δ) log(1− P (X, T )) + log fX,T (X,T ),

where fε(e|X,T ) denotes the conditional density of ε given X, T, and fX,T is the

covariate density. Let Q denote the semiparametric model. Now consider any regular

parametric submodel Qλ with ε ∼ N(0, σ2) and parameters λ = (β, γ, σ2, ηp, ηxt),

such that the log density log fβ,g,σ2,P,fX,T
(δY, X, T, δ; λ), which we denote by `sub is

δ
−1

2σ2
(Y − βX − gγ(T ))2 + δ

−1

2
log σ2 + δ log P (X,T ; ηp)

+(1− δ) log(1− P (X,T ; ηp)) + log fX,T (X, T ; ηxt),

which equals log fβ,g,fε,P,fX,T
(δY, X, T, δ) when λ = λ0. The score functions are:

∂`sub

∂β
= −δ

1

σ2
Xε,

∂`sub

∂γ
= −δ

1

σ2

∂gγ

∂γ
(T )ε,

∂`sub

∂σ2
= −δ

1

2σ2

(
ε2

σ2
− 1

)
,

∂`sub

∂ηp
=

δ − P (X, T )

P (X, T )(1− P (X, T ))

∂P

∂ηp

(X, T ),
∂`sub

∂ηxt

=
∂ffX,T

(X,T )/∂ηxt

ffX,T
(X, T )

,

where ε = Y − βX − gγ(T ). The semiparametric model is the union of all such

parametric models, and so the tangent space of Q, denoted T , is generated by
{

δXε, δγ(T )ε, δ

(
ε2

σ2
− 1

)
, a(X,T )(δ − P (X,T )), b(X,T )

}
,

where: Eε = 0, Eε2 = σ2, and Eb(X,T ) = 0, while a(X, T ) is any square integrable

measurable function of X,T.

We first consider what is the efficiency bound for estimation of β in the semipara-

metric model. We follow Bickel et al. (1993, section 2.4) and find the efficient score

function for β in the presence of the nuisance functions P, fX,T , g, and parameter

σ2. The efficient score function for estimation of β has to be orthogonal to all of

the other score functions and in particular orthogonal to any function of the form
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δγ(T )ε [which is a candidate score function for the parameters of g]. The efficient

score function for β in the semiparametric model is `∗β = δ[X − g1(T )]ε, and the

semiparametric efficiency bound is

I∗−1
ββ = σ2

(
E

[
δ[X − g1(T )][X − g1(T )]>

])−1
,

and no regular estimator can have asymptotic variance less than this. Since our

estimator β̂n achieves this bound and is hence efficient.

We now turn to the efficiency bound for the parameter λ. We first show pathwise

differentiability of the parameter θ. For the parametric submodel

θ =
∫

Y fε(Y − βX − gγ(T )|X,T ; σ2)fX,T (X, T ; ηxt)dY dXdT,

which has derivatives ∂θ
∂β

= −E [X], ∂θ
∂γ

= −E
[

∂gγ

∂γ
(T )

]
, ∂θ

∂σ2 = 0 and ∂θ
∂ηxt

=

E
[
m(X, T )

∂fX,T (X,T )/∂ηxt

fX,T (X,T )

]

Define Fθ = δε
P (X,T )

+ m(X,T ) − θ. Then it can be seen that E [Fθsλ] = ∂θ
∂λ

for parameters λ, where sλ is the corresponding element of T . Therefore, θ is a

differentiable parameter.

To find the variance bound we must find the mean square projection of Fθ onto

the tangent space T . In view of the above arguments, T is equivalently generated

from the functions δ[X−g1(T )]ε, δγ(T )ε, . . . . Furthermore, we can effectively ignore

the second term m(X,T ) − θ in Fθ, since this is already in T . Without loss of

generality we find κ to minimize the variance of

{
δ

P (X, T )
− δ

P1(T )
− κδ(X − g1(T ))

}
ε.

The solution is κ = E[X−g1(T )]

E[δ(X−g1(T ))2]
because

{
δ

P (X,T )
− δ

P1(T )
− κδ(X − g1(T ))

}
ε

is then orthogonal to any function in T as can easily be verified. Therefore, the

efficient influence function is
{

δ

P1(T )
+ κδ(X − g1(T ))

}
ε + m(X,T )− θ,

24



which is the influence function of our estimators θ̂I , θ̂MA and θ̂P . This shows that our

estimators are asymptotically efficient for the special case where ε is i.i.d. Gaussian.

Appendix B: Proofs of Theorem 4.1 and 4.2

Proofs of Theorem 4.1 and 4.2. It can be proved that min1≤i≤n Ŷin < θ <

max1≤i≤n Ŷin with probability tending to 1 when n → ∞. Hence, by Lagrange

multiplier method, (4.2) and (4.3) are then obtained from (4.1). Applying Taylor’s

expansion to (4,2), we get

l̂n(θ) = 2
n∑

i=1

{λn(Ŷin − θ)− 1

2
[λn(Ŷin − θ)]2}+ op(1) (A.16)

by the facts that Ŷ(n) = op(n
1
2 ) and λn = Op(n

− 1
2 ). Applying Taylor’s expansion to

(4.3), we get
n∑

i=1

λn(Ŷin − θ) =
n∑

i=1

[λn(Ŷin − θ)]2 + op(1) (A.17)

and

λn =

(
n∑

i=1

(Ŷin − θ)2

)−1 n∑

i=1

(Ŷin − θ) + op(n
− 1

2 ). (A.18)

(A.16), (A.17) and (A.18) together yield

l̂n(θ) = Ṽ −1
n (θ)

[
1√
n

n∑

i=1

(Ŷin − θ)

]2

+ op(1). (A.19)

This together with Theorem 3.1 proves Theorem 4.1.

Recalling the definition of l̂n,ad(θ), by (A.19) we get

l̂n,ad(θ) =


 1√

n

n∑

i=1

Ŷin − θ√
V̂nJ




2

+ op(1). (A.20)

It can be proved that Ṽn
p−→ Ṽ (θ). This together with (A.20) and Theorem 3.2

proves Theorem 4.2.

Proof of Theorem 4.3 Under assumptions (C.X), (C.T), (C.Y), (C.P1), (C.Σ)

and (C.K)iii, standard arguments can be used to prove with probability 1: (i)

supt E
∗[‖X∗‖2|T ∗∗ = t] < ∞; (ii) 0 < inft∈[0,1] rn(t) ≤ supt∈[0,1] rn(t) < ∞;
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(iii) supx,t E
∗[Y ∗|X∗ = x, T ∗∗ = t] < ∞; (iv) infx,t P

∗(δ∗ = 1|X∗ = x, T ∗∗ = t] >

0; (v) Σ∗ = E∗[P ((X∗, T ∗∗)u(X∗, T ∗)u(X∗, T ∗)>] is a positive definite matrix; (vi)

P ∗
1 (t) = P ∗(δ∗ = 1|T ∗∗ = t) has bounded partial derivatives up to order 2 almost

surely. By (i)–(vi), conditions (C.g), (C.K)i,ii and (C.hn) and similar arguments to

those used in the proof of Theorem 4.1, we can prove that along almost all sample

sequences, given (Xi, Ti, Yi, δi) for 1 ≤ i ≤ n, as m and n go to infinity l̂∗m(θ̂n)

has the same asymptotic scaled chi-square distribution as l̂n(θ). This together with

Theorem 4.1 proves Theorem 4.3.
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Table 5.1. Biases of θ̂I , θ̂MA, θ̂P1 , θ̂P , θ̂P
τ̂
,1 and θ̂P

τ̂
,2 under different missing

functions P (x) and different sample sizes n

P (x) n θ̂I θ̂MA θ̂P1 θ̂P θ̂P
τ̂
,1 θ̂P

τ̂
,2

30 -0.0085 -0.0078 -0.0079 -0.0066 -0.0089 -0.0102
P1(x) 60 0.0007 -0.0008 0.0005 -0.0022 0.0006 -0.0040

100 0.0004 0.0003 0.0004 -0.0017 0.0004 -0.0029

30 -0.0021 -0.0018 -0.0016 0.0027 0.0020 0.0086
P2(x) 60 0.0016 0.0011 0.0011 0.0014 0.0013 0.0045

100 0.0009 0.0007 0.0007 0.0011 0.0009 -0.0024

30 0.0039 0.0037 0.0037 0.0094 0.0040 -0.0074
P3(x) 60 -0.0031 -0.0029 -0.0028 -0.0072 -0.00026 -0.0068

100 0.0025 0.0025 0.0022 0.0057 0.0023 -0.0052

Table 5.2. Standard errors (SE) of θ̂I , θ̂MA, θ̂P1 , θ̂P , θ̂P
τ̂
,1, θ̂P

τ̂
,2 under different

missing functions P (x) and different sample sizes n

P (x) n θ̂I θ̂MA θ̂P1 θ̂P θ̂P
τ̂
,1 θ̂P

τ̂
,2

30 0.3227 0.3231 0.3230 0.3268 0.3246 0.3828
P1(x) 60 0.2206 0.2202 0.2202 0.2501 0.2355 0.2741

100 0.1776 0.1718 0.1718 0.1915 0.1806 0.2098

30 0.3355 0.3350 0.3351 0.3392 0.3376 0.3850
P2(x) 60 0.2340 0.2343 0.2343 0.2614 0.2403 0.2870

100 0.1866 0.1866 0.1867 0.2087 0.1946 0.2112

30 0.3502 0.3496 0.3499 0.3621 0.3508 0.3933
P3(x) 60 0.2534 0.2528 0.2528 0.2672 0.2539 0.2891

100 0.1911 0.1910 0.1911 0.2119 0.1983 0.2215

29



Table 5.3. Empirical coverages and average lengths of the confidence intervals on θ
under different missing functions P (x) and sample sizes n when nominal level is

0.95

Empirical Coverages Average Lengths

P (x) n AEL BEL NA AEL BEL NA

30 .9200 .9750 .9220 0.8700 1.1400 1.1734
P1(x) 60 .9240 .9620 .9280 0.6900 0.7900 0.8539

100 .9450 .9580 .9440 0.5400 0.6000 0.6691

30 .9160 .9770 .9190 0.9900 1.4500 1.3599
P2(x) 60 .9220 .9640 .9250 0.7700 0.9500 0.9460

100 .9430 .9590 .9450 0.6000 0.7300 0.7290

30 .9140 .9820 .9170 1.1200 1.5100 1.4587
P3(x) 60 .9210 .9690 .9230 0.7800 1.0500 0.9983

100 .9390 .9580 .9390 0.6200 0.7600 0.7664

30


