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EFFICIENCY BOUNDS FOR ESTIMATING LINEAR FUNCTIONALS OF
NONPARAMETRIC REGRESSION MODELS WITH ENDOGENOUS

REGRESSORS

THOMAS A. SEVERINI AND GAUTAM TRIPATHI

Abstract. Consider a nonparametric regression model Y = µ∗(X)+ε, where the explanatory
variables X are endogenous and ε satisfies the conditional moment restriction E[ε|W ] = 0 w.p.1
for instrumental variables W . It is well known that in these models the structural parameter
µ∗ is “ill-posed” in the sense that the function mapping the data to µ∗ is not continuous. In
this paper we derive the efficiency bounds for estimating linear functionals E[ψ(X)µ∗(X)] and∫
supp(X)

ψ(x)µ∗(x) dx, where ψ is a known weight function and supp(X) the support of X,
without assuming µ∗ to be well-posed or even identified.

1. Introduction

Models containing unknown functions, typically characterized as conditional expecta-

tions, are common in economics and economists are often interested in estimating linear func-

tionals of these unknown functions; e.g., Stock (1989) estimates the contrast between func-

tionals of E[Y |X] using before-and-after policy intervention data; letting Y denote the market

demand and X the price, Newey and McFadden (1994) consider estimating
∫ b

a
E[Y |X = x] dx,

the approximate change in consumer surplus for a given price change; additional examples can

be found in Brown and Newey (1998) and Ai and Chen (2005a, 2005b).

However, in models where variables are determined endogenously, unknown functions

cannot always be interpreted as conditional expectations which complicates the problem of

estimating their linear functionals. For instance, market demand functions are not identifiable

as conditional expectations because prices are endogenous. Hence, simply integrating an es-

timator of the conditional expectation of equilibrium quantity given equilibrium price over a

certain interval will not lead to a consistent estimator of the change in consumer surplus.

The main objective of this paper is to derive the efficiency bounds for estimating certain

linear functionals of an unknown structural function when the latter is not itself a conditional

expectation. To set up the problem, consider the nonparametric regression model

Y = µ∗(X) + ε, E[ε|W ] = 0 w.p.1, (1.1)
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where X is a vector of regressors some or all of which are endogenous and W denotes the

vector of instrumental variables (IV’s); since exogenous explanatory variables act as their own

instruments, W and X can have elements in common. The functional form of µ∗ is unknown;

we only assume that it lies in L2(X), the set of real-valued functions of X that are square

integrable with respect to the distribution of X. Endogeneity of regressors means that µ∗

cannot be a conditional expectation function because W does not contain all of X; of course,

if W = X so that there are no endogenous regressors, then µ∗(X) = E[Y |X].

Even if the structural parameter µ∗ in (1.1) is identified, i.e., uniquely defined, it is

said to be “ill-posed” because the function that maps the data to µ∗ is not continuous; see

Lemma 2.4 of Severini and Tripathi (2006), hereafter abbreviated as ST, for additional prop-

erties of this mapping. Although µ∗ may be ill-posed and hence difficult to estimate, in this

paper we focus on obtaining the efficiency bounds for estimating its functionals E[ψ(X)µ∗(X)]

and
∫

supp(X)
ψ(x)µ∗(x) dx, where ψ is a known weight function and supp(X) the support of X.1

In addition to the papers cited earlier, recent works on nonparametric IV estimation

include Ai and Chen (2003), Blundell and Powell (2003), Newey and Powell (2003), Florens,

Johannes, and van Bellegem (2005), Hall and Horowitz (2005), Darolles, Florens, and Renault

(2006), and the references therein. Our main contribution to this literature is to derive varia-

tional and non-variational, i.e., closed form, expressions for the efficiency bounds for estimating

E[ψ(X)µ∗(X)] and
∫
supp(X)

ψ(x)µ∗(x) dx without assuming that µ∗ is well-posed or even iden-

tified. Some useful examples are also developed to illustrate the insights resulting from the

efficiency bound calculations; for instance, we are able to characterize a condition that is nec-

essary for n1/2-estimability of these functionals when they are identified.2 We conclude the

paper by motivating the conjecture that plug-in estimators of these functionals based on a

suitable estimator of µ∗ can be asymptotically efficient. To the best of our knowledge, the

results obtained in this paper are new and cannot be found elsewhere in the literature.

For the remainder of the paper, E[ψ(X)µ∗(X)] and
∫
supp(X)

ψ(x)µ∗(x) dx are written

simply as E[ψµ∗] and
∫

ψµ∗, respectively. These and other instances of functional notation,

where arguments taken by functions are suppressed, should not cause any confusion.

2. Efficiency bounds for linear functionals

The efficiency bounds we obtain are most cleanly characterized in terms of operators

on Hilbert spaces. So let L2(Y, X, W ) be the set of real valued functions of (Y,X,W ) that are

square integrable with respect to the joint distribution of (Y,X, W ) (recall that L2(Y, X,W )

1For
∫
supp(X)

ψ(x)µ∗(x) dx to make sense it is implicitly understood that X is continuously distributed; the

expectation functional E[ψ(X)µ∗(X)] is of course well defined even when some components of X are discrete.
2While it is well known that evaluation functionals in large dimensional spaces can be identified but not

n1/2-estimable, the result that this can also happen with expectation functionals seems to be a new insight.
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is a Hilbert space with inner product 〈f1, f2〉L2(Y,X,W ) := E[f1f2]) and PA : L2(Y,X, W ) → A

denote orthogonal projection onto A ⊆ L2(Y,X, W ); hence, we can write E[f(Y, X, W )|W ] as

PL2(W )f with much economy of notation. Let T be the restriction of PL2(W ) to L2(X), i.e.,

T : L2(X) → L2(W ) is the bounded linear operator given by Ta = E[a(X)|W ]; its adjoint

T ′ : L2(W ) → L2(X) is the bounded linear map T ′b = E[b(W )|X]. The domain, range, and

null space of T are D(T ), R(T ), and N(T ), respectively; the orthogonal complement of a set

A is denoted by A⊥ and its closure in the norm topology is cl(A). Throughout the paper the

letter c denotes a generic constant that may vary from case to case.

2.1. Ill-posedness and n1/2-estimability. We begin by considering efficient estimation of

E[ψµ∗], where the weight function ψ satisfies the following condition.

Assumption 2.1. ψ ∈ R(T ′), i.e., there exists a δ∗ ∈ L2(W ) such that T ′δ∗ = ψ.

In Section 4 of their paper, ST show that E[ψµ∗] is identified, i.e., uniquely defined, if

and only if ψ ∈ N(T )⊥. Since N(T )⊥ = cl(R(T ′)), identification requires that ψ ∈ cl(R(T ′)).
Thus, Assumption 2.1 strengthens the identification condition. As shown next in Lemma 2.1,

this is necessary because expectation functionals corresponding to ψ ∈ cl(R(T ′))\R(T ′) cannot

be estimated at the n1/2-rate even though they are identified.3 Notice that since Assumption 2.1

does not require T ′ to be injective, δ∗ above may not be uniquely defined. Also, if there are no

endogenous regressors then Assumption 2.1 holds because T ′ is then just the identity map.

Lemma 2.1. ψ ∈ R(T ′) is necessary for E[ψµ∗] to be n1/2-estimable.

Since R(T ′) is closed if and only if R(T ) is closed (van der Vaart, 1991, p. 184),

cl(R(T ′)) \ R(T ′) = ∅ ⇐⇒ R(T ′) closed ⇐⇒ R(T ) closed ⇐⇒ µ∗ well-posed,

where the equivalence between the closure of R(T ) and well-posedness of µ∗ follows from

Lemma 2.4 of ST. Therefore, if µ∗ is ill-posed or, equivalently, R(T ) is not closed, then there

exists at least one expectation functional of µ∗ that is identified but not n1/2-estimable; see Ex-

ample 2.2 for a nice illustration. Of course, if µ∗ is well-posed then every identified expectation

functional of µ∗ is n1/2-estimable.

The following example shows how R(T ) and R(T ′) look in a Gaussian setup.

Example 2.1. Let X and W be jointly normal with mean zero and variance
[

1 ρ
ρ 1

]
, where ρ ∈

(−1, 1) \ {0}. Furthermore, let φ be the standard normal density, Hj(x) := (−1)jφ(j)(x)/φ(x)

3Ritov and Bickel (1990, p. 936) have a similar looking result. They define a class P of large dimensional
parametric models and show that if the true model lies in cl(P ) \ P then it cannot be consistently estimated.



4

the jth Hermite polynomial, and hj := Hj/
√

j! its normalized version.4 Using the reproduc-

ing property of Hermite polynomials, see Example 2.4 of ST, it is straightforward to show

that T and T ′ are injective and compact, in fact, Hilbert-Schmidt, with singular system

{(ρj, hj(X), hj(W )) : j ∈ N}. Therefore, by Lemma B.1 and Corollary B.1,5

R(T ) = {b ∈ L2(W ) :
∞∑

j=0

〈b, hj〉2L2(W )ρ
−2j < ∞} dense

( L2(W )

R(T ′) = {a ∈ L2(X) :
∞∑

j=0

〈a, hj〉2L2(X)ρ
−2j < ∞} dense

( L2(X).

(2.1)

Since R(T ) and R(T ′) are dense albeit proper subspaces of L2(W ) and L2(X), respec-

tively, they cannot be closed. Moreover, their elements are infinitely differentiable with each

derivative being square-integrable. To see this, let b ∈ R(T ) and b(k) denote its kth derivative.

Then, since H
(1)
j = jHj−1, it is straightforward to show that b(k) =

∑∞
j=k〈b, hj〉L2(W )

√
(j)khj−k

for every k ∈ N, where (j)k := j(j − 1) . . . (j − k + 1). Therefore, b is infinitely differentiable.

Furthermore, ‖b(k)‖2
L2(W ) =

∑∞
j=k〈b, hj〉2L2(W )(j)k < ∞ for each k ∈ N since limj→∞ ρ2j(j)k = 0;

hence, each b(k) is square integrable. Same results hold for R(T ′) as well. ¤
Example 2.1 can be used to describe some weight functions that satisfy Assumption 2.1.

Example 2.2 (Example 2.1 contd.). Since 〈Xk, hj〉L2(X) = 0 for j > k, all polynomials lie

in R(T ′); consequently, E[Xkµ∗] can be efficiently estimated for every k < ∞. In contrast,

the indicator function 1(−∞,d], where d < ∞ is a known constant, is not an element of R(T ′);
hence, E[1(−∞,d]µ

∗] is not n1/2-estimable even though it is identified.6 This suggests that in the

presence of unknown functions of endogenous regressors, identifiability of finite dimensional

parameters may not be sufficient to ensure their n1/2-estimability. Since such problems do not

arise if W = X, this example illustrates the importance of being careful about identification

and ill-posedness when dealing with nonparametric IV models.

It only remains to show that 1(−∞,d] 6∈ R(T ′); although this follows from Example 2.1,

we provide a direct verification because the same logic is also used in Example 2.3. So let

ψd := 1(−∞,d] and Φ be the standard normal cdf. Then, using the fact that

∫ d

−∞
Hj(x)φ(x) dx =





Φ(d) if j = 0

−Hj−1(d)φ(d) if j ≥ 1,
(2.2)

4In contrast to the statistics literature, mathematicians seem to prefer H̃j(x) := (−1)jex2
(dje−x2

/dxj) as
the definition of Hermite polynomials; see, e.g., (6.1.3) of Andrews, Askey, and Roy (1999). It is easy to show
that Hj(x) = 2−j/2H̃j(x/

√
2); this fact is used in Example 2.2.

5Denseness of R(T ) and R(T ′) follows by injectivity of T and T ′ and the fact that N(T )⊥ = cl(R(T ′)).
6Of course, indicator functions may lie in R(T ′) and their expectation functionals can be n1/2-estimable if

X and W are not jointly Gaussian.
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it is easily verified that
∞∑

j=0

〈ψd, hj〉2L2(X)ρ
−2j = Φ2(d) +

φ2(d)

ρ2

∞∑
j=0

H2
j (d)

(j + 1)!ρ2j
.

But since (j + 1)ρ2j < 1 for all sufficiently large j, there exists a positive integer N such that

∞∑
j=0

H2
j (d)

(j + 1)!ρ2j
≥

∞∑
j=N

H2
j (d)

j!
=

∞∑
j=N

H̃2
j (d/

√
2)

j!2j
, (2.3)

where the last equality follows upon recalling that H̃j(x/
√

2) = 2j/2Hj(x). Therefore, since∑∞
j=0 H̃2

j (x)rj/(j!2j) < ∞ for every x ∈ R if and only if |r| < 1, see, e.g., the second proof of

(6.1.13) in Andrews et al., it follows that
∑∞

j=0〈ψd, hj〉2L2(X)ρ
−2j = ∞; hence, ψd 6∈ R(T ′). ¤

The next example provides some additional intuition behind why expectation functionals

of the form E[1(−∞,d]µ
∗] are not n1/2-estimable in a Gaussian setting.

Example 2.3 (Example 2.2 contd.). Let θ∗d := E[1(−∞,d]µ
∗] and from Example 2.4 of ST recall

that µ∗(X) =
∑∞

j=0 ρ−jE[Y hj(W )]hj(X). Using (2.2), it is then straightforward to show that

θ∗d = Φ(d)EY − φ(d)
∞∑

j=0

E[Y hj+1(W )]

ρj+1
√

j + 1
hj(d)

= E[Y (Φ(d)− φ(d)
∞∑

j=0

hj+1(W )

ρj+1
√

j + 1
hj(d))]

:= E[Y Qd(W )].

Now consider the estimator θ̂d :=
∑n

j=1 YjQd(Wj)/n, where we have assumed that ρ is known

to keep things simple. Clearly, θ̂d is consistent for θ∗d. Moreover, assuming that var[Y |W ] is

bounded away from zero,

var[n1/2θ̂d] = var[Y1Qd(W1)] ≥ E var[Y1Qd(W1)|W1] ≥ cE[Q2
d(W1)].

But, by the orthonormality of Hermite polynomials,

E[Q2
d(W1)] = Φ2(d) +

φ2(d)

ρ2

∞∑
j=0

h2
j(d)

ρ2j(j + 1)
= Φ2(d) +

φ2(d)

ρ2

∞∑
j=0

H2
j (d)

(j + 1)!ρ2j
.

Hence, by the same argument used to show that the RHS of (2.3) is unbounded when ρ2 < 1,

it follows that var[n1/2θ̂d] = ∞. Therefore, θ̂d is not n1/2-consistent.7 ¤
7This argument breaks down if ρ2 = 1, i.e., no endogenous regressors, or d = ∞, i.e., θ∗∞ = EY ; in both

these cases n1/2-consistent estimation of θ∗d is possible. Excluding these two special cases, the result that the
variance of θ̂d goes to zero at a rate slower than 1/n remains valid even if Qd is replaced by its truncated version
Qd,mn(W ) := Φ(d)−φ(d)

∑mn

j=0 ρ−(j+1)(j +1)−1/2hj+1(W )hj(d), where mn is any sequence of positive integers

such that limn→∞mn = ∞.
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2.2. Efficiency bound. We are now ready to determine the efficiency bound for estimating

E[ψµ∗] when ψ satisfies Assumption 2.1. For maximum generality, the bound is derived under

minimal assumptions on µ∗. In particular, µ∗ is allowed to be underidentified, i.e., N(T ) 6= {0},
and ill-posed, i.e., R(T ) is not assumed to be closed.

Since the µ∗ appearing in (1.1) is not assumed to be identified, think of it as a fixed but

arbitrary element of L2(X) satisfying the conditional moment restriction8

Tµ∗ = PL2(W )Y ⇐⇒ TPN(T )⊥µ∗ = PL2(W )Y (2.4)

because Tµ∗ = T (PN(T )⊥ + PN(T ))µ
∗ = TPN(T )⊥µ∗. Moreover, since ψ ∈ N(T )⊥ by Assump-

tion 2.1, for every µ ∈ PN(T )⊥µ∗ + N(T ) we also have

〈ψ, µ〉L2(X) = 〈ψ, PN(T )⊥µ∗〉L2(X) = 〈ψ, µ∗〉L2(X);

i.e., E[ψµ] is uniquely defined for every µ ∈ PN(T )⊥µ∗+N(T ). Hence, without loss of generality,

let θ∗ := E[ψPN(T )⊥µ∗] denote the parameter of interest. As shown later, each µ∗ satisfying (2.4)

leads to the same efficiency bound for estimating θ∗. Subsequent results simplify accordingly

if µ∗ is identified to begin with, i.e., N(T ) = {0}; see, e.g., Corollary 2.1 and 2.2.

To facilitate presentation, we express θ∗ as the solution to a moment condition; namely,

we obtain the efficiency bound for estimating θ∗ in the model

E g(X, θ∗, µ∗) = 0, (2.5)

where g(X, θ∗, µ∗) := ψPN(T )⊥µ∗ − θ∗; henceforth, g := g(X, θ∗, µ∗) for notational convenience.

Let ε̃ := Y −PN(T )⊥µ∗, so that PL2(W )ε̃ = 0, and Ω := PL2(W )ε̃
2 be the scedastic function.

The next assumption bounds Ω away from zero and infinity.

Assumption 2.2. 0 < infw∈supp(W ) Ω(w) ≤ supw∈supp(W ) Ω(w) < ∞.

From now on, we write f := 1/Ω instead of 1/Ω to avoid confusing the reciprocal with

an operator inverse.

As shown later, the variance bound for estimating θ∗ is the squared-length of an orthog-

onal projection onto cl(Ṁ)+L2(W ), the tangent space of nonparametric score functions, where

Ṁ := {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ R(T )}; in the appendix we show that

cl(Ṁ) = {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ cl(R(T ))}.

If there are no endogenous regressors, then cl(Ṁ) = L2(W )⊥ = L2(X)⊥. Therefore, as made

clear in Examples 2.4 and 2.5, the size of cl(Ṁ) is a measure of the information contained in

the conditional moment restriction (2.4); smaller cl(Ṁ) means more information.

8Following Section 3 of ST, PN(T )⊥µ∗ is the “identifiable part” of µ∗.
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Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then, the efficiency bound for estimating

θ∗ is given by

E[Pcl(Ṁ)+L2(W )(ε̃Pcl(R(T ))δ
∗ + g)]2, (2.6)

where δ∗ ∈ L2(W ) satisfies T ′δ∗ = ψ.

If µ∗1 6= µ∗2 satisfy (2.4), then

PN(T )⊥µ∗1 − PN(T )⊥µ∗2 = PN(T )⊥(µ∗1 − µ∗2) = 0

because µ∗1 − µ∗2 ∈ N(T ); similarly, Pcl(R(T ))δ
∗ is uniquely defined for every δ∗ satisfying

T ′δ∗ = ψ because cl(R(T )) = N(T ′)⊥. Therefore, cl(Ṁ) and the efficient influence func-

tion Pcl(Ṁ)+L2(W )(ε̃Pcl(R(T ))δ
∗ + g) are invariant to choice of µ∗ and δ∗, implying that the above

efficiency bound is robust to underidentification of µ∗ and δ∗. Similarly, since R(T ) enters (2.6)

only via cl(R(T )), the same bound holds whether µ∗ is ill-posed or not.

Example 2.4 (Efficiency bound for estimating EY ). Suppose ψ = 1. Then θ∗ = EY ir-

respective of whether µ∗ is identified or not. Therefore, by Theorem 2.1 and the fact that

cl(Ṁ) + L2(W ) is closed, the efficiency bound for estimating EY is given by

E[Pcl(Ṁ)+L2(W )(Y − EY )]2 = var Y − E[PṀ⊥∩L2(W )⊥(Y − EY )]2.

Hence, the sample mean is asymptotically efficient if there are no endogenous regressors. ¤

The following corollary of Theorem 2.1 is immediate.

Corollary 2.1. If µ∗ is identified, i.e., N(T ) = {0}, then (2.6) can be written as

E[Pcl(Ṁ)+L2(W )(εPcl(R(T ))δ
∗ + g)]2,

where ε = Y − µ∗, g = ψµ∗ − θ∗, and Ṁ = {f ∈ L2(W )⊥ : PL2(W )(εf) ∈ R(T )}.

If there are no endogenous regressors, then δ∗ = ψ and µ∗ = PL2(X)Y , and the efficiency

bound for estimating θ∗ reduces to var[ψY ]; see Chamberlain (1992, p. 572). This makes sense

because if W = X, then E[ψµ∗] = E[ψY ]; but the efficiency bound for estimating E[Z] when

the random variable Z is fully observed is var[Z]. Therefore, when there are no endogenous

regressors the efficiency bound for estimating θ∗ is given by var[ψY ].

Although Theorem 2.1 and Corollary 2.1 provide precise variational characterizations of

the efficiency bound for estimating θ∗, in practice it may not be easy to use these results to

construct efficient estimators or to determine whether a proposed estimator is asymptotically

efficient unless a closed form for Pcl(Ṁ)+L2(W ) is available. Fortunately, an explicit expression

for orthogonal projections onto cl(Ṁ) + L2(W ) can be obtained by using Lemma 2.2, which

may be of independent interest.
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Henceforth, let (T ′fT )+ denote the Moore-Penrose generalized inverse of T ′fT , see,

e.g., Engl, Hanke, and Neubauer (2000, Section 2.1), and I be the identity operator; keep in

mind that D((T ′fT )+) = R(T ′fT ) + R(T ′fT )⊥.

Lemma 2.2. Let Assumption 2.2 hold and f ∈ L2(Y, X, W ) be such that T ′fPL2(W )(ε̃f) lies

in the domain of (T ′fT )+. Then,

Pcl(Ṁ)f = f − PL2(W )f − ε̃(I − fT (T ′fT )+T ′)fPL2(W )(ε̃f).

Since Ṁ ⊥ L2(W ), it follows that Pcl(Ṁ)+L2(W ) = Pcl(Ṁ) + PL2(W ). Therefore, an imme-

diate corollary of Lemma 2.2 is that

Pcl(Ṁ)+L2(W )f = f − ε̃(I − fT (T ′fT )+T ′)fPL2(W )(ε̃f). (2.7)

Hence, we can use (2.7) to derive a closed form for the efficiency bound in Theorem 2.1.

Theorem 2.2. Let ψ ∈ D((T ′fT )+) ∩ N(T )⊥ and T ′fPL2(W )(ε̃g) ∈ D((T ′fT )+).9 Then,

under the assumptions maintained in Theorem 2.1, (2.6) can be written as

E[ε̃fT (T ′fT )+ψ + g − ε̃(I − fT (T ′fT )+T ′)fPL2(W )(ε̃g)]2. (2.8)

When µ∗ is identified, the closed form of the bound can be obtained by replacing ε̃ with

ε and (T ′fT )+ with (T ′fT )−1 (because N(T ′fT ) = N(T )); i.e.,

Corollary 2.2. If µ∗ is identified, then (2.8) can be written as

E[εfT (T ′fT )−1ψ + g − ε(I − fT (T ′fT )−1T ′)fPL2(W )(εg)]2.

An interesting feature of the non-variational characterization is that it does not depend

upon the “nuisance” parameter δ∗. Apart from this, it also leads to some additional insight be-

hind the form of the bound. To see this, assume that µ∗ is identified. Then, from Corollary 2.2,

the efficient influence function for estimating θ∗ is given by

[g − εfPL2(W )(εg)] + εfT (T ′fT )−1(ψ + T ′fPL2(W )(εg)). (2.9)

But a look at the proof of Theorem 2.1 reveals that the efficiency bound for estimating θ∗ when

µ∗ is fully known is given by E[g − εfPL2(W )(εg)]2. Thus the first term of (2.9), which has a

very intuitive control variate interpretation, represents the contribution of PL2(W )ε = 0 if µ∗ is

assumed known whereas the second term represents the penalty for not knowing its functional

form. Since the two terms are orthogonal, the efficiency bound can also be written as

E[g − εfPL2(W )(εg)]2 + E[εfT (T ′fT )−1(ψ + T ′fPL2(W )(εg))]2.

9Since D((T ′fT )+) ∩N(T )⊥ = R(T ′fT ) by Lemma B.4, T ′fPL2(W )(εg) ∈ R(T ′fT ) when µ∗ is identified.
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Therefore, the efficiency bound for estimating θ∗ when µ∗ is known will be equal to the efficiency

bound for estimating θ∗ when µ∗ is unknown if and only if

T (T ′fT )−1(ψ + T ′fPL2(W )(εg)) = 0. (2.10)

But since (2.10) is a very restrictive condition, e.g., it may not hold even when W = X,

adaptive (meaning invariance with respect to knowledge of µ∗ or lack thereof) estimation of θ∗

appears for all practical purposes to be impossible.

Next, we obtain the efficiency bound for estimating
∫

ψµ∗. The proofs of Theorems 2.3–

2.4 are very similar to those of Theorems 2.1–2.2 and are therefore omitted.

Theorem 2.3. Let Assumption 2.2 hold and assume there exists a δ∗ ∈ L2(W ) such that

T ′δ∗ = ψ/h, where h is the unknown Lebesgue density of X.10 Then, the efficiency bound

for estimating
∫

ψµ∗ is given by E[Pcl(Ṁ)(ε̃Pcl(R(T ))δ
∗)]2. The bound when µ∗ is identified is

obtained by replacing ε̃ with ε.

In case of no endogeneity the above bound reduces to E[ψε/h]2, a result obtained earlier

by Severini and Tripathi (2001, Section 7). As before, Lemma 2.2 can be used to derive a

closed form expression for the efficiency bound.

Theorem 2.4. Let ψ/h ∈ D((T ′fT )+) ∩ N(T )⊥. Then, under the assumptions maintained

in Theorem 2.3, the efficiency bound obtained there can be written as E[ε̃fT (T ′fT )+(ψ/h)]2.

The bound when µ∗ is identified is obtained by replacing ε̃ with ε and (T ′fT )+ with (T ′fT )−1.

The methodology developed in this paper can be used to obtain efficiency bounds for

other parameters of interest as well.

Example 2.5 (Efficiency bound for probabilities). Let the vector Z contain Y and the distinct

components of X and W . Then, modifying the proof of Theorem 2.1, it can be shown that the

efficiency bound for estimating p := Pr(Z ∈ A), where A is a known region, is given by

E[Pcl(Ṁ)+L2(W )(1(Z ∈ A)− p)]2 = p[1− p]− E[PṀ⊥∩L2(W )⊥(1(Z ∈ A)− p)]2.

Hence, unless there are no endogenous regressors, the empirical measure
∑n

j=1 1(Zj ∈ A)/n is

not an efficient estimator of p. ¤

2.3. Approximating the bound. In this section we provide some justification to show that

the efficiency bound in Theorem 2.1 is attainable; similar results have been obtained earlier

by Wong (1986, Section 5.2) and Chamberlain (1987, Section 4.2). To do so, we assume the

existence of a sequence of parametric models satisfying (2.4) and show that the corresponding

efficiency bound for estimating θ∗ approaches (2.6) as the models get richer. Since the bound

10ST(Section 4) show that
∫

ψµ∗ is identified if and only if ψ/h ∈ N(T )⊥.
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is attainable in the parametric case, this suggests that our semiparametric efficiency bound is

achievable as well. A similar argument also works for estimating
∫

ψµ∗.
So let PN(T )⊥µ∗ be embedded in a smooth parametric family Fp := {m(·, β) : β ∈ Rp},

i.e., (PN(T )⊥µ∗)(X) = m(X, β∗) for all sufficiently large p. Also, let Sp denote the set spanned

by the coordinates of the parametric gradient ∇βm(X, β∗) and define Tp : Sp → L2(W ) to be

the restriction of T to Sp. Then we have the following result.

Lemma 2.3. Let PN(T )⊥µ∗ be embedded in Fp and Assumptions 2.1 and 2.2 hold. Then, the

efficiency bound for estimating θ∗ is given by

E[PṀp+L2(W )(ε̃PR(Tp)δ
∗ + g)]2,

where Ṁp := {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ R(Tp)} and δ∗ ∈ L2(W ) satisfies T ′δ∗ = ψ.

Next, we show that if the sequence of parametric families is dense in a certain sense

then the parametric and semiparametric efficiency bounds can get arbitrarily close.

Lemma 2.4. Let the parametric family Fp be nested so that R(Tp) ↑ cl(R(T )) as p → ∞.

Then, under the assumptions maintained in Lemma 2.3,

lim
p→∞

E[PṀp+L2(W )(ε̃PR(Tp)δ
∗ + g)]2 = E[Pcl(Ṁ)+L2(W )(εPcl(R(T ))δ

∗ + g)]2.

Since the Fp’s are nested, the parametric efficiency bound is non-decreasing in p. There-

fore, by Lemma 2.4, the efficiency bound under any particular parametric model can be no

greater than the semiparametric efficiency bound.

3. Concluding Remarks

We conclude by giving some intuition as to why a plug-in estimator of θ∗ based on a

suitable estimator of µ∗ can be asymptotically efficient;11 similar justification holds for estimat-

ing
∫

ψµ∗ as well. Since efficient estimation of θ∗ is particularly simple when ψ = 1 and T ′ is

injective, for the remainder of this section we assume that either ψ 6= 1 or that N(T ′) 6= {0} to

keep the estimation problem interesting.12

11Although an efficient estimator of θ∗ can also be based on the efficient influence function by using the
moment condition E[Pcl(Ṁ)+L2(W )(εPcl(R(T ))δ

∗+g)] = 0 and the closed form expression of the efficient influence
function given in (2.9), this will be significantly more complicated than a plug-in estimator because apart from
µ∗ it requires the nonparametric estimation of additional functions and operators.

12If T ′ is injective, the efficiency bound for estimating θ∗ is given by E[ε̃δ∗ + g]2; since N(T ′) = {0} implies
that R(T ) is dense in L2(W ), this follows directly from Theorem 2.1 by setting cl(R(T )) = L2(W ). If, in
addition, ψ = 1, so that δ∗ = 1 is the unique solution to T ′δ∗ = 1, the bound reduces to var[Y ]. Therefore, if
ψ = 1 and T ′ is injective, θ∗ can be efficiently estimated by

∑n
j=1 Yj/n, irrespective of whether µ∗ is identified

or not. The intuition behind why var[Y ], the efficiency bound for estimating EY when W = X, is also the
bound for estimating EY when T ′ is injective, is straightforward: since the IV’s enter the bound only through
δ∗ and δ∗ = 1 uniquely solves T ′δ∗ = 1, endogeneity of regressors is not an issue for this case.
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So let µ̂ denote a consistent estimator of µ∗ (assumed to be identified) such that θ̂ :=∑n
j=1 ψ(Xj)µ̂(Xj)/n converges in probability to E[ψµ∗] as n →∞. Since every µ̂ may not lead

to an efficient estimator of θ∗, the former will have to satisfy additional regularity conditions

for θ̂ to be asymptotically efficient.13

The motivation behind the asymptotic efficiency of θ̂ comes from the fact that the

pathwise derivative (see Newey (1994, p. 1351) for the definition) of E[ψµ∗], when the lat-

ter is regarded as a function of the true but unknown distribution of the data, is just ϕ :=

Pcl(Ṁ)+L2(W )(εPcl(R(T ))δ
∗ + g), the efficient influence function for estimating θ∗; see (A.7) in the

appendix for the proof. Consequently, as noted by Newey, the asymptotic variance of θ̂ is the

variance of the pathwise derivative of its probability limit, i.e., Eϕ2.

Following Newey (1994, Section 5), sufficient “high level” conditions that µ̂ should satisfy

so that θ̂ is asymptotically efficient can also be described. So let P be the probability measure

generating the data and P̂ the empirical measure.

Lemma 3.1. If n1/2
∫

ψ(µ̂−µ∗) dP = −n1/2
∫

(g−ϕ) dP̂+op(1) and n1/2
∫

ψ(µ̂−µ∗) (dP̂−dP) =

op(1), then n1/2(θ̂ − θ∗) = n1/2
∫

ϕdP̂+ op(1).

The first requirement on µ̂ determines the n1/2-consistency and efficiency of θ̂ whereas

the second is a stochastic equicontinuity condition; see Newey (1994, p. 1365–1366) for the

intuition behind these assumptions. Although a µ̂ satisfying these conditions will lead to an

efficient plug-in estimator of θ∗, we were unable to find such an estimator. In particular, it

remains to be determined whether the estimators of µ∗ proposed earlier in the literature, see

Section 1 for the references, satisfy the requirements of Lemma 3.1 (especially the first one).

In conclusion, it seems reasonable to believe that plug-in estimation of E[ψµ∗] and
∫

ψµ∗

can be asymptotically efficient. Showing this explicitly, however, remains an open problem and

a topic for future research.

Appendix A. Proofs

Proof of Lemma 2.1. Following the discussion in van der Vaart (1991, p. 185) and Newey

(1994, p. 1353), we know that θ∗ is not n1/2-estimable if the derivative ∇η is unbounded.14 But,

13Darolles et al. propose an estimator for θ∗ and under the assumption that ε is homoscedastic with respect
to W , show that their estimator, suitably centered and scaled, converges at rate n1/2 to a standard Gaussian
random variable. However, the value at which the estimator is centered depends on n and may not converge
to θ∗ at a rate faster than n−1/2, so that their estimator may be asymptotically biased; see Theorem 4.3 and
Corollary 4.1 of their paper. Thus, the efficiency bound given here, which is valid only for asymptotically
unbiased estimators, does not necessarily apply to their estimator. However, it is interesting to note that the
asymptotic variance of their estimator for the case ψ = 1, i.e., when θ∗ = EY , is var[ε], which does not match
the efficiency bound for estimating EY described in Example 2.4.

14We are using notation introduced subsequently in the proof of Theorem 2.1.
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by (A.6), ∇η is bounded on the tangent space Ṫ if and only if the linear functional Jψ,ε̃ defined

in (A.4) is bounded on cl(Ṁ). We now show that Jψ,ε̃ is bounded if and only if ψ ∈ R(T ′). In

fact, since sufficiency follows directly from (A.5), it only remains to show that

ψ ∈ cl(R(T ′)) \ R(T ′) =⇒ Jψ,ε̃ is unbounded on cl(Ṁ).

We demonstrate necessity via the following example. First, assume that T and T ′ are both

injective and Hilbert-Schmidt with singular system {(λj, aj, bj) : j ∈ N}, where the λj’s are

singular values satisfying
∑∞

j=1 λ2
j < ∞, and {aj} and {bj} are orthonormal bases for L2(X)

and L2(W ), respectively.15 Next, let ψ0 :=
∑∞

j=1 λjaj. Clearly, ψ0 6∈ R(T ′) by Corollary B.1.

However, ψk :=
∑k

j=1 λjaj ∈ R(T ′) for every k ∈ N since T ′bj = λjaj. Therefore, since ψk → ψ0

as k →∞ and N(T ) = {0}, we have that, for every f ∈ cl(Ṁ),

Jψ0,ε(f) = lim
k→∞

〈ψk, T
+PL2(W )(εf)〉L2(X) = lim

k→∞
〈T+′ψk, PL2(W )(εf)〉L2(W )

= lim
k→∞

〈Pcl(R(T ))(
k∑

j=1

bj), PL2(W )(εf)〉L2(W ) (by Lemma B.3(ii))

=
∞∑

j=1

E[εbjf ],

since R(T ) is dense in L2(W ). Hence, Jψ0,ε is unbounded on cl(Ṁ); e.g., if f0 := εf
∑∞

j=1 bj/j,

then it is easy to verify that f0 ∈ cl(Ṁ) but Jψ0,ε(f0) = ∞. ¤

Proof of Theorem 2.1. Let v2
0 be the conditional density of (Y, X)|W with respect to a

product dominating measure λ(dy, dx) and b2
0 the density of W with respect to a dominating

measure γ(dw). Let vt be a real-valued function on I0, an interval containing zero, such that

vt|t=0 = v0 and
∫
supp(Y,X)

v2
t (y, x|w) dλ = 1 for all (t, w) ∈ I0 × supp(W ); similarly, bt is a curve

through b0 satisfying
∫

supp(W )
b2
t (w) dγ = 1 for all t ∈ I0. Using τ̇ = (v̇, ḃ) to denote the tangent

vector to (vt, bt) at t = 0, we have

v̇ ∈ V̇ := {Sv̇ ∈ L2(Y,X, W ) : E[Sv̇(Y, X, W )|W ] = 0 w.p.1}
ḃ ∈ Ḃ := {Sḃ ∈ L2(W ) : E[Sḃ(W )] = 0},

where Sv̇(y, x, w) := 2v̇(y, x|w)/v0(y, x|w) and Sḃ(w) := 2ḃ(w)/b0(w) are the score functions

corresponding to v̇ and ḃ, respectively. Since V̇ = L2(W )⊥, it is clear that V̇ ⊥ Ḃ.

Now let κt be a curve from I0 into N(T )⊥, passing through PN(T )⊥µ∗ at t = 0, such that

Et[Y − κt|W = w] = 0 for all (t, w) ∈ I0 × supp(W ),

15This holds, for instance, in the Gaussian framework of Example 2.1.
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where Et denotes conditional expectation under the sub-model v2
t (y, x|w). Hence, differentiating

with respect to t and evaluating at t = 0,

T κ̇ = PL2(W )(ε̃Sv̇) (A.1)

for some κ̇ ∈ N(T )⊥. Since (A.1) further restricts V̇, the tangent vectors are given by

Ṁ := {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ R(T )}. (A.2)

Therefore, the tangent space of score functions relevant for our problem is Ṫ := cl(Ṁ) + Ḃ. As

shown in Lemma B.2, an appealing expression for cl(Ṁ) can be obtained under the assumption

that the scedastic function is bounded; namely,

cl(Ṁ) = {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ cl(R(T ))}.

Note that since cl(Ṁ) and Ḃ are closed linear subspaces of L2(Y, X,W ) and Ṁ ⊥ Ḃ, the

tangent space Ṫ is a Hilbert space with inner product 〈·, ·〉L2(Y,X,W ) + 〈·, ·〉L2(W ).

Since, by (2.5), the parameter of interest θ∗ is an implicitly defined function of v0 and

b0, write it as η(v0, b0) for some η : L2(Y,X,W )× L2(W ) → R. Suppose that η(vt, bt) satisfies

the moment condition
∫

supp(Y,X,W )

g(x, η(vt, bt), κt)v
2
t (y, x|w)b2

t (w) dλ dγ = 0 for all t ∈ I0.

Differentiating with respect to t and evaluating at t = 0, we obtain that

∇η(τ̇) = E[ψκ̇] + E[gSv̇] + E[gSḃ], (A.3)

where ∇η is the derivative of η along one-dimensional paths through (v0, b0).

Next, we write E[ψκ̇] in terms of the tangent vectors so that ∇η can be expressed as a

linear functional on the tangent space Ṫ. So, noting that κ̇
(A.1)
= T+PL2(W )(ε̃Sv̇), where T+ is

the Moore-Penrose inverse of T , we have E[ψκ̇] = Jψ,ε̃(Sv̇), where Jψ,ε̃ : cl(Ṁ) → R is given by

Jψ,ε̃(f) := E[ψT+PL2(W )(ε̃f)]. (A.4)

But ψ ∈ R(T ′) by Assumption 2.1; equivalently, T ′δ∗ = ψ for some δ∗ ∈ L2(W ). Therefore,

Jψ,ε̃(f) = 〈ψ, T+PL2(W )(ε̃f)〉L2(X)

= 〈T+′ψ, PL2(W )(ε̃f)〉L2(W ) (by Lemma B.3(i))

= 〈Pcl(R(T ))δ
∗, PL2(W )(ε̃f)〉L2(W ) (by Lemma B.3(ii))

= 〈ε̃Pcl(R(T ))δ
∗, f〉L2(Y,X,W ), (A.5)
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implying, by Assumption 2.2, that Jψ,ε̃ is bounded on cl(Ṁ). Consequently, by (A.3)–(A.5),

∇η(τ̇) = Jψ,ε̃(Sv̇) + E[gSv̇] + E[gSḃ] (A.6)

= E[ε̃Sv̇Pcl(R(T ))δ
∗] + E[gSv̇] + E[gSḃ]

= 〈ε̃Pcl(R(T ))δ
∗ + g, Sv̇〉L2(Y,X,W ) + 〈g, Sḃ〉L2(X,W );

i.e., ∇η is bounded on Ṫ or, equivalently, that η is a differentiable functional of (v0, b0). To

further simplify the expression for ∇η, notice that since ε̃Pcl(R(T ))δ
∗ ∈ L2(W )⊥,

∇η(τ̇) = 〈ε̃Pcl(R(T ))δ
∗ + g, Sv̇〉L2(Y,X,W ) + 〈ε̃Pcl(R(T ))δ

∗ + g, Sḃ〉L2(Y,X,W )

= 〈ε̃Pcl(R(T ))δ
∗ + g, Pcl(Ṁ)+L2(W )(Sv̇ + Sḃ)〉L2(Y,X,W )

= 〈Pcl(Ṁ)+L2(W )(ε̃Pcl(R(T ))δ
∗ + g), Sv̇ + Sḃ〉L2(Y,X,W ), (A.7)

where the third equality is because Sv̇ + Sḃ ∈ cl(Ṁ) + L2(W ).

Following Severini and Tripathi (2001), the efficiency bound for estimating η(v0, b0) is

given by ‖∇η‖2, the squared norm of its derivative, where ‖∇η‖ := sup{τ̇∈Ṫ:τ̇ 6=0} |∇η(τ̇)|. There-

fore, by (A.7) and Riesz-Fréchet, it is immediate that

‖∇η‖2 = E[Pcl(Ṁ)+L2(W )(ε̃Pcl(R(T ))δ
∗ + g)]2. ¤

Proof of Lemma 2.2. Let π∗ := f − PL2(W )f − ε̃(I − fT (T ′fT )+T ′)fPL2(W )(ε̃f). Since

PL2(W )ε̃ = 0, it is clear that π∗ ∈ L2(W )⊥. Moreover, since PL2(W )(ε̃
2) = Ω by definition,

PL2(W )(ε̃π
∗) = PL2(W )(ε̃f)− Ω(I − fT (T ′fT )+T ′)fPL2(W )(ε̃f)

= T (T ′fT )+T ′fPL2(W )(ε̃f) ∈ R(T ).

Hence, π∗ ∈ Ṁ ⊆ cl(Ṁ). Next, let RT := I − fT (T ′fT )+T ′. Then, for every ṁ ∈ Ṁ,

〈f − π∗, ṁ〉L2(Y,X,W ) = 〈ε̃RTfPL2(W )(ε̃f), ṁ〉L2(Y,X,W )

= 〈PL2(W )(ε̃ṁ), RTfPL2(W )(ε̃f)〉L2(W ) (by iterated expectations)

= 〈R′
T PL2(W )(ε̃ṁ),fPL2(W )(ε̃f)〉L2(W ) = 0

because from (B.12) we know that ṁ ∈ Ṁ implies R′
T PL2(W )(ε̃ṁ) = 0. Therefore, f − π∗ ⊥ Ṁ

and f − π∗ ⊥ cl(Ṁ) follows by continuity of the inner product. ¤

Proof of Theorem 2.2. By (2.7),

Pcl(Ṁ)+L2(W )(ε̃Pcl(R(T ))δ
∗+g) = ε̃Pcl(R(T ))δ

∗+g−ε̃(I−fT (T ′fT )+T ′)fPL2(W )(ε̃
2Pcl(R(T ))δ

∗+ε̃g).

Next, since PL2(W )(ε̃
2Pcl(R(T ))δ

∗) = ΩPcl(R(T ))δ
∗,

ε̃(I − fT (T ′fT )+T ′)fPL2(W )(ε̃
2Pcl(R(T ))δ

∗) = ε̃Pcl(R(T ))δ
∗ − ε̃fT (T ′fT )+T ′Pcl(R(T ))δ

∗.

But note that

T ′Pcl(R(T )) = T ′(I − PR(T )⊥) = T ′(I − PN(T ′)) = T ′. (A.8)
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Therefore,

T ′Pcl(R(T ))δ
∗ (A.8)

= T ′δ∗ Ass. 2.1
= ψ,

and we obtain that

Pcl(Ṁ)+L2(W )(ε̃Pcl(R(T ))δ
∗ + g) = ε̃fT (T ′fT )+ψ + g − ε̃(I − fT (T ′fT )+T ′)fPL2(W )(ε̃g). ¤

Proof of Lemma 2.3. Since the basic idea is very similar to the proof of Theorem 2.1, we

only describe the essential steps; notation and symbols not defined here have the same meaning

as in the proof of Theorem 2.1. Let βt be a smooth curve through β∗ and β̇ := dβt/dt|t=0.

Then, for the one-dimensional submodel Et[Y −m(X, βt)|W ] = 0 w.p.1,

Tpṁ = PL2(W )(ε̃Sv̇),

where ṁ := β̇′∇βm(X, β∗). Therefore, the tangent space Ṫp := Ṁp + Ḃ, where Ṁp is closed

because R(Tp) is finite dimensional. Next, following the argument to (A.4), for every τ̇ ∈ Ṫp,

∇η(τ̇) = E[ψT+
p PL2(W )(ε̃Sv̇)] + 〈g, Sv̇〉L2(Y,X,W ) + 〈g, Sḃ〉L2(X,W ).

The same reasoning that led to (A.5), plus the fact that T ′
p = T ′, can be used to show that

E[ψT+
p PL2(W )(ε̃Sv̇)] = 〈ψ, T+

p PL2(W )(ε̃Sv̇)〉L2(X) = 〈ε̃PR(Tp)δ
∗, Sv̇〉L2(Y,X,W ).

Hence,

∇η(τ̇) = 〈ε̃PR(Tp)δ
∗ + g, Sv̇〉L2(Y,X,W ) + 〈g, Sḃ〉L2(X,W ),

which, as in (A.7), can be written as

∇η(τ̇) = 〈PṀp+L2(W )(ε̃PR(Tp)δ
∗ + g), Sv̇ + Sḃ〉L2(Y,X,W ).

Therefore, the efficiency bound is for estimating θ∗ when PN(T )⊥µ∗ be embedded in the para-

metric family Fp is given by E[PṀp+L2(W )(ε̃PR(Tp)δ
∗ + g)]2. ¤

Proof of Lemma 2.4. Since PṀp+L2(W )(ε̃PR(Tp)δ
∗+ g) = PṀp

(ε̃PR(Tp)δ
∗)+PL2(W )g, it suffices

to show that

‖PṀp
(ε̃PR(Tp)δ

∗)‖L2(Y,X,W ) → ‖Pcl(Ṁ)(ε̃Pcl(R(T ))δ
∗)‖L2(Y,X,W ) as p →∞.

Begin by observing that

PṀp
(ε̃PR(Tp)δ

∗)− Pcl(Ṁ)(ε̃Pcl(R(T ))δ
∗) = (PṀp

− Pcl(Ṁ))(ε̃Pcl(R(T ))δ
∗) + rp,

where rp := PṀp
(ε̃(PR(Tp) − Pcl(R(T )))δ

∗). Since projection operators are bounded with norm

equal to one, by Assumption 2.2 we have that

‖rp‖L2(Y,X,W ) ≤ ‖ε̃(PR(Tp) − Pcl(R(T )))δ
∗‖L2(Y,X,W ) ≤ c‖(PR(Tp) − Pcl(R(T )))δ

∗‖L2(Y,X,W ).
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But PR(Tp) is a monotone sequence of projection operators since R(Tp) ↑ cl(R(T )) by assump-

tion. Therefore, by Akhiezer and Glazman (1993, p. 68), the sequence of operators PR(Tp)

converges strongly to Pcl(R(T )), implying that

‖rp‖L2(Y,X,W ) → 0 as p →∞.

Since PṀp
is also monotone, because R(Tp) ↑ cl(R(T )) =⇒ Ṁp ↑ cl(Ṁ), we also have

‖(PṀp
− Pcl(Ṁ))(ε̃Pcl(R(T ))δ

∗)‖L2(Y,X,W ) → 0 as p →∞.

The desired result follows. ¤

Proof of Lemma 3.1. Follows immediately from the decomposition

θ̂ − θ∗ =

∫
ψ(µ̂− µ∗) (dP̂− dP) +

∫
ψ(µ̂− µ∗) dP+

∫
(g − ϕ) dP̂+

∫
ϕdP̂. ¤

Appendix B. Some Useful Results

Lemma B.1. Let A and B be Hilbert spaces and K : A → B a compact linear operator

with singular system {(λj, aj, bj) : j ∈ N}, where {λj} is the set of non-zero singular values,

{aj} an orthonormal basis for N(K)⊥, and {bj} an orthonormal basis for cl(R(K)). Then,

(i) R(K) = {b ∈ B :
∑∞

j=1〈b, bj〉2Bλ−2
j < ∞}; (ii) if

∑∞
j=1 λ2

j < ∞, i.e., if K is Hilbert-Schmidt,

then R(K) is a proper subspace of B, i.e., K is not surjective.

Proof of Lemma B.1. Let b ∈ R(K). Then KPN(K)⊥a = b for some a ∈ A. Thus, by the

singular value decomposition of K, see, e.g., Kress (1999, Section 15.4),

∞∑
j=1

λj〈PN(K)⊥a, aj〉Abj =
∞∑

j=1

〈b, bj〉Bbj =⇒ 〈PN(K)⊥a, aj〉A = 〈b, bj〉B/λj.

Hence,
∑∞

j=1〈b, bj〉2Bλ−2
j < ∞ since PN(K)⊥a ∈ A; i.e., we have shown that

R(K) ⊆ {b ∈ B :
∞∑

j=1

〈b, bj〉2Bλ−2
j < ∞}. (B.1)

To show the reverse inclusion, let b belong to the RHS of (B.1) and a :=
∑∞

j=1〈b, bj〉Bλ−1
j aj.

Since Ka = b, it follows that b ∈ R(K); therefore, (i) holds. Finally, assume that
∑∞

j=1 λ2
j < ∞.

Then, b :=
∑∞

j=1 λjbj ∈ B \ R(K) since
∑∞

j=1〈b, bj〉2Bλ−2
j = ∞. Hence, R(K) ( B. ¤

Corollary B.1. Let K be as in Lemma B.1. Then, R(K ′) = {a ∈ A :
∑∞

j=1〈a, aj〉2Aλ−2
j < ∞};

and if
∑∞

j=1 λ2
j < ∞, then R(K ′) ( A.

Proof of Corollary B.1. Follow the proof of Lemma B.1 keeping in mind the singular value

decomposition of K ′, i.e., K ′b =
∑∞

j=1 λj〈b, bj〉Baj for b ∈ cl(R(K)). ¤
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Lemma B.2. Let Assumption 2.2 hold. Then, recalling the definition of Ṁ from (A.2),

cl(Ṁ) = {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ cl(R(T ))}.

Proof of Lemma B.2. Let f ∈ cl(Ṁ). Then, there exists a sequence fk in Ṁ such that

fk → f as k → ∞. Therefore, for every k ∈ N, we have fk ∈ L2(W )⊥ and PL2(W )(ε̃fk) = Tak

for some ak ∈ L2(X). But, by Cauchy-Schwarz and Assumption 2.2,

‖PL2(W )(ε̃f)‖L2(W ) ≤ ‖Ω1/2(PL2(W )f
2)1/2‖L2(W ) ≤ c‖f‖L2(Y,X,W );

i.e., f 7→ PL2(W )(ε̃f) is a bounded linear map from L2(Y, X, W ) → L2(W ). Hence,

lim
k→∞

Tak = PL2(W )(ε̃f) =⇒ PL2(W )(ε̃f) ∈ cl(R(T )).

Since f ∈ L2(W )⊥, because L2(W )⊥ is closed, it follows that

cl(Ṁ) ⊆ {f ∈ L2(W )⊥ : PL2(W )(ε̃f) ∈ cl(R(T ))}. (B.2)

To show the reverse inclusion, let m belong to the RHS of (B.2). Then, for every ε > 0, there

exists a bε ∈ R(T ) such that

‖bε − PL2(W )(ε̃m)‖L2(W ) < ε. (B.3)

Now let ṁε := m + ε̃f(bε−PL2(W )(ε̃m)). Since m ∈ L2(W )⊥ and bε−PL2(W )(ε̃m) ∈ L2(W ), it

is clear that ṁε ∈ L2(W )⊥. Therefore, since

PL2(W )(ε̃ṁε) = PL2(W )(ε̃m) + PL2(W )(ε̃
2f(bε − PL2(W )(ε̃m)))

= PL2(W )(ε̃m) + PL2(W )(bε − PL2(W )(ε̃m))

= bε ∈ R(T ),

it follows that ṁε ∈ Ṁ. Finally, by iterated expectations, Assumption 2.2, and (B.3),

‖ṁε −m‖L2(Y,X,W ) = ‖ε̃f(bε − PL2(W )(ε̃m))‖L2(Y,X,W ) = ‖f1/2(bε − PL2(W )(ε̃m))‖L2(W )

≤ c‖bε − PL2(W )(ε̃m)‖L2(W )

< cε.

Therefore, ṁε ∈ Ṁ is arbitrarily close to m; hence, m ∈ cl(Ṁ). ¤

Lemma B.3. Let Q : A → B be a bounded linear operator, where A and B are Hilbert spaces,

Q+′ denote the adjoint of Q+, and a ∈ R(Q′). Then, (i) a ∈ D(Q+′); and (ii) Q+′a = Pcl(R(Q))b,

where b ∈ B is such that Q′b = a.

Proof of Lemma B.3. Without loss of generality, assume that R(Q) is not closed; the result

for the closed-range case follows by replacing cl(R(Q)) in (ii) with R(Q). Since R(Q) is not

closed, the Moore-Penrose inverse Q+ : R(Q) + R(Q)⊥ → N(Q)⊥ is unbounded; moreover,



18

D(Q+) is a dense subspace of B and R(Q+) ⊆ A. Hence, by Kreyszig (1978, Definition 10.1-2),

the operator Q+′ : D(Q+′) → B is such that

D(Q+′) = {a ∈ A : ∃b∗ ∈ B s.t. 〈Q+f, a〉A = 〈f, b∗〉B ∀f ∈ D(Q)+} (B.4)

Q+′a := b∗. (B.5)

Let Q|N(Q)⊥ denote the restriction of Q to N(Q)⊥. To verify that a lies in the domain of Q+′ ,

observe that for every f ∈ R(Q) + R(Q)⊥,

〈Q+f, a〉A = 〈(Q|N(Q)⊥)−1Pcl(R(Q))f, a〉A
= 〈(Q|N(Q)⊥)−1Pcl(R(Q))f, Q′b〉A
= 〈Q(Q|N(Q)⊥)−1Pcl(R(Q))f, b〉B
= 〈Pcl(R(Q))f, b〉B
= 〈f, Pcl(R(Q))b〉B.

Furthermore, since b ∈ B,

‖Pcl(R(Q))b‖B ≤ ‖b‖B < ∞.

Therefore, by (B.4) and (B.5) it follows that a ∈ D(Q+′) and Q+′a = Pcl(R(Q))b. ¤

Lemma B.4. (R(T ′fT ) + R(T ′fT )⊥) ∩N(T )⊥ = R(T ′fT ).

Proof of Lemma B.4. Let a ∈ (R(T ′fT ) + R(T ′fT )⊥) ∩N(T )⊥. Since N(T )⊥ = cl(R(T ′)),
we have a = f + g, where f ∈ R(T ′fT ), g ∈ R(T ′fT )⊥, and f + g ∈ cl(R(T ′)). Hence,

g = f − cl(R(T ′)) ∈ R(T ′fT )− cl(R(T ′)) ⊆ cl(R(T ′)) ⊆ L2(X). (B.6)

Moreover,

g ∈ R(T ′fT )⊥ ⇐⇒ 〈g, T ′fTa〉L2(X) = 0 for every a ∈ L2(X)

(B.6)
=⇒ 〈g, T ′fTg〉L2(X) = 0

⇐⇒ 〈Tg,fTg〉L2(X) = 0

f>0⇐⇒ Tg = 0 ⇐⇒ g ∈ N(T ).

But g
(B.6)∈ cl(R(T ′)) = N(T )⊥. Hence,

g = 0 =⇒ a = f ∈ R(T ′fT ).

Therefore, (R(T ′fT )+R(T ′fT )⊥)∩N(T )⊥ ⊆ R(T ′fT ). To show the converse, let b ∈ R(T ′fT ).

Then, for some d ∈ L2(X) and every v ∈ N(T ),

〈b, v〉L2(X) = 〈T ′fTd, v〉L2(X) = 〈fTd, Tv〉L2(X) = 0 =⇒ b ⊥ N(T ).
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Hence, R(T ′fT ) ⊆ N(T )⊥, implying that

R(T ′fT ) ⊆ (R(T ′fT ) + R(T ′fT )⊥) ∩N(T )⊥. ¤

Lemma B.5. Let Assumption 2.2 hold and recall the definition of Ṁ from (A.2). Then,

Ṁ = {ṁ ∈ L2(W )⊥ : T ′fPL2(W )(ε̃ṁ) ∈ R(T ′fT ) and (I − T (T ′fT )+′T ′f)PL2(W )(ε̃ṁ) = 0}.

Proof of Lemma B.5. Let ṁ ∈ Ṁ. Then, by (A.2), we know ṁ ∈ L2(W )⊥ and there exists

an a ∈ L2(X) such that

PL2(W )(ε̃ṁ) = Ta. (B.7)

Since (B.7) implies that

T ′fPL2(W )(ε̃ṁ) = T ′fTa, (B.8)

we get that T ′fPL2(W )(ε̃ṁ) ∈ R(T ′fT ). Hence, by (B.8),

a = (T ′fT )+T ′fPL2(W )(ε̃ṁ) ∈ R((T ′fT )+). (B.9)

But, since T ′fT is bounded by Assumption 2.2,

R((T ′fT )+) = N(T ′fT )⊥ = cl(R(T ′fT )).

Thus, by (B.9),

a ∈ cl(R(T ′fT )). (B.10)

Hence, T ′fTa lies in the domain of (T ′fT )+′ .16 Therefore,

(T ′fT )+′T ′fPL2(W )(ε̃ṁ)
(B.8)
= (T ′fT )+′T ′fTa

Lemma B.3(ii)
= Pcl(R(T ′fT ))a

(B.10)
= a,

16Note that (T ′fT )+, which maps R(T ′fT )+R(T ′fT )⊥ onto N((T ′fT ))⊥ ⊆ L2(X), is unbounded because
R(T ′fT ) is not assumed to be closed. Therefore, referring to the proof of Lemma B.3, the domain of (T ′fT )+

′

consists of all q ∈ L2(X) such that there exists a q∗ ∈ L2(X) satisfying

〈(T ′fT )+f, q〉L2(X) = 〈f, q∗〉L2(X) for every f ∈ D((T ′fT )+).

To verify that T ′fTa lies in the domain of (T ′fT )+
′
observe that, for every f ∈ R(T ′fT ) + R(T ′fT )⊥,

〈(T ′fT )+f, T ′fTa〉L2(X) = 〈(T ′fT |N(T ′fT )⊥)−1Pcl(R(T ′fT ))f, T ′fTa〉L2(X)

= 〈T ′fT |N(T ′fT )⊥(T ′fT |N(T ′fT )⊥)−1Pcl(R(T ′fT ))f, a〉L2(X)

= 〈Pcl(R(T ′fT ))f, a〉L2(X)

= 〈f, Pcl(R(T ′fT ))a〉L2(X)

(B.10)
= 〈f, a〉L2(X).

Since we already know that a ∈ L2(X), it follows that T ′fTa lies in the domain of (T ′fT )+
′
.
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implying that

T (T ′fT )+′T ′fPL2(W )(ε̃ṁ) = Ta. (B.11)

Hence, subtracting (B.11) from (B.7),

(I − T (T ′fT )+′T ′f)PL2(W )(ε̃ṁ) = 0.

In other words, letting RT := I − fT (T ′fT )+T ′, we have shown that

Ṁ ⊆ {ṁ ∈ L2(W )⊥ : T ′fPL2(W )(ε̃ṁ) ∈ R(T ′fT ) and R′
T PL2(W )(ε̃ṁ) = 0}. (B.12)

The reverse inclusion is straightforward. Let ṁ be an arbitrary element in the RHS of (B.12).

Then, ṁ lies in L2(W )⊥ and satisfies

R′
T PL2(W )(ε̃ṁ) = 0 ⇐⇒ PL2(W )(ε̃ṁ) = T (T ′fT )+′T ′fPL2(W )(ε̃ṁ) ∈ R(T ).

Hence, we have

{ṁ ∈ L2(W )⊥ : T ′fPL2(W )(ε̃ṁ) ∈ R(T ′fT ) and R′
T PL2(W )(ε̃ṁ) = 0} ⊆ Ṁ. (B.13)

The desired result follows by (B.12) and (B.13). ¤
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