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A Note on Bootstraps and Robustness

Tony Lancaster,
Brown University, December 2003.

In this note we consider several versions of the bootstrap and
argue that it is helpful in explaining and thinking about such proce-
dures to use an explicit representation of the random resampling
process. To illustrate the point we give such explicit representa-
tions and use them to produce some results about bootstrapping linear
models that are, apparently, not widely known. Among these are a
demonstration of the equivalence, to order n−1 of the covariance ma-
trix of the bootstrap distribution of the least squares estimator and
the Eicker(1967)/White(1980) heteroscedasticity robust covariance
matrix estimate. And we examine the precise relations between an
Efron(1979) bootstrap procedure and the Bayesian bootstrap of Ru-
bin(1981) and show that their covariance matrices are identical to
O(1/n).

1 Introduction
The bootstrap is usually1 explained algorithmically, as a set of computational
instructions. In the case of the Efron nonparametric bootstrap the algorithm
would be something like

1. Randomly sample your data, with replacement, n times.

2. Compute the statistic of interest using your new data

3. Repeat steps 1 and 2 B times

4. Calculate the standard deviation of the B values of the statistic.

Justification for the algorithm would then be provided by explaining that the
empirical distribution of the data, say Fn is an approximation to the true but
unknown distribution F and that repeated sampling from Fn is approximately
the same as repeated sampling from F which, in turn, is what is required to
calculate a repeated sampling distribution. Further justification would be pro-
vided by study of the exact and asymptotic properties of the random variable
calculated according to 4.
This way of explaining the bootstrap is different from the way in which

we normally explain statistical procedures. For example, in explaining least
squares estimation we would not write down an algorithm for calculation and

1This description seems to apply to books, e.g. Efron and Tibshirani(1993); survey articles,
e.g. Horowitz(2001); and to textbooks, e.g. Wooldridge(2002)
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then try to give some intuition for what the algorithm does. Instead we write
down elements of a statistical model in which the sources of random variation
are explicitly denoted and identified. We then show that a way of estimating
a parameter is by minimizing a sum of squares and that this method can have
desirable properties. Lastly, instructions for calculation of the least squares
estimate are provided.
We might call the approach described in the first paragraph an algorithmic

explanation and that of the second paragraph an explicit explanation. Both
approaches are, of course, valid. But a question is which is the more helpful,
and in this note we shall give explicit description of three bootstrap procedures
and look in detail at these descriptions in the case of the linear model. We shall
then show that these explicit formulations lead easily to some interesting and,
apparently, not widely known results.

2 An Efron Bootstrap.
Consider first a bootstrap procedure, due to Efron(1979) in which we resample
rows of the data matrix.
Let Z, an n×m matrix, contain your data, where n is the number of individ-

uals in your sample; let t = t(Z) be a statistic whose value depends (only) upon
the data; and let v(1×n) be a n dimensional multinomial random variable. The
row vector v contains n− 1 zeroes and 1 one. If the 1 is in the j0th position in
the vector it means “cell” j has been selected. The process of selecting a row
from the matrix Z then has the explicit representation

vZ

and if the multinomial distribution is such that the probabilities of the the
n cells are the same, and thus equal to 1/n, the operation vZ is an explicit
representation of randomly selecting a row of Z..
To represent the operation of randomly sampling n times with replacement

we can use n independent, equal probability, multinomial variates represented
by n vectors v1., v2.....vn. and assemble these as rows of an n× n matrix V.

V =

⎡⎢⎢⎢⎢⎣
v1.
v2.
.
.
vn.

⎤⎥⎥⎥⎥⎦ ,
The matrix multiplication V Z produces another n×m matrix Z∗.

Z∗ = V Z.

Z∗ is a bootstrap replication of the data.
A statistic t(Z∗) = t(V Z) calculated from a bootstrap replication has a

bootstrap distribution determined solely by that of V. The properties of the
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bootstrap distribution depend on those of the random matrix V and upon the
data Z.

Example 1 The Linear Model
In the linear model y = Xβ + ε with E(X 0ε) = 0, the data matrix Z is

Z = (y : X) and the bootstrap replication is

Z∗ = V Z = (V y : V X).

As an example of a statistic whose bootstrap distribution is to be studied con-
sider the least squares estimate b = (X 0X)−1Xy. A bootstrap replication of this
estimate is found by replacing y by V y and X by V X leading to

β∗ = (X 0V 0V X)−1X 0V 0V y

= (X 0WX)−1X 0Wy, for W = V 0V. (1)

The matrix W has a typical off-diagonal element equal to Σkvkivkj for i 6= j.
This is identically zero because, for every k, vkivkj ≡ 0 because all elements of
any vector vk. are either zero or one and there is only one 1. It follows that
W is a diagonal matrix and that any bootstrap replication of β∗ is a weighted
least squares estimate. The weights are the diagonal elements of W, of which
a typical one is Σkv2ki. But this measures the number of times n independent
multinomial variates have a one in the k0th position Equivalently, it is the
number of successes in n Bernoulli trials with probability of a success — vik = 1
— equal to 1/n, so Wkk ∼ B(n, 1/n) with expectation 1 and variance (n− 1)/n.
This implies, in particular, that

E(W ) = In.

The rather simple weighted least squares representation of a bootstrap repli-
cation of the least squares estimate, and the almost equally simple properties of
the random matrix W lead to an easy study of the properties of the bootstrap
distribution. For example, consider a delta method calculation of the mean and
variance of this distribution. Think of β∗ as a function of the n vector w which
contains the n (binomial) diagonal elements of W. So β∗ = β∗(w) where the
expected value of w is 1, a vector n ones. Taking the Taylor series expansion of
β∗ up to the second term gives

β∗(w) = β∗(1) +

∙
∂β∗

∂w0

¸
w=1

(w − 1)

= b+
£
e0 ⊗ (X 0X)−1X 0¤ ∂vecW

∂w0
(w − 1)

where e = y −Xb is the least squares residual vector. The covariance matrix of
β∗ − b depends on that of w and, using the properties described above, this is

E(w − 1)(w − 1)0 = In −
1

n
Jn
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where J́n is an n × n matrix of ones. Using this fact we find, after a little
algebra, that

V (β∗ − b) = (X 0X)−1X 0EX(X 0X)−1 where E = diag{e2i }.

Thus we conclude that the delta method approximate moments of β∗ are

E(β∗) = b; V (β∗) = (X 0X)−1X 0EX(X 0X)−1,

where b is the least squares estimate and (X 0X)−1X 0EX(X 0X)−1 is the Eicker/White
heteroscedasticity robust least squares covariance matrix estimate.
These remarks are subject to the qualification that, with positive probabil-

ity in this resampling scheme, the matrix X 0WX will be singular and β∗ not
defined. For example, a bootstrap replication can give n identical rows for X∗

with positive probability and in this case X 0WX will have rank one. So, strictly,
we must consider the bootstrap distribution that we are examining as subject to
the condition that realizations of V for which X 0WX is singular are discarded.
Such a restriction will slightly alter the moment results that we are giving.

3 A Bayesian Bootstrap
If we view the rows of the data matrix,Z, as realizations of independent multino-
mial variates on, say, L+ 1 points of support with probabilities {πl}, summing
to one for l = 0, 1, 2, ..L we have a likelihood for the data. In this model the
data provided by any one agent is a vector of k + 1 numbers, a row of Z, and
this vector is an element of a set of L + 1 such vectors. The application to
the regression model interprets the {zi} as {yi, xi}, that is, as rows of the data
matrix {y : X}. This model does not restrict the conditional distribution of yi
given xi and in particular y need not have linear regression on x, nor need the
variance of y given x be independent of x. Thus it permits both non-linearity
and heteroscedasticty. The most substantive restriction of the model is that the
observations {yi, xi} must be independent. It thus does not apply to models
with autocorrelated errors or regressors which are lagged dependent variables.
The Bayesian bootstrap, so named by its originator Rubin(1981), assigns

a specific prior to the vector of probabilities π = {πl} The method proceeds
by selecting a parameter of interest, say θ, defined as a functional of the data
distribution, whose components are π and the points of support of z say {zl}.
The prior for π together with the multinomial likelihood of the data enables
computation of the posterior distribution of π. This in turn, because θ is a
function of π, enables computation of the posterior distribution of θ.
Specifically, the computation is as follows. The multinomial likelihood for

the data provided by agent i is `i(π) = ΠLl=0π
jl
l where jl is the indicator of the

event zi = zl. Multiplying n such terms gives the likelihood for the whole data
set

`(π) = ΠLl=0π
nl
l where nl is the number of times {zi} = zl.
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The natural conjugate prior for π is the multivariate beta, or dirichlet, with
kernel

p(π) ∝ ΠLl=0πνl−1l

in which the L + 1 parameters {νl} are positive and, of course, ΣLl=0πl = 1. It
follows from Bayes’ theorem that the kernel of the posterior density of π is

p(π|z) ∝ ΠLl=0πnl+νl−1l (2)

This is again a dirichlet distribution.
For any parameter θ = θ(π) we can calculate its posterior distribution by

sampling from (2) and forming θ for each realization of π. By repeating this
calculation many times an abitrarily accurate approximation to the posterior
distribution of θ may be formed.
Sampling from (2) may be accomplished by simulating L + 1 independent

gamma variates with shape parameters equal to (nl + νl) and unit scale para-
meters. Call these {gl} and form

πl =
gl

ΣLj=0gj
for l = 1, 2, ...L. (3)

Then π is dirichlet distributed (with π0 = 1− ΣLj=1πj).
The remaining issue is the choice of the {νl} and in the Bayesian bootstrap

these are set to zero giving an improper version of the dirichlet prior. The effect
of this is to produce (effectively) zero realizations for points in the support of
z that have nl = 0, that is, that were not observed in the sample. This in
turn means that the relevant points of support are the distinct values of z that
appear in the data, and, in particular, if all z values in the data are distinct
then expectations such as ΣLl=0ylπl may be equivalently written as Σ

n
i=1yiπi.

Example 2 The Linear Model and the Bayesian Bootstrap
To see the Bayesian bootstrap in action and to study analytically the distri-

bution consider an application to the linear model.
Let zj = (yj xj) where xj is the j0th row of X. Define the functional β by

the condition that
EX 0(y −Xβ) = 0.

Thus,
β = [E(X 0X)]−1E(X 0y)

where a typical element of E(X 0X) is Σni=1xilximπi and a typical element of
E(X 0y) is Σni=1xilyiπi. (Defined in this way β is the coefficient vector in the
linear projection of y on X.) Thus we can write β as

β = (X 0PX)−1X 0Py

where P = diag{πi}. But the {πi} can be represented as in (3) so we can write

β∗ = (X 0GX)−1X 0Gy (4)
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where G is an n×n diagonal matrix with elements that are independent gamma(1),
or unit exponential, variates.2

As G varies from realization to realization so does β and this variation is
the Bayesian bootstrap (posterior) distribution of β. Note that, just as in the
Efron bootstrap, realizations of β are equivalent to calculations of a weighted
least squares estimate whose weight matrix, G, is on average, equal to the iden-
tity matrix. This is because the mean of a unit exponential variate is one, so
E(G) = In. In fact the differences between (4) and (1) are rather small. Both W
and G are diagonal matrices whose diagonal elements are non-negative random
variables. The {wi} are binomial variates with means 1 and variances (n−1)/n;
the diagonal elements of G, {gi} are exponential variates with means 1 and vari-
ances 1.The Bayesian boostrap can be thought of as a smoothed version of the
Efron bootstrap in which every row of the data matrix appears in every bootstrap
replication3 but different rows receive different weights in each recalculation.
As in the Efron bootstrap the delta method can be used to find the approximate

mean and variance of the posterior or bootstrap distribution, giving the expansion
of β∗(g) about the expectation of g, which is 1.

β∗ = b+
£
e0 ⊗ (X 0X)−1X 0¤ ∂vecG

∂g0
(g − 1).

A calculation similar to that for the Efron bootstrap, though somewhat simpler,
then gives the approximate moments

E(β∗) = b; V (β∗) = (X 0X)−1X 0EX(X 0X)−1

which are identical to those of the Efron bootstrap.
The Efron and Bayesian boostrap distributions are identical, to this order of

approximation. Both have a mean equal to the least squares estimate and both
have the Eicker/White heteroscedasticity robust covariance matrix.

4 The Efron Residual Bootstrap
As Efron and Tibshirani note, “bootstrapping is not a uniquely defined concept”
and there is a second Efron bootstrap which derives from resampling the model
residuals. In a model with covariates in X and dependent variable in y model
residuals take some estimate of the relation between y and X, and form a
residual vector, e. The vector e is resampled as e∗ and the corresponding y
vector, say y∗, is calculated. Using y∗,X the statistic of interest is calculated
and the procedure repeated B times. Again the simplest context is the linear
model and the explicit representation is given in the following:

Example 3 Bootstrapping Residuals in the Linear Model
2Because when υl = 0 and nl = 1 the random variables {gi} are unit exponentials.
3 It thus avoids the difficulty with the Efron boostrap noted earlier that, with some positive

probability, β∗ will not exist. The Bayesian bootstrap β∗ exists with probability one.

6



Residuals are easy to define in the linear model, in particular e = y − Xb
provides the least squares residual vector. In the same way as for the earlier
bootstraps a randomly resampled residual vector is e∗ = V e. Then the implied y
vector is

y∗ = Xb+ e∗.

A bootstrap replication of the least squares estimate is then

β∗ = (X 0X)−1X 0y∗

= (X 0X)−1X 0Xb+ (X 0X)−1X 0V e

= b+ (X 0X)−1X 0V e.

Unlike the first two bootstraps this is linear in its random component, V in
this case, and its bootstrap distribution is easily calculated. In particular, from
the fact that the rows of V are independent multinomials with equal probabilities
it follows that

E(V ) =
1

n
Jn and E(V ee0V ) =

µ
Σie

2
i

n

¶
In = s

2In. (5)

(The second result here requires that Σiei = 0 so the model must contain an
intercept.) These results imply that

E(β∗) = b and V (β∗) = s2(X 0X)−1.

So, as is well known, the covariance matrix of the Efron residual bootstrap dis-
tribution is identicial to the standard least squares covariance matrix and the
distribution is not robust to heteroscedasticity.

5 Conclusions
We have argued that there is some merit, both pedagogical and for research,
to giving a more explicit presentation of bootstraps. Results on the properties
of the bootstrap distribution can be easier to understand and to explain. To
illustrate this we considered the linear model and described how one might
explain the bootstrap distribution in that simple context.
This exposition lead to the easy derivation of several results. The first is

that the bootstrap that resamples rows of the data matrix has a covariance
matrix equal to the Eicker/White heteroscedasticity robust covariance matrix
estimate — to O(1/n). It is well known that this bootstrap is much less dependent
on model assumptions than the bootstrap that resamples residuals and it is,
perhaps, not surprising that the procedure turns out to be robust against failure
of homoscedasticity4.
The bootstrap that resamples data rows is equivalent, to O(1/n), to the pos-

terior distribution corresponding to a multinomial likelihood and an improper
4Textbook discussions of bootstrapping and robustness with which I am familiar typically

see no connection between them and they are discussed in widely separated parts of the book.
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dirichlet prior. This is a particular case of a general result due to Lo(1987)
in which the large sample equivalence of the Efron and Bayesian bootstraps is
proved. One implication of this equivalence is the following. It is sometimes
said that one ought to resample residuals — the third method we considered in
the examples — because resampling data rows does not appear to correspond
to a repeated sampling distribution in which X is held fixed. But resampling
rows is equivalent to a Bayes procedure which is, of course, conditional on the
entire data set, both y and X. This fact suggests that this argument in favour
of resampling residuals is dubious.
Finally we should note this paper provides yet another situation in which

Bayesian and frequentist procedures give numerically identical answers but the
interpretation of these answers is very different. The Bayesian bootstrap shows
exactly the posterior uncertainty about the coefficients in a linear projection
of y on X in a specific (multinomial/dirichlet) model. The (resampling rows)
frequentist boostrap estimates the uncertainty in the least squares estimate of
the coefficients in a possibly heteroscedastic linear model. These are quite dif-
ferent objectives. Often this difference in interpretation is of little practical
consequence — both types of econometrician report more or less identical an-
swers if they use the same data. But in this case Chesher and Jewitt(1987)
have shown that the Eicker/White covariance matrix estimate can, for certain
regression designs, give radically biased estimates of the “true” repeated sam-
pling covariance matrix of the least squares estimator. This indicates that in the
circumstances considered by Chesher and Jewitt the Eicker/White procedure is
unsatisfactory. But in view of the (first order) equivalence of the covariance
matrix of the Efron bootstrap and the Eicker/White estimator this is saying, in
effect, that the Efron bootstrap can give radically wrong answers. This should
be a matter of some concern for those who want to base their inferences on the
properties of procedures over hypothetical repeated samples. It is of little inter-
est to a Bayesian for whom hypothetical repeated samples are irrelevant. For
a Bayesian the bootstrap, and therefore the Eicker/White covariance matrix.
gives the true posterior uncertainty regardless of whether the regression design
is or is not one of those which lead to severe biases.
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7 Appendix
We have used the Taylor series expansion of β∗(g) or β∗(w) several times and
since this may not be obvious to readers we here sketch the derivation.
Consider β∗(g) = (X 0GX)−1X 0Gy where G is a diagonal matrix with diago-

nal elements equal to {gi} contained in a n vector g. Then β∗(1) = (X 0X)−1X 0y =
b and

β∗ = b+
∂(X 0GX)−1X 0Gy

∂g0
(g − 1).

Next,

∂(X 0GX)−1X 0Gy

∂g0
=

∂vec(X 0GX)−1X 0Gy

∂g0

= (1⊗ (X 0GX)−1)
∂vecX 0Gy

∂g0
+ (y0GX ⊗ Ik)

∂vec(X 0GX)−1

∂g0
,

(using
∂vecAB

∂g0
) = (Iq ⊗A)

∂vecB

∂g0
+ (B0 ⊗ In)

∂vecA

∂g0
when A is n× p and B is p× q).

Next we use

∂vecA−1

∂vec(A)0
= −(A−1)0 ⊗A−1 and

∂vec(X 0GX)

∂g0
= (X 0 ⊗X 0)

∂vecG

∂g0

to get

∂vec(X 0GX)−1

∂g0
= −(X 0GX)−1 ⊗ (X 0GX)−1X 0 ⊗X 0 ∂vecG

∂g0
.

This then leads to

∂(X 0GX)−1X 0Gy

∂g0
= (1⊗ (X 0GX)−1)(y0 ⊗X 0)

∂vecG

∂g0

−(y0GX ⊗ Ik)((X 0GX)−1 ⊗ (X 0GX)−1)(X 0 ⊗X 0)
∂vecG

∂g0

=
©
y0 ⊗ (X 0GX)−1X 0 − (y0GX(X 0GX)−1 ⊗ (X 0GX)−1)(X 0 ⊗X 0)

ª ∂vecG

∂g0
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=
©
y0 ⊗ (X 0GX)−1X 0 − y0GX(X 0GX)−1X 0 ⊗ (X 0GX)−1X 0ª ∂vecG

∂g0

=
©
(y0 − y0GX(X 0GX)−1X 0)⊗ (X 0GX)−1X 0ª ∂vecG

∂g0

=
©
(y −Xβ∗)0 ⊗ (X 0GX)−1X 0ª ∂vecG

∂g0

=
n
ε∗

0 ⊗ (X 0GX)−1X 0
o ∂vecG

∂g0
,

and at g = 1 ε∗ = e = y −Xb this reduces to

∂β∗

∂g0
= (e0 ⊗ (X 0X)−1X 0)

∂vecG

∂g0
.

Thus

β∗ = b+ (e0 ⊗ (X 0X)−1X 0)
∂vecG

∂g0
(g − 1)

as required.
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