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Abstract

Consider an observed binary regressor D and an unobserved binary variable D�, both of which affect
some other variable Y . This paper considers nonparametric identi�cation and estimation of the effect
of D on Y , conditioning on D� D 0. For example, suppose Y is a person's wage, the unobserved D�

indicates if the person has been to college, and the observed D indicates whether the individual claims to
have been to college. This paper then identi�es and estimates the difference in average wages between
those who falsely claim college experience versus those who tell the truth about not having college.
We estimate this average returns to lying to be about 7% to 20%. Nonparametric identi�cation without
observing D� is obtained either by observing a variable V that is roughly analogous to an instrument for
ordinary measurement error, or by imposing restrictions on model error moments.
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1 Introduction

Consider an observed binary regressor D and an unobserved binary variable D�, both of which affect some
other variable Y . This paper considers nonparametric identi�cation and estimation of the effect of D on
Y , conditioning on a value of the unobserved D� (and possibly on a set of other observed covariates X ).
Formally, what is identi�ed is the function R.D; X/ de�ned by

R.D; X/ D E.Y j D� D 0; D; X/.

This can then be used to evaluate
r.X/ D R.1; X/� R.0; X/

and r D E[r.X/], which are respectively, the conditional and unconditional effects of D on Y , holding D�

�xed. When D� is observed, identi�cation and estimation of R is trivial. Here we obtain identi�cation and
provide estimators when D� is unobserved.
Assuming E.Y j D�; D; X/ exists, de�ne a model H and an error � by

Y D E.Y j D�; D; X/C � D H.D�; D; X/C � (1)

where the function H is unknown and the error � is mean zero and uncorrelated with D, D�, and X . Then,
since D and D� are binary, we may without loss of generality rewrite this model in terms of the unknown
R, r , and an unknown function s as

Y D R.D; X/C s.D; X/D� C � (2)

or equivalently
Y D R.0; X/C r.X/D C s.D; X/D� C �. (3)

This paper provides conditions that are suf�cient to identify the unknown functions R and r , even though
D� is unobserved.
For a speci�c example, suppose for a sample of individuals the observed D is one if an individual

claims or is reported to have some college education (and zero otherwise), and the unobserved D� is one
if the individual actually has some college experience. Let Y be the individual's wage rate. Then r is the
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difference in average wages Y between those who claim to have a degree when they actually do not, versus
those who honestly report not having a college degree. This paper provides nonparametric identi�cation
and associated estimators of the function r . We empirically apply these methods to estimate this average
difference in outcomes between truth tellers and liars, when the truth D� is not observed.
Only responses and not intent can be observed, so we cannot distinguish between intentional lying and

false beliefs about D�. For example, suppose D� as an actual treatment and D is a perceived treatment (i.e.,
D is the treatment an individual thinks he received, and so is a false belief rather than an intentional lie).
Then r is the average placebo effect, that is, the average difference in outcomes between those who were
untreated but believe they received treatment versus those who correctly perceive that they were untreated.
This paper then provides identi�cation and an estimator for this placebo effect when the econometrican
does not observe who actually received treatment.
Given a Rubin (1974) type unconfoundedness assumption, r will equal the average placebo effect, or

the average returns to lying (which could be positive or negative). Unconfoundedness may be a reasonable
assumption in the placebo example, but is less likely to hold when lying is intentional. Without uncon-
foundedness, the difference r in outcomes Y that this paper identi�es could be due in part to unobserved
differences between truth tellers and liars. For example, r could be positive even if lying itself has no direct
effect on wages, if those willing to lie about their education level are on average more aggressive in pursu-
ing their goals than others, or if some of them have spent enough time and effort studying (more on average
than other nongraduates) to rationalize claiming that they have college experience. Alternatively r could be
negative even if the returns to lying itself is zero, if the liars are more likely to arouse suspicion, or if there
exist other negative character �aws that correlate with lying.
The interpretation of r as a placebo effect or returns to lying also assumes that D� and D are respectively

the true and reported values of the same variable. This paper's identi�cation and associated estimator does
not require D and D� to be related in this way (they can be completely different binary variables), and
does not require unconfoundedness, however, for the purposes of interpreting the required assumptions and
associated results, we will throughout this paper refer to D as the reported value of a true D� and refer to r
as the returns to lying.
Discreteness of D and D� is also not essential for this paper's identi�cation method, but will simplify

the associated estimators. In particular, if we more generally have a reported Z and an unobserved Z�,
we could apply this paper's identi�cation method for any particular values z and z� of interest by letting
D� D I .Z� 6D z/ and D D I .Z 6D z/, where I is the indicator function. Then D D 1 when D� D 0 means
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lying by claiming a value z when the truth is not z.
When D is a possibly mismeasured or misclassi�ed observation of D�, then D�D� is the measurement

or misclassi�cation error. Most of the literature on mismeasured binary regressors attempts to estimate the
effect of D� on Y (a treatment effect) and assumes r.X/ D 0, or equivalently, that the measurement
error has no effect on the outcome Y after conditioning on the true D�. Recent examples include Hu
(2006), Mahajan (2006), Lewbel (2007a), and Chen, Hu, and Lewbel (2007). The same is true for general
endogenous binary regressor estimators when they are interpreted as arising from mismeasurement. See,
e.g., Das (2004), Blundell and Powell (2004), Newey and Powell (2003), and Florens and Malavolti (2003).
The assumption that r.X/ D 0 will be reasonable if the reporting errors D � D� are due to data collection
errors such as accidently checking the wrong box on a survey form. Having r.X/ D 0 would also hold if
the outcome Y could not be affected by the individual's beliefs or reports regarding D, e.g., if D� were an
indicator of whether the individual owns stock and Y is the return on his investment, then that return will
only depend on the assets he actually owns and not on his beliefs or self reports about what he owns. Still,
there are many applications where it is not reasonable to assume a priori that r.X/ is zero, so even when
r.X/ is not of direct interest, it may be useful to apply this paper's methods to test if it is zero, which would
then permit the application of many of the existing treatment or mismeasured or misclassi�ed regressor
estimators which all require that r.X/ D 0.
We propose two different methods to obtain nonparametric identi�cation without observing D�. One is

by observing a variable V that has some special properties, analogous to an instrument. The second way we
obtain identi�cation is through restrictions on the �rst three moments of the model error �. Identi�cation
using an instrument V requires V to have some of the properties of a repeated measurement. In particular,
Kane and Rouse (1995) and Kane, Rouse, and Staiger (1999) obtain data on both self reports of educational
attainment D, and on transcript reports. They provide evidence that this transcript data (like the self reports
D) may contain considerable reporting errors on questions like, "Do you have some years of college?"
These transcript reports therefore cannot be taken to equal D�, but we show these transcripts may satisfy
the conditions we require for use as an instrument V .
The alternative method we propose for identi�cation does not require an instrument V , but is instead

based primarily on assuming that the �rst three moments of the model error � be independent of the co-
variates. For example, if � is normal, as might hold by Gibrat's (1931) law for Y being log wages, and
homoskedastic, then � will satisfy this assumption.
The next two sections describe identi�cation with and without an instrument. We then propose esti-
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mators based on the identi�cation, and provide an empirical application estimating the effects on wages of
lying about educational attainment.

2 Identi�cation Using an Instrument

ASSUMPTION A1: The variable Y , the binary variable D, and a (possibly empty) vector of other
covariates X are all observable. The binary variable D� is unobserved. E.Y j D�; D; X/ exists. The
functions H, R, r , s and the variable � are de�ned by equations (1), (2) and (3).

ASSUMPTION A2: A variable V is observed with

E .�V j D; X/ D 0; (4)

E
�
V j D; D� D 1; X

�
D E

�
V j D� D 1; X

�
; (5)

E .V j D D 1; X/ 6D E .V j X/ : (6)

The following Lemmas are useful for interpreting and applying Assumption A2:

LEMMA 1: Assume E .D j D� D 1; X/ 6D 0. Equation (5) holds if and only if

Cov
�
D; V j D� D 1; X

�
D 0 (7)

LEMMA 2: Assume E .D j X/ 6D 0. Equation (6) holds if and only if

Cov .D; V j X/ 6D 0. (8)

Proofs of Lemmas and Theorems are in the Appendix. Equation (4) says that the instrument V is uncor-
related with the model error � for any value of the observable regressors D and X . A suf�cient condition
for equation (4) to hold is if E .Y j D�; D; X; V / D E .Y j D�; D; X/. This is a standard property for an
instrument.
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As shown by Lemmas 1 and 2, equations (5) and (6) say that D and V are correlated, but at least for
D� D 1, this relationship only occurs through D�. Equation (5) means that when D� D 1, the variable
D has no additional power to explain V given X . If V is a second mismeasurement of D�, then (5) or its
equivalent (7) is implied by a standard assumption of repeated measurements, namely, that the error in the
measurement D be unrelated to the error in the measurement V , while equation (6) can be expected to hold
because both measurements are correlated with the true D�. Equation (6) is close to a standard instrument
assumption, if we are thinking of V as an instrument for D (since we are trying to identify the effect of D
on Y ). Note that equation (6) or Lemma 2 can be easily tested, since they only depend on observables.
To facilitate interpretation of the identifying assumptions, we discuss them in the context of the example

in which Y is a wage, D� is the true indicator of whether an individual has some college experience, D is
the individual's self report of college experience, and V is transcript reports of educational attainment,
which are an alternative mismeasure of D�. Let X denote a vector of other observable covariates we may
be interested in that can affect either wages, schooling, and/or lying, so X could include observed attributes
of the individual and of her job.
In the college and wages example, equation (4) will hold if wages depend on both actual and self

reported education, i.e., D� and D, but not on the transcript reports V . This should hold if employers rely
on resumes and worker's actual knowledge and abilities, but don't see college transcripts. Equation (5)
or equivalently (7) makes sense, in that errors in college transcripts depend on the actual D�, but not on
what individuals later self report. However, this assumption could be violated if individuals see their own
transcripts and base their decision to lie in part on what the transcripts say. Finally, (6) is likely to hold
assuming transcripts and self reports are accurate enough on average to both be positively correlated with
the truth.

THEOREM 1: If Assumptions A1 and A2 hold then R.D; X/ satis�es

R.D; X/ D
E .YV j D; X/� E .Y j D; X/ E .V j D� D 1; X/

E .V j D; X/� E .V j D� D 1; X/
: (9)

It follows immediately from Theorem 1 that R.D; X/ is identi�ed if E .V j D; X/ 6D E .V j D� D 1; X/
to avoid division by zero and if E .V j D� D 1; X/ can be identi�ed, because the other terms in equation
(9) are expectations of observables, conditioned on other observables, and hence are themselves identi�ed.
We now consider two alternative methods of satisfying these conditions needed to identify R.D; X/.
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ASSUMPTION A3: Assume

E
�
V j D� D 1; X

�
D 1; (10)

and
E .V j D; X/ 6D 1 (11)

Note that if V 2 f0; 1g (as is the case when V is a mismeasure of D�, like when V is the transcript
report) then equation (10) is equivalent to Pr .V D 1 j D� D 1; X/ D 1. This equation (10) rules out
transcript errors of the form V D 0 when D� D 1, and therefore requires that only one type of transcript
error be possible, namely, V D 1 when D� D 0. For example, if D and D� refer to graduating from college
then equation (10) says that anyone who has a diploma will have an accurate transcript, but people who did
not graduate may have transcript errors.
Equation (11) requires that there not exist a value of D; X that always yields V D 1, or more precisely,

that if such a D; X exists, then we cannot identify R .D; X/ for that D; X , since for those people we will
not observe any variation in the instrument V . Equation (11) is empirically testable since it depends only
on observables.

COROLLARY 1: If Assumptions A1, A2, and A3 hold then R.D; X/ is identi�ed by

R.D; X/ D
E .YV j D; X/� E .Y j D; X/

E .V j D; X/� 1
D
E .Y .V � 1/ j D; X/
E ..V � 1/ j D; X/

(12)

Corollary 1 follows from Theorem 1 by substituting equation (10) into equation (9). Equation (11) then
ensures that the denominator of equation (12) is nonzero.

Equation (10), which in the wage application rules out one kind of transcript error, may be overly
strong. We now consider an alternative assumption and associated identi�cation that does not require this
restriction.

ASSUMPTION A3': There exists an observed binary U 2 f0; 1g (having U be an element or subset of
X is permitted but not required) such that

E
�
V j D� D 1; X

�
D E .V j U D 1/ (13)
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and
E .V j D; X/ 6D E .V j U D 1/ (14)

Equation (13) assumes that V has the same mean for people who have U D 1 as for people that have
D� D 1 and any value of X . One set of suf�cient conditions for equation (13) is if E .V j D� D 1; X;U / D
E .V j D� D 1/, so for people having college (D� D 1), the probability of a transcript error is unrelated to
one's personal attribute information X and U , and if

Pr
�
D� D 1 j U D 1

�
D 1; (15)

so people who have U D 1 are an observable subpopulation (e.g., medical doctors or PhD's) that de�nitely
have some college. If equation (15) holds then equation (13) would only be violated if colleges systemati-
cally made more errors when producing transcripts for individuals with some value of attributes X;U than
for students with other attribute values.
Equation (14) is a technicality that, like equation (11) in Corollary 1, will avoid division by zero in

Corollary 2 below. It is dif�cult to see why it should not hold in general, and it is empirically testable since
it depends only on observables. However, if both equations (13) and (15) hold then equation (14) will not
hold for values x0 such that Pr .U D 1 j X D x0/ D 1. This means that R.D; X/ cannot be identi�ed for
X D x0, which is logical because all members of subgroup x0 have U D 1 which then means they have
D� D 1 by equation (15), and therefore none of them can be lying when reporting D D 1.

COROLLARY 2: If Assumptions A1, A2, and A3' hold then R.D; X/ is identi�ed by

R.D; X/ D
E .YV j D; X/� E .Y j D; X/ E .V j U D 1/

E .V j D; X/� E .V j U D 1/
: (16)

Corollary 2 follows Theorem 1, by substituting equation (13) into equation (9) to obtain equation (16),
and equation (14) makes the denominator in equation (16) be nonzero.

Given identi�cation of R.D; X/ by Corollary 1 or 2, the returns to lying r.X/ is also identi�ed by
r.X/ D R.1; X/� R.0; X/.
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Although rather more dif�cult to interpret and satisfy than the assumptions in Corollaries 1 and 2, yet
another alternative set of identifying assumptions is equations (4), (6) and Cov .D�; V j D; X/ D 0, which
by equation (3) implies Cov .Y; V j X/ D r.X/Cov .D; V j D; X/which can then be solved for, and hence
identi�es, r.X/.

3 Identi�cation Without an Instrument

We now consider identi�cation based on restrictions on moments of � rather than on the presence of an
instrument. The method of identi�cation here is similar to that of Chen, Hu, and Lewbel (2007), though
that paper imposes the usual measurement error assumption that the outcome Y is conditionally independent
of the mismeasure D, conditioning on the true D�, or equivalently, it assumes that r.X/ D 0.

ASSUMPTION B2:
E
�
� j D�; D; X

�
D 0; (17)

E
�
�k j D�; D; X

�
D E

�
�k
�
for k D 2; 3; (18)

there exists an x0 such that

Pr
�
D D 0 j D� D 1; X D x0

�
D 0 and Pr .D D 0 j X D x0/ > 0; (19)

and
E
�
Y j D� D 1; D; X

�
� E

�
Y j D� D 0; D; X

�
(20)

Equation (17) can be assumed to hold without loss of generality by de�nition of the model error �.
Equation (18) says that the second and third moments of the model error � do not depend on D�; D; X , and
so would hold under the common modeling assumption that the error � in a wage equation is independent
of the regressors,
Equation (19) implies that people, or at least those in some subpopulation fX D x0g, will not underreport

and claim to not have been to college if they in fact have been to college. At least in terms of wages, this is
plausible in that it is hard to see why someone would lie to an employer by claiming to have less education
or training than he or she really possesses.
Finally, equation (20) implies that the impact of D� on Y conditional on D and X is known to be

positive. This makes sense when Y is wages and D� is the true education level, since ceteris paribus, higher
education on average should result in higher wages on average.
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De�ne

� 2Y jD;X .D; X/ D E
�
Y 2jD; X

�
� [E .Y jD; X/]2 ;

�3Y jD;X .D; X/ D E
�
[Y � E .Y jD; X/]3 jD; X

�
;

�.D; X/ D � 2Y jD;X .D; X/� �
2
Y jD;X .0; x0/;

�.D; X/ D �3Y jD;X .D; X/� �
3
Y jD;X .0; x0/C 2E .Y jD; X/ �.D; X/;

 .D; X/ D �.D; X/2 C [E .Y jD; X/]2 �.D; X/� E .Y jD; X/ �.D; X/:

THEOREM 2: Suppose that Assumptions A1 and B2 hold and that �.D; X/ 6D 0 for .D; X/ 6D .0; x0/.
Then, R.D; X/ and s.D; X/ are identi�ed as follows:
i) if .D; X/ D .0; x0/, then R.D; X/ D E .Y jD; X/;
ii) if .D; X/ 6D .0; x0/, then

R.D; X/ D
�.D; X/�

p
�.D; X/2 C 4�.D; X/ .D; X/

2�.D; X/
;

and
s.D; X/ D

�.D; X/
E .Y jD; X/� R.D; X/

C E .Y jD; X/� R.D; X/:

As before given R.D; X/ we may identify the returns to lying r.X/ using r.x/ D R.1; X/ � R.0; X/.
Identi�cation of s.D; X/ in Theorem 2 means that the entire conditional mean function H in equation 1 is
identi�ed.
The proof of Theorem 2 shows that R.D; X/ satis�es a quadratic equation, and equation (20) is only

needed to identify which of the two roots is correct.

4 Unconfoundedness

By construction the function r.X/ is the difference in the conditional mean of Y (conditioning on D, X , and
on D� D 0) when D changes from zero to one. Assuming D is the reported response and D� is the truth,
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here we formally provide the unconfoundedness condition required to have this r.X/ equal the returns to
lying. Consider the weak version of the Rubin (1974) or Rosenbaum and Rubin (1984) unconfoundedness
assumption given by equation (21), interpreting D as a treatment. Letting Y .d/ denote what Y equals given
the response D D d, if

E[Y .d/ j D; D� D 0; X ] D E[Y .d/ j D� D 0; X ] (21)

then it follows immediately from applying, e.g., Heckman, Ichimura, and Todd (1998), that E[Y .1/�Y .0/ j
D� D 0; X ] D r.X/ is the conditional average effect of D, and so is the conditional on X average returns
to lying.

5 Estimation Using an Instrument

We now provide estimators of R.D; X/ and hence of r.X/ based on Corollaries 1 and 2 of Theorem 1.
We �rst describe nonparametric estimation based on ordinary sample averages which can be used if X is
discrete. We then discuss kernel based nonparametric estimation, and �nally we provide a simple least
squares based semiparametric estimator that does not require any kernels, bandwidths, or other smoothers
regardless of whether X contains continuous or discrete elements.

5.1 Nonparametric, Discrete X Estimation

When X is discrete, replacing the expectations in equation (16) with sample averages gives the estimators

bR.d; x/ D b�Y;V;X;d �b�Y;X;db�b�V;X;d �b�X;db� , br.x/ D bR.1; x/� bR.0; x/: (22)

with

b�Y;V;X;d D
1
n

nX
iD1
YiVi I .X i D x; Di D d/, b�Y;X;d D 1

n

nX
iD1
Yi I .X i D x; Di D d/,

b�V;X;d D
1
n

nX
iD1
Vi I .X i D x; Di D d/, b�X;d D 1

n

nX
iD1

I .X i D x; Di D d/,

b�V;U D
1
n

nX
iD1
ViUi , b�U D 1

n

nX
iD1
Ui , b� D b�V;U=b�U

Estimation based on equation (12) is the same replacingb� with the number one in equation (22)
11



We also consider the unconditional mean returns Rd D E [R .d; X/] and unconditional average returns
to lying r D E [r .X/], which may be estimated by

bRd D 1
n

nX
iD1

bR.d; X i /, br D 1
n

nX
iD1
br.X i /. (23)

Assuming independent, identically distributed draws of fYi ; Vi ; X i ; Di ;Ui g, and existence of relevant
variances, it follows immediately from the Lindeberg-Levy central limit theorem and the delta method
that bR.d; x/,br.x/, bRd , andbr are root n consistent and asymptotically normal, with variance formulas as
provided in the appendix, or that can be obtained by an ordinary bootstrap. Analogous limiting distribution
results will hold with heteroskedastic or nonindependent data generating processes, as long as a central
limit theorem still applies.

5.2 General Nonparametric Estimation

Letting � D E .V j U D 1/, equation (16) can be rewritten as

R.D; X/ D
E [Y .V � �/ j D; X ]
E [.V � �/ j D; X ]

: (24)

Equation (12) can also be written in the form of equation (24) by letting � D 1.
Assume n independent, identically distributed draws of fYi ; Vi ; X i ; Di ;Ui g. Let b� D b�V;U=b�U if

estimation is based on equation (16), otherwise let b� D 1 if estimation is based on equation (12). Let
X i D .Zi ;Ci / where Z and C are, respectively, the vectors of discretely and continuously distributed
elements of X . Similarly let x D .z; c/. Based on equation (24), a kernel based estimator for R.D; X/ is

bR.d; x/ D 6niD1Yi .Vi �b�/ K [.Ci D c/=b]I .Zi D z/I .Di D d/
6niD1 .Vi �b�/ K [.Ci D c/=b]I .Zi D z/I .Di D d/ (25)

where K is a kernel function and b is a bandwidth that goes to zero as n goes to in�nity. Equation (25)
is numerically identical to the ratio of two ordinary nonparametric Nadaraya-Watson kernel regressions of
Y .V �b�/ and V �b� on X; D, which under standard conditions are consistent and asymptotically normal.
These will have the same slower than root n rate of convergence as regressions that used the constant � in
place of the estimator b�, because b� either equals the constant one, or it converges at the rate root n by the
law of large numbers. Alternatively, equation (24) can be rewritten as the conditional moment condition

E [.Y � R.D; X// .V � �/ j D; X ] D 0 (26)
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which may be estimated using, e.g., the functional GMM estimator of Ai and Chen (2003), or by Lewbel's
(2007b) local GMM estimator , with limiting distributions as provided by those references.
Given bR.d; x/ from equation (25) we may as before construct br.x/ D bR.1; x/ � bR.0; x/, and un-

conditional returns bRd and br by equation (23). We also construct trimmed unconditional returns brt D
1
n
Pn
iD1br.X i /Iti and similarly for bRdt , where Iti is a trimming parameter that equals one for most observa-

tions i , but equals zero for tail observations. Assuming regularity conditions such as Newey (1994) these
trimmed unconditional returns are root n consistent and asymptotically normal of trimmed means rt and
Rdt .

5.3 Simple Semiparametric Estimation

Assume we have a parameterization R.D; X; �/ for the function R.D; X/ with a vector of parameters � .
The function s.D; X/ and the distribution of the model error � are not parameterized. Then based on the
de�nition of � and equation (26), � and � could be jointly estimated based on Corollary 2 by applying
GMM to the moments

E [.V � �/U ] D 0 (27)

E [ .D; X/ .Y � R.D; X; �// .V � �/] D 0 (28)

for a chosen vector of functions  .D; X/. For estimation based on Corollary 1, the estimator would just
use the moments given by equation (28) with � D 1.
Let W D

�
1; D; X 0

�0. If R has the linear speci�cation R.D; X; �/ D W 0� then let  .D; X/ D W to
yield moments E

�
W
�
Y �W 0�

�
.V � �/

�
D 0, so � D E

�
.V � �/WW 0

��1 E [.V � �/WY ]. This then
yields a weighted linear least squares regression based estimator

b� D " nX
iD1

.Vi �b�/WiW 0
i

#�1 " nX
iD1

.Vi �b�/WiYi# (29)

based on Corollary 2, or the same expression with b� D 1 based on Corollary 1. Given b� we then havebR.D; X/ D W 0b� . In this semiparametric speci�cation r.x/ is a constant withbr.x/ D br D b�1, the �rst
element ofb� . Note that both GMM based on equation (28) and the special case of weighted linear regression
based on equation (29) do not require any kernels, bandwidths, or other smoothers for their implementation.
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6 Estimation Without an Instrument

We now consider estimation based on Theorem 2. As in the previous section, let K be a kernel function, b be
a bandwidth, and X i D .Zi ;Ci / where Z and C are, respectively, the vectors of discretely and continuously
distributed elements of X . Also let x D .z; c/. For k D 1; 2; 3, de�ne

bE �Y k jD D d; X D x� D 6niD1Y
k
i K [.Ci D c/=b]I .Zi D z/I .Di D d/

6niD1K [.Ci D c/=b]I .Zi D z/I .Di D d/
(30)

This is a standard Nadayara-Watson Kernel regression combining discrete and continuous data, which pro-
vides a uniformly consistent estimator of E

�
Y k jD D d; X D x

�
under standard conditions. De�ne

b� 2Y jD;X .d; x/ D bE �Y 2jD D d; X D x�� �bE .Y jD D d; X D x/�2 ;
b�3Y jD;X .d; x/ D bE ��Y � bE .Y jD D d; X D x/�3 jD D d; X D x� ;

b�.d; x/ D b� 2Y jD;X .d; x/�b� 2Y jD;X .0; x0/;b�.d; x/ D b�3Y jD;X .d; x/� �3Y jD;X .0; x0/C 2bE .Y jD D d; X D x/b�.d; x/;b .d; x/ D b�.d; x/2 C �bE .Y jD D d; X D x/�2b�.d; x/� bE .Y jD D d; X D x/b�.d; x/:
Based on Theorem 2 and uniform consistency of the kernel regressions, a consistent estimator of R.d; x/ is
then bR.0; x0/ D bE .Y jD D 0; X D x0/ ,

bR.d; x/ D b�.d; x/�pb�.d; x/2 C 4b�.d; x/b .d; x/
2b�.d; x/ for .d; x/ 6D .0; x0/.

If X does not contain any continuously distributed elements, then these estimators are smooth functions
of cell means, and so are root n consistent and asymptotically normal by the Lindeberg Levy central limit
theorem and the delta method. Given bR.d; x/ from equation (25) we may as before construct br.x/ DbR.1; x/� bR.0; x/, and unconditional returns bRd andbr by equation (23). Also as before, Root n consistent,
asymptotically normal convergence of trimmed means of bRd andbr is possible using regularity conditions
as in Newey (1994) for two step plug in estimators.
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7 Returns to Lying about College

Here we report results of empirically implementing our estimators of r.x/where D is self reports of school-
ing and Y is log wages. We will for convenience refer to these results as returns to lying, but strong caveats
are required for that interpretation. First, we are only estimating conditional means, so our results fail to
control for the selection effects that lie at the heart of the modern literature on wages and schooling going
back at least to Heckman (1979). In addition, unconfoundedness with respect to lying based on equation
(21) may not hold for the reasons listed in the introduction. Finally, our sample is likely to not be represen-
tative of the general population. It is therefore safest to interpret the estimates here as simply difference in
means between truth tellers and liars for a limited sample, rather than as formal returns to lying.

7.1 Preliminary Data Analysis

Kane, Rouse, and Staiger (1999) estimate a model of wages as a function of having either some college, an
associate degree or higher, or a bachelors degree or higher. Their model also includes other covariates, and
they use data on both self reports and transcript reports of education level. Their data is from the National
Longitudinal Study of High School Class of 1972 (NLS-72) and a Post-secondary Education Transcript
Survey (PETS). We use their data set of n D 5912 observations to estimate the returns to lying, de�ning Y
to be log wage in 1986, D to be one if an individual self reports having "some college" and zero otherwise,
while V is one for a transcript report of having "some college" and zero otherwise (both before 1979). We
also provide estimates where D and V are self and transcript reports of having an associate degree or more,
and reports of having a bachelor's degree or more. We take X to be the same set of other regressors Kane,
Rouse, and Staiger (1999) used, which are a 1972 standardized test score and zero-one dummy variables
for female, black nonhispanic, hispanic, and other nonhispanic.
The means of D and V (which equal the fractions of our sample that report having that level of college

or higher) are 0.6739 and 0.6539 for "some college," 0.4322 and 0.3884 respectively for "Associate degree,"
and 0.3557 and 0.3383 for "Bachelors degree." The mean of U is 0.03468, so about 3.5% of our sample
have transcripts indicating graduate degrees, and the average log wage Y is 2.228.
If D� were observed along with Y and D, then the functions r.x/ and s .d; x/ could be immediately

estimated from equation equation (3). Table 1 provides preliminary estimates of r and s based on this
equation, under the assumption that transcripts have no errors. The row "r if V=D�" in Table 1 is the sample
estimates of E.Y jV D 0; D D 1/� E.Y jV D 0; D D 0/, which would equal an estimate of r D E [r .X/]
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if V D D�, that is, if the transcripts V were always correct. The row, "r if V=D�, linear" is the coef�cient
of D in a linear regression of Y on D, V , D � V , and X , and so is another estimate of r that would be valid
if if V D D� and given a linear model for log wages.
The third row of Table 1 is the sample analog of E.Y jV D 1/� E.Y jV D 0/, which if V D D� would

be an estimate of the returns to schooling s D E [s .D; X/] (or more precisely, the difference in conditional
means of log wages between those with D� D 1, versus those with D� D 0, which is returns to schooling if
the effects of schooling satisfy an unconfoundedness condition). In this and all other tables, standard errors
are obtained by 400 bootstrap replications, and are given in parentheses.
Table 1 also shows the fraction of truth tellers and liars, if the transcripts V were always correct. The

rows labeled E(DV) and E[(1-D)(1-V)] gives the fraction of observations where self and transcript reports
agree that the individual respectively either has or does not have the given level of college. The row labeled
E[D(1-V)] gives the fraction of relevant liars if the transcripts are correct, that is, it is the fraction who claim
to have the given level of college, D D 1, while their transcripts say they do not, V D 0. This fraction is a
little over 5% of the sample for some college or Associate degree, but only about half that amount appear
to lie about having Bachelor's degree.
If V has no errors, then Table 1 indicates a small amount of lying in the opposite direction, given by the

row labeled E[(1-D)V]. These are people who self report having less education than is indicated by their
transcripts, ranging from a little over half a percent of the sample regarding college degrees to almost 3% for
"some college." It is dif�cult to see a motive for lying in this direction, which suggests ordinary reporting
errors in self reports, transcript reports, or both.

Table 1: Returns to Lying and Schooling Treating Transcripts as True
Some college Associate degree Bachelor's degree

r if V=D� 0.1266 ( 0.03129 ) 0.2322 ( 0.02748 ) 0.1948 ( 0.04451 )
r if V=D�, linear 0.07868 ( 0.02864 ) 0.1681 ( 0.02777 ) 0.1269 ( 0.04082 )
s if V=D� 0.2831 ( 0.01366 ) 0.2958 ( 0.01288 ) 0.3181 ( 0.01280 )
E(DV) 0.6204 0.3794 0.3325
E[D(1-V)] 0.05345 0.05277 0.02317
E[(1-D)V] 0.03349 0.008965 0.005751
E[(1-D)(1-V)] 0.2926 0.5589 0.6385

Standard Errors are in Parentheses
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Prior to estimating r.x/, we examined equation (6) of Assumption A2, which is testable. A suf�cient
condition for equation (6) to hold is that E.V jD D 1/ � E.V / 6D 0. In our data the t-statistic for the null
hypothesis E.V jD D 1/ D E.V / is over 40 for each of the three levels of schooling considered, which
strongly supports this assumption.

7.2 Estimates Based on Corollary 1

Table 2 summarizes estimates of r.x/ based on Corollary 1. Nonparametric estimates ofbr.x/ D bR.1; x/�bR.0; x/ are obtained with bR.d; x/ given by equation (25) with b�V jU D 1, where the variable C in X is
the test score, and Z is the vector of other elements of X . The �rst row of Table 2 contains r , the sample
average ofbr.X/, while the second row has the estimated trimmed mean rt , which is the sample average
ofbr.X/ after removing the highest 5% and lowest 5% ofbr.X/ in the sample. Next are the lower quartile,
middle quartile (median) and upper quartile rq1, rmed , and rq3, ofbr.X/ in the sample. The �nal row, "r
semi, linear" is a semiparametric estimate of r using equation (29). As before, standard errors are based on
400 bootstrap replications. One set of suf�cient regularity conditions for bootstrapping here is Theorem B
in Chen, Linton, and Van Keilegom (2003).
For the nonparametric estimates, the kernel function K is a standard normal density function, with band-

width b = 0.1836 given by Silverman's rule. Doubling or halving this bandwidth changed most estimates
by less than 10%, indicating that the results were generally not sensitive to bandwidth choice. An exception
is that mean and trimmed mean estimates for the Bachelor's degree, which are small in Table 2, become
larger (closer to the median r estimate) when the bandwidth is doubled. The results for bachelor's degree
are also much less precisely estimated than for some college or associate degree, with generally twice as
large standard errors. Based on Table 1, we might expect that far fewer individuals lie about having a bache-
lor's degree, so the resulting imprecision in the Bachelor's degree estimates could be due to a much smaller
fraction of data points that are informative about lying.
The nonparametric mean and median estimates of r are generally signi�cant in Table 2, except for the

mean estimates for the Bachelor's degree. Overall, these results indicate that those who lie by claiming to
have have some college have about 7% higher wages than those who tell the truth about not having any
college on average, and those who lie by claiming to have an associate or bachelor's degree have about 18%
higher wages. However, the variability in these returns is large, ranging from zero or negative returns at the
�rst quartile to returns of 14% for some college to 31% for a degree at the third quartile. The semiparametric
estimates of r are similar to the mean of the nonparametric estimates, though the variation in the quantiles
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of the nonparametric estimates suggests that the semiparametric speci�cation, which assumes r is constant,
is not likely to hold.
Recall that estimation based on Corollary 1 assumes no observations with D� D 1 and D D 0. If

transcripts V are very accurate, then V should be close to D�, so E[.1 � D/V ] in Table 1 should be close
to zero, and the estimates of r in Table 1 should be close to those in Table 2. The evidence on this is
mixed. E[.1� D/V ] is close to zero for the two types of degrees, but less so for "some college." The linear
model estimates in Table 1 are close to the semiparametric linear model estimates in Table 1, however,
the nonparametric estimates of r in Table 1 are rather larger than the mean and median nonparametric
estimates in Table 2. In linear models measurement error generally causes attenuation bias, but in contrast
here the potentially mismeasured data estimates appear too large rather than too small. This could be due to
nonlinearity, or because the potentially mismeasured variable V is highly correlated with another regressor,
D.
We should expect that the returns to lying would be smaller than the returns of actually having some

college or a degree. These returns to actual schooling are not identi�ed from the assumptions in Corollary
1 or 2. Table 1 gives estimates of returns to schooling s of 28% for some college to 32% for a bachelor's
degree, though these estimates are only reliable if transcripts V are accurate. These are indeed higher than
the returns to lying, as one would expect. Also, while we would expect the returns to schooling to increase
monotonically with the level of schooling, we do not necessarily expect the returns to lying to increase in
the same way, because those returns depend on other factors like the plausibility of the lie.

Table 2: Returns to Lying, Nonparametric and Semiparametric Corollary 1 IV Estimates
Some college Associate degree Bachelor's degree

r nonparametric 0.07051 ( 0.03420 ) 0.1759 ( 0.02998 ) 0.04140 ( 0.07665 )
rt nonparametric 0.07355 ( 0.03166 ) 0.1896 ( 0.02894 ) 0.09440 ( 0.07203 )
rq1 nonparametric -0.05768 ( 0.04930 ) 0.09691 ( 0.04219 ) -0.04684 ( 0.09336 )
rmed nonparametric 0.06447 ( 0.03663 ) 0.1992 ( 0.03995 ) 0.1748 ( 0.05683 )
rq3 nonparametric 0.1421 ( 0.03903 ) 0.3111 ( 0.03920 ) 0.2478 ( 0.06094 )
r semi, linear 0.08008 ( 0.02940 ) 0.1702 ( 0.02668 ) 0.1281 ( 0.04353 )

Kane, Rouse, and Staiger (1999) report some substantial error rates in transcripts, however, those �nd-
ings are based on model estimates that could be faulty, rather than any type of direct veri�cation. Based on
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our empirical results comparing Tables 1 and 2, it is possible that transcripts are generally accurate, and in
that case the ability of our estimator to produce reasonable estimates of r would not be impressive, since one
could then just as easily generate good estimates of r using regressions or cell means as in Table 1. There-
fore, to check the robustness of our methodology, we reestimated the model after randomly changing 20%
of the observations of V to 1 � V , thereby arti�cially making V a much weaker instrument. The resulting
estimates of the mean and trimmed mean of r were generally higher than those reported in Tables 1 and 2
(consistent with our earlier result that, in our application, measurement error in V seems to raise rather than
lower estimates of the returns to lying), but the estimates of the median of r with this noisy V data are very
close to the median estimates in table 2 (though of course with much larger standard errors). Speci�cally,
the rmed estimates with substantial measurement error added to V were 0.070, 0.190, and 0.170, compared
to the rmed estimates in Table 2 of 0.064, 0.199, and 0.175.
To summarize howbr.x/ varies with regressors x , Table 3 reports the estimated coef�cients from linearly

regressing the nonparametric estimatesbr.x/ on x and on a constant. The results show a few interesting
patterns, including that women appear to have a higher return to lying than men, and that for individuals
with above average high school test scores also have above average returns to lying about a higher degree of
education. These results are consistent with the notion that returns to lying should be highest for those can
lie most plausibly (e.g., those with high ability) or for those who may be perceived as less likely to lie (such
as women). However, these results should not be over interpreted, since they are not particularly stable and
many are not statistically insigni�cant.

Table 3: Nonparametric Corollary 1 IV Returns to Lying Linearized Coef�cient Estimates
X Some college Associate degree Bachelor's degree
blacknh -0.09208 (0.1246) -0.1521 (0.1114) 0.04640 (0.2464)
hispanic 0.01220 (0.1289) -0.1492 (0.1968) 0.05146 (0.5439)
othernh 0.2176 (0.1304) 0.03830 (0.1844) -0.005045 (0.4755)
female 0.09291 (0.06570) 0.1791 (0.05585) 0.01029 (0.1449)
mscore -0.009755 (0.03807) 0.05248 (0.03832) 0.1608 (0.09928)
constant 0.02449 (0.04635) 0.09574 (0.04338) -0.001377 (0.1018)
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8 Alternative Estimates

To check the robustness of our results to alternative identifying assumptions, we now provide estimates
based on Corollary 2 and Theorem 2. First consider estimation based on Corollary 2, which replaces
Assumption A3 with Assumption A3', and so requires an additional variable U . We de�ne U to equal
one for individual's that both self report having a masters degree or a PhD and are in the top decile of the
standardized test scores. We could have basedU on transcript reports of a graduate degree instead, but then
by construction we would haveb�V jU D 1, which would then yield numerically identical estimates to those
previously reported based on Corollary 1. In our data b�V jU is .971 for a Bachelor's degree, .981 for an
Associate degree, and 1.000 for some college (so the estimates for "some college" in Table 4 are the same
as in Table 2). The estimates of returns to lying are somewhat lower in Table 4 than in Table 2. In a few
cases they are much lower (e.g., the median returns to lying about a bachelor's degree are only 7% in Table
4 versus 17% in Table 2) but the standard errors are also larger in Table 4, so the differences between the
tables are not statistically signi�cantly.

Table 4: Returns to Lying, Nonparametric and Semiparametric Corollary 2 IV Estimates
Some college Associate degree Bachelor's degree

r nonparametric 0.07052 ( 0.03420 ) 0.1696 ( 0.3335 ) 0.1250 ( 1.918 )
rt nonparametric 0.07355 ( 0.03166 ) 0.1796 ( 0.04158 ) 0.07109 ( 0.1217 )
rq1 nonparametric -0.05768 ( 0.04930 ) 0.09099 ( 0.06185 ) -0.1654 ( 0.1841 )
rmed nonparametric 0.06447 ( 0.03663 ) 0.1287 ( 0.04903 ) 0.06696 ( 0.1003 )
rq3 nonparametric 0.1421 ( 0.03903 ) 0.3214 ( 0.05156 ) 0.3002 ( 0.1596 )
r semi, linear 0.08008 ( 0.02940 ) 0.1610 ( 0.03362 ) 0.05613 ( 1.138 )

In Table 5 we report the returns to lying using the estimator based on Theorem 2, which does not use
data on either the instrument V or U . These estimates are based only on self reports, and so do not use
the transcript data in any way. For these estimates we let X0 D X , which (as with the estimates based on
Corollary 1) implies the assumption that that no one reports D D 0 when D� D 1 (and hence that transcripts
are wrong for the observations in the data that have D D 0 and V D 1).
As should be expected, the estimates in Table 5 are less precise than those in Table 2, in part because

they do not exploit any transcript information, and they assume no heteroskedasticity in the model error �,
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which may not hold in this application. They are also more variable in part because they depend on higher
moments of the data, and so will be more sensitive to outliers in the �rst stage nonparametric estimates.
Still, the estimates in Table 5 are generally consistent with those in Table 2, in particular, as with Table 4,
almost all of the differences between Tables 2 and 5 are not statistically signi�cantly

Table 5: Returns to Lying, Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor's degree

r nonparametric -0.4127 ( 28.66 ) 0.1917 ( 2.915 ) 0.1247 ( 18.27 )
rt nonparametric 0.05064 ( 0.1402 ) 0.1684 ( 0.1738 ) 0.09186 ( 0.2489 )
rq1 nonparametric -0.05096 ( 0.1446 ) -0.1065 ( 0.2406 ) -0.5425 ( 0.3659 )
rmed nonparametric 0.1179 ( 0.06115 ) 0.1495 ( 0.06191 ) 0.1958 ( 0.05549 )
rq3 nonparametric 0.2570 ( 0.1019 ) 0.2813 ( 0.1428 ) 0.3308 ( 0.2038 )

Given the substantial differences in estimators and identifying assumptions between Corollary 1 and
Theorem 2, it is reassuring that the resulting estimates are robust across the two methodologies.
In the Appendix we report the estimates of E [R.d; X/] corresponding to Tables 2, 4, and 5. As one

would expect, these are generally more stable than the estimates of E [r.X/] reported in Tables 2, 4, and 5,
since r.X/ is a difference R.1; X/� R.0; X/ rather than a level R.d; X/.

9 Conclusions

We provide identi�cation and associated estimators for the conditional mean of an outcome Y , conditioned
upon an observed discrete variable D and an unobserved discrete variable D�.
In our empirical application, Y is log wages, while D and D� are self reports and actual levels of

educational attainment. We �nd that wages are on average about 7% higher for those who lie about having
some college, and from 7% to 20% higher on average for those who lie about having a college degree,
relative to those who tell the truth about not having college or those degrees. Estimates at the median
appear to be more reliable and robust than estimates of the mean returns. Our median results are about
the same based on either semiparametric or nonparametric estimation, and are roughly comparable whether
identi�cation and associated estimation is based on using transcript reports as an instrument, or is based on
higher moment error independence assumptions without exploiting transcript data.
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In this application D and D� refer to the same binary event (educational attainment), with D a self
report of D�, so what is identi�ed is the mean effects of having D either agree with or contradict D�,
which given unconfoundedness identi�es either the returns to lying (if misreports of D are intentional) or a
placebo effect.
To apply our methodology, it is not necessary for D and D� to refer to the same binary event. More

generally, one could estimate the average effect of any binary treatment or choice D (e.g., exposure to
a law, a tax, or an advertisement) on any outcome Y (e.g., compliance with a law, income, expenditures
on a product) where the effect is averaged only over some subpopulation of interest indexed by D� (e.g.,
potential criminals, the poor, or a target audience of potential buyers), and where we do not observe exactly
who is in the subpopulation of interest. Our identi�cation strategy may thereby be relevant to a wide variety
of applications, not just returns to lying.

10 Appendix

Proof of Lemmas 1 and 2: Consider Lemma 2 �rst:

Cov .D; V j X/ D E .DV j X/� E .D j X/ E .V j X/

D E [DE .V j D; X/ j X ]� E .D j X/ E .V j X/

D Pr .D D 1 j X/ E .V j D D 1; X/� E .D j X/ E .V j X/

D E .D j X/ [E .V j D D 1; X/� E .V j X/]

so Cov .D; V j X/ 6D 0 if and only if the right side of the above expression is nonzero. The proof of Lemma
1 works exactly the same way.

Proof of Theorem 1:
First observe that

E
�
D�V j D; X

�
D

1X
d�D0

Pr
�
D� D d� j D; X

�
E
�
D�V j D� D d�; D; X

�
D Pr

�
D� D 1 j D; X

�
E
�
V j D� D 1; D; X

�
D E

�
D� j D; X

�
E
�
V j D� D 1; X

�
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and using this result we have

E .YV j D; X/ D R.D; X/E .V j D; X/C s.D; X/E
�
D�V j D; X

�
C E .�V j D; X/

D R.D; X/E .V j D; X/C s.D; X/E
�
D� j D; X

�
E
�
V j D� D 1; X

�
.

Also
E .Y j D; X/ D R.D; X/C s.D; X/E

�
D�jD; X

�
Use the latter equation to substitute s.D; X/E

�
D�jD; X

�
out of the former equation, and solve what re-

mains for R.D; X/ to obtain equation (9).

Proof of Theorem 2: Begin with equation (2), Y D R.D; X/ C s.D; X/D� C � with R.D; X/ D
R.X/C r.X/D. Assumption B2.1-2 implies that

�Y jD;X � E .Y jD; X/ (31)

D E
��
R.D; X/C s.D; X/D�

�
jD; X

�
D R.D; X/C s.D; X/E

�
D�jD; X

�
;

�Y 2jD;X � E
�
Y 2jD; X

�
(32)

D E
��
R.D; X/C s.D; X/D� C �

�2
jD; X

�
D E

��
R.D; X/C s.D; X/D�

�2
jD; X

�
C E�2

D R.D; X/2 C 2R.D; X/s.D; X/E
�
D�jD; X

�
C s.D; X/2E

�
D�jD; X

�
C E�2

D R2 C 2R
�
�Y jD;X � R

�
C s

�
�Y jD;X � R

�
C E�2

D �Y jD;X R C .R C s/
�
�Y jD;X � R

�
C E�2;

and

�Y 3jD;X � E
�
Y 3jD; X

�
(33)

D E
��
R.D; X/C s.D; X/D� C �

�3
jD; X

�
D E

h�
R.D; X/C s.D; X/D�

�3
jD; X

i
C 3E

��
R.D; X/C s.D; X/D�

�
jD; X

�
E�2 C E�3

D R.D; X/3 C 3R.D; X/2s.D; X/E
�
D�jD; X

�
C3R.D; X/s.D; X/2E

�
D�jD; X

�
C s.D; X/3E

�
D�jD; X

�
C3�Y jD;X E�2 C E�3:
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We then show that assumption B2.3 implies the identi�cation of E
�
�k
�
for k D 2; 3. This assumption

implies that

E
�
D�jD D 0; X D x0

�
D Pr

�
D� D 1jD D 0; X D x0

�
D Pr

�
D D 0jD� D 1; X D x0

� Pr .D� D 1jX D x0/
Pr .D D 0jX D x0/

D 0;

and therefore,

�Y j0;x0 � E .Y jD D 0; X D x0/

D R.0; x0/C s.0; x0/E
�
D�jD D 0; X D x0

�
D R.0; x0/;

�Y 2j0;x0 � E
�
Y 2jD D 0; X D x0

�
D R.0; x0/2 C 2R.D; X/s.D; X/E

�
D�jD D 0; X D x0

�
Cs.D; X/2E

�
D�jD D 0; X D x0

�
C E�2

D R.0; x0/2 C E�2

D �2Y j0;x0 C E�
2;

and

�Y 3j0;x0 D E
�
Y 3jD D 0; X D x0

�
D R.0; x0/3 C 3�Y j0;x0E�

2 C E�3

D �3Y j0;x0 C 3�Y j0;x0
�
�Y 2j0;x0 � �

2
Y j0;x0

�
C E�3:

Therefore, we have

E�2 D �Y 2j0;x0 � �
2
Y j0;x0

� � 2Y j0;x0;
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and

E�3 D �Y 3j0;x0 C 2�
3
Y j0;x0 � 3�Y j0;x0�Y 2j0;x0

D E
��
Y � �Y j0;x0

�3
jD D 0; X D x0

�
� �3Y j0;x0 :

In the next step, we eliminate s.D; X/ and E .D�jD; X/ in equations 31-33 to obtain a restriction only
containing R.D; X/ and known variables. We will use the following two equations repeatedly.

.R C s/
�
�Y jD;X � R

�
D �Y 2jD;X � E�2 � �Y jD;X R (34)

sE
�
D�jD; X

�
D �Y jD;X � R (35)

Notice that

s D
�Y 2jD;X � �

2
Y jD;X � �

2
Y j0;x0

�Y jD;X � R
C �Y jD;X � R
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which also implies that we can't identify s.0; x0/ because �Y jDD0;x0 D R.0; x0/. Consider

�Y 3jD;X � E
�
Y 3jD; X

�
D E

��
R.D; X/C s.D; X/D� C �

�3
jD; X

�
D E

��
R C sD�

�3
jD; X

�
C 3E

��
R C sD�

�
jD; X

�
E�2 C E

�
�3
�

D R.D; X/3 C 3R.D; X/2s.D; X/E
�
D�jD; X

�
C3R.D; X/s.D; X/2E

�
D�jD; X

�
C s.D; X/3E

�
D�jD; X

�
C3
�
R.D; X/C s.D; X/E

�
D�jD; X

��
E�2 C E�3

D R3 C 3R2
�
�Y jD;X � R

�
C 3Rs

�
�Y jD;X � R

�
C s2

�
�Y jD;X � R

�
C3�Y jD;X E�2 C E�3

D R3 C 3R2
�
�Y jD;X � R

�
C 2Rs

�
�Y jD;X � R

�
C s .R C s/

�
�Y jD;X � R

�
C3�Y jD;X E�2 C E�3

D R3 C 3R2
�
�Y jD;X � R

�
C 2Rs

�
�Y jD;X � R

�
C s

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C3�Y jD;X E�2 C E�3

D R3 C R2
�
�Y jD;X � R

�
C 2R .R C s/

�
�Y jD;X � R

�
C s

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C3�Y jD;X E�2 C E�3

D R3 C R2
�
�Y jD;X � R

�
C 2R

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C s

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C3�Y jD;X E�2 C E�3

D R3 C R2
�
�Y jD;X � R

�
C R

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C .R C s/

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C3�Y jD;X E�2 C E�3

D R
�
�Y 2jD;X � E�2

�
C .R C s/

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C 3�Y jD;X E�2 C E�3

D R
�
�Y 2jD;X � E�2

�
C
�Y 2jD;X � E�2 � �Y jD;X R�

�Y jD;X � R
� �

�Y 2jD;X � E�2 � �Y jD;X R
�

C3�Y jD;X E�2 C E�3:
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That is

0 D
�
�Y 2jD;X � E�2 � �Y jD;X R

�2
C
�
�Y 2jD;X � E�2

� �
�Y jD;X � R

�
R

�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

�� �
�Y jD;X � R

�
:

The restrictions on R simplify to the quadratic equation

��R2 C �R C  D 0;

where

� D �
�
�2Y jD;X �

�
�Y 2jD;X � E�2

��
;

� D
�
�
�
�Y 2jD;X � E�2

�
�Y jD;X C �Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
;

 D
�
�Y 2jD;X � E�2

�2
�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
�Y jD;X :

Notice that
� 2Y jD;X D �Y 2jD;X � �

2
Y jD;X ;

�3Y jD;X � E
��
Y � �Y jD;X

�3
jD; X

�
D �Y 3jD;X C 2�

3
Y jD;X � 3�Y jD;X�Y 2jD;X :

We then simplify the expressions of �, �, and  as follows:

� D �
�
�2Y jD;X �

�
�Y 2jD;X � E�2

��
D

�
� 2Y jD;X � �

2
Y j0;x0

�
;

27



� D
�
�
�
�Y 2jD;X � E�2

�
�Y jD;X C �Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
D

�
�Y 3jD;X � 2�Y jD;X E�2 � E�3 � �Y jD;X�Y 2jD;X

�
D �3Y jD;X � 2�

3
Y jD;X C 3�Y jD;X�Y 2jD;X � 2�Y jD;X E�

2 � E�3 � �Y jD;X�Y 2jD;X
D �3Y jD;X � E�

3 � 2�3Y jD;X � 2�Y jD;X E�
2 C 2�Y jD;X�Y 2jD;X

D �3Y jD;X � E�
3 � 2�3Y jD;X � 2�Y jD;X E�

2 C 2�Y jD;X
�
� 2Y jD;X C �

2
Y jD;X

�
D �3Y jD;X � E�

3 C 2�Y jD;X
�
� 2Y jD;X � E�

2
�

D �3Y jD;X � �
3
Y j0;x0 C 2�Y jD;X

�
� 2Y jD;X � �

2
Y j0;x0

�
D �3Y jD;X � �

3
Y j0;x0 C 2�Y jD;X�;
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 D
�
�Y 2jD;X � E�2

�2
�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
�Y jD;X

D
�
� 2Y jD;X C �

2
Y jD;X � E�

2
�2
�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
�Y jD;X

D �4Y jD;X C 2�
2
Y jD;X

�
� 2Y jD;X � E�

2
�
C
�
� 2Y jD;X � E�

2
�2

��Y 3jD;X�Y jD;X C 3�
2
Y jD;X E�

2 C �Y jD;X E�3

D �4Y jD;X C 2�
2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2
� �Y 3jD;X�Y jD;X C �

2
Y jD;X E�

2 C �Y jD;X E�3

D �4Y jD;X C 2�
2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2

�
�
�3Y jD;X � 2�

3
Y jD;X C 3�Y jD;X�Y 2jD;X

�
�Y jD;X C �

2
Y jD;X E�

2 C �Y jD;X E�3

D �4Y jD;X C 2�
2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2

C2�4Y jD;X � 3�
2
Y jD;X�Y 2jD;X C �

2
Y jD;X E�

2 C �Y jD;X
�
E�3 � �3Y jD;X

�
D �4Y jD;X C 2�

2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2

C2�4Y jD;X � 3�
2
Y jD;X

�
� 2Y jD;X C �

2
Y jD;X

�
C �2Y jD;X E�

2 C �Y jD;X
�
E�3 � �3Y jD;X

�
D

�
� 2Y jD;X � E�

2
�2
� �2Y jD;X

�
� 2Y jD;X � E�

2
�
� �Y jD;X

�
�3Y jD;X � E�

3
�

D
�
� 2Y jD;X � �

2
Y j0;x0

�2
� �2Y jD;X

�
� 2Y jD;X � �

2
Y j0;x0

�
� �Y jD;X

�
�3Y jD;X � �

3
Y j0;x0

�
D �2 � �2Y jD;X� � �Y jD;X

�
� � 2�Y jD;X�

�
D �2 C �2Y jD;X� � �Y jD;X�:

In summary, we have
��R2 C �R C  D 0

� D � 2Y jD;X � �
2
Y j0;x0

� D �3Y jD;X � �
3
Y j0;x0 C 2�Y jD;X�

 D �2 C �2Y jD;X� � �Y jD;X�

That means

R D
� C

p
�2 C 4�
2�

or
� �

p
�2 C 4�
2�

:
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In fact, we may show that equations 35 and 34 implies

� � 0

Consider

s D
�Y 2jD;X � �

2
Y jD;X � E�

2

�Y jD;X � R
C �Y jD;X � R

D
�

�Y jD;X � R
C �Y jD;X � R

and

E
�
D�jD; X

�
D

�Y jD;X � R
s

D

�
�Y jD;X � R

�2�
�Y jD;X � R

�2
C �

:

Therefore, 0 � E .D�jD; X/ � 1 implies that � � 0.
The last step is to eliminate one of the two roots to achieve point identi�cation. Notice that

E
�
Y jD�; D; X

�
D R.D; X/C s.D; X/D�:

Assumption B2.4 implies that
s.D; X/ � 0:

Consider

�Y jD;X D R C sE
�
D�jD; X

�
D R

�
1� E

�
D�jD; X

��
C .R C s/ E

�
D�jD; X

�
:

Therefore, 0 � E .D�jD; X/ � 1 and s.D; X/ � 0 imply

R � �Y jD;X � s C R;

Thus, we may identify R as the smaller root if �Y jD;X is between the two roots. , i.e.,

���2Y jD;X C ��Y jD;X C  � 0;
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which holds because

���2Y jD;X C ��Y jD;X C 

D ���2Y jD;X C ��Y jD;X C �
2 C �2Y jD;X� � �Y jD;X�

D �2 � 0:

Therefore, we have

R.D; X/ D
� �

p
�2 C 4�
2�

:

Notice that R equals the larger root if s.D; X/ � 0. The function s.D; X/ then follows.

Discrete Limiting Distributions for equation (16). Let

b�.x/ D
�b�Y;V;X;1;b�Y;V;X;0;b�Y;X;1;b�Y;X;0;b�V;X;1;b�V;X;0;b�X;1;b�X;0;b�VU ;b�U �T

�0 D E [b�.x/]
bR.d;b�.x// �

�b�dY;V;X;1b�1�dY;V;X;0

�b�U � �b�dY;X;1b�1�dY;X;0

�b�VU�b�dV;X;1b�1�dV;X;0

�b�U � �b�dX;1b�1�dX;0

�b�VUbr.x/ D bR.1;b�.x//� bR.0;b�.x//
 D

@

@t
R .d; �0 C t .b� � �0//����

tD0

� G .d; �0/T .b� � �0/
V .b�.x// D n � E �.b� � �0/ .b� � �0/T �

Assuming independent, identically distributed draws and existence of V .b�.x//, by the Lindeberg-Levy
central limit theorem and the delta method

p
n
�bR.d; x/� R.d; x/� ! dN .0; �R/

�R D G .d; �0.x//T V .b�.x//G .d; �0.x//
and

p
n [br.x/� r.x/] ! dN .0; �r /

�r D [G .1; �0.x//� G .0; �0.x//]T V .b�.x// [G .1; �0.x//� G .0; �0.x//]
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Table 6: R(0,X), Nonparametric and Semiparametric Corollary 1 IV Estimates
Some college Associate degree Bachelor's degree

R0 nonparametric 2.072 ( 0.01514 ) 2.125 (0.009659 ) 2.143 (0.007992 )
R0t nonparametric 2.065 ( 0.01536 ) 2.125 ( 0.01016 ) 2.144 (0.008568 )
R0q1 nonparametric 1.863 ( 0.02520 ) 1.940 ( 0.01939 ) 1.975 ( 0.01834 )
R0med nonparametric 2.003 ( 0.03859 ) 2.089 ( 0.03224 ) 2.143 ( 0.02788 )
R0q3 nonparametric 2.309 ( 0.02681 ) 2.326 ( 0.01762 ) 2.319 ( 0.01663 )
R0 semi, linear 2.025 ( 0.01174 ) 2.094 (0.008751 ) 2.114 (0.007448 )

Table 7: R(1,X), Nonparametric and Semiparametric Corollary 1 IV Estimates
Some college Associate degree Bachelor's degree

R1 nonparametric 2.142 ( 0.03011 ) 2.301 ( 0.02844 ) 2.184 ( 0.07708 )
R1t nonparametric 2.152 ( 0.02985 ) 2.324 ( 0.02751 ) 2.240 ( 0.07308 )
R1q1 nonparametric 1.997 ( 0.04430 ) 2.179 ( 0.05181 ) 2.131 ( 0.09785 )
R1med nonparametric 2.173 ( 0.04633 ) 2.382 ( 0.02936 ) 2.312 ( 0.05680 )
R1q3 nonparametric 2.340 ( 0.04635 ) 2.455 ( 0.03637 ) 2.424 ( 0.05945 )
R1 semi, linear 2.188 ( 0.02898 ) 2.351 ( 0.02604 ) 2.339 ( 0.04339 )

Table 8: R(0,X), Nonparametric and Semiparametric Corollary 2 IV Estimates
Some college Associate degree Bachelor's degree

R0 nonparametric 2.072 ( 0.01514 ) 2.125 (0.009665 ) 2.143 (0.007997 )
R0t nonparametric 2.065 ( 0.01536 ) 2.125 ( 0.01016 ) 2.144 (0.008579 )
R0q1 nonparametric 1.863 ( 0.02520 ) 1.939 ( 0.01940 ) 1.975 ( 0.01834 )
R0med nonparametric 2.003 ( 0.03859 ) 2.089 ( 0.03225 ) 2.143 ( 0.02788 )
R0q3 nonparametric 2.309 ( 0.02681 ) 2.326 ( 0.01763 ) 2.319 ( 0.01665 )
R0 semi, linear 2.025 ( 0.01174 ) 2.094 (0.008754 ) 2.114 (0.007451 )
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Table 9: R(1,X), Nonparametric and Semiparametric Corollary 2 IV Estimates
Some college Associate degree Bachelor's degree

R1 nonparametric 2.142 ( 0.03011 ) 2.295 ( 0.3326 ) 2.268 ( 1.918 )
R1t nonparametric 2.152 ( 0.02986 ) 2.319 ( 0.04103 ) 2.223 ( 0.1219 )
R1q1 nonparametric 1.997 ( 0.04430 ) 2.181 ( 0.06094 ) 2.092 ( 0.1694 )
R1med nonparametric 2.173 ( 0.04633 ) 2.380 ( 0.04084 ) 2.189 ( 0.1026 )
R1q3 nonparametric 2.340 ( 0.04635 ) 2.449 ( 0.04508 ) 2.397 ( 0.1731 )
R1 semi, linear 2.188 ( 0.02898 ) 2.341 ( 0.03397 ) 2.267 ( 1.149 )

Table 10: R(0,X), Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor's degree

R0 nonparametric 2.078 ( 0.01383 ) 2.126 (0.009571 ) 2.144 (0.007897 )
R0t nonparametric 2.074 ( 0.01447 ) 2.123 ( 0.01025 ) 2.148 (0.008459 )
R0q1 nonparametric 1.891 ( 0.02270 ) 1.942 ( 0.01916 ) 1.974 ( 0.01820 )
R0med nonparametric 2.022 ( 0.03761 ) 2.095 ( 0.03227 ) 2.146 ( 0.02767 )
R0q3 nonparametric 2.288 ( 0.02247 ) 2.321 ( 0.01708 ) 2.324 ( 0.01620 )

Table 11: R(1,X), Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor's degree

R1 nonparametric 1.666 ( 28.66 ) 2.318 ( 2.915 ) 2.269 ( 18.27 )
R1t nonparametric 2.141 ( 0.1418 ) 2.310 ( 0.1719 ) 2.227 ( 0.2483 )
R1q1 nonparametric 1.832 ( 0.1459 ) 2.069 ( 0.2132 ) 1.525 ( 0.3052 )
R1med nonparametric 2.223 ( 0.07273 ) 2.247 ( 0.08727 ) 2.222 ( 0.07330 )
R1q3 nonparametric 2.419 ( 0.09065 ) 2.501 ( 0.1239 ) 2.552 ( 0.2033 )
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