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Abstract. The impact of duration response measurement error is in-
vestigated by using small variance approximations. The inconsistency of GMM
estimators that ignore measurement error is studied for both single spell mod-
els with right censoring, and for a two spell lagged duration dependence model.
The results suggest a corrected GMM estimator for the error free and measure-
ment error distributions. When the error free density is known, identification is
achieved by using the moment condition that defines the measurement error sen-
sitive specification score test. The results are applied to unemployment duration
data from the BHPS.
Keywords: Measurement error, duration analysis, parameter approximations,

GMM, score test, unemployment duration.
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1. Introduction
Event histories are frequently constructed from recall data, and as a result the distri-
bution of observed durations often differs from the distribution of the true durations
due to contamination with measurement error. This leads to a distortion in the
properties of duration distributions, for example typically having higher variance,
differently shaped density and distorted hazard duration dependence.

Few attempts have been made to develop statistical procedures concerned with
correcting for different types of duration response measurement error. Romeo (1997)
uses a functional error-in-variables model and Bayesian techniques to estimate the
true unobserved durations from multiple observations, which are used in a second
stage as input to estimate the parameters of a Weibull model. Abrevaya and Hausman
(1999) use the monotone rank estimator of Cavanagh and Sherman (1998) to produce
consistent estimates of the covariate coefficients up-to-scale; this estimator does not
require specification of a measurement error model but does not provide an estimator
for parameters associated with duration dependence. Skinner and Humphreys (1999)
derive an exact result for the Weibull model assuming a particular form for the
measurement error and knowledge of its variance and study its bias, properties using
small variance approximations.

∗Department of Mathematics, ISEG, Technical University of Lisbon. Rua do Quelhas, 6, 1200-781
Lisboa, Portugal. E-mail: mdumangane@iseg.utl.pt, Tel:+351 21 3925876, Fax:+351 21 3922782.
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This paper considers problems in which measurement error and error free dura-
tions are independently distributed. The main focus is to examine how the form of
duration dependence of the hazard is affected by measurement error. Following the
general approach of Chesher (1991), some general results concerning the impact of
measurement error can be obtained leaving unspecified the distribution of measure-
ment error by using small parameter asymptotic approximations. These are functions
of the error free density and the variance of the measurement error only. They can be
used to derive approximations for the effect of duration response measurement error
on the probability limit of GMM-estimators constructed ignoring its presence. For
particular parametric models, this measure gives important quantitative and quali-
tative information on the impact of measurement error on parameter estimates. The
particular cases of the Log—logisitc, Weibull and a two-spell Exponential model with
lagged-duration-dependence are studied. In the first two cases measurement error
produces always attenuation bias on all parameter estimates, and its extent is shown
to depend on the shape parameter and the proportion of censored observations. The
third example shows that when measurement is correlated across spells, attenuation
bias is just one of the possible outcomes. In a regression context this corresponds
to a situation where dependent variable and covariate are both mismeasured and
the errors are correlated. These results are extremely useful as they tell researchers
in which situations measurement error is potentialy hazardous or when it can be
"ignored".

The previous results suggest an approximate bias corrected GMM estimator of
the parameters of the error free distribution, similar to Chesher (2000) for covariate
measurement error. The general idea of this GMM-estimator is that if a model is
characterized by a set of moment conditions that are not satisfied under certain
misspecification (like measurement error), it is possible to find functions of the data
that involve the unknown parameters that approximately correct the bias in the
original moment conditions.

There is some related literature in the covariate measurement error problem con-
cerning the correction of estimating equations. The conditional score method of Ste-
fanski and Carroll (1987) assumes additive normally distributed measurement error
and is applied to generalized linear models (see McCullagh and Nelder, 1989). The
method of corrected score equations of Stefanski (1989) and Nakamura (1990) also
assumes normality, and is extended in Buzas and Stefanski (1995) for certain gener-
alized linear models. Bounaccorsi (1996) develops an estimator that unifies some of
the previous approaches for a specific class of models.

When the density of the error free duration is assumed to be known, the estima-
tion procedure proposed here does not require auxiliary data, often needed to iden-
tify the relevant parameters of the measurement error distribution. These are jointly
estimated with the parameters of the error-free distribution by considering a GMM-
estimator based on an extended score vector. This additional moment condition de-
fines the measurement error specification score type test of Chesher, Dumangane and
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Smith (2002) and Dumangane’s (2000) extension for multiple-spells-single-destination
(MSSD) models (see Chapter 3). An interesting consequence of this procedure is that
score tests are rehabilitated from their major disavantage, namely that they give no
constructive information on the structure of the model under the alternative.

This estimator is only approximately consistent, as the estimators in Chesher
(1998, 1999), Wolter and Fuller (1982) and Carroll and Stefanski (1990) for the error-
in-variables linear regression, the estimator in Chesher and Santos Silva (2002) for
the multiple discrete logit model with uncontrolled taste variation, and Skinner and
Humphreys (1999) estimator when the measurement error distribution is incorrectly
specified.

As pointed out in Chesher, Dumangane and Smith (2002), when the true duration
distribution belongs to the scale parameter family of distributions, multiplicative mea-
surement error is statistically equivalent to scale parameter heterogeneity. As such,
this estimator also allows for any unaccounted stochastic variation coming from the
scale parameter. Therefore this estimator is an alternative to the parametric method
proposed by Lancaster (1979) for the Weibull model that assumes a Gamma distrib-
uted random term in the scale parameter. It also belongs to the class of estimators
for proportional hazards with unspecified unobserved heterogeneity that assumes a
known parametric form for the baseline hazard, like those in Heckman and Singer
(1984) and Honoré (1990). Horowitz (1999) extends these results by showing how to
estimate non-parametricaly the baseline hazard function and the distribution of the
unobserved heterogeneity. The importance of developing semiparametric estimators
is outlined in Lancaster and Nickell (1980) and Heckman and Singer (1984). They
alert to the possible missperception in the form of duration dependence induced by
misspecification of the distribution of the random term.

As pointed out in Chesher (2001), since identification in this model requires a
parametric assumption on the distribution of the error free duration, the procedure
proposed here is presented mainly as a means of providing sensitivity analysis in the
following sense: if the error free duration were as hypothesized and if there were
measurement error, what would be the values of the parameters of the error free
distribution and of the measurement error variance?1

The paper is organized as follows. Section 2 presents the assumptions of the
measurement error model, recalls briefly the small parameter asymptotic approxima-
tions for single spell distributions derived in Chesher Dumangane and Smith (2002),
and presents an extension for a favourable case of multiple-spell-single-destination
model. The effect of measurement error on the hazard function is also described and
illustrated. Section 3 derives the approximate probability limit of the inconsistent
estimator and presents some examples. Section 4 derives the approximate bias cor-

1The issue of identification is not pursued in this study. In the related literature of neglected
heterogeneity this issue is discussed in Lancaster (1979), Lancaster and Nickell (1980), Heckman
and Singer (1984), Heckman (1991), and Elbers and Ridder (1982). Heckman and Taber (1994) list
identification proofs for mixed proportionate hazard models.
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rected GMM estimator. Section 5 presents some Monte Carlo on the performance
of the estimator. Section 6 applies the estimator to mismeasured unemployment
duration from the BHPS survey. Section 7 concludes.

2. The effect of measurement error
2.1. Single spell single destination. Let T be a scalar, non-negative-valued
random variable, taken to represent the time to exit from a given state, with density
function fT (·) and survival function F̄T (·). These functions may depend upon a vector
of observed covariates, X, but this dependence is not made explicit at present. Let
the error-contaminated duration be S = T × V where V ∈ [0,∞) is a multiplicative
measurement error continuously distributed independently of T with density function
fV (v)

2.
Under this conditions, Chesher, Dumangane and Smith (2002) demonstrate that

the small parameter asymptotic approximations for the density and survival functions
of S are3

fS(s) ' fT (s) +
σ2

2

¡
fT (s) + 3sf

0
T (s) + s2f 00T (s)

¢
(1)

F̄S (s) ' F̄T (s) +
σ2

2

¡
sF̄ 0T (s) + s2F̄ 00T (s)

¢
. (2)

where the second results from integration of (1). Here and later “'” denotes an
approximation error of order o(σ2) where limσ→0

o(σ2)
σ2

= 0.

2.2. Multiple spell single destination models. Consider now a multiple-spell-
single-destination process. A leading example is an individual that goes through a
sequence of unemployment spells. The process is described by a sequence of calendar
dates at which entry and exit to the states occurred. Let the sequence of R true
durations in the state derived from those calendar dates be represented by the R-
vector T = (T1, T2, ..., TR). Assume the distribution of the error-free process has joint
density function fT (t) , given by the product of the R conditional densities

fT (t) =
RQ
j=1

fTj |Tj−1(tj |tj−1), fT1|T0(t1|t0) = fT1(t1) (3)

Let U =(U1,U2, ..., UR) be the measurement error vector distributed independently
of T, with joint continuous density fU(U), satisfying E(Uj) = 0, V ar(Uj) = 1
and E(UjUl) = ρjl, j, l = 1, ..., R. Let S = (S1, S2, ..., SR) be the R-vector of error
contaminated durations generated according to the measurement error model logSj =

2Since T is non-negative, multiplicative measurement error is the leading case of interest. The
independence assumption is of course restrictive but also generates a leading case of interest.

3Here and later 0, 00 etc., indicate derivatives of functions in the sense that f 00T (s) = ∇ttfT (t)|t=s.
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log Tj +σjUj
4. This error model is not valid when

PR
k=1 Tk =

PR
k=1 Sk, i.e., the age

process is known or the spells are contigous as it imposes a specific form of correlation
between the error terms and between these and the true sequence of durations5. The
density of S is the R−folded integral

R ··· R RQ
j=1

fT (a) fU(u)du1...duR, (4)

where a is a R vector with elements aj = sj exp(−σjuj). Let Σ be the (R×R) matrix
with element σkl if k 6= l and σ2k if k = l. An approximation to the joint density of
S can be deduced, by Taylor series expansion of (4) around (σ1, σ2,...,σR) = 0, and
collecting terms using the assumptions made on U we obtain,

fS(s) ' fT(s) +
1

2
ι0ΣιfT(s)+tr(Σ(ι0ι)diag(s)diag(F

(1)
T )) + (5)

+
1

2
tr(Σ(diag(s)diag(F (1)T )) +

1

2
ι0Σ⊗ (s0s)⊗ F

(2)
T ι

where F (1)T = ∂fT(t)/∂t , F
(2)
T = ∂2fT(t)/∂t∂t

0, and ι is a (R× 1) vector of ones.
This expression is a generalization of (1) that accounts for correlated measurement

error. Again it depends on the curvature properties of the error-free joint density
function through its first and second partial derivatives.

2.3. The proportional representation. The measurement error model assumes
that the observed duration is a random proportion of the true duration. As such the
approximation to the survival function of S can be written as,

F̄S (s) ' F̄T (s)(1 +
σ2

2 ElF̄T (s)[1 + ElfT (s)]), (6)

where ElfT (t) = d log fT (t)/d log t and ElF̄T (t) = d log F̄T (t)/d log t are respectively
the elasticities of the density and the survival with respect to T. They measure the
percentage response on those functions induced by a percentage change in T, and are
responsible for, respectively, a scale and a sign effect of measurement error on the
survival. Study of this expression allows to understand the distortion introduced by
measurement error in a generic framework. Let T have a density function with at
most one mode, then:

1. No matter the shape of the survival function, ElF̄T (t) is always negative and a
decreasing function of T. It starts by being inelastic, that is |ElF̄T (t)| < 1, and

4A more realistic version of the measurement error model would allow for heteroscedasticity in
the measurement error variance by specifying σij = σjm(ij) where m(ij) is a decreasing function
of j, as the recall effort is bigger for earlier spells. The individual subscript i is needed as different
stages of the process might have happen in different points in time demanding a different recall effort
for each individual.

5Dumangane (2000) Chapter 2 illustrates this problem for the simple two spell case.
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may become elastic, i.e. |ElF̄T (t)| > 1 as T goes to infinity. As such, ElF̄T (t)
scales the effect of measurement error on the survival, being the effect larger
where and when the survival is elastic.

2. The term in square brackets is responsible for the sign of the effect of measure-
ment error on the survival function. Let T = t∗f be the duration at which the
density of T is unit elastic and negative, i.e., ElfT (t

∗
f ) = −1 :

(a) At t∗f the effect of measurement error is null. This happens in the decreas-
ing part of the density.

(b) To the left of t∗f the density is always negative-inelastic, that is ElfT (s) >
−1, and if it has a mode it may be positive for durations closer to the
origin. It follows that for T < t∗f the error contaminated survival is below
the error free survival.

(c) On the right tail of the distribution the density is negatively elastic, i.e.
ElfT (s) < −1, so that the effect of measurement error is to raise the
survival function above the error free survival.

Regardless the shape properties of the distribution of T, if the density has at most
one mode measurement error lowers the survival for T smaller than t∗f and raises
it after that point. The extent of the distortion depends on the specific elasticity
properties of the distribution of T .

The impact of measurement error on the form of duration dependence of the
hazard function follows directly. This is analysed in the next Section.

2.4. Approximate hazard functions. To study the effect of measurement error
on the hazard function, hT (t), note that this function is equal to −d log F̄T (t)/dt.
It suffices to show how that transformation is affected by the shift in the survival
function. Since the logarithmic function is monotonic and concave in its domain,
implying that its derivative is a decreasing function and F̄T (t) is itself a decreasing
function of t it follows that

1. For short durations the effect of measurement error is to raise hS(s) above
hT (s).

2. As F̄T (s) > F̄S(s) for s < t∗f , the error free survival must at this point be steeper
than the contaminated survival, that is d log F̄S(t∗f )/dt > d log F̄T (t

∗
f )/dt. It

then follows that hT (t∗f ) > hS(t
∗
f ). A simple continuity argument shows that

the two hazard functions must cross at some threshold t∗h < t∗f .

Figure 1 shows the impact of measurement error in a series of hazard specifi-
cations, and illustrate how informative the approximation can be on predicting the
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Figure 1: Weibull and Log-logistic error-free, exact error-contaminated and approxi-
mate hazard functions, for α ∈ {0.8, 1, 1.5}.
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effects of measurement error on the form of duration dependence of the hazard func-
tion.

In all figures the error free hazard is either Weibull or Log-logistic with survival
functions exp(−λtα) and (1 + λtα)−1 respectively. The multiplicative measurement
error has a Lognormal or Gamma distribution with E(log V ) = 0, and the parameters
were chosen such that V ar(log T )/V ar(logS) = 0.8. The range of T in all figures
(horizontal axis) was chosen to satisfy F̄T (tmax) = 0.05.

It is clear from the figures that the effect of measurement error changes the form
of duration dependence in the hazard function in the way described by the approx-
imation. In all plots the approximate hazard is a very good approximation to both
error contaminated hazards for almost all s.

In both specifications the extent of the distortion depends positively on the shape
parameter of the error free distribution. Moreover for the same value of α the Weibull
hazards seem to be more sensitive to the measurement error.

The next Section investigates further this issues by giving results on the extent
and nature of the inconsistency of GMM-estimators that ignore measurement error.

3. Approximate probability limit
Consider the class of single spell single destination models with right censored ob-
servations. Let t∗i be the true lenght of time in the state for an individual. For a
random draw from the population, if there was no measurement error the observed
data would be ti = min{t∗i , ci}, i = 1, ..., n where ci is the censoring time for individ-
ual i . Let also di = 1(t∗i < ci) be the censoring indicator. If di = 1, ci is the potential
censoring time (see Kalbfleisch and Prentice, 1980). Assume an independent random
censoring (see Lawless 1982). Here and thereafter ET [·|φ = φ] denotes expectations
taken with respect to the error-free distribution at the parameter vector φ. Let the
error free model be characterized by the set of moment conditions

ET [g (T, φ0) |φ = φ0] = 0, g (t, φ) = d · g1(t, φ) + (1− d) · g0(t, φ) (7)

where g1(t, φ) ≡ g(t, φ|d = 1) and g0(t, φ) ≡ g(t, φ|d = 0) are (q × 1) vectors of
functions, with q > p, depending on φ0 the (p × 1) true parameter vector6. What
follows is valid when all observations are uncensored, by letting ci go to infinity.

3.1. Single spell models. Under the presence of measurement error, the ob-
served data is si = min{s∗i , zi}, i = 1, ..., n, where zi is the error contaminated
censoring time and di is assumed to remain unaffected by measurement error. Note
that the distribution of the observed censoring times is non-informative about the
parameter vector φ, this implies that the n-dimensional statistic {zi}ni=1 is partially
distribution constant for φ. By the partial conditionality principle (see Pace and

6In a parametric model those functions are respectively g1(t, φ) = ∇φ log fT (t, x, φ) and g0(t, φ) =
∇φ log F̄T (t, x, φ).
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Salvan, 1997), inference on the parameter vector θ = {φ, σ2} should treat the ob-
served censoring times Zi = zi as ancillary statistics on which inference should still
be conditioned.

The density of S∗i is fS(s, θ0) and θ0 is the true parameter vector. Except when
g(t, φ) are linear functions of logT, measurement error changes the distribution of the
data in such a way that the original moment conditions (7) are no longer satisfied7.

The GMM estimator φ̂n that ignores the presence of measurement error is defined
by

argmax
φ

Q̂n (φ) = −ĝn (φ)0 Ŵ ĝn (φ) (8)

where ĝn(φ) = n−1
Pn

i=1 dig1(si, φ) + n−1
Pn

i=1(1 − di)g0(si, φ), and Ŵ is a (q × q)
positive semi-definite weighting matrix. By Lemma 2.3 in Newey and MacFadden
(1994),the probability limit of φ̂n, denoted by eφ(θ0), is the implicit solution of the
(q × 1) system of equations

ES[g(S, eφ(θ0)|θ = θ0] = 0 (9)

If σ20 = 0 this gives us (7) evaluated at φ0. If σ
2
0 6= 0, even if the measurement error

distribution was specified, an explicit solution for eφ(θ0) is not trivial to find. Instead
an approximation to eφ(θ0) can be constructed by first order Taylor series expansion
around σ20 = 0. First write (9) in the integral formZ z

0
g1(s, eφ(θ0))fS(s, θ0)ds+ g0(z, eφ(θ0))F̄S(z, θ0) = 0 (10)

Secondly, following the general approach of Kiefer and Skoog (1984) and upon replac-
ing fS(s, θ0) and F̄S(z, θ0) by its approximations, the term ∂eφ(θ0)/∂σ2 at σ2 = 0 in
the expansion for eφ(θ0) is found by total differentiation of equation (10) with respect
to σ20 and eφ(θ0). Define G0 ≡ G (φ0) as the (q × p) matrix of expectations of the
Hessian, i.e. G0 = ET [∇φg(S, φ0)|φ = φ0], let mT (s, θ) and MT (s, θ), be respectively
the O(σ2) terms in approximations (1) and (2); and let also b(θ0) = ba(θ0) + o(σ20)
where

ba(θ) =

Z z

0
g1(s, φ)mT (s, θ)ds+ g0(z, φ)MT (z, θ) (11)

The (q × 1) vector function defined above is the approximate bias function in the
moment conditions induced by measurement error which satisfies ba(φ0, 0) = 0.

It follows that the GMM-estimator has probability limit given byeφ(θ0) ' φ0 −
¡
G00WG0

¢−1
G00W ba(θ0) (12)

Expression (12) shows that, up to the order here considered, the probability
limit of φ̂n is a linear combination of the bias in the moment conditions induced

7The Exponential distribution is a case where multiplicative measurement error does not affect
the moment condition.
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by measurement error. The usual particular cases apply here, namely (i) when
q = p, the matrix G0 is square and expression (12) can be further simplified to
yield, eφ(θ0) ' φ0 − G−10 b(θ0); (ii) if the model is parametric then eφ(θ0) is the ap-
proximate probability limit of the Maximum Likelihood Estimator (MLE), G(φ0) =
−ET [∇φφ log fT (T, φ0)|φ = φ0] is the Information Matrix, and ba(θ0) is the approxi-
mate bias of the score vector.

Under standard regularity conditions (see for example Newey and McFadden,
1994) the naive estimator has a well defined limiting distribution

√
n(φ̂n − φ̃(θ0)) = N

h
0, ( eG0θW eGθ)

−1 eG0θW Ω̃θ W
0 eGθ( eG0θW eGθ)

−1
i
+ op(1) (13)

where Ω̃θ = ES [g(S, φ̃(θ0))g(S, φ̃(θ0))
0|θ = θ0] is the asymptotic variance of the

moment conditions evaluated at φ̃(θ0), Gθ(φ) = ES[∇φg(S, φ)|θ = θ0], and eGθ ≡
Gθ(φ̃(θ0)).

3.2. Multiple spell. Consider now the class of MSSD models for complete ob-
servations only. Let the functions of T that define the moment conditions under the
error-free model be g(t,φ), and define σ as the ((R+R(R− 1)/2)× 1) vector with
the distinct elements of Σ. The approximate probability limit of the naive estimator
φ̃(θ0), will now be of the form

φ̃(θ0) = φ0 +
RX
k=1

dφ

dσ2k

¯̄̄̄
σ=0

σ2k +
R−1X
k=1

RX
l=k+1

dφ

dσkl

¯̄̄̄
σ=0

σkl + o(||σ||) (14)

Let φ̃(θ0) be the parameter vector that solves the implicit set of equations now
defined by ES[g(S, φ̃(θ0))|θ = θ0] = 0. Using the approximation to the multiple spell
joint density the approximate probability limit of the inconsistent GMM estimator for
this class of models is given by an expression similar to (12), where the approximate
bias function is replaced by ba(φ0,σ) =

PR
k=1 σ

2
kb

k(φ0) +
PR−1

k=1

PR
l=k+1 σklb

kl(φ0).
The terms in the summations are respectively given by

bk(φ0) =

Z ∞

0
. . .

Z ∞

0
g(s,φ0)∇σ2k

faS(s,φ0)dsR . . . ds1 (15)

bkl(φ0) =

Z ∞

0
. . .

Z ∞

0
g(s,φ0)∇σklf

a
S(s,φ0)dsR . . . ds1

and G(φ0) =
R∞
0 . . .

R∞
0 ∇φg(s,φ0)fT(s,φ0)dsR . . . ds1.

These results are now applied to some popular parametric models to see how
informative the approximate probability limit of the MLE can be in describing the
impact of measurement error.

Example 1. : Flow-sample right-censored Weibull and Log-logistic hazard
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Consider the conditional Weibull and Log-logistic hazard functions,

hWT (t, x, α, β) = α exp{β0x}tα−1, α > 0 (16)

hLLT (t, x, α, β) =
α exp{β0x}tα−1
1 + exp{β0x}tα , α > 0

Let in both cases the parameter β be partitioned in β = (β0 β
0
1) and redefine β0 so

that x may be taken to have population mean zero and covariance matrix Σx.
Consider maximum likelihood estimation of the parameter vectors φ = {α, β},

allowing for the presence of independent right censoring. Except for the intercept in
the Weibull model, in both specifications φ̃(θ0) ' kjφ0 with j =W,LL.

Figure 2 plots the approximate proportional bias kj , against the conditional cen-
soring proportion Pr(d = 0|c). Here c was made to vary to produce censoring pro-
portions within the range of [0, 0.8]. The plots are entirely determined by the ratio
V ar(logT )/V ar(logS), and are invariant to β. Except when there is no censoring,
direct application of expression (12) for the approximate probability limit does not
have a closed form, and therefore numerical integration was needed.

It is clear that in both models duration response measurement error always damp-
nes the form of the duration dependence and attenuates the impact of covariates in
the hazard function. For the Weibull model the inconsistency is a decreasing function
of the censoring proportion, whereas in the Log-logistic the relation is non-monotonic.

The figure intercept corresponds to absence of censoring. In this case direct
application of (12) yields expressions that are up to the order o(σ2) equivalent to

kW =
ψ0(1)

ψ0(1) + α20σ
2
0

(17)

kLL =
1 + 2ψ0(1)

1 + 2ψ0(1) + 3α20σ20/4

where ψ0(a) is the digamma function, and ψ0(1) = π2/6. From (17) it is easy to
see that the attenuation effect on the slope of the hazard function is determined by
both σ2 and α (the degree of log-convexity of the Weibull density). For the Weibull
hazard the right hand side of (17) is just V ar(logT )/V ar(logS). This is similar to the
result in Lancaster (1990) for the approximate proportional bias of the MLE under
the presence of proportionate hazard heterogeneity, with σ2H -the variance of the
random term- replaced by α2σ28. A similar resulta can also be found in Skinner and
Humphreys (1999), since measurement error is implicitly treated there as neglected
heterogeneity.

8As noted in Chesher, Dumangane and Smith (2002), if the distribution of T belongs to the scale
parameter family of distributions, multiplicative measurement error is equivalent to scale parameter
heterogeneity, and in the special case of the Weibull distribution it is also equivalent to proportionate
hazard heterogeneity.
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By comparing both expressions in (17), it can easily be seen that when there is no
censoring the Log-logistic9 specification is more robust than the Weibull, in the sense
that the same relative amount of measurement error induces a smaller proportional
bias in its parameter estimates, but as the proportion of censoring increases the
opposite hapens.

In both cases the impact of measurement error is scaled by the form of dura-
tion dependence of the hazard function. These results are in agreement with the
conclusions drawn in the previous section.

Example 2. Two-spell Exponential lagged duration dependence

Consider R = 2 and a lagged duration dependence model with Exponentially
distributed spells, with scale parameters

log λ1 = γ01 + γ011x, logλ2 = γ02 + γ012x+ δ log t1 (18)

The lagged duration coefficient is such that Cov(log T1, log T2) = −δψ0(1). If δ = 0
this is an occurrence dependence model.

Assume that complete observations on {T1, T2}, from the flow of entrants in the
first stage were used to compute maximum likelihood estimates of γk = {γ0k,γ01k}, for
k = 1, 2 and δ. Define m1 = γ02−ψ(1) and k1 = δ2σ21+σ22−2δσ12. The approximate
probability limit of the MLE is,


γ̃01(θ0)
γ̃11(θ0)
γ̃02(θ0)
γ̃12(θ0)

δ̃(θ0)

 '



γ01 − σ21
2

γ11

γ02 − k1 −m1
δ0σ21+σ12
ψ0(1)

γ12 − γ11
δ0σ21+σ12
ψ0(1)

δ0 − δ0σ21+σ12
ψ0(1)


(19)

The following points are of interest:

1. Since there is no form of duration dependence in the first spell the regressor
coefficients are still consistently estimated10.

2. In this specification, the correlation between the measurement errors may lead
to a missperception of the lagged duration coefficient sign. Consider the o(||σ||)
equivalent expression for the approximate proportional bias of δ

δ̃(θ0)

δ0
=

ψ0(1)
ψ0(1) + σ21 + σ12/δ0

(20)

9For this model V ar(log T ) = 2ψ0 (1) /α2.
10This is because the score for this parameter is a linear function of log T1.



Measurement Error Bias Reduction in Unemployment Durations 13

Figure 2: Approximate proportional inconsistency of α and β1, as a function of the
censoring proportion for V ar(log T )/V ar(logS) ∈ {0.80, 0.85, 0.90}.
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Whenever the covariance between the log durations has the same sign of the
covariance between the measurement errors, the result will be an attenuation
effect, otherwise the inconsistency may lead to a sign change.

3. In the simple case of δ = 0, estimated duration dependence might be the con-
sequence of correlated measurement error and therefore totally spurious.

4. Only the coefficients associated with covariates that appear in the first spell are
affected by measurement error.

5. The extent of the inconsistency in the covariate coefficient is determined by the
extent of the inconsistency in the lagged duration coefficient weighted by the
covariate coefficient in the first spell.

6. If the same set of covariates affect the two duration distributions in the same
fashion, then the proportionate bias will be as before, equal to the proportionate
bias in the lagged duration coefficient.

7. All that was said about the misperception of lagged duration dependence applies
to the covariate coefficients with the additional complication introduced by the
coefficient γ11. The potential misperception of the sign of the second spell
coefficients is a possible consequence of measurement error.

The result from these first two sections show how GMM estimators are incon-
sistent when the dependent variable is contaminated with measurement error. The
inconsistency arises because the moment conditions that define the error free model
are not satisfied under the contamination. The next section uses this result to derive
an approximate bias corrected GMM estimator.

4. Bias corrected GMM estimator
4.1. Single spell models. Let the model for T be characterized by the set of
moment conditions defined in (7). The estimator proposed here is based on the
principle that the moment conditions can be approximately corrected by functions of
the observed data, and then used to construct a GMM estimator.

From the previous section it follows that ES[g(S, φ)− ba(θ)|θ = θ] ' 0.Write this
moment condition asZ z

0
(g1(s, φ)− ba1(s, θ))fS(s, θ)ds− r1(z, θ) + (g0(z, φ)− ba0(z, θ))F̄S(s, θ) ' 0 (21)

Because of the order of the approximation considered here, terms of order O(σm)
with m > 2 can be omitted. It follows from (11) that

ba0(z, θ) = g0(z, φ)MT (z, θ)F̄
−1
T (s, φ)
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As for ba1(s, θ) and r1(z, θ), they solve the equation that equals the integral in (11) toZ z

0
ba1(s, θ)fT (s, φ)ds+ r1(z, θ) (22)

In the appendix it is shown that under independent random censoring the following
expressions hold:

ba1 (s, θ) = σ2

2 [sg
0
1(s, φ) + s2g001(s, φ)] (23)

r1(z, θ) = σ2

2 {[zg1(z, φ)− z2g01(z, φ)]fT (z, φ) + z2g1(z, φ)f
0
T (z, φ)}

Then, the approximate structural bias function, ba (s, z, θ), i.e. the vector function
of the data that corrects the bias in the moment conditions, is given by

ba (s, z, θ) = d ba1 (s, θ) + (1− d) ba0(z, θ) + r1(z, θ) (24)

Under standard tail conditions for the density of T, the function r1(z, θ) vanishes
as z →∞, leading to the result for complete spell models. In this case knowledge of
the distribution of T is not needed to correct the moment conditions.

It follows from (24) that the bias corrected moment conditions are

ES[g
c(S, z, θ)|θ = θ] ' 0, gc(s, z, θ) = g(s, z, φ)− ba (s, z, θ) (25)

where gc(s, z, θ) ' gS(s, z, θ), and ES [gS(S, z, θ)|θ = θ] = 0, defines the exact unbi-
ased moment conditions for the error contaminated model.

4.2. Multiple spell models. Consider now the multiple spell model in Section
2. In the appendix the structural bias function is shown to be

ba (s, θ) = 1
2 tr(Σdiag(s)diag(G

(1)
T )) +

1
2 ι
0Σ⊗ (s0s)⊗G(2)

T ι (26)

where G(1)
T = ∂g(t)/∂t and G(2)

T = ∂2g(t)/∂t∂t0. When R = 1 and there is no
censoring this leads to (24).

4.3. Identification and estimation. The measurement error bias corrected es-
timator can now be defined given a conditional density for T , fT (t, φ), and a sample
of i.i.d. observations on {si, zi, di}ni=1. Let g1(t, φ) = ∇φ log fT (t, φ) and g0(t, φ) =
∇φ log F̄T (t, φ).

If σ2 is unknown, an additional moment condition is necessary to identify θ.
Consider Dσ2(t, c, φ), the score vector for the variance of the measurement error at
σ2 = 0, which satisfies ET [Dσ2(T, c, φ0)|φ = φ0] = 0. Let D1,σ2(t, φ) and D0,σ2(t, φ)
denote its contributions for, respectively, complete and censored observations, derived
from (1). In Chesher, Dumangane and Smith (2002) this moment condition was the
basis to construct a measurement error specification test for H0 : σ

2 = 0. Define now
the (q + 1× 1) extended score vector ge(t, c, φ)0 = (ge(t, c, φ)0 Dσ2(t, c, φ)).
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The bias corrected GMM estimator proposed here is based on the (q + 1) set of
moment conditions

ES[g
c
e(S, z, θ0)|θ = θ0] ' 0 (27)

where gce(s, z, θ) is the bias corrected extended score vector. Let the sample coun-
terparts of the moment conditions be ĝce,n(θ) = n−1

Pn
i=1 g

c
e(si, zi, θ). Under suitable

regularity conditions that ensure existence and uniqueness, the proposed GMM esti-
mator θ̂

c
n, is defined as argmax Q̂

c
e,n(θ) = −ĝce,n(θ)0ĝce,n.

Under standard regularity conditions, (see for example Newey and McFadden
1994) the first order asymptotic distribution of the bias corrected GMM estimator is

√
n(θ̂

c
n − θa) = N

£
0, (Ga

e)
−1 Ωae (G

a
e)
−10¤+ op(1) (28)

where θa = P lim θ̂
c
n , Ω

a
e = ES[g

c
e(S, θ

a)gce(S, θ
a)0|θ = θ0] is the asymptotic covariance

matrix of the approximate bias corrected extended moment conditions evaluated at
θa, and Ga

e = ES [∇θg
c
e(S, θ

a)|θ = θ0].
Since the estimator is derived from an objective function that omits terms of order

o(σ2) in the moment conditions, unless σ2 = 0, θa is not in general equal to θ0, but
as is shown in the appendix, θa = θ0 + O(σ3), so that θ̂

c
n has a smaller asymptotic

bias than the inconsistent GMM-Estimator.
Figures (3) and (4) show the exact expectation of the uncorrected and approxi-

mate bias corrected extended score vector at the true parameter values as a function
of the proportion of variance in the log duration due to measurement error. Two
measurement error distributions were used, the Lognormal and the two parameter
Gamma, to contaminate the Weibull and Log-logistic distributions. In all left panels
there is 20% of censoring and in all right panels 50%. Except for the scale parameter
with 50% censoring, the lines closer to the horizontal line always correspond to the
bias corrected scores. In the plot for the shape parameter the bias in the uncorrected
scores is an increasing function of the shape parameter. Despite that the quality of
the correction is independent of α.

These plots suggest that, whenever the model is identified, the proposed estimator
will be a considerable improvement on the maximum likelihood estimator that ignore
measurement error.
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Figure 3: Exact expectation of Weibull scores and approximate bias corrected
scores with Lognormal (dotted) and Gamma (dashed) measurement error for α ∈
{0.8, 1, 1.5} and 20 /% and 50% censoring.
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Figure 4: Exact expectation of Log-logistic scores and approximate bias corrected
scores with Lognormal (dotted) and Gamma (dashed) measurement error for α ∈
{0.8, 1, 1.5} and 20% and 50% censoring.
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4.4. Heteroskedastic measurement error. Being a memory, problem it is rea-
sonable to assume that the distribution of measurement error should depend on some
measure of "recall effort" that may differ across individuals. A simple and intuitive
way of incorporating this idea is to specify a measurement error variance function
that depends on the recall effort. Let the W be such a measure, observable and
independent of T. Then σ2i = m(wi, π) for some positive valued function m(.).

Because W is assumed to be independent of T, the results on sections 2 and 3 are
still valid with σ2 replaced by m(w, π). Two approaches are suggested for estimation.

Known variance function. The first approach requires the specification of the
variance function. Let m(wi, π) = m(π0 + π01wi) be a positive valued differentiable
function with, m(0) = σ2 and finite m0(0). A natural candidate for m(.) is the
exponential function. In any case if baσ (s, z, θ) denotes the approximate structural
bias function associated with Dσ2(t, c, φ), then estimation of π

0 = (π0, π
0
1) requires

the additional estimating equations:½
n−1

Pn
i=1D

c
σ2(si, zi, θ) = 0

n−1
Pn

i=1D
c
σ2
(si, zi, θ)w0i = 0

(29)

where Dc
σ2(s, z, θ) = Dσ2(s, z, φ) − baσ (s, z, θ) . As usual consistency requires correct

specification of m(.). The second approach tries to correct for this shortcome.

Unknown variance function. In this approach all that is required is that
m(w) be a monotonic function of w. Consider the thresholds for values of the recall
effort variable {w0, w1, ..., wp} where the lower and upper limit may be infinity. Let
dji = 1(wj−1i < wi < wji), j = 1, ..., p; then a semiparametric specification for then
variance function is σ2i =

Pp
j=1 σ

2
jdji. The p additional estimating equations will now

be n−1
Pn

i=1D
c
σ2(si, θ)dji = 0, j = 1, ..., p. Of course, results may be sensitive to the

specification of the intervals but still independent from parametric assumptions.

5. Monte Carlo results
This section reports Monte Carlo experiments designed to investigate the performance
of the bias corrected GMM estimator. Models for flow sample data allowing the
presence of random censoring (right censoring) will be considered. In these set of
experiments the error free duration T ∗ has a two-parameter Weibull distribution or
a two-parameter Log-logistic distribution, with conditional hazard functions given
in (16). Since the correction on the moment conditions is independent of α, in all
experiments α = 1. The regressor is chosen to be x = [1, x1], with x1 taking 50 values
evenly spaced in [−1, 1], and β0 = β1 = 1

11.
Allowing for right censored observation means that the true duration is Ti =

min{Ti, Ci} with di = I(Ti < Ci), where the censoring times Ci are i.i.d. random
variables with survival function H̄(ci|λi), independently distributed from T ∗i . Here
11Other fixed regressor designs were used and did not change the properties of the estimator.
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H̄(ci|λi) = F̄T (ci, α, ωλi), for λi = exp(β0xi), where ω is a constant chosen such that
the proportion of censored observations δ, satisfies (on average)

Pr(d = 0|C) = Pr(T > C|α, λ, ω) = δ (30)

for δ ∈ {0.2, 0.5}12.
Since random variable C is only observed for censored observations, for complete

durations the potential censoring times Cp must be defined, satisfying Cp ≥ T . In
these experiments Cp = T .

Since measurement error is only observed for complete observations, in this ex-
periments the measurement error vector will be given by V = dV1 + (1 − d)V0, and
V0 =

√
kV1, for k = 0.813.

The error-contaminated duration is S = TV with E[log V ] = 0 where V is gener-
ated independently of T. In half of the experiments V is generated as Lognormal(µ, σ2),
in the other half V is generated as Gamma(m,n). The parameters µ, σ2, m and n were
chosen such that the logarithmic signal to noise ratio, ρ = V ar(log T )/V ar(logS) be-
longs to {0.80, 0.90}. Each experiment employed 2,000 replications and sample sizes
of 200 and 500 observations were used in all experiments.

Two estimators will be considered. The first is just the MLE that ignores mea-
surement error. The second is the bias corrected GMM that estimates all unknown
parameters.

5.1. No measurement error.

(Table 1 about here)

Table 1 reports the GMM estimates when there is no measurement error. The
Weibull estimates are always mean and median unbiased, except for β0 with 50%
censoring where the mean bias is 2.9%. The Log-logistic estimates are always median
unbiased but exhibit a slight mean bias especially for higher censoring. Nevertheless
it performs fairly well.

12The corresponding values of ω were found by solving the equation

ω : Pr(Y > 1|α, λ, ω) = δ

where Y = T/C, is a positive random variable with density function

fWY (y) =
αωyα−1

(ω + yα)2
,

fLLY (y) =
αkyα−1(2(ω − yα) + (ω + yα)(α log y − logω))

(yα − ω)3

for respectively the Weibull and the Log-logistic distribution. Note that the distribution of Y is
independent of λ.
13As V ar(V0)/V ar(V1) = k, this is a measure of the proportion of measurement error attributed

to misreporting the starting data of the spell.
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5.2. Under measurement error.

(Tables 2 and 3 about here)

Tables 2 and 3 report the maximum likelihood estimates under two different
amounts of measurement error. They allow us to verify the accuracy of the predic-
tions of the approximate probability limit. As expected measurement error produces
an attenuation bias in all parameters. The proportional bias in α and β1 are equal in
the Weibull model, and also equal to the proportional bias in β0 for the Log-logistic
when measurement error is small. As predicted, the proportional bias is a decreasing
function of the proportion of censoring for the Weibull, but increasing (in this range)
for the Log-logistic. Although for ρ = 0.9 the proportional bias is small, for ρ = 0.8
in both models the proportional bias is considerable.

(Table 4 about here)

Table 4 show the bias corrected GMM estimator for the Weibull model. For
ρ = 0.9 the estimates of β0, β1 and α are very close to one, deviating at most 3.1%.
For these experiments the true variance of the log measurement error is 0.183. The
GMM estimates are clearly downward biased and very imprecise.

For ρ = 0.8 the GMM estimates are clearly downward biased both for mean and
median. Despite this behaviour they are still a clear improvement on the maximum
likelihood estimates. For larger sample sizes, the bias of α reduces from 16.5% to
6.1% with 20% censoring, and from 15% to 8% with 50% censoring, but the accuracy
loss with respect to maximum likelihood is very large. The variance of the log mea-
surement error is now 0.41 and the GMM estimates recover up to 85% of it, but are
severly median biased.

(Table 5 about here)

Table 5 show the results for the Log-logistic model.
When ρ = 0.9, at both sample sizes the means and medians of all estimates

are very close to one. When ρ = 0.8 all estimates are slightly mean and median
downward biased. For larger sample sizes the bias of α reduces from 12% to 3%
with 20% censoring, and from 14% to 5% with 50% censoring. On average the
standard deviations are two times the maximum likelihood standard deviations. The
measurement error variances are 0.365 and 0.822 for respectively ρ = 0.9 and ρ = 0.8.
In both cases the GMM estimate are (in the best cases) just slightly median biased.
It recovers 91% of the true variance when ρ = 0.9 and δ = 0.20, and 95% when
ρ = 0.9 and δ = 0.50. Despite that this estimates are still very imprecise.

These simulations suggest that the bias corrected GMM estimator is always an
improvement relatively to the naive maximum likelihood. Its performance is clearly
better under the Log-logistic distribution, being the increased variability an expected
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cost. Here the mean and median properties of the estimator are less affected by in-
creasing quantities of measurement error. Given the moment condition bias showed in
the previous section, the results for the Weibull model suggest that, as measurement
error increases, parametric identification is not enough to identify the true parameter
vector. In this sense for this specification this can only be a small variance procedure.

In the next section the theory developed here is applied in estimating the condi-
tional distribution of unemployment durations.

6. Error contaminated unemployment durations
Several studies using the British Household Panel Survey (BHPS) have examined
recall error in unemployment durations. Paull (1997, 2000) uses it to investigate the
impact of recall error on labour market behaviour; Elias (1996) and Dex and McCul-
loch (1997) look at recall of unemployment in the BHPS employment-status history,
and the Family and Working Lives Survey, and in the Labour Force Survey. Brendan
(1997) studies the BHPS in the period between September 1990 and September 1991,
for which both the wave 1 and wave 2 retrospective surveys provide information on
unemployment, and found disagreements in the two surveys.

In this application data from the BHPS collected at wave 1 is used. The sample in-
cludes all male individuals that reported having experienced unemployment between
9/90 and the date of interview at first wave, which spanned till 12/91. For each in-
dividual, information on the start and exit dates of the reported unemployment spell
is collected. For those who experienced multiple spells of unemployment in that ref-
erence period only the latest (closer to the interview date) is considered. Wave 1 also
reports information about the individual characteristics, including income variables.

6.1. The model. The economic specification follows a reduced form approach,
which implies the estimation of the parameters of the hazard function for the time
to leaving unemployment, conditional on a set of key exogenous variables, such as
unemployment benefits and other variables. Early examples of this approach are
Lancaster (1979) and Nickell (1979a,b). Narendranathan, Nickell and Stern (1985)
provide an excellent discussion on the effect of unemployment benefits in unemploy-
ment duration, referring to the work of Atkinson and Flemming (1978) and Atkinson
et al. (1982).

The conditional distribution of time to leaving unemployment will be a function
of the following variables:

1. Age: the logarithm of age.

2. Higher Qualification and Lower Qualification: Educational dummies identifying
respectively, higher degree, first degree, teaching qualification and other higher
qualification, from, CSE , commercial, GCE and nursing qualifications, appren-
ticeship and other lower qualifications. Both are zero for no qualifications.
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3. Married: A dummy variable which equals one if the individual is married or
lives as a couple.

4. Children: The number of dependent children in the household.

5. Local Unemployment Rate: The unmeployment rate at the metropolitan area
of residence.

6. Income in Unemployment: The log of weekly benefits received by the individual
from all sources -Unemployment and Supplementary Benefits, Family Income
Support, Child Benefit and other government transfers- while unemployed, at
time of exit from unemployment 14.

7. Income in work : The log of weekly estimated earnings specified as a function of
work experience measures and other individual characteristics15. This involved
estimation of a participation equation as described in the appendix to account
for selection bias. This variable measures the mean of the wage offer distribu-
tion that faces the individual, and is interacted with an indicator variable that
distinguishes whether an individual received any benefits while unemployed.

(Table 6 about here)

Table 6 shows some descriptive statistics of the variables used in this study before
being transformed. As expected, those who never had any form of unemployment
benefit are on average younger, more educated and experience smaller spells of un-
employment.

This sample considers individuals that experienced unemployment between 9/90
and the date of interview, that extended until 31/9, the reference period for the
wave 1 survey. As such, individuals from two distinct populations were sampled:
those belonging to the stock of the unemployed at the calendar time T0, the start
of the reference period, and those who flow into unemployment after T0. For both
samples from these populations a complete or censored duration is recorded at time
TI , the date of interview for the i-ith individual. Such duration is obtained from
information on the entry and exit dates from unemployment, TE and TX respectively,
both collected retrospectively.

14 In practice this should be a time varying covariate as the level of benefits vary during the
unemployment spell, replacing it by a single value is a rough approximation.
15Traditional search theory postulates that this variable should have a positive effect on the prob-

ability of leaving unemployment. However, if the rate of job offers is a function of the mean wage,
such that it is higher in segments of the labour market for which the mean wage is lower, than this
variable could have a negative effect on the hazard rate. It may also capture the fact that high profile
jobs have a greater competition for, therefore being more difficult for individuals in this cohort to
exit unemployment.
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In Dumangane (2000) the likelihood of the resulting sample of 510 male indi-
viduals (of which 60% were still unemployed at the date of interview) is shown to
be16,

f∗T (t, x, φ) =
tfT (t, x, φ) +E[4T ]fT (t, x, φ)

E[T ] +E[4T ]
(31)

Expression (31) gives the individual contribution for the likelihood of the sample
as a weighted average of the likelihood of a stock sample and a flow sample. The
size of E[T ] (the unemployment rate) relatively to E[4T ] (the average length of the
reference period for this survey) determines the weight assigned to each population
contribution to the data. If the unemployment rate is high, than the sample scheme
will be closer to a stock sample. A simplifying assumption on the form of the density
(31) will be made, namely f∗T (t, x, φ) will be assumed to belong to a known parametric
family.

The censoring rule for each individual is such that the study ends at the date of
interview TIi, which is independent across individuals, and independent of the spell
length. As such the censoring and potential censoring times are Z = TI − TE.

Two alternative parametric hazard specifications will be considered, the two-
parameter Weibull and the Log-logistic. The first can be used to test whether un-
employment duration is a time dependent process, and is expected to produce a
decreasing hazard rate. The second allows for non-monotonic hazard functions, rep-
resentig an unemployment process in which initially the risk of leaving unemployment
increases, then reaches a peak after which unemployment becomes persistent.

6.2. Maximum likelihood estimates. Being a retrospective survey, measure-
ment error is an issue to take into account. In this cohort, 25% of the population
started the spell of unemployment in the six months before the data of interview,
37.5% between 6 months and one year, and the remaining 37.5% more than one year
before the date of interview17.

(Table 7 about here)
Table 7 reports maximum likelihood and GMM estimates for both specifications18.

The MLE estimate of the Weibull shape parameter suggests a decreasing hazard
for leaving unemployment and the constant hazard rate model is rejected. This
result is consistent with the search theory postulate, that asserts that as individuals
spend time in unemployment the rate of job offers decreases such that the progressive

16 I am in debt with Andrew Chesher for helping deriving this sampling distribution.

17 In fact some of this individuals could not recall accurately the dates at which unemployment
occurred, and for those only the month and year is recorded, being the date considered the 15th of
the reported month.
18Bootstrap standard errors, taking into account that one of the regressors is estimated, were

computed using 1000 bootstrap replications. The null hypothesis for α is H0 : α = 1. As the
hypothesis H0 : σ

2 = 0 lies on the boundary of the parameter space, the test is based on t2 and the
asymptotic 5% critical level c∗0.05 solves, Pr(χ

2(1) < c0.45 ) + 0.5 = 0.95 (see Godfrey, 1988).
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expected reduction in the reservation wage fails to compensate for a falling rate of
job offers. The Log-logistic MLE estimate shows that unemployment duration is
described by a non-monotonic hazard, being the hypothesis of a monotonic decreasing
hazard rate rejected.

Under the null hypothesis of homogeneity, the integrated hazard vector are n real-
izations of a mean-one Exponential variate. This allows to perform residual analyses
(see Lancaster and Chesher, 1985) as a means to study the quality of the fit in both
parametric specifications.

Figure 5 shows the plots for the maximum likelihood estimates of both specifi-
cations. The plot for the Log-logistic specification falls everywhere closer to the 45
degree line, suggesting that this model is a better approximation to this data than
the Weibull specification.

In the bottom of Table (7) is reported the test statistic for the efficient version
of the measurement error specification test for the null hypothesis H0 : σ

2 = 0. The
calculation of the efficient version of the test involved numeric computation of the
asymptotic variance of the test19. At a 0.05 nominal level, the null hypothesis is
clearly rejected in the Weibull model, suggesting the presence of measurement error,
but it is not rejected for the Log-logistic model at the same nominal level.

6.3. The bias corrected estimates. The Weibull bias corrected GMM esti-
mates indicate that the measurement error variance is not significantly different from
zero. Despite that, the coefficients (and in particular α) are now bigger and the ex-
ponential model is not rejected at the usual signifcance levels. This results are not
consistent and may reflect a misspecification of the error free distribution.

The bias corrected Log-logistic estimate of α is consistent with the effect of mea-
surement error in this parameter. In fact,

1. The correction has the right sign, and according to the estimate of the variance
of measurement error 15% of the observed variation in the log durations is
attributed to this misspecification problem.

2. For this amount of estimated measurement error and proportion of censored
observations the approximate proportional bias of the maximum likelihood es-
timator of α is 0.92 which equals the observed proportional bias, defined as the
ratio of the maximum likelihood estimate to the GMM estimate of α.

3. In general the covariate coefficients corrections are, as expected, equal to correc-
tion in the shape parameter. The observed proportional bias for the statistically
significant coefficients varies from 0.90 to 0.95.

19The second order properties of the test showed that this version of the test provides a reliable way
of doing inference in the sense that the first order asymptotic distribution is a good approximation
to the distribution of the test statistic. Also Monte Carlo experimentation showed that this version
is more powerful than the Outer-Product-of-the-Grafient (OPG) version.
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Figure 5: Residual analyses for Weibull and Log-logistic MLE estimates.
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The influence of covariates is such that a positive coefficient accelerates the time to
leaving unemployment, whereas a negative coefficient has the opposite effect. Apart
from Age and Income in work, all coefficients are statistically significant at a 0.05
nominal level. The estimate results suggest the following comments:

1. The educational dummies have the expected positive effect.

2. Married (or leaving as a couple) individuals leave unemployment faster than
single or divorced people.

3. Being the presence of dependent children in the household highly correlated
with the level of benefits received from the government, it acts as a disincentive
to return to the labour force.

4. Individuals in a high unemployment area exit unemployment slower as the rate
of job offers is relatively lower and there is more competition for jobs.

5. The income variables have the expected sign. The higher the level of income
in unemployment the lower the exit probability. Were the income in work
variable statistically significant, the negative coefficient would indicate that
those looking for jobs in higher wage jobs spend more time in unemployment20.

An important feature of the GMM estimates is the little loss of efficiency com-
paratively to the maximum likelihood. Being a semiparametric estimator, there is
always a trade-off between precision and flexibility. In this application the standard
deviations of both estimates computed with the bootstrap have the same order of
magnitude.

Figure 6 shows the conditional hazard functions for the two set of paramater
estimates. Two cohorts are considered according to whether the individual receives
any type of income support. The covariates are evaluated at the sample means of
each cohort.

As predicted, the correction initially raises the hazard function above the MLE
hazard. As an important consequence of this effect, the duration at which the Log-
logistic hazard reaches its peak is smaller21. From the point of view of efficacy,

20 In a previous version of the model, the expected wage at the job the individual is looking for was
used, and for those who exit the state their current wages was assumed to be a realisation of that
expectation. When this variable is used, the coefficient is significant and negative. Not only thit is
a strong assumption, but also there is an endogeneity problem as this variable is clearly correlated
with the reservation wage (see Nickell, 1979). On the other hand as noted in Lancaster and Chesher
(1983) it is not straightforward to interpret thit variable as the mean wage or the conditional on
being bigger than the reservation wage mean wage.
21The duration at which the Log-logistic hazard attains its maximum is given by t(max) = [(α −

1) exp(−x̄β)]1/α, here evaluated at the GMM estimates and at the mean individual.
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Figure 6: Estimated error contaminated (MLE) and bias corrected (GMM) hazard
functions.
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unemployment policies should target individuals on the increasing part of the hazard,
as there it is easier to encourage them to return to work. As such, policies based on
error contaminated durations may in this case loose its efficiency. Note that this
issue is particularly relevant for beneficiaries, where the duration at which the MLE
hazard reaches its maximum is nearly 50% larger.

These results assume that measurement error is homogenous. This is a strong
assumption, as two spells with the same lenght that occurred in two different periods
are likely to be contaminated with different amounts of measuremet error. The next
section estimates the Log-logistic model assuming heteroskedastic measurement error
of several forms.

6.4. Heteroskedastic measurement error. In most applications the distribu-
tion of duration response measurement error should be a function of the recall effort
individuals have to make when reporting information on the spells. Given the nature
of this data, it seems therefore natural to consider as a measure of recall effort (w)
the sum of the time between the start of the spell and the date of interview with
the time between the end of the spell and the date of interview. Note that this mea-
sure is independent of the spell lenght, as for example a short spell that happened
a long time ago may have a larger recall effort than a large spell that just ended.
Nevertheless large spells will always have a larger recall effort.

The variance of the measurement error will be a function of the logarithm of the
recall effort. Four specifications for the skedastic function will be considered: the
linear specification, which can be thought of as a first order local approximation and
has the usual shortcome that may produce negative values for the variance; the ex-
ponential specification, which is always a natural candidate for skedastic functions;
two picewise linear skedastic functions. In the first the threshold is the .75th quan-
tile of w, and in the second the thresholds are the .25th and .75th quantiles of the
distribution of w.

Table 8 shows the results for these specifications for the Log-logistic model22. The
only specification that clearly rejects the skedastic function is the exponential. Its
intercept estimates a measurement error variance of 0.303, which is very close to the
homoskedastic model. The linear specification is not rejected at a 10% level, but
when compared with the two picewise linear specifications is clearly rejected.

(Table 8 about here)

The preferred model is the picewise linear with two slopes. The correction on the
shape parameter is now bigger, which shows that this model further identifies spurious
variation on the log durations. On the other hand the estimates a less precise. The
standard error of the shape parameter is twice as large as in the homoskedastic
model. This may reflect the increased complexity associated with the introduction of

22The null hypothesis H0 : πj = 0 has a one sided alternative.
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the skedastic function. The first slope is not significant, so up to the 75th quantile of
the distribution of recall effort the measurement error variance is constant at 0.348, a
value that is not to distant from the homoskedastic variance. It is after this quantile
that a 1% variation on the recall effort induces an increase of the measurement error
variance of 0,7. This is a very drastic increase in the variance and may not be
solely related to measurement error. Remmember that extremely big values of the
recall effort are likely to be associated with extremely long spells. In this case this
specification could also be capturing the fact that those durations are not likely to
be generated by a Log-logistic model.

7. Conclusion
This paper addressed the problem of GMM-Estimation under the presence of duration
response measurement error. The impact on parameter estimates was characterized
by deriving the approximate probability limit of estimators defined by a set of mo-
ment conditions. For single spell models, generally measurement error dampens the
form of duration dependence in the hazard function. This effect differs from neglected
uncontrolled heterogeneity, because the extent of the distortion is a function of the
shape characteristics of the error-free distribution. In the cases here considered mea-
surement error changes the way covariates affect the duration distribution, in the
same fashion as it does for the shape parameters.

Allowing for right censoring and contaminated durations has different implications
in different parametric specifications. In the Weibull model, right censoring offsets
in an increasing way the negative impact of measurement error in MLE parameter
estimates, while the approximate probability limit of the Log-logistic MLE estimates
is a nonlinear function of the proportion of censored observations.

The seriousness of the implications of this misspecification problem are well il-
lustrated in the two-spell-lagged-duration-dependence Exponential model. For this
specification, estimated lagged duration dependence can be totally spurious. De-
pending on the sign of the correlation between the measurement errors, the magni-
tude and even the sign of this coefficient can be totally misperceived due to error-
contamination.

This inconsistency measure leads to a GMM estimator that corrects (approx-
imately) the bias in the moment conditions that define the error-free model. Its
performance was investigated via Monte Carlo experimentation. The moment condi-
tion that defines the measurement error specification score test was shown to provide
valuable information about the parameters of the distribution of the data under the
presence of contamination, leading to the conclusion that under this estimating pro-
cedure score tests can be constructive. This estimator does not require any prior
information on the measurement error distribution, whose parameters are estimated
jointly with the parameters of the error free distribution.

The results were applied to a sample of unemployment durations retrospectively
collected in the BHPS. The Weibull analysis suggests that parametric misspecification
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can give conflicting results between the maximum likelihood and the GMM estimates
of the extended shape parameter vector. For the Log-logistic there was a very strong
agreement between the MLE, and the GMM estimates. Introducing a measure of
recall effort in the variance function raised the issue of independence between the
measurement error and the spell length. The independence assumption may be too
restrictive especially for large durations. On the other hand this parametrization of
the variance function may just capture parametric misspecification.

If there is no measurement error this estimator can still be useful as it allows to
answer the following question: "How much excessive variation in the log durations
must one allow for when choosing for a given parametric specification". The estimate
of the variance of measurement error can than be interpreted as the cost of choosing
a parametric model. This estimator is particularly useful when the researcher has no
information on the measurement error parameters or no access to external data to
compute them.

A. The wage offer equation

In this appendix the mean of the wage distribution used as an explanatory variable
in the specification of the unemployment duration model is estimated. The aim is
to find a measure of the wage in the segment of the labour market in which the
individual is searching for a job23.

The wage offer equation is estimated using a standard Heckitt procedure like in
Heckman (1979) which takes into account selection bias induced by observing wages
only for employed people.

(Table 9 about here)

The data used was the sample of 3620 male individuals that were either employed
or unemployed at time of interview of wave one.

In addition to the variables Children, Married and the educational dummies, the
participation equation included a vector of explanatory variables measuring labour
market experience (see Lambert, 1993 for a discussion on measures of labour market
experience). The variable Experience is defined as the logarithim of the number of
years since leaving full time education. The square of Experience was included to
capture nonlinearities in the equation. The log wage equation included as explanatory
variables, the educational dummies, the same experience measures and interactions
with Age and the local unemployment rate.
23Other measures for this variable have been considered in this literature. Some authors use net

earnings in previous job and others expected earnings at work. There are several reasons for not
using those variables in the economic specification. The first is a practical one concerned with the
size of the available sample: both the above variables are only available for a fraction of the sample
considered in this study. The second reason is that, as noted in Nickell (1979), there is a potential
endogeneity bias from using previous earnings, as those who are most likely to be selective about
accepting jobs may have had higher than average earnings in their previous job. As for expected
earnings, this variable is closely correlated with the reservation wage and with on job earnings.
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Table 9 gives the sample descriptive statistics. Both employed and unemployed
populations have very similar individual characteristics. However the latter seems to
be younger, less experienced, less prone to being married but with more children.

Table 10 shows the results for both equations.(Table 10 about here)
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B. The approximate structural bias function for right censored
single spell models

The approximate structural bias function for single spell models with right censored
observations is now derived.

The aim is to find the functions ba1(s, θ) and r1(z, θ), that solve the equationZ z

0
g1(s, φ)mT (s, θ)ds =

Z z

0
ba1(s, θ)fT (s, φ)ds+ r1(z, θ) (32)

Using the definition of mT (s, θ) the left hand side of (32) can be written as

σ2

2

µZ z

0
g1(s, φ)fT (s, φ) ds+ 3

Z z

0
g1(s, φ)sf

0
T (s, φ) ds+

Z z

0
g1(s, φ)s

2f 00T (s, φ) ds
¶
(33)

Integrating the second term once by parts and the third term twice by parts, assuming
the following tail conditions for the density and its partial derivatives, necessary to
assure convergence of those integrals

A.B.1 limsk→0 g1(s, φ)sfT (s, φ) = 0
A.B.2 limsk→0 g1(s, φ)s2f 0T (s, φ) = 0
A.B.3 limsk→0 g

0
1(s, φ)s

2fT (s, φ) = 0
(34)

leads to the desired result.

C. The structural bias function for multiple spells single
destination models

In this appendix the structural bias function for MSSD models is derived which
incorporates the case of SSSD if R = 1.

The approximation (5) to the multiple spell joint density of section 2 can be
written as

fS(s) ' fT(t) +

(Ã
1
2

RX
k=1

σ2k +
R−1X
k=1

RX
l=k+1

σkl

!
fT(s) +

3
2

RX
k=1

σ2kskf
(k)
T (s)+ (35)

+
RX
k=1

RX
l 6=k

σklskf
(k)
T (s) + 1

2

RX
k=1

σ2ks
2
kf
(kk)
T (s) +

R−1X
k=1

RX
l=k+1

σklskslf
(kl)
T (s)


where f (k)T (s) = ∂fT (s) /∂tk and f

(kl)
T (s) = ∂2fT (s) /∂tk∂tl.

Computation of ES[g(S,φ)|θ = θ], up to o(||σ||) requires calculation of three
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integrals,

1.
R∞
0 . . .

R∞
0 g (s,φ) skf

(k)
T (s) dsR . . . ds1 = −(Eφ[g(S,φ)] +Eφ[Skg

(k)(S,φ)])

2.
R∞
0 . . .

R∞
0 g (s,φ) s2kf

(kk)
T (s) dsR . . . ds1 = 2Eφ[g(S,φ)] + 4Eφ[Skg

(k)(S,φ)]+

+Eφ[S
2
kg
(kk)(S,φ)]

3.
R∞
0 . . .

R∞
0 g (s,φ) skslf

(kl)
T (s) dsR . . . ds1 = −(Eφ[g(S,φ)] +Eφ[Skg

(k)(S,φ)]+

+Eφ[Slg
(l)(S,φ)] +Eφ[SkSlg

(kl)(S,φ)])
(36)

Computation of those integrals required multiple integration by parts, and as-
sumption of the following conditions related to the tail behaviour of the density and
its partial derivatives,

A.C.1 limsk→0 g(s,φ)skfT (s) = limsk→∞ g(s,φ)skfT (s) = 0

A.C.2 limsk→0 g(s,φ)s
2
kf
(k)
T (s) = limsk→∞ g(s,φ)s

2
kf
(k)
T (s) = 0

A.C.3 limsk→0 g(s,φ)skslf
(l)
T (s) = limsk→∞ g(s,φ)skslf

(l)
T (s) = 0

A.C.4 limsl→0 g(k)(s,φ)skslfT (s) = limsl→∞ g(k)(s,φ)skslfT (s) = 0
(37)

The approximate required expectation can now be written as

ES[g(S,φ)|θ = θ] ' a1(σ)ET[g(S,φ)|φ = φ] + a2(σ)ET[Skg
(k)(S,φ)|φ = φ]

+a3(σ)ET[S
2
kg
(kk)(S,φ)|φ = φ] + a4(σ)ET[SkSlg

(kl)(S,φ)|φ = φ] (38)

where aj(σ), j = 1, ..., 4 are polynomial functions of the vector σ.

1. The coefficient of ET[g(S,φ)|φ = φ] is

a1(σ) = −3
2

RX
k=1

σ2k −
RX
k=1

RX
l 6=k

σkl +
RX
k=1

σ2k +
1

2

RX
k=1

σ2k + 2
R−1X
k=1

RX
l=k+1

σkl(39)

= −
RX
k=1

RX
l 6=k

σkl + 2
R−1X
k=1

RX
l=k+1

σkl = 0

2. The coefficient of ET[skg(k)(s,φ)|φ = φ] ≡ w̄k(φ) is

a2(σ) = −3
2

RX
k=1

σ2kw̄k(φ)−
RX
k=1

RX
l 6=k

σklw̄k(φ) + 2
RX
k=1

σ2kw̄k(φ) + (40)

+
R−1X
k=1

RX
l=k+1

σklw̄k(φ) +
R−1X
k=1

RX
l=k+1

σklw̄l(φ)



Measurement Error Bias Reduction in Unemployment Durations 35

Noting that

RX
k=1

RX
l 6=k

σklw̄k(φ) =
R−1X
k=1

RX
l=k+1

σklw̄k(φ) +
R−1X
k=1

RX
l=k+1

σklw̄l(φ) (41)

gives

a2(σ) =
1

2

RX
k=1

σ2kw̄k(φ) (42)

3. Finally the terms associated with

ET[S
2
kg
(kk)(S,φ)|φ = φ] ≡ w̄kk(φ); ET[SkSlg

(kl)(S,φ)|φ = φ] ≡ w̄kl(φ),
(43)

are respectively

a3(σ) =
1

2

RX
k=1

σ2kw̄kk(φ); a4(σ) =
R−1X
k=1

RX
l=k+1

σklw̄kl(φ) (44)

It follows that the approximate structural bias function is given by

ba(s,θ) =
1

2

RX
k=1

σ2k

³
skg

(k) (s,φ) + s2kg
(kk) (s,φ)

´
+
R−1X
k=1

RX
l=k+1

σklskslg
(kl) (s,φ) .

(45)

D. Sigma-order consistency of the approximate GMM estimator
In this appendix the σ order of the bias corrected GMM estimator is derived.

Let Y be a random variable whose distribution depends on θ = {φ, σ}. Let θ0
be the true value, and consider the class of extremum estimators in which under the
condition that E[g(Y, θ0)|θ = θ0] = 0, estimators are obtained by maximizing an
approximation to a true objective function, bQn(θ) = −ĝn(θ)0Ŵ ĝn(θ), where ĝn(θ) =
n−1/2

Pn
i=1 g(yi, θ). By the law of large numbers ĝn(θ)

p→ g0(θ) = E[g(Y, θ)|θ = θ0].
Then by a continuity argument bQn(θ)

p→ Q0(θ) = −g0(θ)0Wg0(θ), is the probability
limit of the true objective function, and convergence in probability is uniform.

The objective function bQa
n(θ) = −ĝan(θ)0Ŵ ĝan(θ), maximized at θ̂

a
n, is obtained by

approximating the influence of a subset of parameters σ, on the moment conditions
in a way that

E[ga(Y, θ0)|θ = θ0] = O
¡
σ30
¢

(46)

Assuming that ĝan(θ)
p→ ga0(θ) = E[ga(Y, θ)|θ = θ0], the probability limit of the

approximate objective function is bQa
n(θ)

p→ Qa
0(θ) = ga0(θ)

0Wga0(θ).
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Theorem 1. Let Q0(θ) be the probability limit of the true objective function, and
let θ0 be the true value of θ assumed identifiable in the sense that

θ0 = argmax
θ

Q0(θ) = −g0(θ)0Wg0(θ) (47)

defines an unique value of θ0. Let θa the probability limit of the approximate estimator
be uniquely defined by

θa = argmax
θ

Qa
0(θ) = −ga0(θ)0Wga0(θ) (48)

Then θa − θ0 = O
¡
σ30
¢
.

The proof exploits the fact that θ̂
a
n has an influence function representation (see

Newey and McFadden, 1994) and that its distribution is degenerate, therefore con-
vergence in distribution implies convergence in probability.

Assume θ0 is in the interior of its parameter space Θ.The first order condition for
θ̂
a
n has the form,

Ga
n(θ̂

a
n)Wgan(θ̂

a
n) = 0 (49)

where Ga
n(θ) = ∇θg

a
n(θ). Assume that g

a(y, θ) is continuously differentiable on int(Θ).
A mean value expansion of gan(θ̂

a
n) about θ0 gives

Ga
n(θ̂

a
n)
0W [gan(θ0) +Ga

n(θ̈n)(θ̂
a
n − θ0)] = 0 (50)

where θ̈n is between θ̂
a
n and θ0. Therefore,

n1/2(θ̂
a
n − θ0) = −[Ga

n(θ̂
a
n)
0WGa

n(θ̈n)]
−1Ga

n(θ̂
a
n)Wn1/2 gan(θ0) (51)

Because θ̂
a
n

p→ θa and θ0 is the true parameter vector, under standard regularity
conditions Ga

n(θ̂
a
n)

p→ Ga
θ and Ga

n(θ̈n)
p→ Ga

θ where G
a
θ = E[∇θg

a(Y, θa)|θ = θ0]. Let
A = −(Ga0

θ WGa
θ)
−1Ga0

θ W and write

n1/2(θ̂
a
n − θ0) = A n1/2(gan(θ0)−O(σ30)) + n1/2O(σ30) + op(1) (52)

or equivalently

n1/2(θ̂
a
n − θ0 −O(σ30)) = An1/2(gan(θ0)−O(σ30)) + op(1) (53)

It follows directly from (46) that n1/2(gan(θ0)−O(σ30))
d→ N(0, V ) where

V = E[(ga(Y, θ0)−O(σ30))(g
a(Y, θ0)−O(σ30))

0|θ = θ0] (54)

and that implies gan(θ0)−O(σ30)
p→ 0. As a direct consequence,

θ̂
a
n − θ0

p→ O(σ30). (55)

from which it follows that θa − θ0 = O
¡
σ30
¢
.
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Table 1: Weibull and Log-logistic GMM bias corrected estimates under no measure-
ment error.

Weibull
β0 β1 α σ2

δ N mean med sd mean med sd mean med sd mean med sd

0.20 200 1.014 1.005 .124 1.008 1.000 .164 1.010 1.005 .083 -.022 -.017 .080

500 1.008 1.003 .085 1.004 1.002 .105 1.006 1.002 .057 -.010 -.006 .060

0.50 200 1.029 1.006 .206 1.014 .996 .219 1.015 1.003 .113 -.043 -.026 .144

500 1.026 1.010 .140 1.013 1.006 .140 1.014 1.005 .080 -.019 -.011 .114

Log-logistic
0.20 200 1.022 1.004 .180 1.020 1.001 .265 1.024 1.004 .136 .013 .000 .426

500 1.016 1.009 .119 1.012 1.004 .167 1.021 1.007 .095 .045 .000 .345

0.50 200 1.067 1.018 .307 1.051 1.012 .335 1.054 1.008 .200 .052 .004 .521

500 1.049 1.018 .220 1.041 1.016 .229 1.041 1.007 .154 .072 -.004 .424

Table 2: Weibull maximum likelihood estimates ignoring measurement error.

β0 β1 α

δ ρ N V mean med sd mean med sd mean med sd

0.20 0.90 200 LN .889 .886 .099 .926 .923 .153 .928 .925 .058

G .896 .895 .099 .934 .931 .151 .934 .932 .058

500 LN .879 .877 .062 .922 .920 .094 .921 .919 .037

G .887 .886 .061 .929 .928 .095 .926 .925 .037

0.80 200 LN .747 .743 .101 .836 .838 .155 .842 .839 .053

G .772 .770 .097 .856 .850 .148 .859 .857 .051

500 LN .738 .738 .063 .837 .837 .101 .835 .835 .034

G .762 .761 .060 .854 .853 .098 .853 .851 .033

0.50 0.90 200 LN .903 .904 .142 .944 .936 .197 .947 .946 .073

G .913 .912 .144 .951 .944 .194 .953 .949 .073

500 LN .889 .885 .087 .939 .939 .117 .937 .935 .045

G .901 .899 .084 .946 .944 .119 .943 .941 .046

0.80 200 LN .712 .711 .138 .849 .847 .189 .856 .853 .064

G .748 .748 .134 .871 .871 .186 .875 .873 .064

500 LN .700 .700 .086 .849 .848 .123 .848 .848 .041

G .734 .735 .082 .866 .868 .120 .867 .866 .040
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Table 3: Log-logistic maximum likelihood estimates ignoring measurement error.

β0 β0 α

δ ρ N V mean med sd mean med sd mean med sd

0.20 0.90 200 LN .955 .953 .146 .950 .949 .228 .954 .951 .063

G .950 .947 .145 .952 .950 .228 .955 .951 .062

500 LN .942 .939 .092 .941 .942 .144 .943 .942 .038

G .940 .940 .091 .942 .942 .143 .945 .945 .039

0.80 200 LN .860 .861 .142 .884 .885 .227 .881 .879 .056

G .849 .845 .141 .886 .882 .226 .884 .881 .056

500 LN .853 .855 .092 .875 .875 .140 .876 .875 .036

G .843 .839 .088 .878 .878 .145 .879 .878 .036

0.50 0.90 200 LN .925 .927 .187 .946 .942 .259 .951 .946 .080

G .925 .923 .186 .951 .949 .257 .954 .951 .079

500 LN .911 .911 .117 .938 .937 .165 .939 .939 .046

G .912 .911 .115 .940 .936 .164 .942 .942 .047

0.80 200 LN .761 .753 .173 .868 .869 .260 .865 .864 .067

G .763 .757 .172 .874 .864 .257 .874 .871 .069

500 LN .753 .754 .114 .860 .855 .160 .860 .857 .043

G .757 .757 .110 .869 .865 .165 .868 .866 .044
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Table 4: Weibull GMM bias corrected estimates under measurement error.

β0 β0 α σ2

δ ρ N V mean med sd mean med sd mean med sd mean med sd

0.20 0.90 200 LN .987 .988 .137 .994 .986 .197 1.006 .996 .088 .106 .085 .153

G .989 .981 .131 1.006 1.002 .183 1.010 1.000 .087 .098 .078 .140

500 LN .968 .961 .102 .984 .974 .126 .993 .983 .068 .102 .088 .107

G .968 .962 .104 .993 .981 .133 .996 .984 .070 .089 .080 .095

0.80 200 LN .832 .840 .219 .921 .924 .224 .963 .939 .142 .330 .140 .411

G .837 .838 .212 .947 .947 .222 .978 .947 .141 .329 .131 .432

500 LN .772 .797 .198 .939 .914 .180 .939 .914 .118 .320 .128 .370

G .774 .802 .184 .942 .931 .165 .953 .922 .114 .312 .120 .356

0.50 0.90 200 LN 1.024 1.014 .165 1.020 1.009 .220 1.018 1.011 .090 .101 .087 .163

G 1.031 1.024 .164 1.025 1.015 .217 1.023 1.014 .087 .095 .088 .123

500 LN .997 .993 .119 1.002 1.003 .136 .1001 .999 .064 .104 .010 .113

G 1.000 .993 .112 1.008 1.006 .137 1.002 .997 .062 .087 .086 .092

0.80 200 LN .840 .847 .228 .928 .922 .242 .946 .938 .121 .337 .162 .466

G .861 .857 .228 .950 .938 .241 .963 .951 .126 .345 .164 .488

500 LN .790 .804 .180 .910 .907 .171 .917 .916 .093 .318 .148 .415

G .813 .819 .192 .928 .923 .174 .938 .930 .107 .346 .161 .442
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Table 5: Log-logistic GMM bias corrected estimates under measurement error

β0 β1 α σ2

δ ρ N V mean med sd mean med sd mean med sd mean med sd

0.20 0.90 200 LN 1.001 .987 .180 1.007 .990 .266 1.016 .995 .126 .263 .196 .330

G .994 .984 .172 1.008 .996 .260 1.015 .995 .120 .252 .164 .326

500 LN .986 .981 .113 .996 .994 .164 1.003 .995 .078 .285 .333 .251

G .980 .976 .107 .994 .990 .161 1.001 .991 .077 .266 .321 .245

0.80 200 LN .915 .906 .172 .956 .943 .268 .961 .940 .120 .415 .316 .419

G .907 .894 .179 .964 .946 .266 .968 .942 .129 .424 .307 .444

500 LN .917 .915 .113 .960 .955 .169 .969 .966 .082 .528 .630 .340

G .902 .897 .109 .962 .956 .173 .968 .965 .084 .496 .575 .354

0.50 0.90 200 LN 1.010 .977 .282 1.019 .998 .316 1.028 .996 .164 .297 .236 .376

G 1.002 .969 .263 1.023 1.001 .309 1.027 .998 .159 .283 .169 .376

500 LN .995 .962 .216 1.014 .993 .224 1.016 .986 .140 .315 .327 .339

G .985 .958 .194 1.009 .994 .213 1.010 .984 .128 .282 .291 .345

0.80 200 LN .845 .823 .235 .947 .932 .308 .952 .928 .138 .471 .370 .477

G .828 .811 .209 .946 .927 .289 .945 .929 .116 .399 .202 .452

500 LN .840 .829 .155 .949 .942 .197 .955 .947 .095 .577 .783 .398

G .823 .815 .143 .943 .932 .194 .942 .928 .092 .436 .343 .404

Table 6: Summary statistics for unemployment duration model.

All Benef. Non Benef.

Number of spells 510 – 403 – 107 –

Censored spells 0.60 – 0.65 – 0.41 –

Uncensored spell length (in weeks) 27.4 (47.2) 32.6 (55.3) 15.8 (13.7)

Censored spell length (in weeks) 64.4 (99.0) 69.9 (100.1) 31.8 (86.6)

Age 33.6 (14.0) 34.7 (14.0) 29.5 (13.2)

Higher education 0.23 – 0.22 – 0.30 –

Lower education 0.42 – 0.41 – 0.47 –

Married 0.56 – 0.59 – 0.44 –

Children 0.56 (0.7) 0.56 (0.8) 0.59 (0.7)

Local unemployment rate (in %) 7.8 (1.6) 7.9 (1.6) 7.5 (1.5)

Income in unemployment (£ per week) 53.5 (55.5) 67.6 (54.2) – –
Income in work (£ per week) 160.1 (52.7) 161.0 (48.3) 156.9 (66.8)

* Standard errors in parentheses for continuous variables
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Table 7: Weibull and Log-logistic MLE and GMM corrected estimates

Weibull Log-logistic

Variable MLE GMM MLE GMM

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Alpha 0.880* .057 0.946 .056 1.232* .069 1.333* .073

Constant -3.326* .195 -3.337* .201 -3.840* .247 -4.132* .231

Age -0.892* .394 -0.370 .280 -0.451 .398 -0.483 .401

Higher education 1.322* .282 1.538* .270 1.713* .342 1.798* .328

Low education 0.702* .284 1.014* .244 1.119* .339 1.215* .334

Married 0.636* .199 0.729* .196 0.862* .256 0.938* .264

Children -0.372* .135 -0.476* .137 -0.506* .158 -0.564* .166

Unemployment rate -0.101** .055 -0.086 .058 -0.148* .070 -0.164* .075

Beneficiary -0.784* .258 -1.116* .200 -1.203* .235 -1.346* .256

Income in unemployment -0.423* .059 -0.431* .063 -0.612* .099 -0.653* .112

Income in work (B) -0.269 .354 -0.591** .305 -0.488 .438 -0.482 .446

Income in work (N. B.) -0.237 .391 -0.608* .288 -0.369 .345 -0.343 .322

ME variance – – 0.003 .031 – – 0.306* .173

ME Test=83.75 ME Test=1.26

* Rejected at 5%

**Rejected at 10%
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Table 8: Log-logistic GMM corrected estimates with heteroskedastic measurement
error

Variable Linear Exponential Picewise1 Picewise2

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Alpha 1.348* .086 1.396 .176 1.435* .151 1.422* .155

Constant -4.133* .258 -4.274 .459 -4.390* .382 -4.345* .414

Age -0.494 .420 -0.485 .496 -0.386 .486 -0.345 .450

Higher education 1.828* .350 1.880 .415 -1.937* .392 1.939* .378

Low education 1.265* .361 1.335 .436 1.392* .397 1.389* .380

Married 0.979* .277 1.015 .327 1.039* .316 1.031* .301

Children -0.600* .175 -0.632 .211 -0.660* .208 -0.654* .203

Local unemployment rate -0.177* .077 -0.186 .088 -0.198* .085 -0.195* .082

Beneficiary -1.399* .261 -1.453 .315 -1.481 .317 -1.469* .297

Income in unemployment -0.652* .114 -0.670 .133 -0.685* .132 -0.681* .125

Income in work (Benef) -0.488 .455 -0.488 .522 -0.560 .503 -0.580 .484

Income in work (Non benef) -0.331 .332 -0.327 .373 -0.430 .360 -0.470 .326

πj0 0.243* .144 -1.192 .637 0.348* .210 0.411* .203

πj1 0.186** .139 0.457 .453 -0.017 .215 0.052 .171

πj2 – – – – 0.693* .399 -0.075 .099

πj3 – – – – – – 0.772* .378

*rejected at 5%

**rejected at 10%

Table 9: Summary statistics for wage equation

All Employed Unemployed

Observations 3620 – 3217 – 403 –

Age 37.3 (13.1) 37.7 (12.9) 34.3 (14.2)

Higher education 0.30 – 0.31 – 0.25 –

Lower education 0.42 – 0.43 – 0.31 –

Married 0.71 – 0.73 – 0.53 –

Number of children 0.56 (0.74) 0.55 (0.73) 0.62 (0.83)

Local unemployment rate (in %) 7.8 (1.6) 7.9 (1.6) 7.5 (1.5)

Experience 20.6 (14.1) 20.9 (13.8) 18.3 (15.5)

*Standard deviations in parentheses
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Table 10: Estimates of the participation and wage offer equation

Participation Mean log wage

Variable Coef. p-value Coef. p-value

Constant 0.473 .004 4.682 .000

Higher education 0.162 .172 0.303 .000

Lower education 0.409 .001 0.118 .000

Married 0.277 .012 – –

Number of children -0.166 .005 – –

log(Experience) 0.561 .000 0.668 .000

log(Experience)2 -0.067 .068 -0.146 .000

log(Experience)×log(Age) – – 0.353 .000

[log(Experience)×log(Age)]2 – – -0.184 .000

Local unemployment rate – – -0.019 .000

Sigma – – 0.424 .000

Rho – – -0.540 .000

No. of observations 2786 2658

Log lik.=-1896.53


