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Abstract

The attractiveness of the Regression Discontinuity Design (RDD) in
its sharp formulation rests on close similarities with a formal experimental
design. On the other hand, it is of limited applicability since rarely indi-
viduals are assigned to the treatment group on the basis of a pre-program
measure observable to the analyst. Besides, it only allows to identify the
mean impact of the program for a very specific sub-population of indi-
viduals. In this paper we show that the sharp RDD straightforwardly
generalizes to the instances in which the eligibility for the program is
established with respect to an observable pre-program measure with eli-
gible individuals self-selecting into the treatment group according to an
unknown process. This set-up also turns out very convenient to define a
specification test on conventional non-experimental estimators of the pro-
gram effect needed to identify the mean impact away from the threshold
for eligibility. Data requirements are made explicit.

Keywords: program evaluation; second comparison group; specification tests
JEL Classification: C4; C8

1 Introduction

The central issue in the evaluation of public policies is to separate their causal
effect from the confounding effect of other factors influencing the outcome of
interest. Random assignment of units to the intervention defines treatment and
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control groups that are equivalent in all respects, except for their treatment
status. Thus, in a completely randomized experiment any post-intervention
difference between outcomes for the two groups doesn’t reflect pre-intervention
differences by construction. As a result, differences between exposed and control
units are entirely due to the intervention itself.

However, in most instances randomization is unfeasible either for ethical
reasons or simply because assignment to the treatment cannot be controlled by
the analyst. Besides, even in those instances in which the analyst can randomize
the assignment, units may not comply with the assigned status and either drop
out of the intervention or seek an alternative program (see Heckman and Smith,
1995).

A well-known and widely used example of randomized assignment is the
JTPA program in the United States, which currently serves close to one mil-
lion economically disadvantaged people every year (see Friedlander et al., 1997).
Random assignment occurs prior to the actual enrolment in the program, but
a consistent fraction of those randomized into the treatment group does not
participate. For certain components of the JTPA, such a non-complying be-
havior seems to be non-negligible (see, for example, Heckman et al., 1998b). In
this situation, the ideal experiment is not fully realized since participation turns
out (at least partly) voluntary: training is provided only to those individuals
who meet certain criteria of need and comply with the result of randomization.
It follows that participation depends on observable and unobservable charac-
teristics of individuals that might be correlated with the outcome of interest.
Accordingly, differences in outcomes for treated and control groups might be
the result of units’ self-selection into the intervention.

The assessment of whether observed changes in the outcome of interest could
be attributed to the intervention itself and not to other possible causes turns
out to be even more complicated in a non-experimental setting. In this situation
estimating cause-effect relationships that one might think to hold between the
program and its outcomes typically depends on not testable assumptions about
individuals’ behavior. Given that the ideal situation for policy evaluators is the
complete knowledge of the mechanism leading individuals to participate into
the treatment, and given that in most instances such a mechanism is unknown
(either because of non-compliance of individuals in an experimental setting or
because of the lack of knowledge arising from observational studies), the question
then arises of how to make the most out of each design to obtain reasonable
estimates of program effects.

There are instances in which the so called sharp Regression Discontinuity
Design (RDD) arises (see Thistlethwaite and Campbell, 1960, Rubin, 1977,
Trochim, 1984). According to this design, assignment is solely based on pre-
intervention variables observable to the analyst and the probability of partic-
ipation changes discontinuously as a function of these variables. To fix ideas,
consider the case in which a pool of units willing to participate into a program is
split into two groups according to whether a pre-intervention measure is above
or below a known threshold. Those who score above the threshold are exposed
to the intervention while those who score below are denied it.

This design features both advantages and disadvantages with respect to its
competitors. On the one hand, in a neighborhood of the threshold for selection
a sharp RDD presents some features of a pure experiment. In this sense, it is
certainly more attractive than a non-experimental design. Since subjects in the



treatment and control group solely differ with respect to the variable on which
the assignment to the intervention is established (and with respect to any other
variable correlated to it), one can control for confounding factors by contrasting
marginal participants to marginal non-participants. In this context, the term
marginal refers to those units not too far away from the threshold for selection.
The comparison of mean outcomes for marginally treated and marginally control
units identifies the mean impact of the intervention locally with respect to the
threshold for selection. Intuitively, for identification at the cut-off point to hold
it must be the case that any discontinuity in the relationship between outcomes
of interest and the variable determining the treatment status is fully attributable
to the treatment itself (this requires some regularity conditions at the threshold
for selection discussed by Hahn et al., 2001; HT'V in the following).

On the other hand, the sharp RDD features two main limitations. Firstly,
its feasibility is by definition confined to those instances in which selection takes
place only on observable pre-intervention variables; as a matter of fact, this is
not often the case. Secondly, even when such a design applies, it only permits
to identify the mean impact of the intervention at the threshold for selection.
In the realistic situation of heterogeneous impacts across units, this local ef-
fect might be very different from the effect for units away from the threshold
for selection. To identify the mean impact on a broader population one can
only resort to a non-experimental estimator, whose consistency for the intended
impact intrinsically depends on behavioral (and not testable!) assumptions.

In what follows we show that the range of applicability of the sharp RDD
includes all those instances in which an eligibility rule splits the relevant pop-
ulation into two subpopulations, eligibles and non-eligibles, and participation
is determined by self-selection of eligibles into the program. In this set-up, the
mean impact on participants in a neighborhood of the threshold for eligibil-
ity is identified under the same regularity conditions required for the standard
sharp RDD, no matter how eligible units self-select into the program. Since the
result rests on exploiting ineligibles and eligible non-participants as a double-
comparison group, it is crucial to collect information separately on both groups.
There are implicit references in the literature to the potential for identification
of mean impacts arising from eligibility rules (see Angrist, 1998; Heckman et
al., 1999; van der Klaauw, 2002). No one to our knowledge has explored the
regularity conditions required for identification.

As a straightforward corollary of the previous result we show that the selec-
tion bias coming from the self-selection of eligibles is identifiable at the threshold
for eligibility. Then, one can formally test whether any of the long arrays of
existing non-experimental estimators is able to correct for this bias. If a non-
experimental estimator can solve the selection bias problem for the population
of units in a neighborhood of the threshold for eligibility, one might feel more
confident to use it in the estimation of causal effects on a broader population.

Links to related literature are established. In particular, we show that our
first result is closely related to Bloom (1984) and to Angrist and Imbens (1991).
We also stress the relationship with the idea stated by Rosenbaum (1987) of
using two comparison groups for the identification of causal effects. Finally, we
point out the similarities between our specification test and the set of specifi-
cation tests derived by Heckman and Hotz (1989), as well as the link to the
characterization of the selection bias provided by Heckman et al. (1998a).

The remaining of this paper is organized as follows. Section 2 discusses simi-



larities between a fully randomized experiment and a RDD. Section 3 generalizes
the use of a RDD when participation into the treatment group is determined
by self-selection. Section 4 shows how to validate the use of non-experimental
estimators for the treatment effect using a RDD. Threats to the validity of the
design are discussed in Section 5. Section 6 presents some concluding remarks.

2 The Regression Discontinuity Design

This section presents the basic features of the RDD and highlights its similarities
with a randomized experiment. The discussion of identification issues arising in
the RDD is based on HT'V, to which the interested reader is referred for further
details.

Following the notation of the potential outcome approach to causal inference
(see Rubin, 1974), let (Y1,Y)) be the potential outcomes one would experience
by participating and not participating into the program, respectively.

The causal effect of the treatment is then defined as the difference between
these two potential outcomes, 8 = Y; — Y), which is not observable since being
exposed to (denied) the program reveals Y7 (Yg) but conceals the other potential
outcome. In what follows we will discuss the case in which the program impact
3 varies across individuals, which in most instances is the relevant case.!

Let I be the binary variable for the treatment status, with I = 1 for par-
ticipants and I = 0 for non-participants. If the assignment is determined by
randomization, the following condition holds true by construction

(Y1, Yy) LI

The attractiveness of randomization is that the difference between mean
outcomes for participants and non-participants identifies the mean impact of
the program

E(B) = BT = 1) — E(Y|I = 0), (1)

since conditioning on I in the right-hand side of (1) is irrelevant by construction.
In other words, randomization permits to use information on non-participants
to identify the mean counterfactual outcome for participants, namely what par-
ticipants would have experienced had they not participated into the program.

A RDD arises when the participation status depends on an observable indi-
vidual characteristic S and there exist a known point in the support of S where
the probability of participation changes discontinuously. In what follows, we
will assume S to be a continuous random variable on the real line. Formally, if
5 is the discontinuity point, then a RDD is defined if

Pri{l =157} # Pr{l = 1|57} (2)

Here and in the following 57 and 5~ refer to those individuals marginally above
and below 3, respectively. Moreover, to ease the exposition and without any loss
of generality, we will deal with the case in which the probability of participation
increases as S crosses the threshold 3, so that the following inequality holds

Pr{l =15t} - Pr{I =157} > 0.

THTV also derive the regularity conditions required for identification in the case of constant
impact across individuals.



Following Trochim (1984), the distinction between sharp and fuzzy RDD
depends on the size of the discontinuity in (2). The former design occurs when
the probability of participating conditional on S steps from zero to one as S
crosses the threshold s. That is, the treatment status deterministically depends
on whether individuals’ values of S are above §, so that

I=1(S > 3). (3)
A fuzzy RDD occurs when the size of the discontinuity at § is smaller than
one, implying that the assignment to the treatment is no longer a deterministic
function of S.

Although the RDD lacks random assignment of units to the treatment group,
it shares an attractive feature with experimental designs. We will address this
issue by considering the sharp RDD; we will discuss the fuzzy case further below
in this section. Let

Y =Yy +1(s)3

be the observed outcome. In what follows, we will stress the dependence of the
participation status I on the variable S by writing I(s). The difference of mean
outcomes for individuals marginally above and below the threshold s

E{Y|s"} - B{Y|s"} (4)
can be written as
E{Yo|s"} — E{Yo|5™} + E{I(s)BI5"} — E{I(s)B|5" }, (5)
which simplifies to
E{Yo|s"} — E{Yols™} + E{B|5"}

because of (3). The following condition is then sufficient for the mean impact
of the treatment at 57 to be identified in a sharp RDD.

Condition 1. The mean value of Y; conditional on S is a continuous function
of S at s.

Accordingly, Condition 1 requires that in the counterfactual world no disconti-
nuity would take place at the threshold for selection.? The attractiveness of the
RDD is apparent here. By controlling for S one can identify the average impact
of the program on subjects belonging to a right-neighborhood of 5, thus a local
version of the parameter in (1)3

B{8ls*} = B{Y|s*} - B(Y|5"}.

2Tt corresponds to Assumption (A1) in HTV.

3The identification of E{B|5~}, that is the expected mean impact from extending the
program to individuals marginally excluded, requires an additional continuity condition on the
conditional mean E{Y7|S}. This additional assumption jointly with Condition 1 correspond
to Assumptions (A1) and (A2) in HTV. The way we rephrased them clarifies that Condition 1
is sufficient to identify the mean impact in a right-neighborhood of the threshold for selection,
namely on those subjects actually taking part into the program.



The sharp RDD represents a special case of selection on observables (see
Rubin, 1977). Intuitively, in a neighborhood of 5 it presents the same features
of a pure randomized experiment. By exploiting the relationship between S and
I in (3), the following condition holds true

(Y1, Yo) L1|S = 5. (6)

Because of this property the RDD is often referred to as a quasi-experimental
design (Cook and Campbell, 1979). It allows to infer causal relationships by
exploiting the fact that in a neighborhood of 5 the treatment status is nearly
randomly assigned.

It is worth stressing again that to meaningfully define marginal units (with
respect to §) S needs to be a continuous variable. Moreover, note that the esti-
mation of the right-hand side (left-hand side) of (4) makes use of data only in
a neighborhood on the right (left) side of the discontinuity point. Unless one is
willing to make some parametric assumptions about the regression curve away
from 3, only data local to the discontinuity point help to estimate the jump.
Asymptotically the neighborhood needs to shrink as with usual non-parametric
estimation, implying a non-standard asymptotic theory for the resulting esti-
mator of the mean impact (see HTV and Porter, 2002).

In some cases units do not comply with the mandated status as it results
from the sharp RDD, dropping out of the program if assigned to it or seek-
ing alternative treatments if denied it (see, for example, Battistin and Rettore,
2002). The fuzzy RDD arises in these instances. Any violation of the orig-
inal assignment invalids the orthogonality condition in (6). Accordingly, the
mean impact at § cannot be identified by simply comparing mean outcomes for
marginal participants and for marginal non-participants as in (4). To overcome
this problem, conditions stronger than Condition 1 are needed.

Condition 2. The triple (Yo, Y1, I(s)) is stochastically independent of S in a
neighborhood of 3.

If Condition 2 is satisfied, the expression in (4) can be written as?

E{B|I(s%) —1(57) = 1} Pr{I(s%) —I1(57) = 1} —
E{BII(s") —I1(s7) = ~1}Pr{I(s") = I(s7) = ~1}.
Then, under the additional

Condition 3. Participation into the program is monotone around 3, that is
either I(5%) > I(57) for all subjects or I(57) < I(57) for all subjects
holds true.

the mean impact on compliers (LATE) in a neighborhood of 3 is identified by

E{BII(57) #1(57)} = 12{{1;:23 - %f—f,

(7)

4Condition 2 corresponds to Assumption (A3)(i) in HTV. The stochastic independence
between I(s) and S in a neighborhood of 5 is implied by the quasi-randomised assignment
taking place at 5. On the other hand, the stochastic independence between (Y1,Ys) and S
at § corresponds to an exclusion restriction asserting that, in a neighborhood of 3, S affects
the potential outcomes only through its effect on I (see the discussion on the role of the
exclusion restriction in Angrist et al., 1996). As an alternative to Condition 2 HTV also
consider the local orthogonality condition (Y1, Yo)LI|S = 5. Apparently, this condition rules
out non-random selection based either on (Y7, Yp) or on any variable correlated to (Y1, Yp).



the compliers being those individuals who would switch from non participation
to participation if their score S crossed the threshold (see Imbens and Angrist,
1994, and Angrist et al., 1996).> Note that Condition 3 is an assumption on
individuals’ behavior which is not testable. Moreover, even if the size of the
group of complying individuals is observable, it is not observable which indi-
viduals it consists of.5 Whether or not the resulting mean impact is a policy
relevant parameter it is case-specific (see Heckman, 1997, for a discussion).

Apparently, a sharp RDD allows the identification of the mean impact on
a broader population than the one identified in a fuzzy RDD. Moreover, it
requires weaker regularity conditions. In the sharp case, Condition 1 is enough
to ensure the identification of the mean impact for marginal participants. In
the fuzzy case, Condition 2 and Condition 3 together imply that the impact on
the subpopulation of complying subjects in a neighborhood of s is identified.
Heckman et al. (1999) emphasize this point by saying that much of the simplicity
of the design is lost moving from the sharp RDD to the fuzzy one.

Two major drawbacks hamper the applicability of the RDD. Firstly, in an
observational study it is very often the case that units self-select into the treat-
ment rather than being exogenously selected on a pre-program measure. If this
is the case, the RDD set-up as introduced so far no longer applies. Secondly,
even in those instances in which the RDD applies, if the impact is heteroge-
neous across individuals such a design is not informative about the impact on
individuals away from 5. These are the two issues we will look at in the next
sections.

3 A generalization of the sharp design

It is often the case that social programs are targeted to specific sub-groups
of individuals meeting a fully specified set of conditions for eligibility. Means
tested programs (such as food stamp programs) or labor market programs whose
eligibility criteria depend on the duration of unemployment or on the age of in-
dividuals are frequently encountered examples of such a scheme. For example,
the New Deal for Young People in the United Kingdom offers job-search assis-
tance followed by a package of subsidized options to all individuals aged between
eighteen and twenty-four who have been claiming unemployment insurance for
six months (see Blundell et al., 2002).

To fix ideas, let S be a continuous pre-program characteristic and let the
eligibility status be established according to the deterministic rule 1(S > 3).
That is, subjects are eligible for the program if and only if they present a value
of the variable S above a known threshold 5. Throughout this paper we will
assume that S is observable for all individuals.

If all eligibles participated into the program, a sharp RDD would arise. For
example, if participation into the program were mandatory for all eligible indi-
viduals the effect of the policy at the threshold for eligibility would be identified
by (4), provided Condition 1 holds.

As a matter of fact, it is often the case that some eligible individuals self-
select into the program while some others do not. Individuals’ heterogeneity

5Condition 3 corresponds to Assumption (A3)(ii) in HTV.
6If Condition 3 holds, the proportion of compliers at 5 equals the denominator in the
right-hand side of (7), that is Pr{l = 1|37} — Pr{l = 1|57 }.



about information on the availability of the program, preferences and oppor-
tunity costs are factors likely to influence the participation decision in several
instances. Accordingly, the population turns out split into three subgroups: in-
eligibles, eligible non-participants and participants. Our analysis develops with
reference to the general case in which the analyst does not know anything about
the rule leading eligible individuals to self-select into the program.

As a result of the eligibility rule and of self-selection, a fuzzy RDD arises
here. More precisely, the probability of participation for those subjects scoring a
value of S below the threshold § is zero by definition, since they are not eligible
for the program. The probability of participation for those scoring above § is
smaller than one because participation is not mandatory.

Van der Klaauw (2002, p.1284) explicitly mentions the potential for using
the RDD arising from the eligibility criteria for a social program. Heckman et
al. (1999, pp.1971-1972) recognize the fuzzy RDD nature of this set-up and
point out that in this case the LATE estimand (7) identifies the mean impact
on participants. In what follows we show that in this set-up, despite its prima
facie fuzzy RDD nature, the regularity conditions required to identify the mean
impact of the program are those required in a sharp RDD.

To recover the regularity conditions needed for identification consider again
the difference in (4). Since participation is precluded to marginally ineligibles
(I(57) = 0), the expression in (5) becomes

E{Yo|5"} — E{Yo|5~} + E{I(s)8]5" }.
If Condition 1 holds, the previous expression equals
E{BI = 1,5%}Pr{l = 1[5},

so that the mean impact on participants in a right-neighborhood of 5 is identified
by

E{Y|sT} — B{V]5"}

BB =15 = S (5)

In other words, Condition 1 is sufficient for the effect of the treatment on the
treated to be identified, locally with respect to the threshold for eligibility 5.

It is worth noting that, although the RDD arising from the eligibility rule is
fuzzy, the condition needed to identify the impact of the program on complying
individuals is the one required in a sharp RDD. The result rests on the fact that
the probability of participation at the left-hand side of 5 is zero by design, and
this simplifies the expression in (5) without further assumptions on individuals’
behavior.

Moreover, note that this feature of the design implies that the the pool of
compliers in a neighborhood of the threshold for selection corresponds to the
pool of participants, so that in this case the LATE refers to a population larger
than the one considered in (7). Results by HTV and Porter (2002) on non-
parametric inference in a RDD straightforwardly apply to the estimation of
(8).

An alternative way of deriving the result exploits a close analogy between
the set-up in this section and the one in Bloom (1984). In a fully experimental
setting, Bloom (1984) notes that even if some individuals randomly assigned to



the treatment eventually do not show-up, the identification of the mean impact
on participants is still secured by the experiment. By analogy, exploiting the
fact that the eligibility rule defines a randomized experiment in a neighborhood
of 5 and the fact that eligible non-participants play the role of Bloom’s (1984)
no-shows, the intuition suggests that the mean impact on participants in a
neighborhood of 5 is also identified.

This is exactly what we have derived so far. The key relationship on which
the result rests is the following equality implied by Condition 1

E(Yo|57) = E(Yol57). 9)

The left hand side of (9) can be written as the weighted average of the mean
outcome for eligible participants and for eligible non-participants, respectively

E(Yo|I =1,5T)¢ + E(Yo|I =0,51)(1 — ¢),

where ¢ = E{I|s%} is the probability of self-selection into the program condi-
tional on eligibility. The last expression combined with (9) gives

Eoll = 1,5%) = ZXBD) gy — 0,512 (10)

¢ ¢

Namely, the counterfactual mean outcome for marginal participants is identified
by a linear combination of factual mean outcomes for marginal ineligibles and
marginal eligibles not participating in the program. The coeflicients of the linear
combination add up to one and are a function of the probability ¢ which is
identifiable. Hence, equation (10) implies that the mean impact on participants
is identified, since by definition

E{B‘I: 1u‘§+} = E(Y1|I: 17‘§+) _E(YO‘I: 17§+)'

The right-hand-side of the previous expression can be rearranged using (10)
to get the expression in (8). The result in (10) stating that the counterfactual
mean outcome for marginal participants is identified will play a crucial role in
the next section.

Three general comments can be made on the results discussed so far. Firstly,
neither ineligibles nor eligible non-participants alone would allow the identifica-
tion of any interesting parameter. As it is apparent from Bloom’s key result in
(10) adapted to the RDD context, it is the use of information on both groups
to secure the identification of the mean counterfactual outcome on participants
in a neighborhood of 5. In this sense, the availability of sampling information
on three different groups of subjects (participants, eligible non-participants and
ineligibles) is crucial for identification.

Secondly, to derive the result we don’t need to specify how eligible units self-
select into the treatment. Thus, the identifiability of the mean impact doesn’t
require any behavioral assumption on the process itself.

Finally, our result (as well as Bloom’s one) can also be derived as a special
case of Angrist and Imbens (1991). The authors prove that even if participation
into the program takes place as a result of self-selection, the mean impact on
participants is identifiable provided that (i) there exists a random variable Z
affecting the participation into the program and orthogonal to the potential
outcomes and (ii) the probability of participation conditional on Z is zero in at



least one point of the support of Z. Condition (i) qualifies Z as an Instrumental
Variable for the problem.

In our case, since I is orthogonal to the potential outcomes in a neighborhood
of 5 and Pr(I = 1|57) = 0, I meets the conditions stated by Angrist and
Imbens (1991) in a neighborhood of 5.7 The identification of the mean impact
on participants at § follows. In this sense, the RDD can be interpreted as
a combination of regression control and instrumental variables identification
strategy in a neighborhood of the threshold for selection.?

4 Validating non-experimental estimators of the
mean impact on participants

4.1 Specification tests

As pointed out in the previous section, Condition 1 is sufficient to identify the
mean impact of the program on participants marginally eligible for it, even if
they might represent a self-selected group from the pool of eligible individuals.
This result relies on the existence of an eligibility rule depending on continuous
characteristics observable to the analyst.

If the gain from obtaining the treatment is heterogeneous with respect to S,
the mean impact for individuals in a neighborhood of the threshold for eligibility
is not informative on the impact of the intervention for individuals away from
this point. Nor ineligible units and eligible non-participants can be used as
valid comparison groups, since they differ systematically from participants (the
former with respect to S and the latter with respect to the variables driving
self-selection).

In order to identify the mean impact on the overall population of participants

B{V|I =1} - B(Yy|I = 1}, (1)

one has to resort to one of the long array of non-experimental estimators avail-
able in the literature which adjust for selection bias under different assumptions
(see Heckman et al., 1999, and Blundell and Costa Dias, 2000, for a review).
The main problem with non-experimental identification strategies is that they
rely on assumptions intrinsically not testable.

Over the years the literature has taken two main routes to deal with this
problem. The first route amounts to seek whether any over-identifying restric-
tions on the data generating process arise from a theory on the phenomenon
under investigation. If this is the case, one might exploit such restrictions to
test the assumptions on which the non-experimental estimator rests (see Rosen-
baum, 1984, and Heckman and Hotz, 1989).

7See the discussion in HTV on the property of the IV estimator in this instance.
8This idea is easily implemented in a fully parametric set-up. From a sample with infor-
mation for participants, eligible non-participants and ineligibles, the following regression can
be estimated
Y=a0o+a1S+ a2l +¢

using the eligibility status Z = 1(S > 5) as an instrumental variable for I, where I indexes
actual participants and non-participants. Note that S enters the equation to control for the
selection induced by the eligibility rule.

10



The second route is feasible only if an experimental estimate of the impact
is available. This solution is quite demanding, since it requires data from an
experimental design. If this is the case, one can exploit the experimental set-
up to characterize the selection bias and to assess whether non-experimental
estimators are able to reproduce the experimental estimate (see Lalonde, 1986
and Heckman et al., 1998a). Accordingly, one can learn which non-experimental
strategy to follow when experimental data are not available.

This section shows that if information is available on the three groups of
individuals resulting from the set-up of Section 3, then one can test the validity
of any non-experimental estimator on a specific subpopulation of participants.
To fix the ideas, we will focus on the widely used matching estimator (see
Rosenbaum and Rubin, 1983), but the same line of reasoning applies to other
non-experimental estimators.

The key assumption on which the matching estimator rests is that all the
variables driving the self-selection process and correlated to the potential out-
come Yy are observable to the analyst. Formally, the identification of the mean
impact in (11) in our set-up rests on the existence of an observable vector of
individual characteristics X such that the following condition holds true

YoLI|S, X Pr(I=1/$,X)<1, S>5 (12)

Then, it is as if individuals were randomly assigned to the treatment with
a probability depending on S and X, provided that such probability is non-
degenerate at each value of these variables. If the set of variables X is rich
enough for the first condition in (12) to be defendable, the counterfactual out-
come for participants presenting characteristics (S, X) can be approximated
by the actual outcome of non-participants presenting the same characteristics.
Since units presenting (S, X') have a common probability to enter the program,
then an operational rule to obtain an ex post experimental-like data set is to
match participants to non-participants on such probability (the so called propen-
sity score), whose dimension is invariant with respect to the dimension of (S, X)
(see Rosenbaum and Rubin, 1983).

The critical identifying assumption is that the available set of variables X
is rich enough to guarantee the orthogonality condition in (12). In other words,
the ignorability condition requires that the selection bias affecting the raw com-
parison of outcomes for participants and non-participants only depends on ob-
servables. In principle, this imposes strong requirements on data collection.
Moreover, the violation of the second condition in (12) causes the so called
common support problem (see for example Heckman et al., 1998a, and Lechner,
2001).°

Let

sb(s) = E{Yo|I = 1,s} — E{Yo|I =0, s}, 5§>5 (13)

be the selection bias affecting the raw comparison of participants and eligible
non-participants scoring S = s, with S > 5. The first term on the right hand
side of (13) is the mean outcome that participants would have experienced had
they not participated into the program. The second term is the actual mean

9As discussed above, the RDD represents a particular case of selection on observables
locally with respect to the threshold for eligibility. In this sense, the RDD estimator is a limit
form of matching at the threshold for eligibility.
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outcome experienced by eligible non-participants. This quantity captures pre-
intervention differences between eligible subjects self-selected in and out of the
program, respectively, at each level of S, with S > s.

Using the result stated in (10), the mean counterfactual outcome for par-
ticipants on the right hand side of (13) is identifiable in a neighborhood of 5 if
Condition 1 holds true. Accordingly, the selection bias for individuals marginally
eligible for the program sb(3) is also identifiable.

Note that the identification of the counterfactual term on the right-hand
side of (13) at § crucially requires information on the subgroup of non-eligibles
closest to the group of eligibles, thus in a neighborhood of the threshold for
eligibility. Apparently, identification is precluded as S moves away from §.

Consider now the bias term for a specific subpopulation of eligibles indexed
by x and s

sb(s,x) = E{Yy|I(s) = 1,s,2} — E{Yy|I(s) = 0,s,x}, 5>5

where X are the variables claimed to properly account for the selection bias in
a matching estimation of the program effect. If the orthogonality condition in
(12) holds, then sb(s,z) = 0 uniformly with respect to z and s. In particular, a
necessary condition for the matching estimator to work is that

sb(s,x2) =0, (14)

which is directly testable since sb(s, z) is identifiable in a neighborhood of 5.

It follows that in a neighborhood of 5 any test of the equality of the mean
outcomes experienced by non-eligibles and eligible non-participants conditional
on x is a test of the ignorability of the self-selection into the program, thus a
test on the validity of the matching estimator.!® Clearly, the rejection of the
null hypothesis is sufficient to conclude that condition (12) does not hold. On
the other hand, on accepting the null hypothesis one might feel more confident
in using the matching estimator. However, it can’t be claimed that the validity
of the estimator has been proved for the whole population of participants: in
fact, the test is not informative on whether the ignorability condition holds away
from 3.1

4.2 Related results

The result presented in this section can be easily summarized as follows. The
ignorability condition (12) represents an identifying restriction for the effect of
the program on participants as defined in (11). On the other hand, the condition
in (14) represents an over identifying restriction for the same parameter in a
neighborhood of 5. The parameter of interest is therefore locally over identified,
and condition (12) can be tested at s.

101n fact, one can test simultaneously the equality of the two mean outcomes as well as the
equality of their derivatives at s, thus gaining power.

1To give a flavor of the specification test discussed in this section, we rely again on the
parametric set-up introduced in the previous footnote. Restricting the sample to ineligible
and eligible non-participant individuals, the following regression can be estimated

Y=ap+a15+aX +a3Z +e¢,

where Z = 1(S > 5) denotes the eligibility status, and then test for a3 = 0.
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Since the RDD can been seen as a formal experiment at S = 5, the specifica-
tion test developed above displays an apparent similarity to what Heckman et al.
(1998a) develop in an experimental set-up. In both cases there is a benchmark
estimate of the mean impact - the RDD estimate in the former, the experimental
estimate in the latter - to which the analyst is ready to attach credibility. Then,
the analyst compares non-experimental estimates to the benchmark value inter-
preting any discrepancies as a violation of the identifying restrictions on which
the non-experimental estimator relies on.

However, the similarity between the two approaches ends here. The avail-
ability of an experimental set-up as in Heckman et al. (1998a) is sufficient
to fully characterize the selection bias and to test non-experimental estimators
with reference to the pool of participants. If a RDD is available, this is feasible
only for participants in a neighborhood of § = 3.

However, the availability of experimental data is rarely encountered in the
evaluation of social policies, especially in EU countries. On the other hand,
it is very often the case that a policy is targeted to a population of eligible
individuals whose participation into the program is on a voluntary basis. In
this situation the information on the three groups of individuals required in this
paper is in principle available, depending on the particular design and on data
collection problems. This enables researchers to use a specification test based on
the RDD as a tool to validate non-experimental estimators of the mean impact
on participants.'?

Rosenbaum (1987) in his discussion on the role of a second control group
in an observational study gives an example which resembles, albeit loosely, the
set-up we refer to (example 2, p.294). The Advanced Placement (AP) Program
provides students with the opportunity to earn college credits for work done in
high school. Not all high schools offer the AP program, and in those that do, only
a small minority of students participate. Two comparison groups naturally arise
in this context: students enrolled in high schools not offering the program and
students enrolled in high schools offering the program who did not participate.

Rosenbaum (1987) also discusses how the availability of two comparison
groups can be exploited to test the strong ignorability condition needed to define
the matching estimator. Apparently, his first comparison group resembles our
pool of ineligibles while the second group resembles our pool of eligible non-
participants. The crucial difference between Rosenbaum’s example and our
set-up is that in the former case the rule according to which high schools decide
whether to offer the AP program is unknown to the analyst. In our set-up the
eligibility rule is fully specified. It is exactly this feature of our set-up to allow
the identification of the mean impact on participants at S = § as well as to test
the validity of any other non-experimental estimator even if only locally with
respect to S = 3.

121t is worth noting that this paper deals with identification issues arising from the particular
set-up implied by the eligibility rule. A different problem not presented here is the power of
the testing procedure in (14) (see for example the discussion in Battistin and Rettore, 2002).
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5 Threats to validity

5.1 Substitution effects

The estimation of any causal implications of the treatment on the outcome of
interest rests on the Stable Unit Treatment Value Assumption (SUTVA) for all
members in the population (Rubin, 1977). According to this assumption, the
outcome experienced by each individual is not affected by assignment and receipt
of treatment by other individuals. It follows that SUTVA rules out general
equilibrium effects among potential participants that could occur because of
their participation decision.

Consider the case in which the participants’ gain from the treatment ham-
pers the outcome of those individuals not participating into the program. For
instance, if the program is targeted to improve job opportunities for partici-
pants, it might happen that non-participants experience a deterioration of their
job opportunities because as a consequence of the program employers find com-
paratively more attractive to hire participants. Following the literature (see
Heckman et al., 1999), we will refer to such a problem as ‘substitution effect’
and we will discuss its implications for the RDD set-up.

To deal with this problem, the two potential outcomes discussed in Section
2 are redefined and a third new potential outcome is introduced. Let Yy be
the outcome experienced by individuals if the program is mot rolled out, Y;
be the outcome experienced by participating into the program and Y5 be the
outcome experienced by not participating if the program is actually rolled out
and someone else takes part into it. Consequently, the effect of the program on
anyone participanting is Y7 — Yy, while the effect on anyone not participating
is Y5 — Y. A substitution effect arises when the latter effect is not zero for at
least some subjects and its sign is reversed with respect to the sign of Y7 — Yj.

If the participation status were randomly assigned, the comparison of mean
effects for participants and non-participants would identify

E(Y1 -Y;)=E(Y1 - Y) — E(Y> - Yp),

which is larger (in absolute value) than the parameter of interest E(Y; — Yp).
That is, although data from a fully randomized experiment are exploited, the
raw comparison of outcomes experienced by participants and non-participants
yields an upward biased estimate of the true effect (substitution bias). Note
that if the impact on non-participants is zero, no substitution effects arise and
standard results for an experimental design straightforwardly apply.

In a RDD context, such a problem is likely to be even more accentuated.
To fix ideas, consider the case of a sharp RDD and suppose that the participa-
tion status depends on individuals’ age S. Then, the analogue of the previous
expression corresponds to

E(Y1 — Y3|5) = E(Y — Yo|5) — E(Ya — Yyl8),

where § is the threshold age for being enrolled into the program. Marginally
non-participants are those individuals closest to participants with respect to S.
If age enhances the attractiveness of potential employees to employers, then a
marginal non-participant individual is more at risk of being substituted out by
participants than a randomly drawn non-participant. Formally,

[E(Y2 = Yo[5)| = |[E(Y2 - Vo))
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implying that the substitution bias might be larger in a RDD than in a ran-
domized experiment setting.

However it is worth noting that, while the occurrence of substitution bias
precludes the identification of program effects, it does not preclude testing for
a non-zero program impact. In fact, for the mean impact on non-participants
E(Ys — Yy|s) to be different from zero it must be that the mean impact on
participants E(Y; — Yp|3) is not zero. Hence, the mean impact on participants
is different from zero if and only if F(Y; — Y2|3) # 0, which is testable.

5.2 Entry effects

A further threat to the validity of the RDD occurs when subjects ineligible
for the program on the basis of their characteristic S purposively behave to
modify their S to become eligibles. For example, mean-tested policies targeted
to improve family income might induce some subjects to deliberately reduce
their labor income to become eligible.

If this is the case, eligibility for the policy is no longer a deterministic function
of S, requiring stronger conditions for identification than those discussed in
Section 3. In what follows we will refer to this problem as ‘entry effect’.

Two necessary conditions must be met for such an effect to take place.
Firstly, the characteristic S with respect to which eligibility is established has
to be under individuals’ control. Income and unemployment duration are two
notable examples of variables potentially affected by this problem, while age
is not. Secondly, eligibility for the program must not come ‘as a surprise’,
otherwise individuals could not act to modify their own S so that it meets
eligibility conditions.

If entry effects take place, the analogy with a randomized experiment in a
neighborhood of § no longer applies. This is because the pool of actual ineligibles
turns out made up of those subjects who chose to self-select out of the program
by not acting on their S while the pool of actual eligibles turns out to include
some subjects who chose to become eligible by acting on S.

Two simple tests are available to check whether any entry effects took place.
The first test is presented in Lee (2001). It exploits the intuition that if the local
orthogonality condition (6) does not hold, then the treatment and the control
groups are no longer equivalent with respect to any conceivable variable. To
simultaneously test whether an entry effect took place and whether it is causing
a selection bias, it suffices to find a variable stochastically related to Y, and
logically unaffected by the program. Then, check whether the two groups are
balanced with respect to such variable.

The second test is based on the intuition that, if some ineligible subjects
alter their S to switch from values below 5 to values above it, a discontinuity
in the cumulative distribution of the observed S is found at §. To formalize
this intuition, suppose that some individuals below the threshold for eligibility
§ modify their own S to values marginally above § to become eligible.

Condition 4. The entry effect takes place as an alteration of the value of S
for a fraction of ineligible subjects such that the corresponding observed
value of S belongs to a right neighborhood of s.

Let p be the proportion of individuals switching from below to above s;
let S,ps be the variable on which the eligibility is actually established and let
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F,ps and F be the distributions of S,,s and S, respectively. As a result, the
distribution of S,ps in a neighborhood of 5 is equal to

Fobs(gi) = F(gi) 2
Fous(57) = FGE)+p.

If
Condition 5. F' is continuous at s

is satisfied, F,ps turns out to be discontinuous at §
Fobs(ng) - Fobs<§7) = 2]97

and the discontinuity jump equals two times the proportion of ‘switchers’.

6 Conclusions

In this paper we have shown that when an intervention is targeted to a pop-
ulation of eligible individuals but is actually administered to a sub-set of self-
selected eligibles, it is worth collecting information separately on three groups of
subjects: ineligibles, eligible non-participants and participants. Also, the vari-
ables with respect to which eligibility is established have to be recorded to allow
the identification of marginally eligibles and ineligibles, respectively.

The distinction between non-eligibles and eligible non-participants to im-
prove the comparability between the treated and the comparison groups has
already been pointed out in the literature (see, amongst others, Heckman et al.,
1999). Here we have derived the regularity conditions required to identify the
mean impact on marginally eligible participants by jointly exploiting these two
comparison groups. Despite the prima facie fuzzy RDD nature of the resulting
set-up, we have shown that identification of the mean impact requires the same
continuity condition for a sharp RDD.

Then, we have shown that a straightforward corollary of the previous result
implies that the selection bias for subjects at the margin between eligibility
and non-eligibility is identifiable. This allows to define a specification test in a
neighborhood of the threshold for eligibility so that the properties of any non-
experimental estimator can be assessed. By design, such a test is informative
only for a particular subgroup of individuals, thus results cannot be generalized
to the whole population (unless one is willing to impose further identifying
restrictions). The value of the specification test is that if it rejects the non-
experimental estimator locally then this is enough to reject it altogether.
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