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Abstract

We consider a number of unit root tests for micro panels where the number

of individuals is typically large, but the number of time periods is often

very small. As we discuss, the presence of a unit root is closely related to

the identification of parameters of interest in this context. Calculations of

asymptotic local power and Monte Carlo evidence indicate that two simple

t-tests based on ordinary least squares estimators perform particularly well.
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1. Introduction

Microeconomic panel data sets - for example, on individuals or households, or on

plants or firms - commonly have a cross-section dimension (N) that is large and

a time dimension (T ) that is small. Because asymptotic approximations treat the

number of time periods as fixed, the presence of non-stationary integrated series

does not change the nature of asymptotic distribution results in the same way that

it does for single time series or for panels with large T . However, testing for unit

roots in micro panels is motivated by considering the properties of several well-

known estimators of autoregressive models in the unit root case. Some of these

do not identify the parameter of interest in the unit root case, so that evidence on

the time series properties of the data may be crucial for the choice of estimator to

be considered. There are also economic contexts in which testing the time series

properties of microeconomic series is of primary importance, as for example in the

empirical literature on firm size and Gibrat’s Law.1

While there are estimators that are consistent both under the null hypothesis

of a unit root and under stationary alternatives, we stress that consistent tests

of the unit root hypothesis require consistent estimation only under the null.

We show that simple Wald tests based on ordinary least squares estimators can

have significantly better power properties than alternative tests that have been

suggested in this context.

Section 2 outlines the model we consider, and discusses (under)identification in

the unit root case for both GeneralisedMethod of Moments (GMM) andMaximum

Likelihood (ML) estimators. Section 3 reviews panel unit root tests that have been

1See, for example, Sutton (1997).
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considered for panels with large N and fixed T . Section 4 presents asymptotic

local power comparisons and section 5 presents Monte Carlo evidence on small

sample properties. Section 6 concludes.

2. Model, Estimators and Identification

Consider the simple dynamic AR(1) panel data model

yi1 = δ0 + δ1ηi + εi (2.1)

yit = αyi,t−1 + uit

uit = (1− α) ηi + vit,

for i = 1, ..., N and t = 2, ..., T , where N is large and T is fixed. The observations

are independent across individuals and the error term satisfies

E (ηi) = 0, E (vit) = 0 for i = 1, ..., N and t = 2..., T

and

E (vitvis) = 0 for i = 1, ..., N and t 6= s.

We focus here on tests of the null hypothesis that the series have a unit root

(α = 1) or are integrated of order one against the alternative that the series are

‘stationary’ in the sense of being integrated of order zero (α < 1). Because the

number of time periods considered is small, properties of the initial conditions

(yi1) are also relevant for ‘stationarity’ properties of the series. Mean stationar-

ity (constant first moment) requires α < 1 and δ0 = 0 and δ1 = 1. Covariance

stationarity (constant first and second moments) further requires homoskedastic-

ity over time of the vit shocks (i.e. V ar(vit) = σ2vi for i = 1, ...,N) and that

V ar (εi) = σ2vi/ (1− α2).
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This setting is similar to that studied by Breitung andMeyer (1994), Harris and

Tzavalis (1999) and Hall and Mairesse (2005). Notice that there are no individual

effects in this specification when α = 1, so the null hypothesis is that the yit series

are random walks with no drifts for each individual. Individual-specific trends are

thus ruled out under both the null and the alternative.

2.1. GMM

2.1.1. First-Differenced GMM

If it is only assumed that the yi1 are uncorrelated with vit:

E (yi1vit) = 0 for i = 1, ..., N and t = 2..., T,

then there are the following (T − 1) (T − 2) /2 linear moment conditions available
for the estimation of α by GMM

E (yis∆uit) = 0 for t = 3, . . . T , s = 1, . . . , t− 2, (2.2)

where ∆uit = uit−ui,t−1 = ∆yit−α∆yi,t−1, see for example Arellano-Bond (1991).
Specifying the instrument set as

ZDi =

⎡⎢⎢⎢⎣
yi1 0 0 . . . 0 . . . 0
0 yi1 yi2 . . . 0 . . . 0

0 0 0
. . . 0 . . . 0

0 0 0 . . . yi1 . . . yi,T−2

⎤⎥⎥⎥⎦ .
such that E[ZD0i ∆ui] = 0 where ∆ui = [∆ui3,∆ui4, . . . ,∆uiT ]

0
, the GMM estima-

tor minimises Ã
1

N

NX
i=1

ZD0i ∆ui

!0
WN

Ã
1

N

NX
i=1

ZD0i ∆ui

!
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where WN is a positive semi-definite weight matrix that converges to a positive

definite matrix W as N →∞ (see Hansen (1982)). Under general conditions, an

optimal two-step estimator is based on the weight matrix

WN =

Ã
1

N

NX
i=1

ZD0i c∆uic∆u0iZDi
!−1

,

where c∆ui are the residuals based on an initial consistent estimator for α.
Identification For the first-differenced GMM estimator that utilises moment

conditions (2.2), the endogenous lagged differences ∆yi,t−1 are instrumented by

lagged levels yi1, ..., yi,t−2. Clearly, when α = 1, the rank condition is not satisfied

as ∆yi,t−1 = vi,t−1. In this case all these instruments are uncorrelated with the

endogenous variable, and therefore α is not identified. Arellano, Hansen and

Sentana (1999), henceforth AHS, propose a general test for the identification of

the parameters in models estimated by GMM. For the simple AR(1) panel data

model considered here, their test of the null hypothesis of underidentification is a

test of the validity of the moment conditions

E
¡
yt−1i ∆yit

¢
= 0, (2.3)

where yt−1i = (yi1, ..., yi,t−1)
0
. When this test rejects, the model is not underiden-

tified. For this model it is clear that a test of underidentification is equivalent to

a test of the unit root hypothesis, H0 : α = 1, and we will compare the perfor-

mance of this AHS test of underidentification to various unit root tests described

in the next section. This AHS test is equivalent to the Anderson-Rubin test of

H0 : α = 1 in the first-differenced GMM model.
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2.1.2. Mean Stationarity, System GMM

If in addition an error components structure is assumed for the error term and

mean stationarity of the process is assumed, such that

E (ηivit) = 0 for i = 1, ..., N and t = 2..., T

yi1 = ηi + εi for i = 1, ..., N

and

E (εi) = E (ηiεi) = 0 for i = 1, ..., N,

there are the following extra (T − 2) linear moment conditions available:

E (uit∆yi,t−1) = 0 for t = 3, ..., T, (2.4)

see Arellano-Bover (1995), Ahn-Schmidt (1995) and Blundell-Bond (1998). The

so-called system GMM estimator for α is obtained by stacking the residuals from

the first-differenced and levels equations, and extending the instrument matrix to

ZSi =

⎡⎢⎢⎢⎣
ZDi 0 · · · 0
0 ∆yi2 · · · 0
...

...
. . .

...

0 0 · · · ∆yi,T−1

⎤⎥⎥⎥⎦
such that E[ZS0i u

+
i ] = 0 where u

+
i = [∆u

0
i, ui3, ui4, . . . , uiT ]

0
.

Identification For the system estimator the T − 2 extra moment conditions
(2.4) remain valid when α = 1,2 even though the process is clearly not mean-

stationary in this case. Consider the first stage regression for the levels equation,

when T = 3,

yi2 = π∆yi2 + ri.
2This would not be the case if there were individual-specific drifts.
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If α = 1, it follows that π = 1 and ri = yi1. Denote by TP the number of periods

that the process has been in existence before the sample is drawn, noting that when

α = 1, V ar (yi1) → ∞ as TP → ∞. Then, for any fixed TP , plimN→∞ bπOLS =
1, and the model is (asymptotically, as N → ∞) identified. Therefore, when
V ar (yi1) < ∞, the system GMM estimator can estimate α = 1 consistently and

thus can also be used to obtain a test for a unit root. For any given sample,

the ratio of N to TP determines how well the distribution of the system GMM

estimator is then approximated by its (large N) asymptotic distribution.

2.1.3. Covariance Stationarity

For α < 1, the processes are covariance stationary when the vit are homoskedastic

over time,

E
¡
v2it
¢
= σ2vi

and the initial conditions satisfy

yi1 = ηi + εi

with

V ar (εi) =
σ2vi
1− α2

.

In this case there are (T − 2) additional linear moment conditions due to the
homoskedasticity (through time) of vit, given by

E (yituit − yi,t−1ui,t−1) = 0 for t = 3, ..., T (2.5)

see Ahn-Schmidt (1995). Ahn and Schmidt (1997) further derive the following

non-linear moment condition which is valid under the assumption of covariance
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stationarity

E

∙
y2i1 +

yi2∆ui3
1− α2

− ui3ui2

(1− α)2

¸
= 0. (2.6)

Recently, Kruiniger (2002b) has shown that the non-linear moment condition

(2.6) can be replaced by the linear moment condition

E
£
(1− α) (∆yi2)

2 + 2∆yi2∆yi3
¤
= 0. (2.7)

The full set of 0.5 × T (T + 1) − 2 linear moment conditions under covariance
stationarity consists then of (2.2), (2.4), (2.5) and (2.7). The GMM estimator for

this model is obtained by again stacking the residuals from the differenced and

level equations, augmented by the residual (∆yi2)
2 + 2∆yi2∆yi3 − α (∆yi2)

2
. The

instrument matrix is then given by

ZCSi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ZDi 0 · · · · · · 0 0 0 · · · · · · 0
0 0 · · · · · · 0 −yi2 0 · · · · · · 0

0 ∆yi2 · · · · · · 0 yi3 −yi3 · · · · · · ...
...

...
. . .

... 0 yi4
. . .

...
...

...
. . . 0

...
...

. . . −yi,T−1 ...

0 0 · · · 0 ∆yi,T−1 0 0 · · · yiT 0
0 0 · · · 0 0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Identification Kruiniger (2002b) shows that under the null of a unit root, the

moment conditions (2.4), (2.5) and (2.7) all remain valid and identify α also when

α = 1 when V ar (yi1) < ∞. However, there is a problem with the estimation of

the variance of this GMM estimator when α = 1 as in that case the information

contained in moment condition (2.7) becomes redundant, leading to a singularity

in the asymptotic variance.
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2.2. Maximum Likelihood

The likelihood of the first-differenced model can be formulated in many different

ways, see for example Arellano (2003), Kruiniger (2002a) and Hsiao, Pesaran and

Tahmiscioglu (2002). It is the likelihood of the original levels model conditional

on the ML estimates of the fixed effects. In the following we adopt the parameter-

isation of Hsiao et al. (2002). The log-likelihood for the model in first differences

under normality is given by

lnL = −N(T − 1)
2

ln (2π)− N
2
ln |Ω|− 1

2

NX
i=1

∆v∗0i Ω
−1∆v∗i , (2.8)

where ∆v∗i = [∆yi2 − (α− 1) δ0,∆yi3 − α∆yi2, ...,∆yiT − α∆yi,T−1] and

Ω = σ2v

⎡⎢⎢⎢⎢⎢⎣
ω −1 0 . . . 0
−1 2 −1
0 −1 2
...

. . . −1
0 −1 2

⎤⎥⎥⎥⎥⎥⎦ = σ2vΩ
∗

with ω = Var (∆yi2) /σ
2
v. This formulation clearly uses homoskedasticity (over

individuals and time) and non-serial correlation of the vit explicitly, which could

be relaxed in the specification of Ω.

2.2.1. Identification

As shown in the Appendix, the information matrix is singular at α = 1 when

no further restrictions are imposed on ω (due, for example, to restrictions on the

initial conditions). This ML estimator will therefore not identify α when α = 1.3

3Equivalently, the information matrix of the conditonal ML estimator proposed by Lancaster

(2002), based on an orthogonal transformation of the fixed effects, is also singular at α = 1 in
this case because there are no fixed effects, i.e. no individual drifts, when α = 1.
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2.2.2. Covariance stationarity

Under covariance stationarity, ω = 2/ (1 + α). When ω is restricted in this way,

the ML estimator also estimates α = 1 consistently, and a simple t-test is valid,

even though the parameter is on the boundary of the parameter space (see Hsiao

et al. (2002) and Kruiniger 2002a).

3. Tests for Unit Roots

3.1. OLS

Under the null H0 : α = 1, the OLS estimator of α in model (2.1) is consistent,

and a simple t-test based on this OLS estimator is given by

tOLS =
bαOLS − 1qdVar (bαOLS)

where dVar (bαOLS) = ¡y0−1y−1¢−1
Ã

NX
i=1

y0i,−1eie
0
iyi,−1

!¡
y0−1y−1

¢−1
, (3.1)

with ei = yi − yi,−1bαOLS, yi = (yi2, ..., yiT )
0
, yi,−1 = (yi1, ..., yi,T−1)

0
, and y−1 =¡

y01,−1, ..., y
0
N,−1

¢0
. Under the null, tOLS has an asymptotic standard normal distri-

bution as N → ∞ for fixed T . Under the alternative, α < 1, the OLS estimator

is biased upwards, more so when the variance of ηi is large relative to the vari-

ance of vit. The power of this test will therefore depend on the magnitude of

V ar(ηi)/V ar(vit). Under covariance stationarity and homoskedasticity over indi-

viduals, the probability limit of the OLS estimator is given by

plimN→∞ bαOLS = α+ (1− α)
σ2η

σ2η +
σ2v
1−α2

.
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3.2. Differencing

In response to this sensitivity to σ2η/σ
2
v of the simple test based on the OLS

estimator in the levels equations, Breitung and Meyer (1994) propose a modified

Dickey-Fuller statistic, based on the OLS estimator of α in the transformed model

yit − yi1 = α (yi,t−1 − yi1) + εit, t = 3, ..., T, (3.2)

where εit = vit − (1− α) (yi1 − ηi). Clearly, the OLS estimator in this model is

also consistent when α = 1, in which case

√
N (bαBM − 1)→ N

¡
0,σ2BM

¢
with σ2BM = 1/

PT−1
j=2 (T − j) when the vit are homoskedastic, and a simple t-test

is again valid under the null of a unit root. This test would be robust to general

forms of heteroskedasticity when constructed using robust standard errors, similar

to (3.1). When α < 1 this OLS estimator is again upwards biased, however the

asymptotic bias does not depend on V ar(ηi)/V ar(vit) when the process is mean

stationary, and the power of the test is therefore not affected by V ar(ηi)/V ar(vit)

in that case. Under covariance stationarity and homoskedasticity over individuals,

the probability limit of the OLS estimator of α in (3.2) is given by

plimN→∞ bαBM =
α+ 1

2
.

We also consider the simple model in first-differences

yit − yi,t−1 = α (yi,t−1 − yi,t−2) + (vit − vi,t−1) , t = 3, ..., T. (3.3)

Under the null of a random walk, the probability limit of the OLS estimator in

(3.3) is given by

plimN→∞ bαFD = 1 + PN

i=1

PT

t=3 vi,t−1 (vit − vi,t−1)PN

i=1

PT

t=3 v
2
i,t−1

= 0,

10



irrespective of heteroskedasticity of the vit. Therefore, when α = 1,

√
N (bαFD)→ N

¡
0, σ2FD

¢
with σ2FD = 1/ (T − 2) if the vit are homoskedastic. Again the variance can easily
be estimated allowing for general heteroskedasticity. When α < 1 the bias of

the estimator is again independent of V ar(ηi)/V ar(vit) when the process is mean

stationary. Under covariance stationarity and homoskedasticity over individuals,

the probability limit of the OLS estimator in (3.3) is given by

plimN→∞ bαFD = α− 1
2

.

Therefore, the probability limit of the “bias corrected” (under the null) first-

differenced OLS estimator bαFD + 1 is equal to (α+ 1) /2, i.e. the same as the
probability limit of the OLS estimator in model (3.2).

3.3. Within Groups

Harris and Tzavalis (1999) base a test of the unit root hypothesis on a bias correc-

tion of the within groups estimator under the null. Under the assumptions that

vit ∼ iidN(0,σ2v) and the yi1 are fixed observable constants, which implies that
yi1 is uncorrelated with the sequence {vit}, Harris and Tzavalis (1999) show that,
under the null of a unit root in model (2.1),

√
N (bαWG − 1− P )→ N (0, Q) ,
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where bαWG is the within groups estimator of α, and P and Q are given by
4

P = − 3
T
;

Q =
3
¡
17 (T − 1)2 − 20 (T − 1) + 17¢

5T 3 (T − 2) .

A simple test then is (bαWG − 1− P ) /
p
Q/N , which has an asymptotic standard

normal distribution under the null.

As this bias correction and derived variance are valid only under homoskedas-

ticity, it is likely that the test performance will be poor under certain forms of

heteroskedasticity. Kruiniger and Tzavalis (2002) extend this approach to allow

for general forms of heteroskedasticity and also certain types of serial correlation.

3.4. System GMM

As shown in Section 2.1.2, the system GMM estimator can identify α = 1 if the

variance of the initial conditions is finite. This estimator is consistent under the

null and under mean stationary alternatives. A test for a unit root is then given

by the simple t-test, (bαsys − 1) /se (bαsys).
3.5. Maximum Likelihood

Using the likelihood specification (2.8) and imposing the restriction on ω due to

covariance stationarity, ω = 2/ (1 + α), results in a consistent estimator under the

null and under covariance stationary alternatives. A simple t-test based on this

ML estimator can therefore be used to test whether α = 1.

4Note that these expressions differ from those in Harris and Tzavalis (1999, p.207) due to

the fact that our first observation is yi1, not yi0. Therefore, their panel length T is replaced by

T − 1 in our case.
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There is a connection between this ML setup and the model of Breitung and

Meyer (1994). Setting ω = 1 will result in an ML estimator that is consistent

under the null, but biased under the alternative. This ML estimator for α is given

by

bα = Ã NX
i=1

∆w0i (Ω
∗)−1∆wi

!−1 NX
i=1

∆w0i (Ω
∗)−1∆yi

where ∆w0i =
¡
0, ∆y0i,−1

¢
. It is easily seen that this estimator is numerically

identical to the OLS estimator in model (3.2) as proposed by Breitung and Meyer

(1994). This follows because⎡⎢⎢⎢⎣
yi2 − yi1
yi3 − yi1

...

yiT − yi1

⎤⎥⎥⎥⎦ = R
⎡⎢⎢⎢⎣

yi2 − yi1
yi3 − yi2

...

yiT − yiT−1

⎤⎥⎥⎥⎦
where

R =

⎡⎢⎢⎣
1 0 0 · · · 0
1 1 0 · · · 0

1 1 1 · · · 1

⎤⎥⎥⎦
and R0R = (Ω∗)−1 when ω = 1. Hence the Breitung-Meyer test has an interpre-

tation as a Wald test based on a maximum likelihood estimator that is consistent

under the null but not under the alternative.

4. Asymptotic Local Power Comparisons

As shown in the Appendix, the asymptotic local power of these tests depends

on whether the processes are covariance stationary or mean stationary under the

alternative. The limiting distributions of the t-statistics

√
N

µ bα− 1
se (bα)

¶
13



(or
√
N
³

α
se(α)

´
in the case of the “bias corrected” first-differenced OLS estimator)

under local alternatives

α = 1− c√
N

are given in Table 1, where the vit are assumed to be homoskedastic over time and

individuals. The tests/estimators are denoted OLS, FD, WG, BM, GMM-SYS

and MLDCS for the tests based on the levels OLS, first-differenced OLS, within-

groups, Breitung-Meyer, system GMM and first-differenced maximum likelihood

estimators respectively.5

BM and GMM-SYS have the same asymptotic local power, which increases

more rapidly with T than WG and FD. The asymptotic local power of GMM-

SYS and BM is larger than that of FD and WG for all T > 3, whereas the

asymptotic local power of WG is larger than that of FD for T > 5. For T = 4

and T = 5 the asymptotic local power of FD and WG are very similar, with that

of FD slightly larger in those cases. The asymptotic local power under covariance

stationary alternatives is half that under mean stationary alternatives for FD,

WG, BM and GMM-SYS. MLDCS has the same asymptotic local power as BM

and GMM-SYS under covariance stationary alternatives.

Under mean stationary alternatives, as expected the asymptotic local power

of levels OLS depends on the variance parameters in the model. Under covari-

ance stationary alternatives, for the test based on this OLS estimator one has to

consider local alternatives of the form

α = 1− c

N
,

5MLDCS is the maximum likelihood estimator which imposes the restriction on ω implied

by covariance stationarity, giving an estimator that is consistent under the null.
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as otherwise the asymptotic variance of the OLS estimator is zero. In that case

√
N

µ bαOLS − 1
se (bαOLS)

¶
d→ N

Ã
−
r
c
(T − 1)
2

, 1

!
,

which is independent of the variance parameters. Clearly, under covariance sta-

tionary alternatives, the simple test based on levels OLS has the largest asymptotic

local power.

Table 1. Asymptotic distributions of t-test statistics under local alternatives.

Mean Stationary Covariance Stationary

OLS∗ N

µ
−c (T−1)σ2ε+(T−1)(T−2)σ2v/2

σ2v((T−1)σ2η+(T−1)σ2ε+(T−1)(T−2)σ2v/2)
, 1

¶
N

µ
−
q
c
(T−1)
2
, 1

¶∗
FD N

¡−c√T − 2, 1¢ N
¡− c

2

√
T − 2, 1¢

WG∗∗ N
³
− c√

Q
, 1
´

N
³
− c
2
√
Q
, 1
´

BM N

µ
−c
q

(T−1)(T−2)
2

, 1

¶
N

µ
− c
2

q
(T−1)(T−2)

2
, 1

¶

GMM-SYS N

µ
−c
q

(T−1)(T−2)
2

, 1

¶
N

µ
− c
2

q
(T−1)(T−2)

2
, 1

¶

MLDCS N

µ
− c
2

q
(T−1)(T−2)

2
, 1

¶
∗ For OLS under covariance stationary alternatives, α = 1− c

N
, in all

other cases, α = 1− c√
N
.

∗∗ Q =
3(17(T−1)2−20(T−1)+17)

5T 3(T−2)
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5. Monte Carlo Results

In this section we present the results of a Monte Carlo study, investigating the

properties of the various estimators and test statistics described in the previous

sections.

The general data generating process is

yi1 = ηi + εi

yit = αyi,t−1 + (1− α) ηi + vit

with εi ∼ N (0,σ2ε), ηi ∼ N
¡
0, σ2η

¢
and vit ∼ N (0, 1). Under the null we consider

random walk processes with different values of σ2ε and hence V ar(yi1), with higher

values corresponding to larger values of TP , or processes that have been generating

the data for longer periods prior to the start of our estimation sample. Under the

alternative we consider mean-stationary process with unrestricted variances σ2ε

and covariance stationary processes with σ2ε =
σ2v
1−α2 . For covariance stationary

alternatives, we consider different values of σ2η, which affects the inconsistency of

the levels OLS estimator and the finite sample bias of the GMM estimators. The

sample size for all cases is N = 200, T = 6.

5.1. Estimation Results

Table 2 presents the estimation results for the various estimators, under the null

hypothesis that α = 1. GMM-DIF denotes the first-differenced GMM estimator,

and all GMM results reported are for the efficient two-step estimators. MLD

denotes the maximum likelihood estimator in the first-differenced model, not im-

posing any restrictions on ω.
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Table 2. Estimation Results, α = 1

σ2ε = 50 σ2ε = 4 σ2ε = 1

OLS Mean 0.9999 0.9997 0.9990

St Dev 0.0044 0.0121 0.0161

WG Mean 0.4989 0.4993 0.4987

St Dev 0.0345 0.0347 0.0347

FD Mean -0.0001 0.0002 -0.0001

St Dev 0.0353 0.0356 0.0355

BM Mean 0.9989 0.9994 0.9989

St Dev 0.0225 0.0225 0.0225

GMM-DIF Mean 0.1926 0.1929 0.2012

St Dev 0.4373 0.4329 0.4306

GMM-SYS Mean 0.9951 0.9999 0.9997

St Dev 0.0325 0.0247 0.0245

MLD Mean 0.9958 0.9958 0.9966

St Dev 0.0897 0.0902 0.0898

MLDCS Mean 0.9979 0.9988 0.9979

St Dev 0.0449 0.0450 0.0449

Notes: based on 10,000 replications. N = 200, T = 6.

The results for the GMM-DIF, WG, FD, BM, MLD and MLDCS estimators

are not affected by the variance of the initial condition. The mean of the GMM-

DIF estimates is around 0.2, with a large standard deviation of around 0.43,

illustrating the identification problem that we noted in section 2.1.1. The mean

of the OLS and BM estimates are both close to one, with OLS having a smaller

variance than BM. The mean of the GMM-SYS and MLDCS estimates are both
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close to one, with GMM-SYS having a smaller variance than MLDCS. However

these estimators provide less precise estimates of α under the null than either the

BM and, especially, the simple OLS estimator. The mean of the WG estimates

is close to 0.5 (the bias P = −3/T = −0.5) and the mean of the FD estimates
is close to 0, with WG having a slightly smaller variance than FD. The standard

deviation of the BM estimator (imposing ω = 1) is half that of the MLCDS esti-

mator (imposing ω = 2/ (1 + α)). The standard deviation of the OLS estimator

decreases with increasing σ2ε, whereas the opposite happens with the GMM-SYS

estimator. The MLD estimator is centered around 1 with a standard deviation

that is approximately twice as large as that of the MLCDS estimator.

Table 3 presents the results for the same estimators under mean stationary

alternative hypotheses, for values of α = {0.90, 0.95, 0.98} , and the initial variance
σ2ε = {1, 4}. MLDCS is inconsistent in this case. The OLS and BM estimators

are also inconsistent, although the biases of these estimators diminish as α → 1.

Although consistent, GMM-DIF has a downward finite sample bias, that becomes

extreme as α→ 1. GMM-SYS is virtually unbiased, with more precision when σ2ε

is smaller. MLD is virtually unbiased at α = 0.9, but has a slight downward bias

for larger values of α.

Table 4 presents the estimation results under covariance stationary alternative

hypotheses, for the same values of α and for σ2η = {1, 100}. Of the consistent
estimators, the MLDCS estimator which exploits covariance stationarity now per-

forms best in terms of both bias and precision. The GMM-DIF is again downward

biased, much more so when σ2η = 100 than when σ2η = 1. The GMM-SYS and
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Table 3. Estimation Results, mean stationary initial conditions

α = 0.90 α = 0.95 α = 0.98
σ2ε = 4 σ2ε = 1 σ2ε = 4 σ2ε = 1 σ2ε = 4 σ2ε = 1

OLS Mean 0.9179 0.9359 0.9575 0.9629 0.9824 0.9847

St Dev 0.0136 0.0171 0.0128 0.0166 0.0123 0.0162

WG Mean 0.4246 0.4040 0.4497 0.4421 0.4762 0.4753

St Dev 0.0349 0.0349 0.0345 0.0346 0.0349 0.0352

FD Mean -0.0589 -0.0727 -0.0378 -0.0441 -0.0181 -0.0186

St Dev 0.0342 0.0338 0.0341 0.0345 0.0353 0.0351

BM Mean 0.9383 0.9179 0.9586 0.9515 0.9804 0.9798

St Dev 0.0237 0.0244 0.0233 0.0235 0.0232 0.0231

GMM-DIF Mean 0.8321 0.6996 0.7003 0.4729 0.3575 0.2444

St Dev 0.1370 0.2222 0.2739 0.3727 0.4296 0.4313

GMM-SYS Mean 0.8914 0.9087 0.9459 0.9492 0.9784 0.9800

St Dev 0.0465 0.0300 0.0332 0.0272 0.0281 0.0255

MLD Mean 0.8923 0.8984 0.9341 0.9344 0.9685 0.9676

St Dev 0.0949 0.0991 0.0934 0.0947 0.0909 0.0907

MLDCS Mean 0.8781 0.8415 0.9182 0.9047 0.9611 0.9598

St Dev 0.0459 0.0459 0.0456 0.0458 0.0461 0.0459

Notes: based on 5,000 replications. N = 200, T = 6.
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Table 4. Estimation Results, covariance stationary initial conditions

α = 0.90 α = 0.95 α = 0.98
σ2η = 1 σ2η = 100 σ2η = 1 σ2η = 100 σ2η = 1 σ2η = 100

OLS Mean 0.9154 0.9950 0.9542 0.9953 0.9808 0.9960

St Dev 0.0127 0.0029 0.0095 0.0029 0.0062 0.0028

WG Mean 0.4355 0.4357 0.4673 0.4675 0.4864 0.4864

St Dev 0.0349 0.0351 0.0349 0.0348 0.0344 0.0344

FD Mean -0.0497 -0.0496 -0.0254 -0.0250 -0.0103 -0.0101

St Dev 0.0343 0.0342 0.0344 0.0347 0.0350 0.0352

BM Mean 0.9489 0.9487 0.9740 0.9740 0.9889 0.9784

St Dev 0.0235 0.0238 0.0229 0.0231 0.0227 0.0451

GMM-DIF Mean 0.8460 0.5064 0.8504 0.4292 0.7373 0.3860

St Dev 0.1196 0.3489 0.1665 0.4068 0.2833 0.4305

GMM-SYS Mean 0.8862 0.9267 0.9313 0.9533 0.9560 0.9693

St Dev 0.0547 0.0681 0.0595 0.0641 0.0650 0.0628

MLD Mean 0.8944 0.8960 0.9315 0.9311 0.9628 0.9621

St Dev 0.0936 0.0932 0.0906 0.0898 0.0891 0.0899

MLDCS Mean 0.8983 0.8980 0.9482 0.9482 0.9780 0.9784

St Dev 0.0463 0.0468 0.0455 0.0459 0.0451 0.0451

Notes: based on 10,000 replications. N = 200, T = 6.
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MLD estimators both show some finite sample bias in these experiments.6 One

interesting finding concerns the properties of the simple OLS estimator when the

variance ratio σ2η/σ
2
v increases. While this increases the upward bias of the OLS

estimator, as expected, we also find that this reduces its variance. The latter may

mitigate the effect of the increasing bias on the power of t-tests based on this

simple estimator to reject the null hypothesis of α = 1.

5.2. Test Results

Table 5 presents the empirical rejection frequencies at a nominal size of 5% for

various tests of the null hypothesis that α = 1 against the alternative that α < 1.7

UI-DIF denotes the AHS test of underidentification for the GMM-DIF estimator,

as described in section 2.1.1. As expected, the t-test based on the MLD estimator

has poor size properties, reflecting the fact that the information matrix is singular

at α = 1. The t-test based on the GMM-SYS estimator rejects too infrequently

in the experiment with high σ2ε. This is consistent with identification becoming

weak for this estimator in the case where the process has been in existence for

many periods prior to the estimation sample, as discussed in section 2.1.2. The

empirical rejection frequencies are close to the nominal size of 5% for all the other

tests considered here, indicating no serious size distortion problems with these

tests.

6We also considered an extended GMM estimator that exploits the additional moment condi-

tions (2.5) and (2.7) which are valid under covariance stationarity. This estimator had less bias

and more precision than GMM-SYS, but did not perform as well as MLDCS (for example, at

α = 0.98 and σ2η = 1, this estimator had a mean of 0.9733 and a standard deviation of 0.0564).
However tests based on this estimator were found to have poor size properties, consistent with

the discussion in Kruiniger (2002b), and are not considered here.
7The t-test based on the GMM-SYS estimator uses the finite sample corrected variance

estimates of Windmeijer (2005). All results are reported for one-sided t-tests.
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Table 5. Size properties of tests H0 : α = 1, H1 : α < 1

σ2ε = 50 σ2ε = 4 σ2ε = 1

OLS 0.0548 0.0555 0.0563

WG 0.0578 0.0557 0.0563

FD 0.0509 0.0523 0.0524

BM 0.0545 0.0550 0.0576

GMM-SYS 0.0271 0.0399 0.0451

MLD 0.0981 0.1041 0.1009

MLDCS 0.0528 0.0539 0.0555

UI-DIF 0.0570 0.0556 0.0539

Notes: based on 10,000 replications. N = 200, T = 6.

Figures 1 and 2 display the rejection frequencies at the 5% level of the various

unit root tests for experiments in which the series are mean stationary with α =

0.85, 0.86, ..., 0.99, 1. We report results for two cases with different variances of

the initial conditions. In Figure 1 σ2ε = 4, whereas in Figure 2 σ2ε = 1.
8 In both

cases σ2η = 1. In all these experiments, the t-test based on the simple OLS levels

estimator is found to have the highest power. The UI-DIF test has high power to

reject alternatives with α < 0.95 in the experiments with σ2ε = 4, but this test has

the lowest power to reject mean stationary alternatives that are local to the null.

The ranking of the remaining t-tests is in line with the results for asymptotic

local power against mean stationary alternatives reported in Table 1. BM has

8The properties of the underlying estimators for these cases were considered in Table 3.
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more power than WG, which in turn is more powerful than FD. GMM-SYS has

the same asymptotic local power as BM, but is affected more by finite sample

considerations and displays somewhat less power in both cases. It is interesting

to note that MLDCS has exactly the same power as BM in all these experiments,

which suggests that there is an exact bias-variance tradeoff.

Figures 3 and 4 display the rejection frequencies at the 5% level of the vari-

ous unit root tests for experiments in which the series are covariance stationary

with α = 0.85, 0.86, ..., 0.99. Here we report results for two cases with different

variances of the individual effects, and the variance of the initial conditions satis-

fying covariance stationarity in all cases. In Figure 3 σ2η = 1, whereas in Figure

4 σ2η = 100.
9 For the low value of σ2η, the t-test based on the simple OLS levels

estimator has the highest power against all the alternatives considered, and the

UI-DIF test has notably higher power than any of the other tests. For the high

value of σ2η, the simple OLS test has the highest power against alternatives that

are local to the null of unity, and the UI-DIF test has relatively low power in all

these experiments. The t-tests based on the BM and MLDCS again have identical

power, and these tests have the highest power to reject the null against covariance

stationary values of α below 0.93 in our experiments with σ2η = 100. The rank-

ing of the remaining t-tests is again as suggested by the asymptotic local power

calculations reported in Table 1, with BM having more power than WG and FD.

The t-test based on the GMM-SYS estimator has similar power to those based on

BM and MCDCS in the experiments with low σ2η, but has the lowest power of any

of these tests against covariance stationary alternatives in the experiments with

high σ2η.

9The properties of the underlying estimators for these cases were considered in Table 4.
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Figure 1. Mean Stationarity, σ2ε = 4. Figure 2. Mean Stationarity, σ2ε = 1.

Figure 3. Covariance Stationary, σ2η = 1. Figure 4. Covariance Stationary, σ
2
η = 100.

To summarise, the t-test based on the OLS levels estimator is found to perform

much better than might have been expected simply on the basis of the sensitivity

of the probability limit of this estimator to the relative variance of the error

components (i.e. σ2η/σ
2
v). This test has the highest power to reject alternatives

that are close to the null hypothesis of α = 1 in all the cases we consider. For
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the cases where the simple OLS test does not dominate (i.e. for values of α

below 0.93 in Figure 4), the highest power can be obtained using a t-test for

the least squares estimator in the transformed model proposed by Breitung and

Meyer (1994). Taken together, these findings indicate that these two t-tests based

on simple least squares estimators should be considered jointly. Tests based on

estimators that are consistent under both the null and under certain alternative

hypotheses - such as GMM-SYS and MLDCS - are found to have less power in our

experiments than tests based on these least squares estimators that are consistent

only under the null.

6. Conclusions

This paper has considered unit root tests in the setting of micro panel data sets

with a large cross-section dimension and a small number of time periods. Such

tests may correspond to hypotheses of substantive economic interest, or may be

studied in order to investigate whether identification based on first-differenced

GMM estimators is likely to be weak using the series in question.

We consider a range of unit root tests that have been proposed in this context,

providing comparisons based on asymptotic local power calculations and evidence

about finite sample properties based on Monte Carlo simulations. Simple t-tests

based on least squares estimators that are consistent only under the unit root null

are shown to have good size properties and at least as high power as tests based

on GMM and ML estimators.

Our results also indicate that rejecting the null hypothesis of a unit root is not

sufficient to be confident that consistent GMM estimators will have satisfactory
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small sample properties. For example, if we consider a mean stationary alternative

process with α = 0.95 and σ2ε = σ2η = 1, Figure 2 indicates that the t-tests

based on least squares estimators will correctly reject the unit root null in around

70% of cases considered. However Table 3 shows that the first-differenced GMM

estimator has very poor performance in this case. Similarly for a covariance

stationary alternative process with α = 0.9 and σ2η = 100, Figure 4 shows that the

t-test based on the Breitung-Meyer specification will correctly reject the unit root

null in around 70% of cases, while Table 4 shows that the first-differenced GMM

estimator also performs poorly in this case. Hence while the poor performance

of this GMM estimator in these cases is related to a weak identification problem

that becomes extreme in the case of unit root series, our analysis reveals that

simply rejecting the unit root null does not establish that first-differenced GMM

estimators will provide useful parameter estimates in the same sample.
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7. Appendix A. Calculations of Asymptotic Distributions

of Test Statistics under Local Alternatives

7.1. OLS

7.1.1. Mean Stationarity

yi1 = ηi + εi; Var (εi) = σ2ε

yit = αyit−1 + (1− α) ηi + vit

bα = PN

i=1

PT

t=2 yit−1yitPN

i=1

PT

t=2 y
2
it−1

= α+

PN

i=1

PT

t=2 yit−1 ((1− α) ηi + vit)PN

i=1

PT

t=2 y
2
it−1

and so the asymptotic bias b is given by

b = plim
1
N

PN

i=1

PT

t=2 yit−1 ((1− α) ηi + vit)
1
N

PN

i=1

PT

t=2 y
2
it−1

= (1− α)
(T − 1) σ2η

(T − 1) σ2η + σ2ε
PT−2

j=0 α2j + σ2v
PT

t=3

Pt−3
j=0 α

2j

The OLS estimator is therefore constently estimating α + b. The OLS estimator

is unbiased at α = 1, and its asymptotic variance is then given by

asyvar (bα)α=1 = σ2v
(T − 1)σ2η + (T − 1)σ2ε + (T − 1) (T − 2)σ2v/2

For asymptotic local power, consider the sequence

α = 1− c√
N
.

√
N

µ bα− 1
se (bα)

¶
=
√
N

µbα− (α+ b)
se (bα)

¶
+
√
N

µ
α+ b− 1
se (bα)

¶

→ N (0, 1)−
c− c (T−1)σ2η

(T−1)σ2η+(T−1)σ2ε+(T−1)(T−2)σ2v/2q
σ2v/

¡
(T − 1) σ2η + (T − 1) σ2ε + (T − 1) (T − 2) σ2v/2

¢
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Therefore the distribution of the t-statistic converges to

N

⎛⎝−c (T − 1)σ2ε + (T − 1) (T − 2)σ2v/2q
σ2v
¡
(T − 1) σ2η + (T − 1) σ2ε + (T − 1) (T − 2) σ2v/2

¢ , 1
⎞⎠ .

Clearly, the power decreases with increasing σ2η.

7.1.2. Covariance Stationarity

When the process is covariance stationary, σ2ε =
σ2v
1−α2 , which goes to infinity when

α→ 1.The bias b is now given by

b = (1− α)
σ2η

σ2η +
σ2v
1−α2

and the asymptotic variance of α is given by

asyvar (bα) = (1− α)2 σ2η

µ
1− σ2η

σ2η+
σ2v

1−α2

¶
+ σ2v

σ2η +
σ2v
1−α2

which now converges to zero when α→ 1.

For asymptotic local power therefore consider the sequence

α = 1− c

N
.

The leading term in the asymptotic variance is

σ2v

(T − 1)
³
σ2η +

σ2v
1−α2

´ =
(1− α2)σ2v

(T − 1) ¡(1− α2) σ2η + σ2v
¢

=

³
2c
N
− c2

N2

´
σ2v

(T − 1) ¡¡2c
N
− c2

N2

¢
σ2η + σ2v

¢
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and so N asyvar (bα) converges to 2c/ (T − 1).
√
N

µ bα− 1
se (bα)

¶
=
√
N

µbα− (α+ b)
se (bα)

¶
+
√
N

µ
α+ b− 1
se (bα)

¶
→ N (0, 1)− cp

2c/ (T − 1)
Therefore the distribution of the t-statistic converges to

N

Ã
−
r
c
(T − 1)
2

, 1

!
.

which is now independent of the two variance components.

7.2. First differenced model

7.2.1. Mean Stationarity

∆yit = α∆yit−1 +∆vit

bα = PN

i=1

PT

t=3∆yit−1∆yitPN

i=1

PT

t=3∆y
2
it−1

= α+

PN

i=1

PT

t=3∆yit−1∆vitPN

i=1∆y
2
it−1

The asymptotic bias is given by

b = plim
1
N

PN

i=1

PT

t=3∆yit−1∆vit
1
N

PN

i=1

PT

t=3∆y
2
it−1

= − (T − 2)σ2v
(T − 2)σ2v + (1− α)2 σ2v

PT

t=4

Pt−4
j=0 α

2j + (1− α)2 σ2ε
PT−3

j=0 α2j

The estimator is bα is therefore consistently estimating α+b. At α = 1, b = −1
and therefore a consistent estimator at α = 1 is given by bα+ 1, with asymptotic
variance when α = 1 given by

asyvar (bα)α=1 = 1

T − 2
31



For asymptotic local power, consider the sequence

α = 1− c√
N
.

√
N

µ
(bα+ 1)− 1
se (bα)

¶
=
√
N

µbα− (α+ b)
se (bα)

¶
+
√
N

µ
α+ b+ 1− 1

se (bα)
¶

→ N (0, 1)− c√T − 2

Therefore the distribution of the t-statistic converges to

N
³
−c√T − 2, 1

´
.

7.2.2. Covariance Stationarity

b = plim
1
N

PN

i=1

PT

t=3∆yit−1∆vit
1
N

PN

i=1

PT

t=3∆y
2
it−1

= − σ2v

2 (1− α) σ2v
1−α2

= −1 + α

2

For asymptotic local power, consider the sequence

α = 1− c√
N
.

√
N

µ
(bα+ 1)− 1
se (bα)

¶
=
√
N

µbα− (α+ b)
se (bα)

¶
+
√
N

µ
α+ b+ 1− 1

se (bα)
¶

→ N (0, 1)−
³
c− c

2

´√
T − 2

Therefore the distribution of the t-statistic converges to

N
³
− c
2

√
T − 2, 1

´
.

and so the power is less under covariance stationarity.
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7.3. Breitung-Meyer

7.3.1. Mean Stationarity

yit − yi1 = α (yi,t−1 − yi1) + (1− α) ηi + vit − (1− α) yi1

= α (yi,t−1 − yi1) + vit − (1− α) εi

bα = α+

PN

i=1

PT

t=3 (yi,t−1 − yi1) (vit − (1− α) εi)PN

i=1

PT

t=3 (yi,t−1 − yi1)2
Asymptotic bias:

b = (1− α)
(T − 2)σ2ε − σ2ε

PT

t=3 α
t−2

(T − 2)σ2ε − 2σ2ε
PT

t=3 α
t−2 + σ2ε

PT

t=3 α
2(t−2) + σ2v

PT

t=3

Pt−3
j=0 α

2j

Asymptotic variance when there is a unit root:

asyvar (bα)α=1 = σ2vPT

t=3

Pt−2
j=1 σ

2
v

=
2

(T − 1) (T − 2)

Therefore,
√
N

µ bα− 1
se (bα)

¶
d→ N

Ã
−c
r
(T − 1) (T − 2)

2
, 1

!
when α = 1− c√

N
.

7.3.2. Covariance stationarity

Asymptotic bias

b =
1− α

2

and so
√
N

µ bα− 1
se (bα)

¶
d→ N

Ã
− c
2

r
(T − 1) (T − 2)

2
, 1

!
when α = 1− c√

N
.
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7.4. System Estimator

7.4.1. Mean Stationarity

T = 3. The system GMM estimator is consistent. The limiting variance of the

efficient two-step estimator is given by

σ2 =
³
E (x0Z) (E (Z 0uu0Z))−1E (Z 0x)

´−1
where

x =

∙
∆y2
y2

¸
Z =

∙
y1 0
0 ∆y2

¸
u =

∙
∆v3

(1− α) η + v3

¸
E (Z 0uu0Z) =

∙
2σ2v

¡
σ2η + σ2ε

¢ − (1− α) σ2v
¡
σ2η + σ2ε

¢
− (1− α) σ2v

¡
σ2η + σ2ε

¢ ¡
(1− α)2 σ2η + σ2v

¢ ¡
(1− α)2 σ2ε + σ2v

¢ ¸
Further,

E (Z 0x) =
∙ − (1− α) σ2ε
σ2v − α (1− α)σ2ε

¸
when α→ 1, σ2 approaches 1, and so when

α = 1− c√
N

√
N

µ bα− 1
se (bα)

¶
=
√
N

µbα− α

se (bα)
¶
+
√
N

µ
α− 1
se (bα)

¶
→ N (0, 1)− c

Therefore the distribution of the t-statistic converges to

N (−c, 1)

when α = 1− c√
N
.
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7.4.2. Covariance Stationarity

When σ2ε =
σ2v
1−α2 ,

E (Z 0uu0Z) =

⎡⎣ 2σ2v

³
σ2η +

σ2v
1−α2

´
− (1− α) σ2vσ

2
η − σ2v

σ2v
1+α

− (1− α) σ2vσ
2
η − σ2v

σ2v
1+α

¡
(1− α)2 σ2η + σ2v

¢ ³
(1− α) σ2v

1+α
+ σ2v

´ ⎤⎦ .
Further,

E (Z 0x) =

"
− σ2v
1+α
σ2v
1+α

#
In this case σ2 → 4 when α→ 1 and so the distribution of the t-statistic converges

to

N
³
− c
2
, 1
´

when α = 1− c√
N
.

For general T , the variance of the system estimator decreases at rate
(T−1)(T−2)

2

and therefore the asymptotic local power of the system estimator is the same as

for the Breitung-Meyer test.

7.5. MLDCS

Kruiniger (2002) derives the asymptotic variance of the MLDCS estimator. The

asymptotic variance of the ML estimator is 4 when α = 1 and T = 3. The rate of

decrease in the variance is
(T−1)(T−2)

2
, and so for the MLDCS estimator when the

process is covariance stationary:

√
N

µ bα− 1
se (bα)

¶
d→ N

Ã
− c
2

r
(T − 1) (T − 2)

2
, 1

!
.
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8. Appendix B. Derivation of Singularity of Information

Matrix for MLD when α = 1

The model is

yi1 = δ0 + δ1ηi + εi

yit = αyi,t−1 + (1− α) ηi + vit

For the ML estimator as presented by Pesaran et al. (2002) the log-likelihood

for the model in differences is given by

lnL = −N (T − 1)
2

ln (2π)− N
2
ln |Ω|− 1

2

NX
i=1

∆v∗0i Ω
−1∆v∗i ,

where ∆v∗i = [∆yi2 − c∗,∆yi3 − α∆yi2, ...,∆yiT − α∆yi,T−1], c∗ = (α− 1) δ0, and

Ω = σ2v

⎡⎢⎢⎢⎢⎢⎣
ω −1 0 . . . 0
−1 2 −1
0 −1 2
...

. . . −1
0 −1 2

⎤⎥⎥⎥⎥⎥⎦ = σ2vΩ
∗

with ω = Var (∆yi2) /σ
2
v. The first-order derivatives of the likelihood functions

result in (see Pesaran et al.(2002))

bθ =

µ bc∗bα
¶
=

Ã
NX
i=1

∆W 0
i

³bΩ∗´−1∆Wi

!−1 NX
i=1

∆W 0
i

³bΩ∗´−1∆yi
bσ2v =

1

N (T − 1)
NX
i=1

³
∆yi −∆Wi

bθ´0 ³bΩ∗´−1 ³∆yi −∆Wi
bθ´

bω =
(T − 2)
T − 1 +

1bσ2vN (T − 1)2
NX
i=1

∙³
∆yi −∆Wi

bθ´0Ψ³∆yi −∆Wi
bθ´¸ ,
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where

∆Wi =

⎡⎢⎢⎢⎢⎢⎣
1 0
0 ∆yi2
0 ∆yi3
...

...

0 ∆yi,T−1

⎤⎥⎥⎥⎥⎥⎦
and

Ψ =

⎡⎢⎢⎢⎣
(T − 1)2 (T − 1) (T − 2) (T − 1) (T − 2) . . . T − 1

(T − 1) (T − 2) (T − 2)2 (T − 2) (T − 3) . . . T − 2
...

...
... . . .

...

T − 1 (T − 2) (T − 3) . . . 1

⎤⎥⎥⎥⎦ .
The second-derivatives of the log-likelihood function are given by

∂2 lnL

∂θ∂θ0
= − 1

σ2v

NX
i=1

∆W 0
i (Ω

∗)−1∆Wi

∂2 lnL

∂θ∂σ2v
= − 1

σ4v

NX
i=1

∆W 0
i (Ω

∗)−1 (∆yi −∆Wiθ)

∂2 lnL

∂θ∂ω
= − 1

σ2v [1 + (T − 1) (ω − 1)]2
NX
i=1

∆W 0
iΨ (∆yi −∆Wiθ)

∂2 lnL

∂ (σ2v)
2 =

N (T − 1)
2σ4v

− 1

σ6v

NX
i=1

(∆yi −∆Wiθ)
0 (Ω∗)−1 (∆yi −∆Wiθ)

∂2 lnL

∂σ2v∂ω
= − 1

2σ4v [1 + (T − 1) (ω − 1)]2
NX
i=1

(∆yi −∆Wiθ)
0Ψ (∆yi −∆Wiθ)

∂2 lnL

∂ω2
=

N (T − 1)2
2 [1 + (T − 1) (ω − 1)]2

− T − 1
σ2v [1 + (T − 1) (ω − 1)]3

NX
i=1

(∆yi −∆Wiθ)
0Ψ (∆yi −∆Wiθ)

When α = 1, and therefore ω = 1 and c∗ = 0, the information matrix is

singular. As in this case
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E
1

N

∂2 lnL

∂θ∂θ0
= −

"
T−1
σ2v

0

0 (T−1)(T−2)
2

#

E
1

N

∂2 lnL

∂θ∂σ2v
=

∙
0
0

¸
E
1

N

∂2 lnL

∂θ∂ω
= −

∙
0

(T−1)(T−2)
2

¸
E
1

N

∂2 lnL

∂ (σ2v)
2 = −T − 1

2σ4v

E
1

N

∂2 lnL

∂σ2v∂ω
= −T − 1

2σ2v

E
1

N

∂2 lnL

∂ω2
= −(T − 1)

2

2

the information matrix is given by

I
¡
θ, σ2v,ω

¢
=

⎡⎢⎢⎣
(T − 1) /σ2v 0 0 0

0 (T − 1) (T − 2) /2 0 (T − 1) (T − 2) /2
0 0 (T − 1) /2σ4v (T − 1) /2σ2v
0 (T − 1) (T − 2) /2 (T − 1) /2σ2v (T − 1)2 /2

⎤⎥⎥⎦
which is clearly singular.
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