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Abstract

An overview is presented of some parametric and semi-parametric models,
estimators, and specification tests that can be used to analyze ordered response
variables. In particular, limited dependent variable models that generalize or-
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background variables. Data are drawn from the 1998 wave of the German Socio-
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1 Introduction

How much additional income does a family with two children need to attain the same

welfare level as a married couple without children? And how much does a single

person need compared to a childless couple? The answers to these questions, so–

called equivalence scales, are important for public policy concerning social benefits

and child allowances. See, for example, Browning (1992), Nelson (1993), and Lewbel

(1989). Chakrabarty (2000) uses equivalence scales to analyze gender bias in children

in rural India. Equivalence scales are also required for an analysis of income inequality

within and between countries that corrects for differences in household composition

(see Jenkins, 1991) and for the analysis of poverty (see, for example, De Vos and Zaidi,

1997).

The most common approach to estimate equivalence scales is via a consumer de-

mand system, relying on variation in expenditure on commodities such as food or

typical adult goods across families with different composition (see Browning, 1992).

Pollak and Wales (1979) already showed the main limitation of this approach: expen-

diture data alone are not sufficient to identify the equivalence scales. Identification

can be achieved by making the assumption of independence of base utility, but this

assumption has been rejected numerous times in empirical work.1

Results of Blundell and Lewbel (1991) imply that the informational content of

demand systems about equivalence scales is limited, and that estimating equivalence

scales could proceed in two steps. First, the levels of the equivalence scales in a given

reference price setting should be estimated using other than demand data. Second,

information on demand data can be used to identify the effects of price changes on

the equivalence scales. An enormous literature is devoted to this second step (see

Browning, 1992). The current paper is concerned with the first step only. Equivalence

scales in a fixed price setting are analyzed, avoiding the complications and specification

1An exception is the analysis of Pendakur (1998). Using a semi–parametric model estimated on

Canadian expenditure data, he cannot reject independence of base utility.
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choices involved with estimating a demand system.

There are two types of non–demand data that have been used for this purpose in

the literature. Both are subjective data, reflecting either the income level needed to

attain a certain utility level (see van Praag, 1968, 1991, and Kapteyn, 1994, for exam-

ple) or reflecting satisfaction with actual family income. We will use the latter type. It

has been used before by, for example, Vaughan (1984) and Charlier (2002). The latter

analyzes parametric cross-section as well as panel data models for Germany. Van den

Bosch (1996), and Melenberg and van Soest (1996a) compare equivalence scales based

upon the two types of subjective information. The latter study finds that equivalence

scales based on the first type of subjective data are implausibly low. One of the pos-

sible explanations of this is that heads of households tend to underestimate household

income components when reporting total household income (see Kapteyn, Kooreman

and Willemse, 1988). If the head of the household underestimates required income

in a similar way as actual household income, this could explain the low equivalence

scales derived from this type of subjective data. Most of the studies on this issue use

parametric models only. Exceptions are Melenberg and van Soest (1996a), who com-

pare some parametric and semi–parametric estimates of equivalence scales for Dutch

data, and Stewart (2002), who uses parametric and semi-parametric models explaining

self-reported financial well-being to estimate equivalence scales for pensioners in the

UK.

The current paper provides an overview of some parametric and semi–parametric

techniques for estimating and comparing models that can be used to analyze ordered

response variables such as satisfaction with income and to estimate functions of the

parameters and non-parametric features of the model such as equivalence scales. Not

only the estimation techniques will be described and applied, but also some tests that

can be used to select the most appropriate model. The techniques will then be applied

to compare a number of models of varying degrees of flexibility that explain satis-

faction with household income from household income, family size and other family
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composition and age variables, and regional dummies. Data are drawn from the 1998

wave of the German Socio-Economic Panel, which has information on the household

representative’s satisfaction with household income on the discrete scale 0,1,2,. . .,10.

The semi–parametric models that we consider differ in several dimensions. Some

are direct generalizations of the standard ordered probit model, relaxing distributional

assumptions on the error terms. Others can be seen as generalizations of linear models,

allowing for a flexible, non–linear, specification of the systematic part. These models

and the corresponding estimation and testing techniques will be discussed in Section 2.

The data used for the empirical analysis are presented in Section 3. Empirical results

are discussed in Section 4. Section 5 concludes.

2 Models, Estimation Techniques, and Specifica-

tion Tests

The standard model to explain an ordered discrete choice variable is the parametric

ordered probit model:

y∗i = x′iβ + ui , (1)

yi = j if mj−1 < y∗i ≤ mj, j = 0, . . . , 10 , (2)

ui|xi ∼ N(0, σ2) . (3)

The index i denotes the household; xi is a vector of explanatory variables including

a constant term, β is the vector of parameters of interest, and ui is the error term. We

assume m−1 = −∞ and m10 = ∞. The variance σ2 and the bounds m0, . . . ,m9 can

be seen as nuisance parameters. For identification, location and scale have to be fixed

by imposing two parameter restrictions. This will be discussed below. Throughout,

we assume that the observations (yi, xi) are a random sample from the population of

interest. The standard way to estimate this model is maximum likelihood (ML).
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Based upon moments involving generalized residuals, this specification can be tested

against models with heteroskedasticity and non-normality of the error terms in the un-

derlying latent variable equation (see Chesher and Irish, 1987). If the tests reject the

standard ordered probit specification, parametric extensions allowing for heteroskedas-

ticity and/or normality can be used. See, for example, Horowitz (1993) and Melenberg

and van Soest (1996b) for applications in the binary choice case.

The standard ordered probit model has the property that the conditional distri-

bution of the dependent variable given the regressors xi depends on xi only through

some linear index x′iβ, making it a special case of the following single index model as

presented by Ichimura (1993):

E[yi|xi] = G(h(xi, β)) , (4)

where h is given but G is an unknown function, referred to as the link function. In this

model, xi affects E[yi|xi] only through the single index h(xi, β). The most common

case applied in practice is the case of a linear index, with h(xi, β) = x′iβ:

E[yi|xi] = G(x′iβ) . (5)

It is easy to see that the standard ordered probit model is a special case of (5), with

a link function that is known up to the auxiliary parameters σ2 and m0, . . . , m9. If in

the ordered probit model the normality assumption in (3) is replaced by the assumption

that ui and xi are independent, (5) is still satisfied, but with an unknown link function

that depends also on the distribution of ui. Thus, (5) is a natural semi–parametric

generalization of the standard ordered probit model. Identifying β in (5) (without

imposing restrictions on G) requires normalizations of location and scale. Location is

fixed by excluding the constant term from xi. The scale is normalized by fixing one

of the slope parameters to 1 or −1. This makes the assumption that the effect of the

corresponding variable is known to be non–zero.
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There are many ways in which (5) (with some additional regularity conditions) can

be estimated. See, for example, the overview in Powell (1994). If all regressors are

continuous, average derivative estimation is a computationally convenient and intu-

itively attractive estimation procedure, see Powell, Stock and Stoker (1989). Horowitz

and Haerdle (1996) show how this technique can be combined with GMM to tackle

the case where some regressors are continuous and some other regressors are discrete.

See, for example, Dustmann and van Soest (2000) for an application and some simu-

lations exploring the finite sample performance of this estimator. Since this estimator

requires non-parametric regressions for each sub-sample of observations with specific

values of the discrete regressors, it will not work very well in case the number of discrete

outcomes is relatively large (given the size of the sample).

In this paper we focus on the semi–parametric least squares estimator introduced

by Ichimura (1993). It has a natural intuitive interpretation. It requires numerical

minimization of a non-convex objective function, but this appears to work quite well

in practice, at least for the application in our analysis.2

Semi–parametric Least Squares (SLS)

For the true value β0 of the parameter β in model (5), (5) implies E[y|x] = E[y|x′β0] =

G(x′β0). Regularity conditions guaranteeing identification (for example, no multi–

collinearity in x) imply that for β 6= β0, there will be some x for which E[y|x] 6=
E[y|x′β]. Together with the equality E[(y − E[y|x′β])2|x] = E[(y − E[y|x])2|x] +

(E[y|x]−E[y|x′β])2 (the proof of which is straightforward), this implies that β0 is the

value of β minimizing

E[W (x)(y − E[y|x′β])2] (6)

2Other examples of estimators that require numerical optimization are the maximum rank correla-

tion estimator of Han (1987) and the estimator of Klein and Sherman (2002). The latter is specifically

designed for the ordered response model and can also be used to estimate the thresholds m1, . . . , m9.
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for any weighting function W (x) which is positive for almost all x. The standard SLS

estimator introduced by Ichimura (1993) minimizes the sample analogue of (6) with

W (x) = 1, using a sample (x1, y1), . . . , (xn, yn). For given β, E[y|x′β] is estimated

using a one-dimensional non–parametric kernel regression estimator,

Ê[y|z] =
n∑

i=1

w(x′iβ − z)yi (7)

where the w(x′iβ−z), i = 1, . . . , n are kernel weights giving high weight to observations

i with x′iβ close to z. The sample analogue of (6) is then given by

Ê[(y − E[y|x′β])2] = 1/n
∑

(yi − Ê[yi|x′iβ])2. (8)

Finding the β at which (8) is minimized requires an iterative procedure. If smooth

kernel weights are used, the function to be minimized is smooth in β and a Newton-

Raphson technique can be used to find the optimal β, i.e., β̂SLS. Ichimura (1993) shows

that, under appropriate regularity conditions, this yields a
√

n consistent asymptoti-

cally normal estimator of β0. He also derives the asymptotic covariance matrix of this

estimator and shows how it can be estimated consistently.3

Implementing the SLS estimator in practice requires a choice of kernel and band-

width, i.e., a specification of the weights w(x′iβ − z). We will work with the Gaussian

kernel K(t) = 1/
√

2π exp[−t2/2]. For given bandwidth h > 0, the weights are then

given by

w(x′iβ − z) = K([x′iβ − z]/h)/
n∑

j=1

K([x′jβ − z]/h) (9)

For consistency, the bandwidth should tend to zero if n →∞ at a slow enough rate. Al-

though a large literature on the optimal bandwidth choice exists for the non–parametric

regression problem itself, it is not clear how to determine the optimal bandwidth for

estimating β0. Theoretical results for similar problems suggest that under-smoothing

3In general, this estimator is not efficient. Ichimura (1993) mentions that efficiency can be improved

by choosing an appropriate weighting function W (x), using a two step procedure. We do not pursue

this in the current paper.
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will be optimal, i.e., the optimal bandwidth will be smaller than the optimal bandwidth

for the non–parametric regression of y on x′β. The common approach for choosing a

bandwidth in a situation like this is to experiment with the bandwidth which would

be optimal for the non-parametric regression problem (given plausible values of β)

and with smaller bandwidth values (to under-smooth). In our experiments with such

bandwidth choices, the results hardly varied with the bandwidth.

The link function G can be estimated in a second step by regressing y non–

parametrically on the estimated index β′x, using a kernel estimator. The usual asymp-

totic properties of a kernel estimator apply since β̂SLS converges at a faster rate than

the non-parametric estimator.

Smoothed Maximum Score

The parametric model in (1) - (3) assumes that the errors and regressors are inde-

pendent and thus does not allow for heteroskedasticity. The single index model in (5)

only allows for very specific types of heteroskedasticity, where the regressors affect the

conditional variance V [ε|x] through the single index x′β only. A model that allows for

much more general forms of heteroskedasticity is obtained if (3) is replaced by

Median[u|x] = 0 (10)

This model nests the parametric ordered probit model (1) - (3) but not the single

index model in (4), since (10) is a conditional median assumption and not a conditional

mean assumption. The reason for using the conditional median is the median preserving

property of any increasing function. Lee (1992) uses this property to construct a

consistent estimator for the model defined by (1), (2) and (10). These assumptions

imply4

4Here 1[] is the indicator function: 1[A] = 1 if A is true and 1[A] = 0 if A is false.
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Median[y|x] = 1 +
9∑

r=0

1[x′β ≥ mr] (11)

Since the conditional median minimizes the conditional expectation E[|y − a||x]

over a, a consistent extremum estimator for β and m1, . . . , m9 can be obtained as

(β̂MS, m̂0, . . . , m̂9) = Argminβ,m0,...,m9(
n∑

i=1

|yi − 1−
9∑

r=0

1[x′iβ ≥ mr]|) (12)

Lee’s estimator generalizes the maximum score estimator of Manski (1985) for the

binary choice model. It shares the drawback of Manski’s estimator: the asymptotic

distribution is intractable. For the maximum score estimator, this problem is solved

by Horowitz (1992). His ’smoothed maximum score’ estimator maximizes a smoothed

version of the sum of least absolute deviations. The same idea is applied by Melenberg

and van Soest (1996a) to Lee’s estimator in (12). See also the clear exposition in

Horowitz (1998). The smoothed maximum score estimator is given by

(β̂MS, m̂1, . . . , m̂9) = Argminβ,m1,...,m9

n∑

i=1

|yi − 1−
9∑

r=1

K([x′iβ −mr]/σ)| (13)

where K is some smooth distribution function that is symmetric around zero and σ

is a bandwidth parameter that tends to zero with the sample size at a slow enough

rate. This estimator shares the asymptotic characteristics of the Horowitz (1992) es-

timator: it is consistent and asymptotically normal. The rate of convergence depends

on conditions on smoothness and properties of the kernel, but is always slower than
√

n. Horowitz (1998) and Melenberg and van Soest (1996a) show how the asymptotic

covariance matrix can be estimated.

In the application we use a Gaussian distribution function for K. Unfortunately,

there are no procedures for selecting the optimal bandwidth for this estimator. We

experimented with a broad range of bandwidth values and found that the estimation

results were similar for a large range of reasonable values. On the other hand, the
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estimates of the standard errors were more sensitive. Unfortunately, bootstrapped

standard errors are not a feasible option here, since the numerical optimization routine

to obtain the estimates requires too much computer time.

Partially Linear Model

In the more recent econometrics literature, partially linear models and generalized

partially linear models have become popular. These models relax the linear index

assumption on the conditional mean. Some regressors (x1) are allowed to enter in an

arbitrary not necessarily linear way, while others (x2), are assumed to enter linearly.

The standard partially linear model assumes

E[y|x1, x2] = g(x1) + x′2β (14)

where g is an unknown continuous function. Robinson (1988) and Stock (1991) explain

how to estimate β and g, respectively. (14) immediately implies:

y − E[y|x1] = (x′2 − E[x′2|x1])β + ε, with E[ε|x1] = 0 (15)

The first estimation step is to replace the conditional expectations in (15) by their

nonparametric (kernel) regression estimates. The second step is to estimate β by

OLS on (15). This gives
√

n consistent and asymptotically normal estimates of β.

The third step is to estimate g using a nonparametric regression of y − x′2β̂ on x1.

This estimator has the same limiting distribution as a usual one step nonparametric

regression estimator, since the nonparametric rate of convergence is slower than the

rate of convergence of β̂.

For choosing the bandwidth, similar remarks apply as for the other semi-parametric

estimators. There is no theory on how to choose the bandwidth. Bandwidth choices

that are optimal for the non-parametric regressions are not necessarily optimal for
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estimating β. Our experiments show that such bandwidth choices and bandwidth

values that are smaller lead to very similar results.

Generalized Partially Linear Models

Generalized partially linear models add a link function G to the partially linear model

in (14):

E[y|x1, x2] = G[g(x1) + x′2β] (16)

Horowitz (2001) discusses the case where G is unknown. To identify this model, a

sufficient number of continuous variables must be available. Given the limitations of

the data with respect to continuous variables, however, we will only consider a special

case where G is known. In particular, we will generalize the ordered probit model

(1)–(3) as follows:

y∗i = g(x1i) + x′2iβ + ui , (17)

yi = j if mj−1 < y∗i < mj, j = 0, . . . , 10 , (18)

ui|xi ∼ N(0, σ2) . (19)

Instead of relaxing the distributional assumptions on the error term as for the single

index models and the smoothed maximum score estimator, model (17)–(19) retains the

normality assumptions but does not impose that the systematic part is linear in x1i.

The probabilities of the ordered outcomes are given by

P [yi = j|xi] = Φ([g(x1i) + x′2iβ −mj]/σ)− Φ([g(x1i) + x′2iβ −mj−1]/σ) (20)

The model can be estimated by the quasi maximum likelihood technique described

by Haerdle, Huet, Mammen and Sperlich (2001). The estimator is based upon the
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algorithm of Severini and Staniswalis (1994). The nonparametric part (g(x1)) and the

parametric part (θ = (β, m1, . . . , m9, σ
2)) are iteratively updated. For given θ, g(t)

is updated by maximizing a weighted likelihood based upon (20), giving weight to

observations i with x1i close to t only: g(t) is the value of η that maximizes

n∑

i=1

10∑

j=1

1[yi = j] K([t− x1i]/h)[Φ([η + x′2iβ −mj]/σ)− Φ([η + x′2iβ −mj−1]/σ)] (21)

Substituting this expression for g(t) in the likelihood gives a profile likelihood in

terms of θ. Maximizing this profile likelihood over θ gives the estimates of θ and g.5

Haerdle et al. (2001) show that the estimator for θ is
√

n consistent and asymptotically

normal and derive its asymptotic covariance matrix. To determine the limiting distri-

bution of the estimator of g, the fact that θ is estimated can again be ignored, because

the non-parametric estimator has a slower rate of convergence than the estimator of

θ. Still, it is not straightforward to derive this limiting distribution analytically, and

bootstrapping would be prohibitively (computer) time consuming.

Testing for Misspecification

To test some of the semi–parametric models, we will apply the consistent tests de-

veloped by Fan and Li (1996).6 These can be used to test both the semi–parametric

partial linear model and the semi–parametric single-index model. Consider first the

semi–parametric single-index model. Define g(x) = E[y|x]. Consider the null hypoth-

esis H0 : g(x) = G(β′x), for some function G with domain and range the real line,

against the alternative that no G and β exist such that g(x) = G(β′x) for all x (or,

to be precise, almost sure in x). Define u = y − G(β′x). Then E[u|x] = 0 under H0,

while under H1, E[u|x] 6= 0 for some x (to be precise, P [E[u|x] 6= 0] > 0).

5As in the ordered probit model, some normalizations are needed.
6Fan and Li (1996, p. 866-867) refer to several alternative tests, but argue that most of these have

ad hoc features such as sample splitting that probably makes them less powerful.
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For positive weight functions w1(x) and w2(x), it is easy to show (using the law of it-

erated expectations) that under H1, E[uw1(x)E[uw2(x)|x]] = E[w1(x)w2(x)(E[u|x])2] >

0, while under H0, E[uw1(x)E[uw2(x)|x]] = 0. Fan and Li (1996) use this to construct

a consistent test for H0 against H1.

Fan and Li use the weighting functions w1(x) = f1(β
′x)f2(x) and w2(x) = f2(x),

where f1(x) is the density of β′x and f2(x) is the density of x. This has the advan-

tage that low weight is given to observations in regions where data are sparse and

non-parametric estimates are inaccurate, and can thus be seen as some type of trim-

ming. Fan and Li (1996, eq. (14)) show, under some regularity conditions, that an

appropriately scaled estimator of E[uf1(β
′x)E[uf1(β

′x)|x]f2(x)] yields a test statistic

that asymptotically follows a standard normal distribution under H0. Under H1, the

probability that the test statistic exceeds the 5% critical value of the standard normal

distribution will tend to 1, leading to a one-sided consistent test.

The same idea is also applicable to the semi–parametric partial linear model, see

Fan and Li (1996, eq. (11)). In this case the consistent test is again asymptotically

N(0, 1)−distributed under the corresponding null hypothesis.

The asymptotic distributions of the Fan and Li (1996) are derived under the as-

sumption of continuously distributed regressors, while some of our regressors are dis-

crete. We will ignore this problem when we apply the tests in the next section. To

investigate whether this is a serious problem, we conducted a small simulation study

on the performance of the Fan and Li test in the case when not all regressors are con-

tinuous. We sampled data from a standard (homoskedastic) ordered probit model with

three possible outcomes and from an ordered probit model with heteroskedasticity of

a (separate) single index type. The former satisfies the null that the model is a single

index model, the latter does not satisfy the null. We considered two sets of regressors:

one with two continuous regressors, and the other with one continuous regressor and

one dummy variable. We estimated slope parameters of the (regression) single index

applying Ichimura’s SLS-estimator, and tested subsequently for misspecification using
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Fan and Li’s approach.

In the Fan and Li test, two bandwidth parameters need to be chosen, one in the

non-parametric regression on β̂′x and the other in the non-parametric regression on

x. The results appear to be insensitive for the choice of the first bandwidth but do

depend on the second one. We applied Silverman’s a rule of thumb to choose the first

bandwidth (see Silverman, 1986), and varied the second bandwidth over a fine grid.

For each bandwidth choice we performed 100 simulations, with sample size 200, for

each of the four models described above.

Figure 1 presents the simulated rejection probabilities. For the two data generating

processes that satisfy the null hypothesis, the type I error probability is close to the

nominal size of 5% for a large range of bandwidth values, suggesting that the perfor-

mance of the test is quite good, even in the case of one discrete regressor that does not

satisfy Fan and Li’s regularity assumptions. For the two data generating processes that

do not satisfy the null, the rejection probability (i.e., the power against these specific

alternatives) is more sensitive to the chosen bandwidth, particularly for the case with

one discrete regressor. The power is not systematically larger or smaller for any of the

two cases. We conclude that the test performs well in terms of similarity of actual size

and nominal size. On the other hand, the simulations reveal that, as long as there

is no theory on how to choose the bandwidth in some optimal way, it seems wise to

calculate the test under various bandwidth choices.

3 Data and Variables

The data are drawn from the fifteenth wave of the German Socio-Economic Panel

(GSOEP) Public use File, drawn in 1998. We have used the full sample, including

former East as well as former West Germany and including the refreshment sample

drawn in 1998. In each household, one person answers the household specific part

of the survey, usually the main earner. This person also reports total household net
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income, the income measure we use in the empirical models. The dependent variable

in our analysis is the answer by the same household representative to the question

How satisfied are you with your household income?

Possible answers: 0 (not satisfied at all) to 10 (very satisfied).

The total sample consists of 7,274 households. About 7% had a missing value on

one of the variables used in the analysis, usually after tax household income. Deleting

these gives a sample of 6,755 households that is used for the descriptive statistics and

for all the estimations. Definitions and descriptive statistics of the variables used in

the analysis are provided in Table 1. About 26.5% of the sample consists of households

living in East Germany. Family size varies from 1 to 12, but only 6% of all households

consist of more than four persons and only 1.8% of more than five persons. Almost

26% are one person households.

Figure 2 presents the distribution of satisfaction with household income. The sam-

ple average is 6.03 but the dispersion is substantial. Figure 3 presents nonparametric

kernel density estimates7 of the distribution of log net household income by family

size. As expected, the larger families tend to have the higher incomes. The difference

is particularly large between one and two person households, since the third and fourth

person in the household are typically children who do not contribute to total household

income.

Figure 4 presents nonparametric (Gaussian) kernel regressions8 of satisfaction with

income on log household income for the same family size categories that were distin-

guished in Figure 3. Figure 3 gives the log income ranges in the data, i.e., the ranges

for which the curves are reasonably accurate. For given family size, satisfaction rises

with the level of income in the whole income range, except for some regions where data

are sparse and estimates are inaccurate. Moreover, for given income, satisfaction falls

with family size. This confirms that larger families need more income to be as well off

7See, for example, Silverman (1986) or Haerdle and Linton (1994)
8See, for example, Haerdle and Linton (1994)
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as smaller families.

Figure 4 also illustrates how equivalence scales can be determined in a nonpara-

metric setting. A reference satisfaction level has to be set a priori. In Figure 4, the

chosen level is represented by the horizontal line at satisfaction level 6.03, the sample

average. The intersection of this line with one of the curves gives the typical log income

value needed for a family of given size to attain the average satisfaction level. For a

one person household, this is log income level 7.60, for a two persons household it is

7.97. Thus, according to these nonparametric estimates, the equivalence scale for a two

person household compared to a single living person, is e7.97/e7.60 = 1.45. Equivalence

scales for three and four persons households can be determined in a similar way. We

will discuss the results at the end of the next section and compare them to parametric

and semi-parametric estimates.

In principle, standard errors on the non-parametric estimates of the equivalence

scales can be derived from the asymptotic distribution of the non-parametric estimates.

Since the equivalence scales are obtained by inverting the curves, it is not clear how

point-wise or uniform confidence bands on the curves could be used directly. Instead,

a bootstrapping procedure can be used.

The non-parametric equivalence scales rely on very weak assumptions and may

therefore not be very inaccurate. Moreover, they have the drawback that other variables

which may affect satisfaction with income (and could be correlated to log income and/or

family size) are not taken into account. To control for these additional variables, we

use the parametric and semi–parametric models in the previous section.

4 Results

The performance of some of the semi-parametric estimators may depend on the number

of regressors included in the model. To investigate whether this is indeed the case, we

analyzed two different specifications. Both include log income, a dummy for East
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Germany, and log age of the household respondent, but the specifications differ in

the family composition variables. Specification 1 is kept as parsimonious as possible

and includes log family size only. Specification 2 includes separately the numbers of

children in various age groups.9 We focus on the second specification but we will

compare the equivalence scales according to this model with those according to the

more parsimonious model.

The estimation results for the second specification are presented in Table 4. The

magnitude of the parameter estimates is not comparable across models, since, due to

different link functions, the scale varies. It is possible to compare signs and relative

magnitudes, however. In some specifications, the coefficient of log income is normalized

to one and in some other specifications the relation between satisfaction with income

and income is non-parametric. In the remaining specifications, the log of self-reported

income has a strong and significant positive effect on the reported satisfaction with

income.

According to all estimates other than smoothed maximum score, East Germans

are significantly less satisfied with a given income than West Germans with the same

characteristics. The reason may be that satisfaction not only depends on the current

real income level but also on the change in purchasing power (cf. Clark and Oswald,

1996). Due to price increases, real wages in East Germany have risen less than in West

Germany. Log age is always significantly positive, indicating that the older cohorts

tend to be more satisfied with a given income than the younger cohorts. In this cross–

section analysis, this may reflect a cohort as well as an age effect. Marital status does

not have any effect in the ordered response models and is no longer included in the

other models.

According to all estimates other than smoothed maximum score, keeping the in-

come level and other regressors constant, children and other adults in the household

9The two models are non–nested since the first specification uses log family size rather than family

size.
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reduce satisfaction with income, and increase the family’s cost of living. The effects

are significant at the 5% level, except, for several models, for the youngest age group.

The effects are all significant at the 10% level. According to all except the smoothed

maximum score estimates, the effect of very young children is much smaller than the

effect of children in the older age groups. Moreover, costs of additional adults typically

exceed costs of children in all age groups. Only according to the generalized partially

linear model, adults and children between 13 and 17 have virtually the same effect.

The smoothed maximum score estimates do not look plausible. They imply in-

significantly negative costs of children in the age groups 6-12 and 13-17. Such negative

effects do not make sense from an economic point of view. It seems that the rich spec-

ification combined with the very weak conditional median assumption makes it very

hard in practice to estimate the parameters, in spite of the comparatively large size

of the sample. This is confirmed by the estimation results of the more parsimonious

specification 1 (not presented). For this specification, the smoothed maximum score

estimates look much more plausible. They are also similar to those of other models,

with a significantly negative effect of log family size and significantly lower satisfaction

levels of East German households, ceteris paribus.10

Figure 5 presents the estimated link function G for the semi–parametric least

squares estimates, together with 95% uniform confidence bounds. This function is

obtained by a non–parametric kernel regression of the dependent variable yi on the

estimated index x′iβ̂SLS. The points (x′iβ̂SLS, yi) are plotted as well. The estimated

link function is monotonically increasing on almost the whole range of the index.

In the partially linear model and the generalized partially linear model, log income

enters in a non–parametric way. The estimated non–parametric functions of log income

(g(x1) in (14) and (17)) are presented in Figures 6 and 7 for the partially linear model

10Another reason for differences between smoothed maximum score and the other estimates could

be the assumption of a zero conditional median instead of a zero conditional mean. See the discussion

in section 2.
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and the generalized partially linear model, respectively. The figures also include the

estimates for specification 1, which are very similar to those for specification 2. Figure

6 also presents uniform confidence bands for the estimated function in specification 1.

The figures show that satisfaction is monotonically rising with income on almost the

whole range of observed incomes. Although linearity is formally rejected, the curves

are not far from linear, particularly in the partially linear model case.

The parametric ordered probit specification was tested against heteroskedasticity

and non-normality using the Lagrange Multiplier tests described in Chesher and Irish

(1987). Results are presented in Table 3. The assumption that the error terms are

normal is rejected at any reasonable significance level. Moreover, there is evidence of

heteroskedasticity, suggesting that the variance of the error term varies with income

and the numbers of older children and adults. These results make looking at more

general parametric or semi-parametric models worthwhile, since the evidence of mis-

specification implies that ordered probit may lead to biased estimates of the parameter

estimates. On the other hand, how large this bias is and which sign it has can only

be investigated by looking at alternative estimates based upon less stringent model

assumptions.

Applying the Fan and Li (1996) test reveals that the estimated single index model

fits the data reasonably well. For most values of the bandwidth parameters, the null

hypothesis that the single index specification is correct cannot be rejected. Similar

results are found for the partially linear regression model, so that the Fan and Li test

cannot determine which of the two models should be chosen. In discussing Figure 6,

we already showed that the linear model is rejected against the more general partially

linear model, since the estimated function g is non-linear in log income. Unfortunately,

the tools for testing the generalized partially linear specification are not yet available.

We conclude that specification tests show that the two simplest models (ordered probit

and linear regression model) are rejected, but are not able to choose among the semi–

parametric models.
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Estimated equivalence scales according to both specification 1 and specification 2

are presented in Table 4. The single person household is chosen as the benchmark.

For the partially linear and generalized partially linear model, the equivalence scales

have been computed numerically, in the same way as for the non-parametric case,

described in the previous section. The benchmark satisfaction level is set equal to

6.03, the mean satisfaction level in the data. For given family size and mean values

of the other variables, the income required to attain the benchmark satisfaction level

is computed using the estimated function g(x1). The equivalence scales are computed

as ratios of required income levels at different values of family size. Standard errors

for the partially linear model are bootstrapped. Although, in principle, it would also

be possible to obtain bootstrapped standard errors for the generalized partially linear

model, this would require unreasonable amounts of computer time.11 Even if the

estimates of β are taken as given, bootstrapping the estimates of the non-parametric

part g is prohibitively time consuming.

For specification 1, most of the estimated equivalence scales are remarkably close to

each other and suggest that the cost of living for a couple are about 32% to 39% higher

than the cost of living for a single person. Only the fully non-parametric estimate

discussed in the previous section is substantially larger (45%). This estimate cannot

be directly compared to the other estimates since it does not control for age of the

household representative or for living in either East or West Germany. A third person

raises the household’s cost of living by about 37% of the cost of living of a couple

according the non-parametric estimates and by about 18% to 22% according to the

single index models (ordered probit, SLS, smoothed maximum score and linear model

estimates). In the single index models, however, this percentage is directly linked to the

cost of living index of a couple, due to the choice of functional form with log family size

and log income. This functional form also implies that additional persons lead to lower

relative cost increases. The generalized partially linear model yields point estimates

11Obtaining the estimates already took more than one week of computer time.
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of the equivalence scales for two and three person households that are similar to those

in the partially linear model, but this model yields particularly high estimates of the

costs of a fourth person. Since, however, log family size enters linearly and only log

income enters in a more flexible way, this finding may be due to the chosen benchmark

level of income.

Standard errors in the partially linear model are much larger than the standard

errors in the single index model or in the linear model. The slower rate of convergence

of the nonparametric part seems to play a large role here. According to the standard

errors in Table 3, the parametric part is estimated with virtually the same accuracy in

linear and partially linear model.

Table 4 also contains some equivalence scales according to the second specification.

Since in this specification, the cost of a child or adult can vary with the age of the

person, we focus on singles and couples with one or zero children. The results are in line

with the estimates in Table 3. The smoothed maximum score estimates lead to negative

costs of children in the age groups 6-12 and 13-17 and thus do not make economic sense.

The non-parametric estimates are in some cases determined with very little precision

only, due to small number of observations with specific family composition. The other

estimates are generally in line with the existing literature. They all imply that the

cost of a person increases with the person’s age.12 The partially linear model and the

generalized partially linear model give somewhat higher equivalence scales than the

other models, but the differences are not very large and confidence intervals overlap.

5 Conclusions

In this paper we have compared a number of parametric and semi–parametric estima-

tors of the ordered response model. We have discussed theoretical and practical features

12For West Germany 1984–1991, Charlier (2002) finds costs of children of a similar order of magni-

tude as we do. However, he finds much larger costs of a second adult in the household.
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of the models and the estimators. Moreover, we have presented some consistent ways

of testing the underlying model assumptions against general forms of mis–specification.

These techniques were applied to estimating the determinants of subjectively measured

satisfaction with household income, with emphasis on computing household equivalence

scales. This is a particularly attractive application for the single index models, since

the parameters of these identify only the ratios of the coefficients, and this is exactly

what the equivalence scales refer to.

We find that the specification tests are powerful enough to be of help to evaluate

the performance of the various models (to which we have applied these tests). On

the other hand, however, the equivalence scales that we find seem to be rather robust

for this mis–specification, in the sense that most models give rather similar scales.

In particular, this is the case for the estimators that do not depend on smoothness

parameters or for which findings are robust for the choice of smoothness parameters.

Among the semi–parametric estimators, these are the semi–parametric least squares

estimator of Ichimura (1993) and the estimator for the partially linear model taken

from Robinson (1988) and Stock (1991). The estimator for the generalized partially

linear model recently developed by Haerdle et al. (2001) performs similarly well as

far as we can judge, but has the drawback that it requires an enormous amount of

computer time. As far as we know, we are the first to apply this estimator, and more

refined programming can solve a large part of this problem. We leave this for future

work. Obtaining more efficient estimates using a weighted version of Ichimura’s SLS

estimator is another topic for future work.

The smoothed maximum score estimator is the other estimator that gives some

concern about robustness for choice of smoothness parameters and plausibility of the

results. This estimator is consistent under weaker conditions than the other single

index estimators, but it seems that this theoretical robustness property comes ate the

cost of inferior finite sample behavior. Developing methods for choosing appropriate

smoothness parameters remains an open issue. This also holds for the tests against
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non–parametric alternatives that we have considered, since the result of these tests

often appears to vary with the smoothness parameters that are chosen.

Overall, we hope to have demonstrated that the applied researcher now has a num-

ber of semi–parametric alternatives to the standard parametric ordered probit model

and an increasingly large toolbox for testing parametric and semi–parametric assump-

tions against still more general, non–parametric, alternatives. We hope to have demon-

strated that some of these alternative estimators and tests are not only theoretically

attractive, but also perform well in practical situations.
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Table 1: Variable Definitions and Sample Statistics
Variable Definition Mean Std Dev
Dummy East 1 if living in East Germany, 0 otherwise 0.265 0.441
Log(age) log age household representative 3.778 0.360
Log(fam size) log number of persons in household 0.761 0.537
Log(income) log household net income (DM per month) 8.130 0.515
DMarried 1 if married or living together, 0 otherwise 0.603 0.489
NAge06 number of children 0-5 years old 0.223 0.551
NAge712 number of children 6-12 years old 0.214 0.525
NAge1317 number of children 13-17 years old 0.165 0.451
NAdults number of household members age 18 or older 1.855 0.732

Source: German Socio-Economic Panel 1998; 6755 observations

Table 2: LM Specification Tests Ordered Probit

Hypothesis Test statistic Critical value
Non-normalitya 29.4036 5.9915
Heteroscedasticityb

z =log(age) 0.2592 3.8415
z =log(income) 27.1165 3.8415
z =NAdults 27.6975 3.8415
z =NAge06 0.3562 3.8415
z =NAge712 8.5999 3.8415
z =NAge1317 6.0481 3.8415
z = xc 60.5461 14.0671

Notes:

a P [ε ≤ t] = Φ
(
t + β1t

2 + β2t
3
)
; H0 : β1 = β2 = 0

b V [εi|xi] = σ2
0 exp (α′zi) ; H0 : α = 0

c Full specification; includes all regressors (xi) except the constant
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Table 3: Estimation Results (Specification 2)
Ordered Ichimura’s Smoothed
Probit SLS Maximum Score

Coef. St.er. Coef. St. er. Coef. St. er.
Constant -7.738 0.283 - - 3.121 0.665
Dummy East -0.253 0.029 -0.193 0.021 -0.025 0.865
Log(age) 0.441 0.038 0.327 0.029 0.355 0.167
Log(income) 1.122 0.031 1 - 1 -
DMarried 0.044 0.034 0.036 0.025 0.004 0.185
NAge06 -0.044 0.025 -0.077 0.019 -0.024 0.078
NAge712 -0.156 0.026 -0.127 0.018 0.169 0.139
NAge1317 -0.179 0.028 -0.168 0.022 0.151 0.142
NAdults -0.311 0.023 -0.285 0.015 -0.259 0.102

Linear Partially Gen. Partially
Model (OLS) Linear Model Linear Model
Coef. St.er. Coef. St. er. Coef. St. er.

Constant -14.781 0.541 - - - -
Dummy East -0.502 0.058 -0.512 0.057 -0.304 0.029
Log(age) 0.852 0.077 0.859 0.077 0.239 0.013
Log(income) 2.268 0.059 - - - -
NAge06 -0.096 0.051 -0.094 0.050 -0.053 0.023
NAge713 -0.301 0.050 -0.303 0.050 -0.104 0.025
NAge1317 -0.365 0.057 -0.362 0.057 -0.127 0.029
NAdults -0.612 0.045 -0.607 0.045 -0.128 0.017
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Table 4: Equivalence Scales
Ordered Ichimura’s Smoothed
Probit SLS Maximum Score

Coef. St.er. Coef. St. er. Coef. St. er.
1 person 1 - 1 - 1 -
Specification 1
2 persons 1.342 0.020 1.368 0.017 1.364 0.036
3 persons 1.593 0.037 1.644 0.033 1.636 0.068
4 persons 1.800 0.053 1.872 0.048 1.860 0.098
Specification 2
Single + 1 ch. 0-6 1.032 0.022 1.080 0.021 1.025 0.080
Single + 1 ch. 7-12 1.143 0.026 1.135 0.021 0.845 0.117
Single + 1 ch. 13-17 1.169 0.030 1.182 0.026 0.860 0.123
Couple 1.302 0.020 1.283 0.027 1.290 0.117
Couple + 1 ch. 0-6 1.344 0.034 1.386 0.035 1.322 0.111
Couple + 1 ch. 7-12 1.488 0.040 1.457 0.036 1.090 0.119
Couple + 1 ch. 13-17 1.522 0.042 1.517 0.041 1.109 0.230

Linear Partially Gen. Part. Nonparametric
Model (OLS) Linear Model Lin. Model Model Number of
Coef. St.er Coef. St. er. Coef. Coef. St. er. Observ.

1 person 1 - 1 - 1 1 -
Specification 1 1747
2 persons 1.326 0.019 1.388 0.093 1.364 1.448 0.171 2250
3 persons 1.564 0.036 1.688 0.102 1.636 1.981 0.248 1253
4 persons 1.758 0.051 1.923 0.137 1.982 2.104 0.144 1102
Specification 2
Single + 1 ch. 0-6 1.033 0.051 1.059 0.084 1.104 1.807 0.331 76
Single + 1 ch. 7-12 1.135 0.056 1.173 0.106 1.228 1.980 0.701 74
Single + 1 ch. 13-17 1.169 0.067 1.207 0.079 1.299 2.129 0.417 27
Couple 1.286 0.029 1.352 0.073 1.299 1.446 0.758 2036
Couple + 1 ch. 0-6 1.329 0.034 1.414 0.094 1.462 1.683 0.112 337
Couple + 1 ch. 7-12 1.460 0.038 1.561 0.100 1.555 2.079 0.149 205
Couple + 1 ch. 13-17 1.503 0.041 1.610 0.112 1.656 2.089 0.381 186
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