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Abstract

The paper provides significant simplifications and extensions of re-
sults obtained by Gorsich, Genton, and Strang (J. Multivariate Anal.
80 (2002) 138) on the structure of spatial design matrices. These are
the matrices implicitly defined by quadratic forms that arise naturally
in modelling intrinsically stationary and isotropic spatial processes.
We give concise structural formulae for these matrices, and simple
generating functions for them. The generating functions provide for-
mulae for the cumulants of the quadratic forms of interest when the
process is Gaussian, second-order stationary and isotropic. We use
these to study the statistical properties of the associated quadratic
forms, in particular those of the classical variogram estimator, under
several assumptions about the actual variogram.

Keywords : Cumulant, Intrinsically Stationary Process, Kronecker
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1 Introduction

In modelling spatial data - in general in d dimensions - observed at sites
labelled by points in some subset of Rd, it is often assumed that the process
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is intrinsically stationary and isotropic (see below and Cressie [6]). Such
models are then - intuitively at least - generalizations of familiar stationary
time series models defined on the line (the case d = 1), and we shall see that
there is quite a formal structure that reflects this relationship (Theorem 1
below).

In this paper, as in the recent paper by Gorsich, Genton, and Strang [10]
(hereafter abbreviated to GGS), we assume that the observational sites are
located on a uniform grid in Rd, with n sites on each of d axes. Sites may then
be labelled by elements of the set Γ = Γ(n, d) of sequences α = (α(1), ..., α(d))
of non-negative integers satisfying 0 ≤ α(i) ≤ (n− 1) for i = 1, ..., d, and, to
avoid ambiguity, we order the sequences in Γ lexicographically. Extensions
to the case of a rectangular grid are straightforward, but for simplicity we
confine our results to the hypercubic grid.

Denoting the observed process by {Z(α); α ∈ Γ}, intrinsic stationarity
entails the assumptions that E(Z(α)) is constant, and that, for α 6= β,
γ(α, β) = V ar(Z(α) − Z(β)) depends on (α, β) only through (α − β), and
the isotropy assumption that γ(α, β) depends on (α, β) only through h =
‖α − β‖2 , the squared Euclidean distance between the sites α and β. In
that case the function 2γ(h) defined by

2γ(h) = V ar(Z(α) − Z(β)) (1)

is called the variogram of the process Z(α). Note that, here and throughout,
we use h to denote the squared Euclidean distance ‖α − β‖2 =

∑d

i=1(α(i) −
β(i))2 between sites, rather than (as is more common) ‖α − β‖ itself. This
is notationally more convenient later. Henceforth we take h to be strictly
positive unless otherwise indicated.

The natural estimator for 2γ(h) for h > 0 is based on the function

qh =
∑

N(h)

(z(α) − z(β))2, (2)

where z(α) denotes the observed value of Z(α), and N(h) is the set of (un-
ordered) pairs (α, β) satisfying ‖α − β‖2 = h. Note that both γ(0) = 0
and q0 = 0. Statistics of this form are also of interest more generally in the
context of modelling spatial processes.

The expression on the right in (2) may be written as a quadratic form

qh = z′Lhz = z′(Dh − Ah)z, (3)
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where z = (z(α); α ∈ Γ) denotes the N -dimensional vector of observations,
Lh and Ah are symmetric, and Dh is a diagonal matrix. Here and throughout
N = nd = |Γ|, the cardinality of Γ, denotes the total sample size. The matrix
of this quadratic form, Lh, is the N × N spatial design matrix at distance√

h, and Dh and −Ah are, respectively, the diagonal and off-diagonal parts
of Lh. By expanding the right side of (2) it is easy to see that Ah has a
one in positions labelled by pairs (α, β) satisfying ‖α − β‖2 = h, and zeros
elsewhere, and that the diagonal element in row α of Dh is the number of
sequences β ∈ Γ satisfying ‖α − β‖2 = h, i.e., the sum of the elements in
row α of Ah. The matrices Lh = Lh(n, d) in (2) are, in GGS, denoted by
A(d)(nd, h), with h = ‖α − β‖ . The matrix Ah may be interpreted as the
adjacency matrix of a graph G(Γ, h) with vertex set Γ and edges the pairs
(α, β) ∈ Γ × Γ for which ‖α − β‖2 = h. In that context Lh is known as
the Laplacian matrix of the graph G(Γ, h) (see, Mohar [17, for instance).
Statistics of the type (2) have been studied extensively for the case d = 1,
beginning with von Neumann et al. [19].

As already mentioned, an important application of the quadratic forms qh

is to the estimation of the variogram in geostatistics. Let Nh = |N (h)| denote
the cardinality of the set N (h) . The statistic 2γ̂(h) = qh/Nh, is an unbiased
estimator of 2γ(h), and is often referred to as the classical variogram estima-
tor (see Section 3.2 below, and GGS and the references therein). However,
for other purposes it is also of interest to consider the statistics

q∗h = 2
∑

N(h)

z(α)z(β) = z′Ahz, (4)

based on just the off-diagonal part of Lh. To give just a few examples: (i)
the statistic q∗h, normalized by z′z, is used to test for spatial autocorrelation
at distance

√
h (see Moran [18]); (ii) if the covariance matrix of the process

belongs to the linear span of (some of) the matrices Ah, that is, if the spatial
process is not only intrinsically stationary and isotropic, but also second-
order stationary, the statistic q∗h/ (2Nh) is (when the process has zero mean)
an unbiased estimator of the covariance function at distance

√
h (see Section

3.2); (iii) if the process is assumed to be Gaussian with precision matrix
(inverse covariance matrix) that is a linear combination of matrices IN and
{Ah, h ∈ Hp}, where Hp contains p distinct values of h and IN denotes
the N × N identity matrix, then a p-th order conditional autoregression is
obtained (Besag [4]). The matrices Ah, h ∈ Hp, play the role of spatial
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weights matrices, and the quadratic forms (z′z, q∗h, h ∈ Hp), are minimal
sufficient statistics for the parameters of the model, and thus form the basis
for inference on those parameters.

The problem of interest here is to give structural formulae for the ma-
trices Ah, and thereby for Dh and Lh. Thus, we continue the work of GGS,
whose aim was to analyze the eigenstructure of the matrices Lh, with a view
to deducing the properties of statistics like qh and q∗h, or more specifically
of the variogram estimator 2γ̂(h). It is well-known that under Gaussian as-
sumptions (and also more generally) the properties of qh and q∗h depend upon
Lh and Ah, respectively, only through their eigenvalues. Our purpose in the
present paper will be to simplify and extend the results given in GGS.

In Section 2 we first provide a complete structural representation of the
matrices Ah and Lh, and then give generating functions that make their
computation straightforward with a standard symbolic computation package.
In principle this completely solves the eigenvalue problem, but in practice,
since N is usually quite large, direct computation of the eigenvalues would
be unreliable. And, as we shall see, except in special cases, both Ah and
Lh are sums of non-commuting matrices. Since, in this case, it is generally
not possible to express the eigenvalues of the sum in terms of those of the
summands, general explicit formulae for the eigenvalues are unlikely to be
accessible.

Fortunately, our generating function results do permit the computation
of the cumulants of the statistics of interest very simply and directly. In
Section 3 we use these expressions to study the properties of the statistics
qh and q∗h under the assumption that the process {Z(α), α ∈ Γ} is Gaussian,
second-order stationary, and isotropic. In particular, in Section 3.3 we show
that the earlier results can be applied to the study of the properties of the
classical variogram estimator 2γ̂(h) under a variety of assumptions on the
actual variogram 2γ(h).

2 The Matrices Ah, Dh and Lh

In this section we give the main structural results for the matrices Ah, Dh

and Lh. The elements of these matrices, indexed by pairs (α, β) ∈ Γ×Γ, are
completely determined by n, d and h. The results express these matrices in
d > 1 dimensions in terms of sums of Kronecker products of the corresponding
matrices in dimension d = 1. We begin with the key result - a very simple
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structural formula for the matrices Ah.

2.1 Off-Diagonal Part

The matrices Ah are defined by

(Ah)α,β =

{

1 if ‖ α − β ‖2= h;
0 otherwise.

(5)

Evidently, setting A0 = IN , Σh≥0Ah = JN , where Jq is the q × q matrix with
all elements one. In dimension d = 1 we denote the n × n matrices Ar2 by
Fr, r = 0, 1, ..., n − 1. That is:

(Fr)i,j =

{

1 if |i − j| = r;
0 otherwise.

(6)

Since Σn−1
r=0Fr = Jn, we have that

JN =
d

⊗

1

Jn =
d

⊗

1

(

n−1
∑

r=0

Fr

)

=
∑

α∈Γ

(Fα(1) ⊗ Fα(2) ⊗ ... ⊗ Fα(d)) (7)

by the multilinearity of the Kronecker (or direct) product ‘⊗’. Note that the
elements of

F⊗
α = Fα(1) ⊗ Fα(2) ⊗ ... ⊗ Fα(d) (8)

are zeros and ones, so exactly one term F⊗
α on the right in (7) has a one in

any given position (β, δ). In view of (7), the following result is not surprising:

Proposition 1 Let Γh = {α ∈ Γ : ‖α‖2 = h}. Then:

Ah =
∑

α∈Γh

F⊗
α . (9)

Proof. For each pair (β, δ) ∈ Γ × Γ, define α ∈ Γ by α(i) = |β(i) −
δ(i)|, i = 1, ..., d. From the definition of Ah, (Ah)β,δ = 1 if and only if ‖α‖2 =
h, or α ∈ Γh. On the other hand, the (β, δ) element of (Fα(1)⊗Fα(2)⊗...⊗Fα(d))
is one if and only if

|β(i) − δ(i)| = α(i), for i = 1, ..., d. (10)
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Summing the F⊗
α over Γh must therefore yield Ah by the remark following

(8).
For example, if h = 1, Γ1 consists of d sequences containing a single one

and d − 1 zeros, so that

A1 =
d

∑

i=1

(In ⊗ ... ⊗ F1 ⊗ ... ⊗ In),

with F1 in the i-th position in the i-th term (see the discussion of equation
(9) in GGS). Likewise, for h = 2, Γ2 consists of the

(

d

2

)

sequences that contain
2 ones and d − 2 zeros, so in the corresponding expression for A2 each term
in the sum contains F1 twice. Notice that, in both of these low-order cases,
all the sequences that appear in Γh are permutations of a single sequence.

An alternative proof of Proposition 1 based on known graph-theoretic
results is worth recording, because it shows immediately how to generalize
the result to cover index sets more complex than the uniform grid Γ, e.g.,
the rectangular grid mentioned in the Introduction. We refer the reader to
Cvetković et al. [7] for more on the graph-theoretic details.

Given graphs Gi(Vi, Ei), i = 1, ..., d, with vertex sets Vi and edge sets Ei,
the direct product of the Gi, G1 × ... × Gd is the graph G×

d , say, defined as
follows. The vertex set of G×

d is the Cartesian product V ×
d = V1 × ...× Vd of

the Vi, and if xi, yi ∈ Vi for i = 1, ..., d, (x1, ..., xd) and (y1, ..., yd) are adjacent
in G×

d if and only if (xi, yi) ∈ Ei for i = 1, ..., d. In our case, the matrices Fr,
r = 0, ..., n− 1, are the adjacency matrices of the (so-called distance) graphs
Gr with common vertex sets Vr = V = {0, ..., n − 1}, and with edge sets
defined by: for i, j ∈ {0, ..., n − 1}, (i, j) ∈ Er only when |i − j| = r. Then,
V ×

d = Γ, and for each α ∈ Γ we may define a product G×
d (α) of the graphs

Gα(i) as above. It is known that G×
d (α) has adjacency matrix F⊗

α (Cvetković
et al. [7,Theorem 2.21]). Thus, for any subset U of Γ, the union of the graphs
G×

d (α) has adjacency matrix AU =
∑

α∈U F⊗
α . Proposition 1 gives the case

U = Γh.
Call two sequences (β, δ) h−neighbors if the sequence α defined in (10) is

in Γh. This definition of neighbors - based on the Euclidean distance between
points - is natural in some contexts, but in others a neighborhood structure
based, say, on the L1−norm (the length of the shortest walk connecting β
to δ) may be more appropriate. The observation in the previous paragraph
makes it straightforward to extend the results to follow to this case (and
to neighborhood structures defined by other Lp−norms), but we omit the
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details.

2.2 Diagonal Part

The matrices Dh in (3) are diagonal matrices with diagonal elements Dh(α)
equal to the number of h − neighbors of α. In dimension d = 1 define, for
each r = 0, ..., n − 1, the diagonal matrix Mr with i − th diagonal element
the i − th row sum of Fr, and then define, for α ∈ Γ,

M⊗
α = Mα(1) ⊗ Mα(2) ⊗ ... ⊗ Mα(d). (11)

It is straightforward to prove:

Proposition 2 Dh =
∑

α∈Γh
M⊗

α .

Notice that tr[Dh] is the total number of non-zero elements in Ah, so that
tr[Dh] = 2Nh. We have now established:

Theorem 1 The spatial design matrix at distance
√

h is given by:

Lh =
∑

α∈Γh

(M⊗
α − F⊗

α ), (12)

where M⊗
α and F⊗

α are as defined in (11) and (8).

The above expressions for the matrices Ah, Dh, and Lh involve summing
over the set Γh. We next examine this set more closely, and give formulae for
these matrices that do not involve Γh.

2.3 Generating Functions

Since h must be a sum of squares of d of the integers (0, 1, ..., n − 1), not all
values of h ≤ d(n − 1)2 are feasible. This is so even when d ≥ 4, notwith-
standing Lagrange’s four-square theorem (Hardy and Wright [11, Sec. 20.5]),
because no term in the decomposition of h can exceed (n − 1)2. Thus, Γh in
Proposition 1 can be empty, and in that case we define Ah, Dh and Lh to be
zero matrices.
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The values of h that yield non-vanishing matrices Lh can be read off from
the expansion of the polynomial

(1 + t + t4 + ... + tr
2

+ ... + t(n−1)2)d =

d(n−1)2
∑

h=0

mht
h, (13)

in which the coefficient mh is evidently the number of ways in which h can be
expressed as a sum of squares of d of the integers (0, 1, ..., n − 1), i.e., mh =
|Γh| is the number of h−neighbors of the origin. Except for the restriction
h ≤ d(n − 1)2, the mh evidently depend on d but not directly on n. Letting
fn(t) =

∑n−1
r=0 tr

2
, and using Wilf’s [20] notation, we may write

mh = [th](fn(t))d, (14)

where [th] means “the coefficient of th in the expansion of the following func-
tion in powers of t”. Note that [th] is identical to the operator (h!)−1(∂/∂t)h|t=0,
and, as an operator, is therefore linear. A cumbersome formula for the mh

can be deduced from (14), but using a modern symbolic computing package
it is a simple matter to compute mh from (14) without having to rely on such
formulae.

Similarly, letting bn(t) = Σn−1
r=0 tr

2
xi, where the xi are labels for the integers

0, 1, ..., n− 1, obeying the usual rules of multiplication, we see that, from the
formal expansion of (bn(t))d,

[th](bn(t))d =
∑

α∈Γh

{

d

Π
i=1

xα(i)

}

. (15)

Thus, the sequence α belongs to Γh only if the product Πd
i=1xα(i) appears in

the h − th term on the right in (15).
The key to obtaining a simple representation for the matrices Ah, Dh,

and hence Lh, is to notice that the scalar generating function (bn(t))d can
be generalized in such a way that, when expanded, the coefficient of th is
precisely Ah. To see this, define the matrix

Bn(t) =
n−1
∑

r=0

tr
2

Fr, (16)

an n×n Toeplitz matrix with (i, j) element t(i−j)2 . By direct expansion of the
d-th Kronecker power B⊗

n (t) =
⊗d

1 Bn(t), it is clear that Ah is the coefficient
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of th in the expansion of B⊗
n (t) in powers of t. That is,

Ah = [th]B⊗
n (t). (17)

Similarly, letting

Cn(t) =
n−1
∑

r=0

tr
2

Mr (18)

and C⊗
n (t) =

⊗d

1 Cn(t), we see that

Dh = [th]C⊗
n (t). (19)

We therefore have the simple generating-function representation for Lh given
in:

Theorem 2 The spatial design matrix at distance
√

h is given by:

Lh = [th](C⊗
n (t) − B⊗

n (t)). (20)

These results evidently do not require knowledge of Γh: it is built in
to the generating function. On the other hand, the matrices appearing in
these representations of Ah, Dh and Lh are N × N, and likely to be high-
dimensional, so it might seem that these results would be of little practical
value. On the contrary, we will see in the next section that they provide both
analytically and computationally convenient information about the statistics
qh and q∗h discussed in the Introduction, and hence about the properties
of the variogram estimator 2γ̂(h). Before doing so we note some further
implications of these results.

It is clear that, if α ∈ Γh, so is every permutation of the elements of α.
Thus, Γh must be a union of one or more orbits in Γ under the action of
the symmetric group Sd (the group of permutations of d objects). A set of
orbit representatives is provided by the set Ω = Ω(d, n) of non-decreasing
sequences ω = (ω(1), ..., ω(d)) ∈ Γ, with ω(1) ≤ ω(2) ≤ ... ≤ ω(d). Let
Ωh = {ω ∈ Ω : ‖ω‖2 = h}, and, for j = 0, ..., n − 1, ω ∈ Ω, let kω(j) denote

the multiplicity of j in ω, so that
∑

n−1
j=0 kω(j) = d, and write ν(ω) =

n−1

Π
j=0

kω(j)!,

with, as usual, 0! ≡ 1.
With this notation it is easy to see that mh = d!

∑

ω∈Ωh
(ν(ω))−1, and

since Γh = {σω : ω ∈ Ωh, σ ∈ Sd}, where σω denotes the permutation σ of ω,
we have that

Ah =
∑

ω∈Ωh

1

ν(ω)
F ∗

ω ,
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where F ∗
ω =

∑

σ∈Sd
F⊗

σω is a symmetric function of the matrices Fω(1), ..., Fω(d).
By an obvious extension of this argument to the off-diagonal part, and setting
M∗

ω =
∑

σ∈Sd
M⊗

σω, we can state:

Theorem 3 The spatial design matrix at distance
√

h is given by

Lh =
∑

ω∈Ωh

1

ν(ω)
(M∗

ω − F ∗
ω). (21)

For many values of h equation (15) reveals that Γh consists of a single
orbit, which is to say that Ωh has a single element, say ωh. In that case
mh = d!/ν(ωh), and Theorem 3 gives the very simple result that Lh =
(ν(ωh))

−1(M∗
ωh

− F ∗
ωh

). In the example following Proposition 1, for instance,
h = 1, ω1 = (0, .., 0, 1) and ν(ω1) = (d − 1)!.

Using these results we may also obtain the following generalization and
simplification of Lemma 6.1 and Theorem 6.1 in GGS, which give upper
bounds on the largest eigenvalues of Lh and Ah (for sets Ωh with low cardi-
nality), and hence upper bounds for the normalized statistics z′Lhz/z

′z and
z′Ahz/z

′z.

Lemma 1 Let λh and µh denote the largest eigenvalues of Ah and Lh, re-

spectively, and let uh = d!
∑

ω∈Ωh

2d−kω(0)

ν(ω)
. Then λh ≤ uh and µh ≤ 2uh.

Proof. Let gh = maxα∈Γ Dh(α) denote the maximum number of h-
neighbors for any point in the grid Γ. The number mh is the number of
h−neighbors of the origin, so that gh ≥ mh. Under the condition that no
sequence α ∈ Γh contains an element α(i) > n/2, we have gh = uh. To see
this, suppose first that Ωh contains just the single sequence ωh. If kωh

(0) = 0,
gh = 2dmh because, under the stated condition, maxα∈Γ Dh(α) occurs at a se-
quence α for which the h−neighbors in all 2d directions enter Dh(α), and mh

counts just the h−neighbors β in the direction for which the vector β−α has
only positive components. If kωh

(0) > 0, only 2d−kωh
(0) distinct directions are

needed. Repeating the argument for each ω ∈ Ωh proves the claim gh = uh.
Finally, when the condition that no α(i) exceeds n/2 is dropped, it is clear
that gh ≤ uh. The assertions λh ≤ uh, µh ≤ 2uh follow by Gershgorin’s
theorem (see Marcus and Minc [16]).

If Ωh contains only the single sequence ωh, which contains only one non-
zero term (so Γh contains only what GGS call “non-diagonal directions”), the
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matrices in the sum
∑

α∈Γh
F⊗

α are pairwise commutative, so the eigenvalues

of Ah are simple functions of those of the single matrix Fr (r =
√

h) involved.
Under the same condition, Lh = ((d − 1)!)−1L∗

ωh
, with L∗

ωh
=

∑

σ∈Sd
L⊗

σωh
,

which is also a sum of pairwise commutative matrices. Thus, as GGS note
in Lemma 5.1, in the case of non-diagonal directions the eigenvalues of Lh

are simple functions of those of the matrix (M√
h − F√

h).
The necessary and sufficient conditions required to ensure pairwise com-

mutativity of the summands in Theorem 3 are that Ωh contains only the single
sequence ωh, and ωh contains no more than one (possibly repeated) non-zero
integer. Note that ωh may correspond to what GGS would call “diagonal
directions”, and that these conditions are always satisfied for h = 1, 2, 3 (for
any d), but otherwise clearly hold only for special values of h.

3 Applications

In this section we use the results established above to study the properties
of the statistics q∗h = z′Ahz and qh = z′Lhz. We consider first the case in
which z ∼ N(0, IN), but in Section 3.2 show how our earlier results can be
used to deal with the more general case z ∼ N(0, Σ), assuming the process
is second-order stationary and isotropic.

3.1 Properties of the Quadratic Forms q∗h and qh

Under the assumption z ∼ N(0, I), the distributions of the quadratic form
q = z′Az, and its normalized form q̄ = z′Az/z′z, can certainly be obtained
(see James [14] for the former, and Hillier [13] for the latter), but both are
sufficiently complicated as to inhibit their use for practical study of, and/or
tabulation of, the distribution. On the other hand, it is well known that the
cumulants of q = z′Az under the assumption z ∼ N(0, Σ) are given by:

κp = 2p−1(p − 1)!tr[(AΣ)p], p = 1, 2, ... (22)

(see Kendall and Stuart [15] Chapter 3 for the definition of cumulants, and
Chapter 15 for the result given in equation (22)). The results in Section 2
allow these cumulants to be computed quite straightforwardly when Σ = IN

and the matrix A in (22) is either Ah or Lh. These results are given next.
First, for comparison, we summarize the properties of the analogue of q∗h for
the case d = 1.
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In the case d = 1 the properties of the statistics Q∗
r = y′Fry, r = 1, ..., n−

1, with y ∼ N(0, In), have been extensively studied. The following Lemma
summarizes some elementary properties of the statistics Q∗

r, all of which are
either given in, or are easily deduced from, the comprehensive results in
Anderson [2]:

Lemma 2 For r = 1, ..., n−1, let Q∗
r = y′Fry, and assume that y ∼ N(0, In).

Then:

E(Q∗
r) = tr[Fr] = 0, and

var(Q∗
r) = 2tr[F 2

r ] = 2tr[Mr] = 4(n − r).

All odd cumulants of Q∗
r vanish, so the density of Q∗

r is symmetric about zero,
and for r1 6= r2, Q∗

r1
and Q∗

r2
are uncorrelated.

Properties of the q∗h
With A = Ah and Σ = IN in (22) we obtain the cumulants, κ∗

p,h, of q∗h.
Much of Lemma 2 generalizes easily to this case:

Lemma 3 For h ≥ 1, any d ≥ 1, and z ∼ N(0, IN),

E(q∗h) = tr[Ah] = 0,

var(q∗h) = 2tr[A2
h] = 2tr[Dh],

and, for h1, h2 ≥ 1, h1 6= h2, q∗h1
and q∗h2

are uncorrelated.

Proof. The first two cumulants are straightforward. To show that
cov(q∗h1

, q∗h2
) = 2tr[Ah1Ah2 ] = 0, consider a diagonal element of Ah1Ah2 :

(Ah1Ah2)α,α =
∑

β∈Γ

(Ah1)α,β(Ah2)β,α α ∈ Γ.

The product (Ah1)α,β(Ah2)β,α vanishes unless both ‖α − β‖2 = h1 and ‖β − α‖2

= h2, which is impossible. Hence, for each α ∈ Γ, every term in the sum on
the right here vanishes.

Now, with the help of the generating function C⊗
n (t) for Dh, it is straight-

forward to obtain a generating function for the variances var(q∗h), since

var(q∗h) = 2tr[Dh] = 2tr
{

[th]C⊗
n (t)

}

(using (19))

= 2[th]tr
{

C⊗
n (t)

}

= 2[th](tr(Cn(t))d. (23)

12



The last step here follows from a standard property of the trace operator
for Kronecker products, and the penultimate step from the fact that the
operator [th] commutes with the trace operator. Noting that tr[M0] = n,
and tr[Mr] = 2(n− r), r = 1, ..., n− 1, it follows from the definition of Cn(t)
that

tr(Cn(t)) = (n + 2(n − 1)t + ... + 2(n − r)tr
2

+ ... + 2t(n−1)2). (24)

Since 2Nh = tr[Dh], these formulae provide simple and efficient methods
for computing the values Nh : setting gn(t) = tr(Cn(t)) we have

2Nh = [th](gn(t))d. (25)

In general, for d > 1, the density of q∗h is not symmetric about zero. The
analogue of the symmetry result for the case d = 1 in Lemma 2 is the weaker
result given in:

Lemma 4 If ph is odd tr[Ap
h] = 0 (independently of d). Hence, for h odd,

the distribution of q∗h (and also its normalized form q̄∗h = q∗h/z
′z) is symmetric

about zero.

Proof. Consider a diagonal element of Ap
h:

(Ap
h)α,α =

∑

β1,β2,...,βp−1∈Γ

(Ah)α,β1
(Ah)β1,β2

...(Ah)βp−2,βp−1
(Ah)βp−1,α, α ∈ Γ.

This is non-zero only if

‖α − β1‖2 = ‖β1 − β2‖2 = ... =
∥

∥βp−1 − α
∥

∥

2
= h.

Expanding each term
∥

∥βi − βi+1

∥

∥

2
as ‖βi‖2 +

∥

∥βi+1

∥

∥

2 − 2
〈

βi, βi+1

〉

and
adding the p terms gives (with β0 = βp = α) :

2

(

‖α‖2 +

p−1
∑

i=1

‖βi‖2 −
p−1
∑

i=0

〈

βi, βi+1

〉

)

= ph.

The left side is certainly an even integer, so when ph is odd we obtain a
contradiction. Thus, when ph is odd, every term in the expression above for
(Ap

h)α,α vanishes, for all α ∈ Γ, implying tr[Ap
h] = 0.

The following result is also of some interest:

13



Lemma 5 For d = 2 and every h ≥ 1, tr[A3
h] = 0.

Proof. The diagonal element of A3
h labelled by (α, α) is given by:

(A3
h)α,α =

∑

β,γ∈Γ

(Ah)α,β(Ah)β,δ(Ah)δ,α,

and is non-zero only if there are β, δ ∈ Γ satisfying

‖α − β‖2 = ‖β − δ‖2 = ‖δ − α‖2 = h.

This equation asserts that (α, β, δ) must be the vertices of an equilateral
triangle in R2, and it is well-known that there is no equilateral triangle with
vertices in a two-dimensional integer grid (see, for instance, Beeson [3]), so
this condition cannot be met for any α if d = 2.

Hence, if d = 2, κ∗
3,h = 8tr[A3

h] = 0. The analogous result for dimensions
d > 2 fails because in that case there are equilateral triangles in a uniform
grid.
Properties of the qh

We now deal with the case A = Lh and Σ = IN in (22). Since LhlN = 0
(where lN is an N × 1 vector of ones), the results to follow continue to
hold under the assumption that z ∼ N(µlN , IN), i.e., that the Z(α) have an
unknown constant mean µ. We have, in either case, for the cumulants of qh,
κp,h = 2p−1Γ(p)tr[Lp

h], p = 1, 2, ... Thus:

Lemma 6 When z ∼ N(µlN , IN),

E(qh) = tr[Lh] = tr[Dh] = 2Nh, (26)

and
var(qh) = 2tr[L2

h] = 2
(

tr[D2
h] + tr[Dh]

)

. (27)

The result for the variance uses the facts that tr[DhAh] = 0 and tr[A2
h] =

tr[Dh]. The computation of tr[Dh] has been discussed above, and we can
compute the term tr[D2

h] from the formula:

tr[D2
h] = tr

[

[th][sh]C⊗
n (t)C⊗

n (s)
]

= [(ts)h](tr [Cn(t)Cn(s)])d.

Thus:
var(qh) = 2

{

[th][sh](tr [Cn(t)Cn(s)])d + 2Nh

}

. (28)
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From the definition of Cn(t), tr[Cn(t)Cn(s)] =
∑n−1

r1,r2=0 tr
2
1sr2

2tr[Mr1Mr2 ], and

it is easy to check that tr[M2
0 ] = n and, for 1 ≤ r1 ≤ r2 ≤ n − 1,

tr[Mr1Mr2 ] =

{

4(n − r2) − 2r1 if r1 + r2 ≤ n;
2(n − r2) otherwise.

(29)

Thus, we again have a simple generating function for the variances of the
statistics qh, and hence for the variance of the variogram estimator in the
“null” case (Σ = IN) (see Section 3.3 below).

Higher-order cumulants and product cumulants (e.g., covariances) for
both the q∗h and the qh can be obtained by obvious extensions of these meth-
ods. For instance,

tr[Ap
h] = [(t1...tp)

h](tr[Bn(t1)...Bn(tp)])
d, (30)

and

cov(qh1 , qh2) = 2tr[Lh1Lh2 ] = 2tr[Dh1Dh2 ] = 2[th1 ][sh2 ](tr[Cn(t)Cn(s)])d.
(31)

The generating functions in these expressions may, of course, simplify (as
above), and this reduces the computational problem considerably. We leave
other such extensions to the reader.

3.2 Second-Order Stationary Isotropic Processes

Under the assumption that the process is second-order stationary and isotropic
- which is stronger than the intrinsic stationarity assumption mentioned in
the introduction (see Cressie [6]) - we have, as an obvious consequence of
equation (17):

Proposition 3 If the process {Z(α); α ∈ Γ} is second-order stationary and
isotropic, its covariance matrix Σ has the representation Σ =

∑

h∈H c(h)Ah,
where H is a some set of values of h containing zero (recall that A0 = IN),
and the coefficients {c(h); h ∈ H} must be such that Σ is positive definite.
Thus, from (17),

Σ = [SH(t)]B⊗
n (t), (32)

where
[SH(t)] =

∑

h∈H

c(h)[th]. (33)
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The operator [SH(t)] constructs a linear combination, with parameters c(h),
of the coefficients of the powers th, h ∈ H, that occur in the expansion of
the function to which it is applied. Like the [th] themselves, [SH(t)] is clearly
linear. If we now assume that z ∼ N(0, Σ), with Σ as in (32), and take h > 0,
we easily see that:

E(q∗h) = tr[AhΣ] =
∑

k∈H

c(k)tr[AhAk] =

{

c(h)tr[Dh] if h ∈ H;
0 otherwise.

(34)

And (since tr[Ah] = tr[DkAh] = 0),

E(qh) = tr[LhΣ] = σ2tr[Dh] −
∑

k∈H\{0}
c(k)tr[AhAk]

=

{

{σ2 − c(h)}tr[Dh] if h ∈ H;
σ2tr[Dh] otherwise,

(35)

where we have put c(0) = σ2. Since, under these assumptions, γ(h) = σ2 −
c(h), this shows that 2γ̂(h) = qh/Nh is an unbiased estimator of the true
variogram 2γ(h), for all h > 0, as is well-known (Cressie [6]). Obviously, to
compute the unbiased estimator 2γ̂(h) one needs to know the correct scale
factor Nh, and this has hitherto been unavailable for the isotropic case in
general; equation (25) gives a simple general procedure for computing it,
generalizing the special case given in Lemma 7.1 in GGS.

The variances and covariances of the statistics q∗h and qh for several values
of h are often needed in applications. For instance, the entire covariance
matrix of a vector of statistics qh at a set of values of h is required for
variogram fitting by generalized least squares (Genton [9], Cressie [6, Sec.
2.6.2]), and this has previously been unavailable for the isotropic case. The
covariances cannot easily be written down in closed form, but when Σ has
the form (32) are easily represented in generating function form using the
operators [SH(t)] defined in (33). Thus we easily obtain:

Lemma 7 Suppose z ∼ N(0, Σ), with Σ of the form (32). Then, for any
h1 ≥ h2:

cov(q∗h1
, q∗h2

) = 2tr[Ah1ΣAh2Σ] = 2[sh1
1 ][sh2

2 ][SH(t1)][SH(t2)]v
d
n(s1, s2, t1, t2),

(36)
and

cov(qh1 , qh2) = 2tr[Lh1ΣLh2Σ] = 2[sh1
1 ][sh2

2 ][SH(t1)][SH(t2)]V
d
n (s1, s2, t1, t2),

(37)
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where
vd

n(s1, s2, t1, t2) = (tr[Bn(s1)Bn(t1)Bn(s2)Bn(t2)])
d (38)

and

V d
n (s1, s2, t1, t2) = vd

n(s1, s2, t1, t2) + (tr[Cn(s1)Bn(t1)Cn(s2)Bn(t2)])
d

−2(tr[Cn(s2)Bn(t2)Bn(s1)Bn(t1)])
d. (39)

Note that cov(q∗h1
, q∗h2

) = 0 when h1 6= h2 and h1, h2 /∈ H, and that the
elements of the matrix defining vd

n(s1, s2, t1, t2) are positive. Thus, if the
c(h) in (32) are positive and non-decreasing in |H|, an increase in |H| must
increase cov(q∗h1

, q∗h2
). Extensions to higher-order cumulants are obvious, but,

as in the case Σ = IN , will entail a larger computational burden. Finally, we
note that the approach used here can also be extended to the case where the
precision matrix Σ−1, rather than Σ itself, is a linear combination of the Ah.

3.3 Properties of the Classical Variogram Estimator

The above results for qh provide the tools for studying the properties of the
classical variogram estimator for a second-order stationary and isotropic pro-
cess under virtually any specification for the c(h). We do not intend to study
the detailed properties of the variogram estimator here, but will show that
the above results can be used to study the properties of 2γ̂ (h) under a variety
of specifications for the variogram 2γ(h) (for the intrinsically stationary, but
non-isotropic case, see Cressie [5]).

We first consider the variance of 2γ̂ (h) = qh/Nh as a function of h and
d, assuming Σ = IN . In Fig. 1 we plot var(2γ̂ (h)) = var(qh)/N

2
h , computed

using equations (25) and (28), for d = 1, 2, 3, 4, and h = 1, ..., 16, with N
held fixed at N = 212, so that, for d = 1, 2, 3, 4 we have n = 212, 26, 24, 23

respectively.

Figure 1 about here

Fig. 1 shows that: (a) for each fixed dimension d > 1, the variance is
quite volatile as h varies; and (b) the variance is not monotonic in d for fixed
h (see for instance the value h = 9). Thus, in contrast to Fig. 4 in GGS
(where the variance could only be computed for “non-diagonal” directions),
our results show that when “diagonal” directions are taken into account -
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as it is natural to do under the assumption of isotropy - var (2γ̂ (h)) is no
longer monotonic either in d or in h. The volatility and non-monotonicity
of the variances is attributable to variation in Nh, mh, and the structure of
Ωh as h varies. The explanation is purely number theoretic: the number of
decompositions of a particular h as a sum of squares is not related in any
simple way to the values n and d.

The variance of the classical variogram estimator when Σ is of the form
(32) can be computed using (37) with h1 = h2. Using this formula, one can
study the behavior of var (2γ̂ (h)) under various specifications for the true
variogram 2γ(h), i.e., of the c(h) in (32). In Fig. 2 we plot the variances for
the case of a spherical variogram with sill 1, nugget 0 and range r, so that
the c(h) in (32) are given by

c(h) = c(h, r) =

{

1 − (3
√

h/r + (
√

h/r)3)/2 if 0 ≤ h ≤ r2;
0 if h > r2.

(40)

The value of N is kept fixed, as above, at N = 212. We plot the variances
for d = 2 and d = 3 as a function of the range r (the variogram is not valid
for d > 3). In Fig. 2(a) we display the results for h = 2 (note that this is
a diagonal direction in the sense of GGS - for any d), and in Fig. 2(b) for
h = 4. The corresponding figure for h = 1 is equivalent to Fig. 7 in GGS,
which was produced by simulation for N = 28 (note that GGS appear to
have omitted a factor 2).

Figures 2(a) and 2(b) about here

In Fig. 3 we repeat this exercise for the case of an exponential variogram
with sill 1, nugget 0 and (practical) range r, so that the c(h) in (32) are given
by:

c(h) = c(h, r) = exp{−3
√

h/r}, h ≥ 0. (41)

In this case, all feasible values of h will appear in equation (32), presenting a
much larger computational task for the evaluation of var(2γ̂ (h)). Neverthe-
less, by exploiting the structure of the generating function (39) to streamline
the computation, the variances can be computed efficiently. In Fig. 3(a) we
plot the variances as a function of r for h = 2, and in Fig. 3(b) those for
h = 4, in both cases for d = 2, 3, and 4 (the exponential variogram is valid
for all d).

Figures 3(a) and 3(b) about here
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With a fixed number, N, of i.i.d. observations, we expect the variance to
decrease, at least for small h (h ≤ N

1
d ) as d increases, because the number

of pairs of points available to estimate 2γ(h) (for fixed h) cannot decrease as
d increases, and usually increases. But, as dependence in the data increases,
or h increases, one anticipates that this effect might be overturned. Both
Figs. 2 and 3 show that these expectations are correct: the variances are
not monotonic in r, sometimes increasing with r initially, then decreasing.
And the non-monotonicity is more pronounced for larger h, and for the case
of a spherical variogram. Note that the lack of smoothness for low values
of r evident in Fig. 2 arises because the spherical variogram itself is not
smooth. For sufficiently large values of r - the values most likely to be used
in applications - the variance for fixed h is increasing in d for both variograms
- as suggested by GGS.

Of course, the usefulness of Lemma 7 is in providing a means to compute
var(2γ̂(h)) (and covariances) exactly in applications. For the exponential this
is not a trivial computation, because as we note above, c(h) 6= 0 for all feasible
values of h, so that [SH(t)] in (33) contains all feasible values. In practice,
however, perfectly satisfactory accuracy can be achieved by truncating the
c(h, r) at some point.

4 Concluding Remarks

We have provided simple formulae and generating functions for the spatial
design matrices implicitly defined by quadratic forms that arise in the analy-
sis of isotropic spatial models on uniform grids, extending and simplifying the
results in Genton [9] and Gorsich, Genton, and Strang [10]. Such models are
a natural generalization of familiar time series models - the one-dimensional
case - and the structural results we have derived reflect this relation. These
results show that in general these matrices are sums of non-commuting ma-
trices - Kronecker products of their counterparts for the one-dimensional case
- and hence that their eigenvalues are unlikely to be expressible in terms of
those of the summands.

Fortunately, to study the properties of the associated quadratic forms the
eigenvalues themselves are not needed: the generating functions for the ma-
trices themselves induce generating functions for their cumulants. We provide
detailed results on the means, variances and covariances of these statistics.
As an important application of these results, we give simple formulae for

19



the normalizing constant needed to produce an unbiased estimator of the
variogram, and, assuming second-order stationarity, the covariance matrix
needed to implement generalized least squares procedure for variogram esti-
mation (see Cressie [6, Ch. 6]). Finally, we briefly study some properties of
the classical variogram estimator for the cases of some popular choices of the
actual variogram.

For the purposes of hypothesis testing the normalized statistics q̄∗h =
z′Ahz/z

′z and q̄h = z′Lhz/z
′z are of greater interest. But since exact dis-

tribution theory for such statistics is difficult, various techniques for approx-
imating the distributions based on just the low-order cumulants have been
developed (see, for instance, Durbin and Watson [8], Ali [8] or Henshaw [12]).
Although we do not implement them here, the results in Section 3 make such
techniques quite straightforward. It is easily seen that, under the assump-
tion that z ∼ N(0, σ2IN) - usually the null hypothesis - the ratios q̄∗h and q̄h

are independent of their denominator, so that the moments of the ratios are
ratios of the moments. Hence the cumulant results for q∗h and qh given in
Section 3 can also be used to study or approximate the properties of q̄∗h and
q̄h under this assumption.

It is, of course, both analytically and computationally convenient if the
eigenvalues, or good approximations to them, of Lh and Ah are known. One
possible device for developing approximations in the case d = 1 is to re-
place the Fr by their circular counterparts (see Anderson [2, Ch. 6.5]), and
our results allow that approach to be adapted to higher dimensional cases
straightforwardly. We will report our work on that subject elsewhere.
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Figure 1: The variance of the classical estimator 2γ̂(h) as a function of h and
d : d = 1 (diamond), 2 (cross), 3 (square), 4 (line); N = 212, Σ = IN .
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Figure 2: The variance of the classical estimator 2γ̂(h) when the variogram
is spherical. In (a) h = 2, in (b) h = 4 . The variance is plotted for many
values of the range r from 0 to 10, N = 212, d = 2 (thin line), d = 3 (thick
line).
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Figure 3: The variance of the classical estimator 2γ̂(h) when the variogram
is exponential. In (a) h = 2, in (b) h = 4. The variance is plotted for many
values of the (practical) range r from 0 to 10, N = 212, d = 2 (thin line),
d = 3 (thick line), d = 4 (dashed line).
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