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Abstract

Current  methods  of  estimating  the  random  coefficients  logit  model  employ
simulations of the distribution  of the taste  parameters  through pseudo-random
sequences.  These  methods  suffer  from  difficulties  in  estimating  correlations
between parameters and computational limitations such as the curse of dimen-
sionality.  This  paper  provides  a  solution  to  these  problems  by  approximating
the integral  expression of the expected choice probability  using a multivariate
extension  of  the  Laplace  approximation.  Simulation  results  reveal  that  our
method performs very well, both in terms of accuracy and computational time.
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1 Introduction

Understanding  discrete  economic  choices  is  an  important  aspect  of  modern  economics.

McFadden  (1974)  introduced  the  multinomial  logit  model  as  a  model  of  choice  behavior

derived from a random utility framework. An individual i  faces the choice between K  differ-

ent  goods  i = 1..K .  The  utility  to  individual  i  from  consuming  good  j  is  given  by

Uij = xij
'  b + eij , where xij

'  corresponds to a set of choice relevant characteristics specific to the

consumer-good pair Hi, jL . The error component eij  is assumed to be independently identically

distributed with an extreme value distribution f HeijL = expH-eijL expH-expH-eijLL.
If  the  individual  i is  constrained  to  choose  a  single  good  within  the  available  set,  utility

maximization  implies  that  the  good  j  will  be  chosen  over  all  other  goods  l ∫ j  such  that

Uij > Uil ,  for all  l ∫ j .  We are interested in deriving the probability that consumer i  chooses

good j , which is

(1)Pij = PrAxij
'  b + eij > xil

'  b + eil, for all l ∫ jE.

McFadden (1974) shows that the resulting integral can be solved in closed form resulting in

the familiar expression:

(2)Pij =
expIxij

'  bM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expHxik
'  bL

 H = sijL.

In some analyses it is also useful to think of the market shares of firms in different markets.

Without loss of generality we can also consider the choice probability described above to be

the share of the total market demand which goes to good j  in market i  and we will denote this

by sij .  All  the results  derived in this  paper  will  be  valid  for  either  interpretation.  For conve-

nience we shall focus on the market shares interpretation of the above equation.

The vector  of coefficients  b  can be thought  of as  a  representation  of the individual  tastes

and  determines  the  choice  conditional  on  the  observable  consumer-good  characteristics.

Although an extremely useful model, the multinomial model suffers from an important limita-

tion:  it  is  built  around  the  the  assumption  of  independence  of  irrelevant  alternatives  (IIA),
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which  implies  equal  cross  price  elasticities  across  all  choices  as  demonstrated  by  Hausman

(1975).  Additionally  it  does  not  allow  for  correlations  between  the  random  components  of

utility, thus limiting the complexity of human behavior which can be modeled (Hausman and

Wise, 1978). 

While a number of more flexible specifications have been proposed, few proved to computa-

tionally  tractable.  The  addition  of  a  random  coefficients  framework  to  the  logit  model  pro-

vides an attractive alternative (Cardell and Dunbar, 1980). In many applications however it is

important to think of tastes as varying in the population of consumers according to a distribu-

tion FHbL .  It  is  particularly  important  not  to  assume the   taste  parameters  to  be  independent

since the estimation of correlations between the components of the vector b  is also of interest.

The resulting correlations describe patterns of substitution between different product character-

istics. 

In practice we often assume that the distribution FHbL  is Normal with mean b  and covari-

ance S. The purpose of random coefficients models is to estimate the unknown parameters b

and S  from the available sample. From a computational point of view, the aim is to obtain the

expected share of good j  in market i  from the evaluation of the following expectation:

(3)EbHsijL = ‡
-¶

+¶
expIxij

'  bM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expHxik
'  bL

 d FHbL

We denote  this  model to  be the random coefficients  logit  model.  Since the above integral

does  not  have  a  known  analytic  solution,  the  use  of  simulation  methods  currently  plays  an

important part in the implementation of these models (Lerman and Manski, 1981) with recent

applications  employing   pseudo-random  Halton  sequences  (Small,  Winston  and  Yan,  2005;

Train, 2003).

The random coefficients  logit  model is  an extremely versatile  tool  for  the analysis  of dis-

crete  choices  since it  can be thought  of as  an arbitrarily  close approximate representation  of

any  random utility  model  consistent  with  choice  probabilities  (McFadden  and  Train,  2000).

This  has  prompted researchers  to think of this  model as “one of the most promising state  of

the art discrete choice models” (Hensher and Green, 2003). Applications of the random coeffi-
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cients logit  model abound, not only within economics, but also in related disciplines such as

marketing or transportation research (Hess and Polak, 2005). The random coefficients model

is  also  an  important  building  block  for  more  complex  models.  Thus,  Berry,  Levinsohn  and

Pakes (1995) employ the random coefficients logit model to analyse demand based on market-

level price and quantity data. Bajari, Hong and Ryan (2005) incorporate it into an economet-

ric model of discrete games with perfect information, where it selects the probability of differ-

ent equilibria.

The implementation of the random coefficients model remains a challenging application of

the method of simulated moments. In particular  the estimation of a full covariance matrix of

the  taste  parameters,  which  fully  incorporates  all  the  possible  correlations  between  parame-

ters, seems to elude most researchers and appears to be a serious limitation of the simulation

approach. In Section 2 of this paper we will  derive an analytic approximation of the integral

expression in Equation 3 which can be incorporated into an extremely convenient non-linear

least squares framework for the estimation of all mean and variance-covariance parameters of

the taste distribution. Section 3 shows the superior performance of the new method based on

the Laplace method compared to the simulation alternative in cases where the model is speci-

fied with non-zero correlations.

2 A Laplace Approximation of the Expected Share

Consider  the  expected  share  of  product  j  in  market  i  under  the  random coefficients  logit

model introduced above. 

(4)EbHsijL = Eb 
loom
noo

expIxij
'  bM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expHxik
'  bL

|oo}
~oo

= Eb 
looom
n
ooo
i
k
jjjjj‚

k=1

K

expIxijk
'  bM

y
{
zzzzz

-1|ooo}
~
ooo,

 where xijk = xik - xij for all k.  Assume that the taste parameters b  are drawn from a normal
multivariate distribution with mean b  and covariance matrix S , 

(5)f HbL = H2 pL-pê2• S•-1ê2
 exp ;-

1
ÅÅÅÅÅ
2

 Hb - bL ' S-1Hb - bL?.

Then the expected share is given by the following multivariate integral:
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(6)EbHsijL = H2 pL-pê2• S•-1ê2
 ‡
-¶

+¶

exp@-gHbLD d b, where

(7)gHbL =
1
ÅÅÅÅÅ
2

 Hb - bL ' S-1Hb - bL + log
i
k
jjjjj‚

k=1

K

expIxijk
'  bM

y
{
zzzzz

In  this  section  we  provide  an  approximation  to  the  integral  expression  above  using  the
asymptotic  method of  Laplace.  While  univariate  applications  of  this  method are  common to
mathematics and physics, where they are routinely applied to the complex functions to derive
“saddle-point  approximations”,  few  applications  to  econometrics  or  statistics  have  been
attempted. The extension of the method to multivariate settings was developed by Hsu (1948)
and Glynn (1980). A statement of the main theorem is given in Appendix A together with the
technical  conditions  required  for  the  approximation  to  exist.  Statistical  applications  of  the
Laplace  approximation  were  developed  by  Daniels  (1954)  and  Barndorff-Nielsen  and  Cox
(1979) who employ the Laplace approximation to derive the indirect Edgeworth expansion, a
generalization  of  the  Edgeworth  expansion  method  for  distributions  to  exponential  families.
The  Laplace  method  was  also  applied  in  Bayesian  statistics  to  derive  approximations  to
posterior moments and distributions (Tierney and Kadane, 1986;  Efstathiou, Guthierrez-Pena
and Smith, 1998). More recently, Butler (2002) noticed that the Laplace approximation often
produces accurate results in subasymptotic situations which are not covered by the traditional
setting. It is this insight which we will use below.

Now  perform  a  Taylor  expansion  of  the  function  gHbL  around  the  point  b
è

ij ,  such  that
gHb

è
ijL < gHbL  for all b∫b

è
. This expansion is given by:

(8)gHbL @ gHb
è

ijL + Ib - bij
è M'

Ä
Ç
ÅÅÅÅÅÅÅ

∑ g
ÅÅÅÅÅÅÅÅÅÅ
∑ b

ƒƒƒƒƒƒƒƒƒb= b
è

ij

É
Ö
ÑÑÑÑÑÑÑ +

1
ÅÅÅÅÅ
2

 Ib - b
è

ijM
'
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj ∑2 gHbL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ b ∑ b '

y
{
zzz

b= b
è

ij

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 Ib - b

è
ijM + OJIb - b

è
ijM

3N.

Substituting in the integral expression above we obtain:

(9)

EbHsijL @§ S§-1ê2 expI-gHb
è

ijLM 

‡
-¶

+¶

H2 pL-pê2 exp 
loom
noo

-
1
ÅÅÅÅÅ
2

 Ib - b
è

ijM
'
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj ∑2 gHbL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ b ∑ b '

y
{
zzz

b= b
è

ij

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 Ib - bij

è M + OJIb - b
è

ijM
3> d b

The intuition for this approach is given by the fact that if gHbL  has a minimum at the point
b
è

ij , then the contribution of the function gHbL  to the exponential integral will be dominated by
a  small  region  around  the  point  b

è
ij .  Furthermore  by  using  a  second  order  Taylor  expansion

around b
è

ij, we make the further assumption that the higher order terms of the expansion may

5



be  safely  ignored.  Let  S
è

ij  the  inverse  of  the  Hessian  of  gHbL  evaluated  at  b
è

ij ,  i.e.
S
è

ij
-1

=I ∑2gHbLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑b ∑ b' Mb= bij
è . Note that both b

è
ij  and S

è
ij  are indexed by i  and j  to remind us that these

values depend on the covariates of the share of product j  in market i  explicitly and in general
will not be constant across products or markets.

Then we can re-write the integral above as:

(10)

EbHsijL @§ S§-1ê2 expI-gHb
è

ijLM • S
è •1ê2

 H2 pL-pê2¶ Sè ij¶
-1ê2

‡
-¶

+¶

exp ;-
1
ÅÅÅÅÅ
2

 Ib - b
è

ijM
'
 Sij

è -1Ib - b
è

ijM? d b.

We  recognize  the  right  hand  side  of  this  expression  to  be  Gaussian  integral,  that  is  the
integral over the probability density of a Normal variable b with mean b

è
ij  and covariance S

è
ij .

Since this area integrates to 1 we have, 

(11)H2 pL-pê2• Sè ij•-1ê2
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‡

-¶

+¶

exp ;-
1
ÅÅÅÅÅ
2

 Ib - b
è

ijM
'
 S
è

ij
-1Ib - b

è
ijM? d b

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
= 1

and we can write the expected share of product i  in market j  as

(12)EbHsijL @ $%%%%%%%%%%%§ Sij
è •

ÅÅÅÅÅÅÅÅÅÅÅÅÅ§ S§  expI-gHb
è

ijLM

The  expansion  point  b
è

ij  has  to  be  chosen  optimally  for  each  share,  that  is  b
è

ij  solves  the
equation g ' HbL »b= b

è
ij

= 0, i.e.

(13)Ib
è

ij - bM ' S-1 + „
k=1

K loooom
n
oooo

xijk
'  

expIxijk
'  b

è
ijM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

k=1

K
expIxijk

'  b
è

ijM

|oooo}
~
oooo

= 0

Since -g(b) is a sum of two strictly concave functions it is also concave. Thus, the function
gHbL  attains  a unique minimum at  the point  b

è
ij .  We can also think of the optimal expansion

point b
è

ij  as solving a fixed-point equation, b
è

ij = BHb
è

ij L,  where 

(14)BHbij
è L = b - S

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=1

K loooom
n
oooo

xijk
'  

expIxijk
'  bij

è M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

k=1

K
expIxijk

'  b
è

ijM

|oooo}
~
oooo

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
.

Additionally, the Hessian of gHbL  is given by
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(15)

∑2 gHbL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ b ∑ b '

=

S-1 +
‚

k=1

K
x'

ijk xijk expIxijk
'  b

è
ijM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

k=1

K
expIxijk

'  bij
è M

-
B‚

k=1

K
x'

ijk expIxijk
'  b

è
ijMF B‚

k=1

K
xijk expIxijk

'  b
è

ijMF
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

B‚
k=1

K
expIxijk

'  b
è

ijMF
2

The following proposition  summarizes the  main result  of  this  paper  by approximating the
Gaussian  integral  corresponding  to  the  expected  share  of  product  i  in  market  j  using  a
Laplace approximation.

Proposition  1:  If  b  has  a  Normal  distribution  with  mean  b  and  covariance  S,  we  can
approximate EbHsijL =Eb :I⁄k=1

K expIxijk
'  bMM-1>  by

(16)EbHsijL @ $%%%%%%%%%%%§ Sè ij•
ÅÅÅÅÅÅÅÅÅÅÅÅÅ§ S§  exp ;-

1
ÅÅÅÅÅ
2

 Ib - b
è

ijM
'
 S
è

ij
-1Ib - b

è
ijM? 

i
k
jjjjj‚

k=1

K

expIxijk
'  b

è
ijM

y
{
zzzzz

-1

,

where 

(17)

S
è

ij =

looooom
n
ooooo

S-1 +
‚

k=1

K
x'

ijk xijk expIxijk
'  b

è
ijM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

k=1

K
expIxijk

'  b
è

ijM
-

B‚
k=1

K
x'

ijk expIxijk
'  b

è
ijMF B‚

k=1

K
xijk expIxijk

'  b
è

ijMF
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

B‚
k=1

K
expIxijk

'  b
è

ijMF
2

|ooooo}
~
ooooo

-1

,

and bij
è

 solves the fixed-point equation b
è

ij = BHb
è

ijL  for 

(18)BHb
è

ij L = b - S

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=1

K loooom
n
oooo

xijk
'  

expIxijk
'  b

è
ijM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

k=1

K
expIxijk

'  b
è

ijM

|oooo}
~
oooo

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
.

In  the  next  section  we present  detailed  simulation  results  which show the  performance of
the  approximation  in  estimating  the  unknown  parameters  b  and  S  of  the  model.  The  figure
below shows the remarkably good fit between of the Laplace approximation of the true mar-
ket share at fixed values of b  and S  for different covariates.
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Figure 1: Comparison of expected share obtained by numerical integration and the correspond-
ing Laplace approximation for a model with 2 covariates at fixed values of b  and S.

The exact expect share obtained by numerical integration coincides with the expected share
obtained  by  the  Laplace  approximation  almost  everywhere.  The  only  noticeable  deviation
occurs  for  values  of  the  expected  share  close  to  1.  Fortunately,  this  case  is  relatively  infre-
quent  in  economic  applications  where  in  multi-brand  competition  models  we  may expect  to
have many small shares in any given market but it  is  unlikely to have more than a few very
large  shares  in  the  entire  sample.  The  Laplace  approximation  introduced  in  this  section  has
the peculiar property of being an asymmetrical approximation to a symmetrical function. This
feature however proves to be extremely useful for economic applications since it provides an
very  close  approximation  to  small  shares  which are  much more likely  to  occur  in  economic
data than shares close to 1 where the approximation tends to underestimate the true expected
share.

The optimal expansion point bij
è

 used in Proposition 1 can be computed by standard itera-
tive  methods  which  solve  the  fixed-point  equation  b

è
ij = BHb

è
ijL .  While  such  methods  are

widely available in commercial software packages and tend to be extremely fast, the optimal
expansion point bij

è
 needs to be computed for each firm in each market separately, which may

potentially slow down numerical optimization routines if large data sets are used. To improve
computational  efficiency  we  can  further  derive  an  approximate  solution  to  the  fixed  point
equation, which as we will show in the next section, performs very well.
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Let   hHbL = logI⁄k=1
K expIxijk

'  bMM  and  perform  a  quadratic  Taylor  approximation  of  gHbL
around the constant parameter vector b . Then,

(19)hHbL @ hijHbL + Hb - bL' JijHbL +
1
ÅÅÅÅÅ
2

 Hb - bL' HijHbL Hb - bL + OIHb - bL3M,

where the Jacobian and Hessian terms are given by 

(20)JijHbL = „
k=1

K loom
noo

xijk
'  

expIxijk
'  bM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expIxijk
'  bM

|oo}
~oo

and

(21)HijHbL =
⁄k=1

K x'
ijk xijk expIxijk

'  bM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

⁄k=1
K expIxijk

'  bM
-

A⁄k=1
K x'

ijk expIxijk
'  bME A⁄k=1

K xijk expIxijk
'  bME

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A⁄k=1

K expIxijk
'  bME2 .

Thus, we can re-write the expression for gHbL  as

(22)gHbL =
1
ÅÅÅÅÅ
2

 Hb - bL ' S-1Hb - bL + hijHbL + Hb - bL' JijHbL +
1
ÅÅÅÅÅ
2

 Hb - bL' HijHbL Hb - bL

The optimal expansion point bij
è

 solves the equation ∑ gH bL ê ∑ b = 0. Hence,

(23)
∑ gH bL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ b
= Hb - bL ' S-1 + Jij

' HbL + Hb - bL ' HijHbL = 0.

Since this expression is now linear we can easily solve for the optimal expansion point bij
è

, 

(24)bij
è

= b + AS-1 + HijHbLE-1
 JijHbL.

We  can  now  re-write  Proposition  1  to  obtain  an  easily  implementable  version  of  the
Laplace approximation of the expected share.

Proposition  2:  If  b  has  a  Normal  distribution  with  mean  b  and  covariance  S,  we  can
approximate EbHsijL =Eb :I⁄k=1

K expIxijk
'  bMM-1>  by

(25)EbHsijL @ $%%%%%%%%%%%§ Sè ij•
ÅÅÅÅÅÅÅÅÅÅÅÅÅ§ S§  exp ;-

1
ÅÅÅÅÅ
2

 Ib - b
è

ijM
'
 S
è

ij
-1Ib - b

è
ijM? 

i
k
jjjjj‚

k=1

K

expIxijk
'  b

è
ijM

y
{
zzzzz

-1

,

where 

(26)b
è

ij = b + AS-1 + HijHb*Lb*=bE
-1

 JijHbL

(27)S
è

ij
-1

= S-1 + HijHb*Lb*=b
è

ij
,

and 
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(28)JijHbL = „
k=1

K loom
noo

xijk
'  

expIxijk
'  bM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expIxijk
'  bM

|oo}
~oo

(29)HijHb*L =
⁄k=1

K x'
ijk xijk expIxijk

'  b*M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

⁄k=1
K expIxijk

'  b*M
-

A⁄k=1
K x'

ijk expIxijk
'  b*ME A⁄k=1

K xijk expIxijk
'  b*ME

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A⁄k=1

K expIxijk
'  b*ME2 .

Notice that the Hessian expression HijHb*L  is evaluated at different points b*  in the computa-
tion of the values of b

è
ij  and S

è
ij.  Proposition 2 is also insightful in that it explains why a sim-

ple Taylor expansion of the Gaussian integral around the mean b will fail. Consider the expres-
sion for b

è
ij ,  which is  the optimal expansion point  in  the Laplace approximation.  Notice that

b
è

ij =b  only if JijHbL = 0.  But this expression can only be zero if the vectors of covariates  xijk

are  zero  for  all  k .  Hence  a  Taylor  approximation  of  the  same  problem  will  fail  since  it
expands  each  expected  share  around  a  constant  value  when  in  fact  it  ought  to  perform  the
expansion  around  an  optimal  value  which  will  differ  from  share  to  share  depending  on  the
covariates. The Laplace approximation developed above performs this optimal expansion.

3 Monte-Carlo Simulations

In  this  section  we  discuss  the  estimation  of  the  random  coefficients  model  by  non-linear
least squares after applying the Laplace approximation derived in the previous section to each
expected market share.  We will also compare its performance in Monte-Carlo simulations to
that  of  alternative  methods  used  for  the  estimation  of  these  models  in  the  econometric
literature.

Since  the  model  was  introduced  over  thirty  years  ago,  several  estimation  methods  have
been  proposed  which  try  to  circumvent  the  problem  that  the  integral  expression  for  the
expected shares does not have a closed form solution for most distributions of the taste parame-
ters.  While  numerical  integration  by  quadrature  is  implemented in  numerous software  pack-
ages its also extremely time consuming. In practice it is not possible to use numerical integra-
tion to solve such problems if the number of regressors is greater than two or three. We have
found  that  even  for  the  case  of  a  single  regressor  this  method  is  extremely  slow  and  not
always reliable.

The main attempt to estimate random coefficients models is based on the method of simu-
lated moments (McFadden, 1989; Pakes and Pollard, 1989), where the expectation is replaced
by a an average over repeated draws from the distribution of taste parameters:
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(30)EbHsijL = ‡
expIxij

'  bM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expHxik
'  bL

 d F HbL @
1
ÅÅÅÅÅÅ
R

 „
r=1

R
expIxij

'  br
êêêêM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄k=1

K expIxik
'  br

êêêêM
,

where  br
êêêê

 is  drawn from the  distribution  FHbL .  Random sampling from a distribution  may
nevertheless provide poor coverage of the domain of integration. There is no guarantee that in
a particular set of draws the obtained sequence will uniformly cover the domain of integration
and  may  in  fact  exhibit  random clusters  which  will  distort  the  approximation.  To  achieve  a
good approximation the number of draws R will have to be very large.

More recently the use of variance reduction techniques has been advocated in an attempt to
improve  the  properties  of  simulated  estimation  (Train,  2003).  Negatively  correlated  pseudo-
random  sequences  may  lead  to  a  lower  variance  of  the  resulting  estimator  than  traditional
independent sampling methods. The method currently employed in econometrics uses Halton
sequences (Small, Winston and Yan, 2005).

Halton sequences can be constructed as follows. For each dimension r of the vector b  and
some prime number k  construct the sequence

(31)st+1 = ;st, st +
1
ÅÅÅÅÅ
k

, ..., st +
Hk - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

kt ?, for s0 = 0.

This  sequence  is  then  randomized  by  drawing  m  uniform  (0,1)  and  for  each  element  s ,
letting s* = modHs + mL .

This method provides coverage of the unit hypercube by associating each dimension with a
different  prime  number  k .  In  order  to  transform  these  points  into  draws  from  the  relevant
distribution an inversion in then applied, e.g. if the desired distribution is Normal one would
turn these points on the unit hypercube into values of b , by letting b

êê
r = F-1Hsr

*L , which corre-
sponds to the inverse of the normal distribution.

The use of Halton sequences improves performance over the use of independent draws and
yet  nevertheless  it  suffers  from  the  curse  of  dimensionality.  Many  thousand  draws  are
required for each observation and the application of this method is extremely problematic for
the estimation of even a small number of parameters since it is so time consuming.

The mathematical properties  of Halton sequences are not sufficiently well  understood and
may represent  a  liability  in  some applications.  Train  (2003)  reports  that  in  estimating a  ran-
dom coefficients  logit  model  for  households’  choice  of  electricity  supplier  repeatedly,  most
runs  provided  similar  estimates  of  the  coefficients,  yet  some  runs  provided  significantly
different coefficients even though the algorithm was unchanged and applied to the same data
set.  Similarly,  Chiou  and  Walker  (2005)  report  that  simulation  based  methods  may  falsely
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identify models if  the number of draws is  not  sufficiently large.  The algorithm may produce
spurious results which “look” reasonable yet are not supported by the underlying data.

Additionally,  to  our  knowledge,  it  was  not  possible  so  far  to  estimate  the  full  covariance
matrix  using  simulation  based  methods.  Researchers  focus  exclusively  on  the  estimation  of
the  mean  and  variance  parameters  thereby  assuming  a  diagonal  structure  to  the  covariance
matrix S  of the taste parameters. We will show how this problem can be easily overcome by
the use of the Laplace approximation method we propose in this paper.  Later  on in this sec-
tion we will also show how ignoring the covariances may lead to biased results and unreliable
policy analysis if the taste parameters in the true data generating process are correlated.

We propose estimating the model parameters Hb, SL  by non-linear least squares. Let sij  be
the  observed  market  share  of  firm j  in  market  i .  We can  construct  the  aproximation  of  the
expected share using the Laplace approximation as described in Section 2, s̀ijHb, SL = EbHsijL .
This will  be a non-linear  function in the model parameters b  and S  and can be implemented
using either Proposition 1 or Proposition 2. The implementation of Proposition 2 is immediate
and  only  inolves  the  use  of  matrix  functions.  We  can  then  proceed  to  estimate  the  model
parameters by least squares or weighted least squares which can improve efficiency:

(32)Ib
`
, S

` M = argminb,S ‚
i=1

N

‚
j=1

K

Hsij - s̀ijHb, SLL2.

The  optimization  can  be  achieved  using  a  Newton  type  constrained  optimization  routine.
Some  parameters  may  require  linear  constraints  (e.g.  if  the  optimization  is  performed  over
variance parameters, then Is2Mp > 0 for all taste parameters bp ). 

Table 1. Estimation of the one variable random coefficients model. N = 1000, K = 6.

Mean Bias Quadrature Fixed Point Laplace Laplace Halton

b 0.00778 0.00492 0.00555 0.00269

s2 0.04957 0.02348 0.00634 -0.02011

MSE Quadrature Fixed Point Laplace Laplace Halton

b 0.01003 0.00297 0.00281 0.00301

s2 0.09833 0.06641 0.08357 0.07381

This can be achieved by an appropriate penalization at the edges of the allowable domain.
The model  can also be  estimated  by minimum chi-square  techniques  or  by maximum likeli-
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hood  given  our  evaluation  of  the  expected  shares.  Simulation  results  suggest  no  significant
performance differences between these methods.

In Table 1 we estimate a random coefficients model with a single taste parameter using the
different  methods  discussed  above.  The  covariate  is  drawn  from a  mixture  distribution  of  a
normal and a uniform random variable.  This particular  construction is  performed in order  to
correct  for  unreliable  estimates  that  have  been  reported  when  only  normal  covariates  are
being used. Since the model only requires univariate integration we can also perform numeri-
cal integration. We use a second order Newton-Coates algorithm to perform the integration by
quadrature  for  each  expected  share.  Additionally  we  compute  estimates  using  the  two  ver-
sions of the Laplace approximation of the expected share as described in Section 2 in Proposi-
tions 1 and 2 respectively. The results labelled as “Fixed Point Laplace” compute the optimal
expansion  points  bij

è
using  iterative  fixed  point  techniques.  The  results  labelled  “Laplace”

approximate  this  fixed  point  calculation  using  the  analytic  expression  of  Proposition  2.  We
also compute estimates using Halton sequences as implemented by Whinston, Small and Yan
(2005). We perform 500 draws for each observation.

The results in Table 1 show that all four methods produce comparable results. Interestingly,
though numerical  integration tends to be outperformed by either  of the approximation meth-
ods  presented  here.  In  particular  the  Laplace  approximation  we  proposed  performs  very
similarly  to  the  simulated estimation based on Halton  sequences  both in  terms of mean bias
and mean squared error. This result was confirmed in additional simulations were the number
of taste parameters was increased. The Laplace approximation introduced in this paper outper-
forms the method of simulated moments in terms of computational time. Even in this simple
one  dimensional  example  the  Laplace  method  runs  about  three  times  faster  than  the  corre-
sponding estimation using Halton sequences.

We have found no significantly different performance results between the Laplace approxi-
mation  using  the  fixed  point  calculation  and  that  using  the  approximation  to  the  optimal
expansion  point.  The  Laplace  approximation  of  Proposition  2  nevertheless  outperformed  all
other  methods  in  terms of  computational  time,  being  3  to  5  times  faster  than  the  simulation
approach.

Once  we  allow for  multiple  taste  parameters  we  can  ask  the  question  whether  these  taste
parameters  are  correlated  with  each  other.  Consider  a  model  with  3  taste  parameters,  drawn
from  a  distribution  with  mean  Hb1, b2, b3L '  and  variances  Is1

2, s2
2, s3

2 ).  In  many  cases  of
interest there is no a priori reason to constrain the covariance matrix of this distribution to be
diagonal.  We can allow for correlations between taste parameters by setting the off-diagonal
elements of the covariance matrix equal to sij = rij si s j  for -1 < rij < 1. The parameter rij
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measures the strength of the correlation between the different taste parameters. The full covari-
ance matrix which needs to be estimated in this case is:

(33)S =
i

k

jjjjjjjjj

s1
2 r12 s1 s2 r13 s1 s3

r12 s1 s2 s2
2 r23 s2 s3

r13 s1 s3 r23 s2 s3 s3
2

y

{

zzzzzzzzz

We use  the  Laplace  approximation  method to  estimate  all  9  parameters  and report  results
for mean bias and MSE in Table 2. We were not able to estimate the same parameters using
the  method  of  simulated  moments  with  Halton  sequences.  The  algorithm failed  to  converge
for Halton sequences under different model parameters and different starting values.

Table 2. Estimation of the three variable random coefficients model with covariances. N = 2000, K = 6.

Laplace Mean Bias MSE

b1 0.01167 0.00233
b2 0.00679 0.00201
b3 -0.00371 0.00298
s1

2 -0.06889 0.09499
s2

2 -0.08245 0.07016
s3

2 0.03880 0.03180
r12 0.04918 0.00774
r13 0.04317 0.00350
r23 -0.00702 0.00551

Computational  issues  involving  the  use  of  simulated  moments  seem  to  have  prevented
empirical  work  involving  the  estimation  of  the  full  covariance  matrix.  We  now  wish  to
explore to what extent this may bias the results. To this purpose we estimate the same model
as  in  the above example but  ignore the covariances.  Thus the true model  has rij ∫ 0  but  we
only estimate the restricted model where we assume rij = 0 for all i, j, i ∫ j .

The  results  are  presented  in  Table  3.  We  were  able  to  obtain  estimates  of  the  restricted
model  using  both  the  new  Laplace  approximation  we  propose  and  by  using  the  simulation
approach involving Halton sequences. Once again both methods produce comparable results.
While the estimates of the mean parameters Hb1, b2, b3L '  seem to be sufficiently robust to the
misspecification  of  the  covariance  matrix,  the  estimates  of  the  variance  parameters
Is1

2, s2
2, s3

2 ) seem to be strongly affected by the non-inclusion of the covariance terms in the
optimization. While the size of the bias is model dependent we have found an absolute value
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of the bias between 30-60% in most simulations. Additionaly, it seems that negative correla-
tions which are falsely excluded bias the results much more than positive ones.

Table 3. Estimation of the three variable random coefficients model without covariances. The true model contains 
covariances but these are not estimated. N = 2000, K = 6.

 Mean Bias Mean Bias MSE MSE
Laplace Halton Laplace Halton

b1 0.02037 0.01003 0.00321 0.00256
b2 0.01582 0.00778 0.00201 0.00258
b3 0.00651 0.00212 0.00122 0.00197
s1

2 -0.01032 -0.21102 0.10192 0.18226
s2

2 -0.50883 -0.43340 0.32381 0.27094
s3

2 -0.12991 -0.14967 0.03900 0.09577

The failure to include the correlations between taste parameters may also lead to incorrect
policy  recommendations.  Thus,  consider  the  three  variable  described  above  where  the  true
data generating process has non-zero correlation terms and a full covariance matrix.  We can
interpret the model as follows.

We  label  the  first  variable  as  “price”  and  consider  the  policy  experiment  whereby  the
government  has  to  decide  whether  to  impose a  10% tax on a specific  good.  The tax is  fully
passed on to the consumers in the form of a 10% price increase. There are K = 6  competing
firms  in  each  market  producing  differentiated  brands  of  the  good  on  which  the  tax  was
imposed. We wish to simulate the ex post effect of the tax on the market shares of each firm.
In order to do so we collect a sample of observations consisting of the market shares of each
firm in  different  markets  and  the  product  characteristics  of  the  differentiated  good produced
by  brand  and  market.  We  estimate  the  random  coefficients  model  with  a  full  covariance
matrix  which  allows  for  correlations  between  taste  parameters.  We  also  estimate  the  same
model but limit ourselved to estimating a diagonal covariance thus restricting the correlations
to  be  zero  and also  derive  the  logit  estimates  of  the  means corresponding  to  the  case  where
the taste parameters are assumed to be constant in the population. We can use these estimates
to  simulate  the  distribution  of  market  shares  of  each  firm  across  the  markets  and  compare
them to the initial  distribution of market shares before the tax was implemented. We present
the resulting distributions in Figure 2.

If we estimate any of the mis-specified models by using either the logit estimates of Equa-
tion  2  or  the  random  coefficients  logit  estimates  of  Equation  3  under  the  assumption  of  no
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correlation  we  would  reach  very  different  conclusions  from  the  case  when  we  take  into
account  the  full  covariance  matrix  between taste  parameters.  Thus  we can see  how ignoring
the correlations may lead to incorrect  policy recommendations when the random coefficients
model is used to estimate the distribution of taste parameters.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.04

0.08

Distribution of Market Shares for Firm 1

After Tax (Logit)

After Tax (with covariances)

Before Tax

After Tax (no covariances)

Figure 2: Market shares of Firm 1 before and after tax

4 Conclusion

In this paper we have introduced a new analytic approximation to the choice probability in
a random coefficients logit model. The approximation was derived using a multivariate exten-
sion  of  the  Laplace  approximation  for  subasymptotic  domains.  The  expression  results  in  a
non-linear  function  of  the  data  and  parameters  which  can  be  conveniently  estimated  using
non-linear least squares. 

This new method of estimating random coefficients logit  models allows for the estimation
of correlations between taste parameters. The estimation of a full covariance matrix seems to

16



have eluded many previous implementations of the random coefficients logit  model employ-
ing simulations of the underlying taste distributions. 

Simulation  results  show  that  our  new  method  performs  extremely  well,  both  in  terms  of
numerical accuracy and computational time. We also provide an example of the importance of
estimating correlations  between taste  parameters  through a tax simulation where very differ-
ent  policy implications would be reached if  the estimated model is  mis-specified by restrict-
ing the correlations to be zero.

B A C K M A T T E R

A Appendix

This appendix states the multivariate Laplace approximation theorem. For additional discus-
sions of the theorem and applications to statistics see Muirhead (2005) and Jensen (1995). A
proof is given in Hsu (1948).

Laplace  Approximation  Theorem.   Let  D  be  a  subset  of  Rp  and  let  f  and  g  be  real-
valued functions on D  and T  a real parameter. Consider the integral

(34)I = ‡
bœD

f HbL expH-T gHbLL d b

(35)HaL g has an absolute minimum at an interior point b
è

of D;

(36)
HbL there exists T ¥ 0 such that f HbL expH-T gHbLL is absolutely integrable over the
domain D;

(37)

HcL all first and second order partial derivatives of gHxL,
∑ g

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ bi

,
∑2 g

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ bi ∑ b j

, for i = 1.. p and j = 1.. p

exist and are continuous in the neigbourhood NHb
è L of b

è
;

(38)

HdL there is a constant g < 1 such that
ƒƒƒƒƒƒƒƒƒƒƒ

expH- gHbLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
expI- gH b

è LM

ƒƒƒƒƒƒƒƒƒƒƒ
< g for all x œ D \ NHb

è L;

(39)HeL f is continuous in a neighbourhood NHb
è L of b

è
.

Then for large T , we have:
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(40)I
è

= K 2 p
ÅÅÅÅÅÅÅÅÅÅ
T

O
pê2

AdetIHHb
è LME

-1ê2
 f Hb

è L expI-T gHb
è LM, where HHb

è L =
∑2 gHb

è L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ b

è
 ∑ b

è
'

and

(41)I = I
èI1 + OIT-1MM as T Ø ¶.

In  section  2  we  let  f HbL = 1  and  gHbL = 1ÅÅÅÅ2  Hb - bL ' S-1Hb - bL + logI⁄k=1
K expIxijk

'  bMM  b.
This is sometimes referred to as an exponential form Laplace approximation.

Moreover we use the observation of Butler (2002) that in many cases of interest this approxi-
mation performs very well  even in  subasymptotic  cases  where T  remains small.  In  our  case
T = 1.
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