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A�������. This paper (i) formalizes conditions under which a population distribution of

categorical responses to attitudinal questions (‘items’) has a scale representation; (ii) devel-

ops tests for whether a particular sample of item responses is consistent with a scale repre-

sentation; (iii) develops methods for nonparametrically estimating the relation between an

outcome and a scale value; and (iv) generalizes the foregoing to the multi-scale case. An

implication of these results is that the effect of multiple latent attitudes on behaviour can

be identified, even though the attitudes of an individual can never be precisely observed.

We illustrate our methods using survey data from the 1992 U.S. Presidential election, where

the ‘outcome’ is an individual’s vote and the ‘items’ are expressions of social and policy

preferences.

1. I
��������
.

The notion that individuals’ social and political attitudes cohere to form a consistent

and stable system of belief that guides rational action is difficult to formalize in theory and

confirm in practice. In this paper we set out to provide a general account that embodies

the intuitive notion of ‘consistent underlying attitudes’ and outline methods for assessing

whether a small number of such attitudes can be used to explain voting behavior, partisan

identification, and similar expressions of social and political preference. The key features of

our account include:

• Individuals are ‘conservative’ or ‘liberal’ on a small number of substantive scales;

individuals are (weakly) ordered along these scales and there is no loss in generality

in representing the population as being uniformly distributed on [0,1] on each scale

or dimension.

• Among the data are elicitations of degrees of agreement with statements concerning

social and political issues; the questions and the corresponding responses are called
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‘items’. (A fundamental question is whether the responses to a particular collection

of items are determined by individuals’ positions on a single scale.)

• If a valid scale exists for a particular collection of items, more ‘liberal’ people (by

convention, those closer to 1 on the scale) tend on average to give more liberal answers

to the items defining the relevant scale. (This is what it means to be more liberal

or more conservative.) A monotonic scale representation assigns to each point in

[0,1] a probability distribution over each item’s responses that preserves the ‘liberal

people on average give liberal answers’ property.

• A set of items is ‘scalable’ if there exists a monotonic scale representation that exactly

reproduces the population’s joint distribution of the constituent items’ responses.

Otherwise the items are not scalable.

• When, as in most practical situations, we cannot know the population item response

distribution, we can use a sample of item responses to test the hypothesis that a

collection of items do ‘scale’.

• An individual’s position on the [0,1] scale can never be precisely determined, not least

because we have a limited number of items, each of which consists of a categorical

response. Nonetheless, the conditional probability distribution of an item response

with respect to a scale value is identified for the population and can be estimated

from a sample. This is true whether or not the item was used in the definition of the

scale.

• The preceding point can be generalized to the case where there are multiple [0,1]

scales, each based on its own scalable set of items with no item appearing in more

than one scale. In this case, an item response distribution that is conditional on

multiple scales can be identified and estimated.

Needless to say, we are interested in expositing the above points in a manner that is

free of specific parametric assumptions. To some extent, this distinguishes our approach from

the psychometric literature, which is largely parametric (Skrondal and Rabe-Hesketh 2004);

even nonparametric item response theory usually starts from a reduction of the item scores

to their sum (Sijtsma and Molenaar 2002).

The plan of the rest of this paper is as follows. In the next section we define ‘monotonic

scale representations’, the basic building block that characterizes scalable item responses, and

estimate several such representations for a sample of items relating to ‘cultural’ items. In

Section 3 we develop a test for whether a particular sample of item responses is compatible

with a monotonic scale representation, in which case the items are said to ‘scale.’ Section

4 examines the implications of a monotonic scale representation and the limitations on
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inference concerning the scale position of any particular individual. Section 5 develops

methods for estimating the conditional probability of an event such as ‘voting for Clinton’

conditional on scale value; Section 6 tackles the same problem in the presence of additional

conditioning variables, such as membership in a social group. In Section 7 we briefly present

results for a second scaling, based on items relating to the role of the state in assuring

economic welfare, in order to provide an example for Section 8, which develops methods for

the multi-scale case. Section 9 discusses some open problems, and an Appendix gives details

on the estimation methods used in the main body of the paper.

2. M�
���
�� S���� R������
�����
: D���
����
 �
� E�������.

To give some intuition about the methods to be developed, we introduce some data

drawn from a telephone survey in 1994 conducted by the Pew Foundation that explored

attitudes and voting behavior in the 1992 U.S. Presidential election. We will limit our

attention at this point to five items and the Presidential vote, to explore whether the five

items are ‘scalable,’ and, if so, how the underlying attitude they manifest affects the vote.

The five items come in two formats. In the first, the respondents are read two state-

ments and asked which of the statements best expresses their own view; after making the

choice the respondent is asked: "Do you feel strongly about that, or not?". In the second

format, the respondent is read a one sentence description of a policy proposal and asked

whether they strongly favor, favor, oppose, or strongly oppose the proposal. Thus for each

of the five items there are four possible outcomes, or 1,024 (= 45) possible combinations of

responses.

The five items are:

(1) "The best way to ensure peace is through military strength." OR "Good diplomacy

is the best way to ensure peace." (Format 1.)

(2) "Allowing government Medicaid benefits to help pay for abortions for low—income

women." (Format 2.)

(3) "A constitutional amendment to permit prayer in public schools."

(4) "Homosexuality is a way of life that should be accepted by society." OR "Homosex-

uality is a way of life that should be discouraged by society."

(5) "Books that contain dangerous ideas should be banned from public school libraries."

OR "Public school libraries should be allowed to carry any books they want."

The responses to these questions are coded 1 to 4, with 4 being the most liberal

response. For the record, the liberal direction is to favor diplomacy, favor benefits for abor-

tions, oppose school prayer, accept homosexuality, and oppose banning books with dangerous

ideas.
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We have a sample of 3,218 complete responses to the five items and to other ques-

tions such as recollection of voting behavior1. The sample provides sample means for each

of the 1,024 cells defined by the five item responses, so for example there are 97 respon-

dents answering {1,1,1,1,1}, the most conservative response to each item, corresponding to

a (sample) mean of .03014; there are 352 empty cells. Ideally, we would like to construct a

model which (1) conforms to our intuition of a (single) scale and (2) reproduces a given set

of cell means or probabilities. Obviously, whether (2) can be accomplished depends on the

cell probabilities we are targeting.

To address (1), we can, without loss of generality, assume that the population has

an attribute u that is distributed uniformly on [0, 1], with the characteristic that u2 > u1

implies the responses given by the sub-population u2 are (weakly) more liberal (or have

more ‘u-ness’) than those of sub-population u1. The appropriate notion of monotonicity is

(first-order) stochastic dominance: scale position u2 is more liberal than u1 provided the

distribution of the u2 item responses stochastically dominates the u1 responses.

Definition 1. Let Fi(j; u) be the item i distribution function for response j at scale value

u. Then the u2 sub-population stochastically dominates the u1 sub-population with respect to

item i if Fi(j;u2) ≤ Fi(j; u1) for all j.

Definition 2. Item i is monotonic in scale u provided u2 > u1 implies that the u2 sub-

population stochastically dominates the u1 sub-population with respect to item i.

Definition 3. Let I = {i1, ..., ik} be a collection of items and̥I(·;u) = {Fi1(·; u), ..., Fik(·; u)}

the corresponding collection of distribution functions. Then ̥I(·; u) is a monotonic scale rep-

resentation provided (i) all elements of I are monotonic in scale u, and (ii) conditional on

u, the item responses are independent so that the joint distribution function of the outcomes

FI(ji1 , ji2 , ..., jik ; u) = Fi1(ji1 ;u) · Fi2(ji2 ;u)... · Fik(jik ; u).

Definition 4. Let I = {i1, ..., ik} be a collection of items admitting q distinct outcomes or

responses with population probabilities π = {π1, ..., πq}. Then {I, π} is a scalable item col-

lection provided there exists a monotonic scale representation that reproduces π (i.e. assigns

the probabilities π to the q possible outcomes.)

We reiterate in passing that whether a collection of items is scalable is a property of

the population probabilities π.

1In the current paper we consider only complete responses. Missing data and incomplete responses can be

handled by fairly simple modifications of the methods developed here, but their exposition is considerably

simplified once the complete response case is understood.
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Figure 1: A monotonic scale representation for the multinomial distribution of Table 1.

To demonstrate the implications of our definitions, we consider the simple example of

the collection of items 1 and 2 above. Since both items have 4 possible responses, there are

16 possible outcomes for the collection. In our sample of 3,218 responses the sample means

for these outcomes are given in the following table:

Abortion→ 1 2 3 4 Total

Military↓

1 .1125 .0597 .0671 .0385 .2778

2 .0360 .0267 .0435 .0165 .1227

3 .0364 .0308 .0491 .0158 .1321

4 .1302 .0991 .1510 .0870 .4674

Total .3151 .2163 .3108 .1579
Table 1. Relative frequencies for items 1 and 2.

The multinomial distribution represented in Table 1 has a monotonic scale repre-

sentation that is presented in Figure 1. The bottom line in each panel corresponds to the

distribution function for the response “1”, the middle line to the response "2", and the top

line to the response "3". Since all responses must be 4 or less, the distribution function for

"4" is a horizontal line at 1. The probability of giving the response "1" is the value of the

bottom line; the probability of "2" is the difference between the middle and lower lines; of

"3" the difference between the top and middle lines, etc.

Several important aspects of monotonic scale representations are exemplified in Figure

1. First, monotonicity, or the property that ‘liberal people on average give liberal responses’
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corresponds to the requirement that all the lines shown are (weakly) monotonically decreas-

ing. Second, the lines may not cross, (nor go beyond [0,1]) since this would correspond to

a negative probability for some value of u. Third, while the probabilities of the responses

"1" and "4" must be monotonic in u, those of "2" and "3" (and in general, of any ‘interior’

response) need not be, as is apparent from the left panel.

Since Table 1 gives the sample frequencies of the 16 possible outcomes, its monotonic

scale representation has the same value of its likelihood function as the multinomial model

that assigns to the 16 outcomes their sample frequencies. While the details of the con-

struction of Figure 1 are left to the Appendix on estimation, it is worth noting that the

multinomial model provides a likelihood bound (the ‘nonparametric likelihood bound’) and

any estimate that achieves this bound and that satisfies the monotonicity and non-negative

probability constraints is also a monotonic scale representation. Consequently a monotonic

scale representation need not be unique. In fact, multiple representations are possible for

Table 1. However, it is not the case that every two item collection has a monotonic scale

representation: reversing the coding of an item in Table 1 (i.e. recoding responses {4,3,2,1}

to {1,2,3,4}) produces a multinomial distribution that cannot be monotonically scaled.

While the nonuniqueness of monotonic scale representation requires further investi-

gation, the more important issue in practice is that the population probabilities π, which

would serve as our ‘target’ for the estimation process, are not known but usually estimated by

sample means. Since the number of empty cells in a sample grows rapidly with the number

of items, (there are no empty cells in our sample of 3,218 for item collections with 16 or 64

cells, but typically 14 when there are 2 56 cells and 352 empty cells for the 1,024 possibilities

when all five items are taken together), and a monotonic scale representation is (virtually)

incapable of producing a probability of zero for any outcome, it will be quite common for

there to be no monotonic scale representation for the sample probabilities π̂ when q is large

relative to n, the number of respondents. Obviously when q > n (so for 6 items in the

current example) this must happen. In addition, the growth of q relative to n increases the

sampling error in π̂ across an increasingly large number of its elements. Consequently, the

failure of π̂ to have a monotonic scale representation is not in itself evidence that the item

collection {I, π} is not scalable. In the next section we develop a simple test for scalability.

3. I��� S�������
 �
� T���� ��� S����������

A simple test for scalability follows from the observation that the sample nonpara-

metric log likelihood value
∑q

j=1 π̂j log π̂j is an upper bound on the achievable log likelihood

for a given sample and that this bound has a distribution for the data generating process

represented by an estimated monotonic scale representation (or any model, for that matter.)
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A test can thus be based on whether the observed value of the nonparametric log likelihood

function (‘npllf’) is unusual for the estimated model, since an npllf that would not often be

generated by the model is evidence that the model is overly restrictive.

This test can be implemented by simulating the estimated model for the sample size

in hand and comparing the simulated values of the npllf to the value in the sample. A test

of size α is constructed by referring the sample npllf to the (1-α) quantile of the simulated

values, with the hypothesis of scalability being rejected if the sample npllf is more than

100f(1-α)% of the simulated values.2

Applying this procedure to the five items above, we obtain a npllf for the sample of

-18962.98, whereas a b-spline model with df=9 (see the estimation appendix for details) has

a llf of -19610.2. The estimated model has 5*3*9=135 parameters, since there are 5 items

each with 3 curves to be estimated, each of which is given by a b-spline with 9 parameters.

Simulating 1,000 samples from the estimated model results in simulated npllf’s which exceed

-18962.98 only 4.6% of the time. It is possible to increase this proportion by expanding the

complexity or flexibility of the model, but only slightly. Consequently we conclude that it is

unlikely that the five items scale.

Perhaps the most natural strategy to deal with this result is to reduce the number of

items to be scaled to four by estimating the five models that result as each of the items is

deleted in turn. The results of this process are given in Table 2:

Items npllf model llf test level

1,2,3,4 -15769.79 -15936.00 .235

1,2,3,5 -15674.51 -15853.29 .255

1,2,4,5 -15708.05 -15848.79 .498

1,3,4,5 -15482.37 -15634.59 .378

2,3,4,5 -15552.14 -15729.25 .182
Table 2. Tests for scaling within subsets of four items; b-spline models with 9 parameters.

Examining this table we see there is no combination for which there is a decisive

rejection of scalability, but that one combination, {1,2,4,5}, which excludes the school prayer

item, seems most plausible. The estimated monotonic scale representation for this case is

given in Figure 2.

An alternative to this is to alter the coding of the items. For example, it is possible

to code the responses as simply ‘agree’ or ‘disagree’; this is equivalent to removing the upper

and lower lines in Figure 2, leaving only the middle line. It is possible that the resulting

collection of item binary distributions is scalable while the full coding is not. Thus, to use

2This procedure differs from a bootstrap.
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Figure 2: Monotonic scale representation for items 1,2,4, and 5. Responses are fully coded

and the model has 9 b-spline terms for every line.

the binary coding is to relax the restriction of stochastic dominance in the full coding. A

disadvantage of this is that individual specific information is lost. However, since the number

of possible outcomes is reduced (in this example, from 45 = 1, 024 possibilities to 25 = 32

possibilities), the sampling error in the estimated cell probabilities is reduced.

Table 3 shows the likelihoods and simulated test levels associated with a binary out-

come coding for our five items for different levels of model parameterization.

b-spline terms llf scalability test level

4 -10189.74 .380

5 -10186.10 .405

6 -10184.79

7 -10183.09 .456

8 -10182.82

9 -10182.04 .470
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Figure 3: Monotonic scale representation for items 1,2,3,4, and 5. Responses are binary

coded and the model has 5 b-spline terms.

Table 3. Likelihood values and scalability tests for binary codings of all five items.

From Table 3 it is apparent that the fit and scalability tests levels are all similar, and

that the five items, when coded into two responses only, are probably scalable. We choose

the model with 5 b-spline terms, illustrated in Figure 3, to subject to further analysis along

with the fully coded 9 term model of Figure 2, as a potentially interesting point of contrast

both with respect to coding and to the evident degree of smoothness.

4. I���������
� �� ��� E�������� M�
���
�� S���� R������
�����
.

The estimated monotonic scale representations provide estimates of various important

quantities, such as the u—position of respondents (via the posterior distribution given their
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Figure 4: Response probabilities by u-type. Top panel: estimates from the fully coded four

item model of Figure 2. Bottom panel: estimates from the binary coded five item model of

Figure 3.

responses) and the probability of a response given a position on the u—scale. Figure 4 shows

the probabilities of some common responses for the models of Figures 2 and 3. In each

panel the responses that are displayed can be unambiguously ordered from conservative to

liberal, and the corresponding probabilities have modes in the corresponding order, with the

distributions of the extreme responses being more sharply defined (peaked) than those of

the moderate responses.

How well can we infer the u—type of a respondent? To gain some sense of this,

we tabulate in Table 4 the probabilities for the 32 possible responses of the binary coded

model for u = .10, .50, and .90. From Table 4 it is evident that while u = .1 respondents

quite commonly answer {1,1,1,1,1} and u = .9 respondents commonly answer {2,2,2,2,2}, the

median (in u) respondent is spread out over a number of responses. The median respondent’s
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third (and nearly second) most likely answer is {2,2,1,2,2}, which occurs with probability

.0775, is also the second most likely answer of the u = .9 respondent also, who gives it with

probability .1583. Consequently it is clear that we cannot, at least in this model, easily

distinguish between various types of respondents on the basis of their response. When we

carry out classification of respondents via Bayes’ Theorem, we inevitably will attribute to

some e.g. median respondents a high likelihood that they are liberals, because they have

given answers that are often given by liberals.

response u = .1 u = .5 u = .9 response u = .1 u = .5 u = .9

11111 0.3085 0.0327 0.0002 21111 0.2247 0.0554 0.0006

11112 0.1609 0.0282 0.0029 21112 0.1172 0.0477 0.0080

11121 0.0081 0.0458 0.0011 21121 0.0059 0.0777 0.0031

11122 0.0042 0.0395 0.0154 21122 0.0031 0.0669 0.0418

11211 0.0371 0.0058 0.0004 21211 0.0270 0.0098 0.0011

11212 0.0193 0.0050 0.0055 21212 0.0141 0.0084 0.0148

11221 0.0010 0.0081 0.0021 21221 0.0007 0.0137 0.0057

11222 0.0005 0.0070 0.0286 21222 0.0004 0.0118 0.0775

12111 0.0222 0.0379 0.0008 22111 0.0162 0.0642 0.0022

12112 0.0116 0.0326 0.0112 22112 0.0084 0.0553 0.0303

12121 0.0006 0.0531 0.0043 22121 0.0004 0.0900 0.0117

12122 0.0003 0.0457 0.0584 22122 0.0002 0.0775 0.1583

12211 0.0027 0.0067 0.0015 22211 0.0019 0.0113 0.0041

12212 0.0014 0.0058 0.0207 22212 0.0010 0.0098 0.0562

12221 0.0001 0.0094 0.0080 22221 0.0001 0.0159 0.0216

12222 0.0000 0.0081 0.1083 22222 0.0000 0.0137 0.2937

Table 1: Response probabilities for u = .1, .5, .9 in the binary coded five item model.

Interestingly enough, though, we can use the estimated monotonic scale representa-

tion to precisely calculate this effect. For example, for the median respondent of Table 4, we

know there is a .0327 probability that he will give a {1,1,1,1,1} response, a .0282 probability

of a {1,1,1,1,2} response, etc. and that for each of these responses, we also know that we will

compute posterior probabilities for u based on the curves analogous to those shown in Fig-

ure 4 (after normalizing by dividing by their integrals, i.e. the probability of each outcome.)
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Figure 5: Posterior densities that would be attributed to populations consisting solely of

u = .1, .5, .9 respondents, respectively. Based on the binary coded five item model.

Consequently for the median respondent we compute:

f(u|u0 = .5) =

q∑

j=1

f(u|rj)π(rj|u0 = .5) (1)

In Figure 5 we carry out the calculation indicated in equation (1) for the median

respondent and the analogous calculations for u = .1 and u = .9 respondents. One way

of interpreting Figure 5 is the following thought experiment. A pure population of u = .5

respondents behaves as estimated by the model; we observe their responses. Using the

model but not knowing anything about the input population, how would one classify the

population? The limiting distribution is the middle curve in Figure 5.

One important observation from Figure 5 is that the more extreme respondents must

of necessity be on average attributed toward the middle of the distribution, the extreme case

being respondents at u = 0 or u = 1. This effect is operative at the u = .1 and u = .9 levels

shown in Figure 5: the expectation of the corresponding posterior densities is .257 and .749,

respectively; for the median it is .505.

For comparison we show the same calculations for the Figure 2 model with four fully

coded items in Figure 6. Here the posteriors have modes at about the ‘right’ levels, but

the bias in expectation is about the same: the three expectations are .259, .496, and .756,
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Figure 6: Posterior densities that would be attributed to populations consisting solely of

u = .1, .5, .9 respondents for the fully coded four item model. While the modal attribution is

more sharply expressed and closer to the subpopulation value, considerable ‘misattribution’

exists.

respectively. It could be argued that the fully coded four item model is more informative

about respondents than the binary five item model, but as we shall see in the next section,

the most salient features are that while classifications based on a small number of coarse

items must of necessity be error—prone at the respondent level, we do know the classification

structure implied by the model. This means that the ‘measurement error’ inflicted on us by

nature can be taken into account so that relevant relations may be reliably computed at the

population level. We will examine the implications of this for model selection below.

5. E�������
� ��� P���������� �� �
 E �
� C�
�����
�� �
 � S���� V���.

We now turn attention to the simplest case of the important question of how to

estimate the probability of an arbitrary event or outcome, such as a respondent’s ‘voting for

Bush in 1992’, conditional on the value of a respondent’s scale value. Letting V take the

value 1 if the event in question takes place and 0 otherwise, we consider this problem under
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two assumptions:

p(V |u, r) = p(V |u) (2a)

p(V |u, r) = p(V |r) (2b)

The first of these assumptions is perhaps the most natural: it says that if we knew u,

knowing r would be of no additional value; in effect, the underlying characteristic u carries

all the relevant information for the event V.

However, a case could be made that the second assumption is reasonable. The under-

lying characteristic u determines the responses r that are expressions of social and political

preferences; once these have ‘hardened’, a decision such as the vote is framed in terms of

the preferences on these items. An advantage of this approach is that it is closer to the

observable data; it also, as we shall see, offers an informative benchmark.

Under the first assumption (‘Model 1’) we have:

p(V |rj) =

∫
p(V |u, rj)f(u|rj)du (3)

=

∫
p(V |u)f(u|rj)du

where j = 1, ..., q indexes the q possible responses. This suggests estimating p(V |u) by

maximizing the conditional likelihood function across respondents.

Under the second assumption (‘Model 2’) the approach taken in equation (3) generates

an identity since

p(V |rj) =

∫
p(V |u, rj)f(u|rj)du (4)

=

∫
p(V |rj)f(u|rj)du

= p(V |rj)

∫
f(u|rj)du

Instead, integrating out (summing over) the responses is called for:

p(V |u) =

q∑

j=1

p(V |rj , u)p(rj|u) (5a)

=

q∑

j=1

p(V |rj)f(u|rj)π(rj) (5b)
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Examining (5b)3 we see that p(V |u) can be estimated by using the sample analogs of p(V |rj)

and π(rj)
4 , since the item response model supplies an estimate of f(u|rj). Carrying out the

indicated substitutions of sample analogs we have

ĥ(u) =

n∑

i=1

Vif(u|ri)

n
(6)

where ĥ(u) is interpretable as an estimate of p(V |u) in Model 2 and is also computable under

Model 1.

Equation (6) has a further interpretation. Suppose we knew ui; then the expression

p̂(V |u) =

n∑

i=1

Viφ(u; ui, σ)

n
(7)

where φ(u; ui, σ) is a symmetric density function with location ui and scale σ (or other kernel

centered at ui with bandwidth σ) would serve as a nonparametric estimate of the probability

of the event V conditional on u.5 In the current context we do not observe ui but we have

f(u|ri), its posterior distribution based on i’s items responses ri. If we substitute f(u|ri) for

φ(u; ui, σ) in (7) we obtain (6). This indicates that as f(u|ri) becomes more concentrated

around ui, ĥ(u) approaches p(V |u) in many circumstances.

These observations motivate another approach to estimating Model 1: to estimate

p(V |u) by expressing h(u) as a function of p(V |u) and then to estimate p(V |u) by bringing

the implied h(u) into agreement with the observed ĥ(u). Writing the population h(u) as

h(u) =

q∑

j=1

p(V |rj)p(rj|u) (8)

3Which follows from (5a) since p(V |rj, u) = p(V |rj) and f(u|rj)π(rj) = f(u, rj) = p(rj |u)f(u) = p(rj |u).
4Another estimate would use the item response model’s estimate of π(rj) rather than the sample analog.
5One way to see this is to see that (7) is the sample analog of

p(V = 1|u) =
f(u|V = 1)p(V = 1)

f(u|V = 0)p(V = 0) + f(u|V = 1)p(V = 1)
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we note that p(V |rj) =
∫
p(V |w)f(w|rj)dw, where we use w in place of u to distinguish it

from the point of evaluation of h(·). Thus

h(u) =

q∑

j=1

∫
p(V |w)f(w|rj)dw p(rj|u) (9)

=

q∑

j=1

∫
p(V |w)f(w|rj)p(rj|u)dw

=

∫
p(V |w)

q∑

j=1

f(w|rj)p(rj|u)dw

=

∫
p(V |w)

q∑

j=1

f(w|rj)f(u|rj)π(rj)dw

=

∫
p(V |w)g(w;u)dw,

where

g(w;u) =

q∑

j=1

f(w|rj)f(u|rj)π(rj) (10)

The function g(w;u) gives the density of ‘actually—w’ respondents at attribution point u; it

is symmetric in its arguments. Notice that if responses were so informative that g(u; u) = 1

and g(w; u) = 0 for w 	= u so that g(w;u) is a Dirac delta function, then h(u) would be

p(V |u).

An important aspect of the manipulations in (9) is that they reduce a computation

with q integrals to a single integral. Moreover, if we are constructing p(V |u) as part of an

optimizing process, it is convenient that g(w; u) depends solely on the (previously estimated)

monotonic scale representation.

We now estimate p(V |w) by matching h(u) =
∫
p(V |w)g(w; u)dw with ĥ(u) =

n−1
n∑

i=1

Vif(u|ri) for various binary events V ; the details of the precise estimation meth-

ods are in the Appendix, but we basically minimize the sum of squares of ĥ(u)− h(u) over

a grid of u points.

We start by taking V to be the respondents’ recollection of their votes in the 1992

elections, where the possible responses are Clinton, Bush, Perot, Did not vote. We estimate

the models for the binary events {Bush, not Bush}, {Clinton, not Clinton} etc. simultane-

ously, thereby ensuring that the estimated probabilities of the 4 events together add to 1

and presumably also gaining statistical efficiency in the estimation. In Figure 7 we show the

results obtained by approximating p(V |u) by a logistic transformation of a b—spline with 4
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degrees of freedom, together with the corresponding h(u) and ĥ(u). The estimates of h(u)

coincide closely with ĥ(u), but this agreement can be made even closer by increasing the

flexibility with which p(V |u) is modeled, at the cost of rather implausible fluctuations in

p(V |u). This issue is discussed further in the Appendix.

From Figure 7 we can see that when ĥ(u) is basically monotonic, the estimated p(V |u)

(under Model 1) is even more responsive. A simple way of looking at this is that under Model

1 the attribution process tends to move probability weight to the center of the distribution.

Thus if there is an evident relation in ĥ(u) between the scale value and the event, this relation

is in fact stronger since the effect we are observing has been attenuated by the attribution

process. If we believe the item response model, we can take account of this effect.

Examining Figure 7, we see that neither the Clinton nor the Bush p(V |u) is very

responsive between the .2 and .6 quantiles of u, and that the Bush p(V |u) rises slightly over

this range (corresponding basically to a change in participation, as evidenced in the ‘Did

not vote’ panel.) In interpreting this result among a ‘middle section’ of voters, it should be

kept in mind that there may be other factors–i.e. other scales–that motivate these voters

(indeed all voters) and that in the multi-scale theory to be developed below, the values on

these other scales need not be independent of the scale shown here (though the other scale

will have a marginal U [0, 1] distribution.) Thus it is entirely possible that these ‘culturally

moderate’ voters tend to be a little more ‘economically conservative’ than others, and that

this is the motivating factor in their voting decision.

As noted above, other approaches to estimating p(V |u) are possible, particularly

under Model 1. One possibility is to use

p(V |rj) =

∫
p(V |u)f(u|rj)du (11)

as the basis for computing a conditional likelihood for each respondent’s V, and maximizing
∑n

i=1 log p(Vi|ri). An advantage of doing this is that ML provides a coherent framework for

observation weighting (which is being done implicitly in the h—function method by the choice

of u points over which the matching is done) and model selection (via likelihood ratio tests.)

The results of doing this for the Bush and Clinton vote probabilities6 are shown in Figure 8.

The results are virtually identical to those obtained by the h—function method.

6In this case for each candidate separately, although the estimates could be done jointly as for the h

function method and as for the conditional ML estimates of vote by demographic group below.
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Figure 7: Probabilities of voting for Bush, etc. derived from the fully coded four item model.

In each panel the two lines that are hardly distiguishable are h(u) (black) and ĥ(u) (blue).

The remaining line (red) is the estimate of p(V |u), which is a b—spline with four degrees of

freedom.
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Figure 8: Conditional maximum likelihood (black line) and h function (red) estimates of the

probability of voting for Bush (top panel) and Clinton (bottom).

6. A������� �
� B��� ��� �� S����� G���.

It is possible, though perhaps at first sight peculiar, to model demographic character-

istics in the same way as the vote. That is, using D to denote membership in a demographic

group (such as African American, college graduates, etc.) one can estimate p(D|u) using the

methods of the previous section. This can then serve as the basis for estimating f(u|D) via

f(u|D) =
f(u,D)

p(D)
=
p(D|u)f(u)

p(D)
=
p(D|u)

p(D)
(12)
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since f(u) = 1; f(u|D) gives the density of u conditional on membership in a demographic

group.

We implement this idea by dividing our sample into seven mutually exclusive de-

mographic groups following Shafer and Claggett (1996). The division is sequential, with

respondents being allocated to the first group for which they qualify. The first group is

African Americans; the second consists of those identifying themselves as evangelical Chris-

tians (so African Americans identifying themselves as evangelicals belong in the first group,

not the second.) The third group consists of all non-Christians, including atheists. The

remainder of the respondents–basically white and Asian non-evangelical Protestants and

Roman Catholics–are classified by education: high school dropouts, high school graduates,

those with some college or university education, and college graduates.

The proportion of our sample falling into each of the seven groups is given in Table 5

below. Five of the groups are of roughly equal size (12.2%—15.6%); Evangelicals are somewhat

larger (22.7%) and Dropouts much smaller: less than 4%.

Group Sample Proportion

African American 13.6%

Evangelical 22.7

Non-Christians 12.2

Dropouts 3.9

H.S. Grads 14.8

Some College 14.6

College Grads 15.6

Subtotal 97.3

Not Classified 2.7

Table 5. Sample proportions of demographic groups.

In Figure 9 we show the results of applying the h—function method treating demo-

graphic classification in the same fashion as V.

We can go a bit further along the same lines to extract the probability of the vote

conditional on u by demographic group. Using V ∗D to mean ‘both V and D’, we have

p(V ∗D|r) =

∫
p(V |D,u)p(D|u)f(u|r)du, (13)
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Figure 9: Estimates of f(u|D) for various demographic groups based on the h—function

method. The two similar lines are scaled h(u) (blue) and ĥ(u) (red).

where both p(D|u) and f(u|r) are previously estimated. The results of doing this for college

graduates are illustrated in Figure 10.

7. A S���
� S����

In order to provide an example for the multi-scale case, we develop a second scale

relating to the role and efficacy of the government’s assurance of economic welfare. The

items from which we chose were:
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Probability of vote by u−value, college grads

Figure 10: Probability of vote outcomes in Model 1 for ‘college graduates’. The rising red

line is the probability of voting for Clinton, the falling black line the probability of voting

for Bush. The blue line that peacks at about u = .5 is the probability of not voting, while

the remaining green line is the probability of voting for Perot.

(1) "Poor people today have it easy because they can get government benefits without

doing anything in return." OR "Poor people have hard lives because government

benefits don’t go far enough to help them live decently."

(2) "Racial discrimination is the main reason why many black people can’t get ahead

these days." OR "Blacks who can’t get ahead in this country are mostly responsible

for their own condition."

(3) "Health care reform that would require employers to pay most costs of health insur-

ance for all their workers."

(4) "New federal spending to provide education and job training for American workers

whose jobs have been eliminated."

(5) "A two year limit on how long someone can receive welfare benefits."

(6) "Government is almost always wasteful and inefficient." OR "Government often does

a better job than people give it credit for."
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Figure 11: A monotonic scale representation for ‘economic’ items.

(7) "The government should do more to help needy Americans, even if it means going

deeper into debt." OR " The government today can’t afford to do much more to help

the needy."

(8) "Most people who want to get ahead can make it if they’re willing to work hard."

OR "Hard work and determination are no guarantee of success for most people."

It turns out that there are a variety of combinations of items that easily scale by

our criteria. For our current expository purposes, we chose the five items 1, 5, 6, 7, and 8,

producing the monotonic scale representation displayed in Figure 11:

8. M���—S���� T�����.

Suppose now that there are two scales u1 and u2 and that the response vector can be

decomposed into two components, r[1] and r[2], where the items in r[1] have been used to

construct u1 and those in r[2] used to construct u2, with no overlap of items. We proceed
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under the following assumption:

p(r[1]|u1, u2) = p(r[1]|u1) (14)

p(r[2]|u1, u2) = p(r[2]|u2)

Thus we assume that if we know u1 then knowledge of u2 is irrelevant to the responses

pertaining to the first scale, and similarly for the second scale. Notice that this does not

mean that r[2] is uninformative about r[1] or u1, since r[2] is obviously informative about

u2 and u1 and u2 may be ‘correlated’. From (14) it follows that

p(r) =

∫ ∫
p(r|u1, u2)f(u1, u2)du1du2 (15a)

∫ ∫
p(r[1]|u1)p(r[2]|u2)f(u1, u2)du1du2 (15b)

Since we have p(r[1]|u1) and p(r[2]|u2) from previously estimated item response models,

we can estimate f(u1, u2) by a flexible parametric or semiparametric maximum likelihood

strategy, subject of course to the constraint of uniform marginals. Another possibility is to

form:

f̂(u1, u2) =
n∑

i=1

f(u1|ri[1])f(u2|ri[2])

n
(16)

=

q∑

j=1

f(u1|rj[1])f(u2|rj [2])π̂j,

where π̂j is the sample frequency of rj. This is a valid estimate of f(u1, u2) under the as-

sumptions of either Model 1 or Model 2 since f(u1|rj [1]) and f(u2|rj[2]) are consistent under

the assumptions of their respective item response models. However, this estimate does not

impose uniform marginals unless
∑q

j=1 f(u1|rj [1])π̂(rj [1]) =
∑q

j=1 f(u2|rj[2])π̂(rj[2]) = 1.

While these conditions hold in both the estimated item response models and the population

under the null, they need not hold in the sample. Using the values πj(r[1]) and πj(r[2])

as estimated by the item response models does not provide a value for π(rj[1], rj [2]), with-

out making an assumption of e.g. independence. However, an adjustment can be made

by dividing f̂(u1, u2) as given by (16) by
∑q

j=1 f(u1|rj [1])π̂(rj [1]) ·
∑q

j=1 f(u2|rj [2])π̂(rj [2]),

which results in marginals that are nearly exactly uniform; the estimates before and after

adjustment differs by no more than 1.5% and the unadjusted estimate is shown in Figure

12. The corresponding figure for the adjusted estimate is visually indistinguishable.

To extend the definition of h(u) to the two scale case, consider:

h(u1, u2) =

q∑

j=1

p(V |rj[1], rj[2])f(u1|rj [1])f(u2|rj [2])π(rj [1], rj [2]) (17)
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Figure 12: Estimate of the joint density of u1 and u2 from equation (16). Adjusting the

estimate to impose uniform marginals changes the figure imperceptibly.

Since

f(u1|rj [1]) =
p(rj[1]|u1)

π(rj [1])
,

etc. we can follow the exposition of Section 6 by writing

h(u1, u2) =

q∑

j=1

∫ ∫
p(V |w1, w2)f(w1, w2|rj)dw1dw2p(rj[1]|u1)p(rj [2]|u2)

π(rj)

π(rj [1])π(rj [2])

=

q∑

j=1

∫ ∫
p(V |w1, w2)f(w1, w2|rj)p(rj[1]|u1)p(rj[2]|u2)

π(rj)

π(rj[1])π(rj[2])
dw1dw2

=

∫ ∫
p(V |w1, w2)

q∑

j=1

f(w1, w2|rj)p(rj [1]|u1)p(rj [2]|u2)
π(rj)

π(rj [1])π(rj [2])
dw1dw2

=

∫ ∫
p(V |w1, w2)

q∑

j=1

f(w1, w2|rj)f(u1|rj[1])f(u2|rj [2])π(rj)dw1dw2 (18)
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Defining

g(w; u) =

q∑

j=1

f(w1, w2|rj)f(u1|rj [1])f(u2|rj[2])π(rj) (19)

we can write (18) compactly as

h(u1, u2) =

∫ ∫
p(V |w1, w2)g(w; u)dw1dw2 (20)

Recognizing that

f(w1, w2|rj) =
p(rj[1]|w1, w2)p(rj[2]|w1, w2)f(w1, w2)

π(rj)

=
p(rj[1]|w1)p(rj [2]|w2)f(w1, w2)

π(rj)
,

equation (19) simplifies to

g(w; u) =

q∑

j=1

f(w1|rj [1])f(w2|rj [2])f(u1|rj [1])f(u2|rj[2])π(rj[1])π(rj [2])f(w1, w2) (21)

which is now seen to be entirely analogous to the one dimensional case given in equation

(10) after recognizing that f(w1, w2) is f(w) in the one dimensional case, which is identically

1. With the exception of f(w1, w2), which can be estimated as outlined above, all the

expressions in (21) can be derived from the estimated item response models and/or sample

analogs. Moreover, this argument apparently extends to further dimensions so that equations

(20) and (21) generalize to higher dimensions.

We can construct ĥ(u1, u2) for the events vote Bush, vote Clinton, vote Perot, did

not vote; this is done in the following figures, which represent estimates of the probability of

each event under Model 2. We have not yet attempted to calculate the corresponding figures

for Model 1, which must almost certainly show more dramatic effects.

9. S��� O��
 P�������.

Our discussion has not included a rigorous treatment of identification but has instead

focused on formal derivations of probabilities, densities, and likelihoods. In our computations

we have employed a liberal dose of regularization by employing splines and sometimes linear

interpolations between spline determined points. Some experimentation has convinced us

that the estimated monotonic scale representations presented here are relatively insensitive

to the degree of regularization; this is less true for the h—function method. These observations

lead to at least two points that need further investigation. Both may be understood as issues

in regularization.
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Figure 13:

(1) Particularly for small q, i.e. a small number of alternatives, there is unlikely to be

a unique monotonic scale representation. For large q the problem is hidden because

there will be no monotonic scale representation for the sample frequencies, and so it

is natural to treat the problem as one of model selection, of devising a strategy for

best choosing the effective number of parameters in a flexible model that represents

the data.

(2) Even given a particular monotonic scale representation, implementations of Model

1 can be made to lean very heavily on features of the ĥ function that are probably

accidental. These implementations are almost certainly overly parameterized. It

may be possible to give likelihood based procedures for model selection here since

conditional maximum likelihood appears to always be a feasible estimation method

for these problems.
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Appendix: Estimation Methods.

Estimation Methods for Item Response Models.

The item response models are estimated by maximum likelihood, subject to the con-

straint that the distribution functions (the lines illustrated in Figures 1, 2, 3, and 11) be

downward sloping and not cross. The distribution functions are computed at 20 grid points

on a b-spline and linearly interpolated between the points. The resulting probabilities for
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Figure 15:

a single item response are piecewise linear and the likelihood for a particular outcome or

response for k items is the product of k probabilities, so the probability as a function of u

is a piecewise k—degree polynomial. This is exactly integrated to evaluate the likelihood.

There is no discernible difference in carrying out the computations on 50 or even 100 grid

points.
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Figure 16:


