
Robinson, Peter

Working Paper

Correlation testing in time series, spatial and cross-
sectional data

cemmap working paper, No. CWP01/07

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Robinson, Peter (2007) : Correlation testing in time series, spatial and cross-
sectional data, cemmap working paper, No. CWP01/07, Centre for Microdata Methods and Practice
(cemmap), London,
https://doi.org/10.1920/wp.cem.2007.0107

This Version is available at:
https://hdl.handle.net/10419/79294

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2007.0107%0A
https://hdl.handle.net/10419/79294
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

CORRELATION TESTING IN TIME SERIES, SPATIAL AND 
CROSS-SECTIONAL DATA 

 

Peter Robinson

THE INSTITUTE FOR FISCAL STUDIES
DEPARTMENT OF ECONOMICS, UCL 

cemmap working paper CWP01/07



Correlation Testing in Time Series, Spatial and
Cross-Sectional Data

P.M. Robinson�

The London School of Economics

December 18, 2006

Abstract

We provide a general class of tests for correlation in time series, spatial,
spatio-temporal and cross-sectional data. We motivate our focus by re-
viewing how computational and theoretical di¢ culties of point estimation
mount as one moves from regularly-spaced time series data, through forms
of irregular spacing, and to spatial data of various kinds. A broad class of
computationally simple tests is justi�ed. These specialize Lagrange multi-
plier tests against parametric departures of various kinds. Their forms are
illustrated in case of several models for describing correlation in various
kinds of data. The initial focus assumes homoscedasticity, but we also
robustify the tests to nonparametric heteroscedasticity.
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1 INTRODUCTION

Irregularly-spaced time series, spatial, and spatio-temporal data, and the pos-
sibility of cross-sectional correlation, pose considerable di¢ culties, with respect
to modelling, computations and statistical theory. In general, the possibility has
to be recognized that there is correlation across time, or space or other relevant
dimensions. Rules of inference based on the incorrect assumption of indepen-
dence will generally be invalidated. Unfortunately, even developing models for
dependence can be a far more complicated business than in a regular-spaced
time series. Computations can also be more onerous. The development of a
satisfactory, useful, asymptotic theory for estimates of both parameters describ-
ing the dependence, and parameters of economic interest, such as describing
regression e¤ects, can be infeasible. The di¢ culties arise essentially because of
the non-Toeplitz covariance matrix structure that emerges, and the di¢ culty of
separating the regime generating the "location" of observations from that gener-
ating the observations themselves, when formulating regularity conditions. Here
location can refer to some relevant economic space, not just time or geographical
space.
Immense simpli�cation to rules of inference and computations result if there

can be assumed to be no dependence. It has been argued (see e.g. Cressie,
1993) that much spatial data can be satisfactorily modelled in terms of mean,
regression e¤ects, leaving little to be accounted for by disturbance correlation.
Likewise, the common assumption of cross-sectional independence may often be
reasonable. This favourable circumstance cannot be taken for granted, but it
does further motivate carrying out in the �rst place tests for independence. If
the evidence for independence is strong then we may proceed with simple rules
of inference on the remaining parameters of interest. If not, we have to look at
developing rules that e¢ ciently take account of dependence, or that are robust.
But these tasks are di¢ cult to develop in a very general context. In this paper
we focus on testing for independence in such a general context.
This topic has been addressed in a vast time series literature, however little

of it permits irregular spacing. It has also been a major, long-standing theme of
the spatial literature, with numerous contributions following Moran (1950), Cli¤
and Ord (1972), but settings have been fairly speci�c. It seems useful to discuss
a general approach which can be applied in a variety of circumstances, under
regularity conditions which may shed light on the suitability of the asymptotic
theory in speci�c situations. In a linear regression setting, a general class of
statistics is developed that has a chi-square limit distribution under the null
hypothesis of independence of disturbances. Special cases can be interpreted as
Lagrange multiplier (LM) statistics directed against speci�ed alternatives where
they should have good power, though they will have little power against others.
It is thus envisaged that in practice several tests may be employed, based on
variety of working parametric models.
The tests are developed in Section 3, along with relevant asymptotic the-

ory, of which proofs are left to appendices. In Section 4 they are discussed in
some LM examples. First, however, we provide in the following section further
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background and motivation by reviewing how di¢ culties develop as one moves
from equally-spaced time series to irregularly-spaced ones, and to spatial and
cross-sectionally-correlated data.

2 IMPLICATIONSOF IRREGULAR SPACING
AND SPATIAL DATA

To �x ideas, and avoid distracting complications, we focus entirely on a linear
regression setting, where the regression function is correctly speci�ed, and the
covariance matrix is parametric. We will also describe our tests for independence
in this setting.

2.1 Regression model and Gaussian estimation

We consider the n� 1 vector yn of scalar observations yin, i = 1; :::; n,

yn = (y1n; :::; ynn)
0
; (2.1)

the prime denoting transposition. The ordering of the yin is arbitrary, though for
time series data it would normally be chronological. The triangular-array aspect
of the yin allows for some asymptotic regimes such as spatial autoregressive
(AR) models with row-normalized weight matrices. We suppose that for a given
sequence of n� q matrices Xn, 1 < p < n, and a q � 1 unknown vector �0;

yn = Xn�0 + un; (2.2)

for all su¢ ciently large n, where

un = (u1n; :::; unn)
0 (2.3)

is an unobservable vector satisfying

E(un) = 0; E(unu
0
n) = �20
n(�0); (2.4)

where �20 is an unknown positive scalar and 
n(�) is a given n�nmatrix function
of a p� 1 vector parameter �, and with �0 being unknown. Lack of correlation
in the uin occurs when 
n(�0) is a diagonal. This includes the possibility of
heteroscedasticity across i, but our main focus is on the implications of non-
diagonality.
The main interest may be in �0, with �0 and �

2
0 representing nuisance pa-

rameters, but in any case their estimation is linked. Conventionally, but conve-
niently, we consider estimates based on a Gaussian pseudo-likelihood. We have
used words such as "independent" and "uncorrelated" rather interchangeably,
without drawing a distinction. Of course they are identical if Gaussianity holds,
but (2.4) only refers to �rst- and second-order properties. On the other hand,
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stronger conditions than (2.4) would be needed in order to develop asymptotic
statistical theory.
The Gaussian pseudo-log-likelihood for yn is given by

Ln
�
�; �2; �

�
= �n

2
log 2� � n

2
log �2 � n

2
log det
n(�)

� 1

2�2
(yn �Xn�)

0

n(�)

�1 (yn �Xn�) ; (2.5)

�, �2 and � denoting any admissible values. As is well known, for given �
Ln
�
�; �2; �

�
is maximized with respect to �, �2 by

�̂n(�) =
�
X 0
n
n(�)

�1Xn

��1
X 0
n
n(�)

�1yn; (2.6)

�̂2n(�) =
1

n

�
yn �Xn�̂n(�)

�

n(�)

�1
�
yn �Xn�̂n(�)

�
; (2.7)

where it is taken for granted, as it is in (2.5), that the matrix inverses exist.
Then

�̂n = argmin
�

Ln

�
�̂n(�); �̂

2
n(�); �

�
; (2.8)

the maximization conducted over a suitable compact subset of Rq that includes
�0. Equivalently,

�̂n = argmin
�

Qn(�); (2.9)

where
Qn(�) = log �̂

2
n(�) +

1

n
log det
n(�): (2.10)

2.2 Regularly-spaced time series

For equally-spaced time series, where the ui = uin are ordered chronologically
and stationary, Qn(�) can be typically approximated by simpler quantities,
which, when minimized produce estimates of �0 with the same limit distrib-

ution as n
1
2

�
�̂n � �0

�
. There are two sources of this favourable outcome. One

is that 
n(�) is a Toeplitz matrix, and can thus be approximately diagonalized
by a unitary transformation, so that �̂2n(�) can be approximated by an integral,
or sum across frequency, of the ratio of the periodogram and the parameterized
spectral density. Indeed, in many time series models, such as autoregressive
moving average (ARMA) ones, the spectral density can be written down by in-
spection, whereas the elements of 
n(�) cannot, and can be cumbersome. The
second simpli�cation arises when the second term on the right of (2.10) is as-
ymptotically negligible. This occurs in "standard parameterizations" of ARMA
models, where the innovations variance is free of the parameters describing au-
tocorrelation. In that case the problem (2.9) can be replaced by minimization of
�̂2n(�) or a proxy such as described above. This covers the nonlinear least squares
procedures recommended by Box and Jenkins (1971) for ARMA models. The
computational simpli�cations are also re�ected in a relatively neat asymptotic
statistical theory, exempli�ed by Hannan (1973), Fox and Taqqu (1986). The
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estimates of �0 are root-n-consistent and asymptotically normally distributed
under conditions that require a one-sided in�nite moving average representation
for the ui with innovations that are not necessarily Gaussian or independent and
identically distributed, but are homoscedaastic martingale di¤erences with mo-
ments of order only 2 required to be �nite. Moreover, the covariance matrix in
the limiting normal distribution is una¤ected by non-Gaussianity of ui.

2.3 Lattice data

Equally-spaced spatial or spatio-temporal data present additional problems. We
consider only the case of "increasing-domain" asymptotics, as implicitly as-
sumed in the preceding discussion. Observations are recorded on a rectangular
lattice of dimension d > 1. Intervals between observations are constant within
dimensions, but can vary across dimensions. Here n represents the total number

of observations, i.e. n =
Yd

j=1
nj . and asymptotic theory would typically entail

nj !1 for all j. Looking again at (2.10), when ui = uin is stationary a gener-
alization of the Toeplitz property described for the time series case means that
again �2n(�) can be approximated by a weighted periodogram average. However,
it is less likely that log det �n(�) can be ignored. The problem was �rst demon-
strated by Whittle (1954), the problem occuring in particular when ui depends
on "leads" as well as "lags" in one or more dimensions, as seems plausible in a
spatial context, by comparison with the unilateral modelling standard in time
series analysis. Whittle (1954) also showed that, quite generally, multilateral
models have a "half-plane" kind of unilateral moving average representation,
extending the Wold representation of time series, whence the n�1 log det 
n(�)
term in (2.10) can be ignored. However, the half-plane representation typically
involves functions of the coe¢ cients in the original multilateral model that can-
not be written in closed form. Nor can it necessarily be well approximated by
a parsimonious half-plane model, and the curse of dimensionality is a serious
potential problem in spatial modelling.
A further di¢ culty arising with lattice data with dimension d > 1 is the "edge

e¤ect". Estimates of �0 given by (2.9), and by the usual approximations to this,
can be seen as functions of sample autocovariances. In the time series case d = 1,
the lag�j sample autocovariance is the sum of n�j products divided by n. The
consequent �nite-sample bias causes no problem with asymptotic theory for �̂n.
However, when d > 1 the bias is of greater order, and leads to an asymptotic
theory that is not useful. In particular, for d = 2 the bias is of order at least

n�
1
2 so that n

1
2

�
�̂n � �0

�
does not converge to a zero-mean random variable.

For d > 3 the order of the bias is even greater than n�
1
2 . A solution proposed by

Guyon (1982) essentially replaces the usual, biased, sample autocovariances by
unbiased ones. However, Dahlhaus and Künsch (1987) noted that this sacri�ces
the desirable positive de�nite property of the Gaussian pseudo-likelihood, and
can lead to possible numerical di¢ culties and a covariance matrix estimate that
is not necessarily non-negative de�nite. They overcame this drawback by instead
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employing tapering, but thereby introducing ambiguity due to the choice of
taper, and due to an additional tapering parameter if asymptotic e¢ ciency is to
be claimed. Robinson and Vidal Sanz (2006) proposed an alternative approach,
justifying their estimates of a general class of models for any d > 1. However,
they also introduced an element of arbitrariness in implementation in order to
cope with the edge e¤ect.

2.4 Irregularly-spaced time series

Irregular spacing of data can arise in several ways. Calendar monthly time
series data, for example, are not exactly equally-spaced. However, there is
evidence that the e¤ects of disregarding this are unlikely to be signi�cant, and
in any case this kind of irregular spacing is largely ignored by practitioners.
Another phenomenon is a once-and-for-all change in the sampling interval, as
when quarterly observation changes to monthly (see, e.g. Sargan and Drettakis,
1974). For a given dynamic model for the monthly observations, a model for
the "skip-sampled" quarterly ones can be deduced and the estimation problem
addressed in terms of an objective function that combines components from the
two regimes.
Observations can be missing from an otherwise regularly-spaced grid in other

ways. Periodic sampling, as in case of weekday observations, does disturb the
Toeplitz structure of 
n(�) but not in a way that severely complicates compu-
tation; indeed, one can work with a derived model for vector observations (e.g.
the �ve weekday ones). Non-periodic missing can be ignored in case of only a
few missing values, but generally 
n(�) allows no simpli�ed approximation, and
nor can the log det 
n(�) term in (2.10) be neglected. Nevertheless, for suitable
models, the Kalman �lter and EM algorithm can be applied to break up the
computations into simple steps. However, whether one treats the regime gen-
erating the observation times as deterministic or stochastic, it seems di¢ cult
to deduce an asymptotic theory based on reasonably primitive conditions, in
particular on ones that separate out the conditions on the process from those
on the sampling regime. Dunsmuir (1983) developed a central limit theorem
that is perhaps as successful as is possible in this respect, though it requires
a condition on the information matrix that depends simultaneously on both
features. Moreover he did not treat �̂n itself, but rather a one-step Newton
approximation commencing from an initial n

1
2 -consistent estimate. This is in

order to avoid a consistency proof, a usual preliminary to the central limit theo-
rem for implicitly-de�ned extremum estimates. Dunsmuir (1983) described the
consistency as an open problem, and it still seems to be, indeed it is not clear
in general what initial estimate has n

1
2 -consistency requirement. Dunsmuir and

Robinson (1983) developed a full asymptotic theory for an alternative estimate
employing an equally-spaced "amplitude-modulated" argument introduced by
Parzen (1963), but generally this is asymptotically less e¢ cient than �̂n.
Some forms of irregular spacing of time series are better viewed in the con-

text of an underlying continuous time process. Spacings would typically be
represented as real-valued, possibly generated by a point process. The irreg-
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ular spacing could be deliberate, in order to avoid loss of identi�ability due
to aliasing. Again, the Toeplitz structure of 
n(�) is lost, and it is generally
not possible to simply approximate either component of (2.10). An exception
is when under the continuous time process as generated by a �rst order sto-
chastic di¤erential equation driven by white noise. Robinson (1977) deduced a
model for the discrete observations, essentially a time-varying �rst-order autore-
gression (AR) with heteroscedastic innovations, and consequently approximated
(2.10) by a simple form. He established consistency and asymptotic normality
of the estimates, but nevertheless in terms of conditions which, to a signi�cant
degree, simultaneously restrict the process and the sampling sequence. With
more elaborate continuous time models it does not seem possible to deduce a
reasonably simple model for the observations, and asymptotic statistical theory
would seem di¢ cult to establish under reasonably primitive conditions. See also
McDunnough and Wolfson (1979).

2.5 Irregular spacing in spatial data

Irregular spacing is a more natural and frequent occurrence with spatial data. In
a geographical setting, data are liable to be recorded across heterogenously-sized
administrative regions, while economic distances will not correspond to regular
spacing. The di¢ culties reported above will only be compounded, indeed it
seems even hard to extend the model and estimate of Robinson (1977). In
general there will not be evident computational simpli�cations, and while it
is possible to write down an asymptotic theory in terms of highly unprimitive
conditions, it may be di¢ cult to check them in special cases.
Some of these di¢ culties can be circumvented by a di¤erent approach to

modelling which is formally covered by our set-up, namely spatial AR and re-
lated models. Indeed, when there is no geographical aspect, the methods re-
viewed above are unsuitable. Rules of inference for much microeconomic data
routinely take for granted cross-sectional independence, at least at some level,
yet there is also an awareness that this can be inappropriate. In some circum-
stances it is natural to envisage that correlation varies with relevant measures
of economic distance, such as di¤erences in household income. Econometricians
are familiar with the notion of leads and lags from time series models, and spa-
tial AR models have had considerable appeal. They rely on speci�cation of an
n � n "weight matrix", which essentially embodies in a simple way notions of
irregular spacing. Lee (2004) has developed asymptotic theory for �̂n. In gen-
eral the log det 
n(�) term in (2.10) cannot be neglected, though for a related
model Lee (2002) has shown that this is possible (so least squares works) under
suitable conditions on the weight matrix. Under similar conditions, Robinson
(2006) has developed asymptotic theory for e¢ cient estimates when the inno-
vations in the spatial AR model are not necessarily normally distributed, both
in case of a parametric model for their distribution, and a nonparametric one.
Though asymptotic theory under the null of independence is relatively sim-

ple with respect to any test statistic, the computational di¢ culties of point
estimation described in the preceding section make LM tests more appealing

7



than Wald or likelihood-ratio ones. These serve to motivate a general class
of statistic treated in the following section. It is introduced without reference
to LM testing because versions of it may lack such an interpretation. More-
over, this will be lost in any case in another statistic also investigated, which
nonparametrically robusti�es to heteroscedasticity in the uin.
An alternative type of model is motivated by a di¤erent form of asymptotics

from the "increasing domain" asymptotics usually employed in time series and
many spatial settings. This is "�xed domain", or "in�ll", asymptotics, where
the observations are regarded as becoming denser on a bounded region (see
e.g. Cressie, 1993, Stein, 1991, Lahiri, 1996). While seemingly more natural in
many circumstances, nonstandard results that are not practically useful often
emerge, for example estimates may not be consistent, converging instead to a
nondegenerate random variable.

3 AGENERALCLASS OF TEST STATISTICS

We present a class of test statistics that has a limiting �2 distribution under the
null hypothesis that the uin in (2.2), (2.3) are independently (and homoscedas-
tically) distributed. For a given 
n(�) in (2.4), there is a member of the class
that has an LM interpretation, and thus can be expected to have optimal power
against local alternatives in directions implied by 
n(�). However, such an
interpretation is not necessary for the asymptotic validity.

3.1 Testing assuming homoscedasticity

Choose the p � 1 vectors  ijn, i; j = 1; :::; n, n � 1, such that  iin = 0,

 jin =  ijn for all i; j; n. De�ne �̂n = �̂n(0), �̂
2
n = �̂2n(0) and the least squares

residuals
ûn = (û1n; :::; ûnn)

0
= yn �Xn�̂n: (3.1)

De�ne

ân =
nX

i;j=1

 ijnûinûjn (3.2)

An =
nX

i;j=1

 ijn 
0
ijn (3.3)

�n = �̂�4n â0nA
�1
n ân: (3.4)

There is no loss of generality in taking  ijn =  jin because if it were not so we
could rede�ne ân with

�
 ijn +  jin

�
=2 in place of  ijn.

Denote by xi the i-th column of X 0
n. We allow the xi to be either determin-

istically or stochastically generated, but independent of the uin. Likewise, the
 ijn can also be deterministically or stochastically generated, possibly depen-
dent on the xi, but again independent of the uin. This is relevant if, say, in a
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spatial AR model, the weight matrix re�ects economic distances between obser-
vations measured by the distance between respective stochastically-generated
explanatory variables, for example the (i; j)-th element might be proportional

to kxi � xjk =
�
1 + kxi � xjk2

�
, where the factor of proportionality might vary

across rows.

Assumption 1 The ui = uin, i = 1; 2; ::: are independent with zero mean,
constant variance �2; and, for some � > 0,

max
i�1

E juij2+� <1: (3.5)

Assumption 2 fxi; i � 1g is independent of fui; i � 1g and for some n � q,
Xn has full column rank.
De�ne

Dn = diag fd1n; :::; dpng ; (3.6)

where, with  ijhn denoting the h-th element of  ijn,

dhn =

nX
i;j=1

 2ijhn; h = 1; :::; p: (3.7)

Assumption 3
�
 ijn; i; j = 1; ::; n; n � 1

	
is independent of fui; i � 1g,

and, as n!1,
D
� 1
2

n AnD
� 1
2

n !p R (3.8)

for some positive de�nite matrix R, and

dhn !p 1; h = 1; :::; p; (3.9)

max
1�i�n

nX
j=1

�� ijhn��
d
1
2

hn

!p 0; h = 1; :::; p; (3.10)

nX
i;j=2

0@min(i;j)�1X
k=1

�� ik`n jkmn��
1A2

d`ndmn
!p 0; `;m = 1; :::; p: (3.11)

In time series settings independence in Assumption 1 can be replaced by a
martingale di¤erence assumption, but in spatial con�gurations there may be no
natural ordering. The �nal two parts of Assumption 3 appear to heavily restrict
the  ijn, but are satis�ed in particular when there is a degree of sparseness, with
many elements zero, and both parts can be checked in case of LM examples.
Asymptotic analysis of a similar class of statistic was considered by Pinkse (1999,
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2004), improving on an earlier treatment of Sen (1976). In some ways his focus
was broader, mainly in that his statistics permits investigation also of correlation
between two di¤erent sets of random variables. Also, he operated in the setting
of a more general nonlinear model (see also Kelejian and Prucha, 2001). In
this, his regressors are independent of the disturbances, as in Assumption 2 and
earlier in the treatment in Robinson (1991) of LM tests in a general class of time
series models for regularly-spaced data. As there, we exploit the linear regression
structure to enable a treatment under relatively primitive conditions; note also
the generality of the last part of Assumption 2, which permits di¤erent rates of
growth of elements of xi. Pinke (1999) did not allow his weights corresponding
to  ijn to be stochastic, and took p = 1. Our allowance for p > 1 follows the
time series asymptotic treatment of Robinson (1991), and re�ects LM statistics
against AR(p) and MA(p) time series alternatives (see Godfrey, 1978), and
against generalizations of spatial AR models (Anselin, 1998).

Theorem 1 Let (2.2) hold for all su¢ ciently large n, and Assumptions 1-3.
Then as n!1; �n !d �2p.
The proof is in Appendix 1.

3.2 Testing robust to heteroscedasticity

While Assumption 1 does not assume identity of distribution, and limits con-
stancy of moments to the mean and variance, homoscedasticity seems an un-
reasonable assumption in many kinds of spatial data, where for example, obser-
vations are based on aggregation over administrative regions that di¤er consid-
erably in size. Versions of �n designed to test for correlation may be signi�cant
due to unanticipated heteroscedasticity. In fact, formally, versions of �n can
be interpreted as LM tests of (conditional or unconditional) heteroscedasticity,
not just correlation, though we do not stress this aspect because asymptotically
Gauss-Markov e¢ cient weighted least squares estimation of �0, treating either
parametric or nonparametric heteroscedassticity, is entirely feasible. Instead we
robustify �n to heteroscedasticity.
De�ne

B̂n =
nX

i;j=1

 ijn 
0
ijnû

2
inû

2
jn; (3.12)

�n = â0nB̂
�1
n ân: (3.13)

This weighting by squared raw residuals is in the spirit of heteroscedasticity-
consistent variance estimation �rst introduced by Eicker (1963), and much em-
ployed since by econometricians. We modify two of our previous assumptions
accordingly. De�ne

Assumption 1* Assumption 1 holds, with � = 2 in (3.5) but without the re-
quirement that the variance of ui, now denoted �2i , be constant over i; mini�1 �

2
i >

0.
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Assumption 3* Assumption 3 holds with (3.8) replaced by

D
� 1
2

n BnD
� 1
2

n !p S; as n!1; (3.14)

for some positive de�nite matrix S, where

Bn =
nX

i;j=1

 ijn 
0
ijn�

2
i�

2
j : (3.15)

The fourth moment condition on ui seems unavoidable, indeed some care is
needed in the proof to avoid something stronger. Notice it implies, via Hölder�s
inequality, that

max
i�1

�2i <1: (3.16)

Theorem 2 Let (2.2) hold for all su¢ ciently large n, and Assumptions 1 * , 2
and 3 * . Then as n!1, �n !d �2p.

4 LAGRANGEMULTIPLIER-MOTIVATED SPE-
CIAL CASES

The present section illustrates how our general statistics apply when the  ijn
are motivated by the LM principle. Of course the consequent optimality will
apply only to �n, and not to �n.
Referring to (2.4), we identify the null hypothesis H0 that the uin are inde-

pendent (and homoscedastic) with �0 taking a particular value, which with no
loss of generality we take to be the null vector, 0:

H0 : �0 = 0; (4.1)

where

n(0) = In; all su¢ ciently large n. (4.2)

Assuming 
n(�) is di¤erentiable at � = 0, a version of the LM statistic is
given by (3.4) with

 ijn =
@

@�
!ijn(0); (4.3)

where !ijn(�) is the (i; j)-th element of 
n(�) and the derivative in (4.3) is zero
for i = j. We consider the following examples.
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4.1 Missing data in time series

Here fytg are the consecutive, un-missed observations from a regularly-spaced
time series. Correspondingly un = (u(t1); :::; u(tn))

0, where the ti are integers,
t1 < t2 < ::: < tn, and u(t) is stationary with zero mean and lag-j autocovari-
ance (j; �), a known function of j; �. Thus  ijn = (@=@�) (ti � tj ; 0). The
 ijn are thus functions of ftig, which may be deterministically or stochastically
generated, as Assumptions 3 and 3* permit.
One special case not previously considered is a missing-data version of the

test of Robinson (1991) against long memory alternatives. Here d = 1 and
(1 � L)�ui = "i, where L is the lag operator d, the "i are independent and
heteroscedastic, and j�j < 1

2 . Then  ijn = jti � tj j�1, for i 6= j. Part (3.9) of

Assumption 3 is satis�ed if d1n = �ni;j;i6=j
i

jti � tj j�2 !p 1. In case there is
no missing, or with periodic or roughly periodic missing, d1n increases at rate
n, but a slower rate with missing is possible, permitting observations to "peter
out". With respect to (3.10), we have �nj=1;j 6=i jtt � tj j

�1 � �tni=1i
�1 � log tn,

uniformly in i, so that (3.10) is equivalent to

t2n=dn !p 0: (4.4)

The previous conditions imply (3.11) also, as we now show. The numerator of
its left side is

nXX
i;j=2

0@X
k<i;j

jti � tkj�1 jtj � tkj�1
1A2

: (4.5)

The contribution from i = j is

nX
i=j

 X
k<i

jti � tkj�1
!2

� C
X
i

jti � ti+1j�2 = Op(1); (4.6)

where C denotes a generic �nite constant. The contribution from i 6= j is
bounded by

2
XX
i<j

jti � tj j�2
 X
k<i

jti � tkj�1
!2

= Op
�
d1nt

2
n

�
: (4.7)

Another leading alternative is the AR(p) hypothesis already considered by
Robinson (1986), who obtained a missing-data version of the Box and Pierce
(1970) statistic. We have  ijkn = 1 (jti � tj j = k), d1n = �ni;j=1;i 6=j1 (jti � tj j = k) ;
k = 1; :::; p; where 1(:) is the indicator function. With ` � m the numerator of
the left side of (3.11) is

nX
i;j=2

0@min(1;j)�1X
k=1

1 (ti � tk = `) 1 (tj � tk = m)

1A2

� 2
nX

i;j=2
i�j

1 (tj � ti = m� `) :

(4.8)
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This is bounded by dm�`;n for ` < m, and by n � 1 for ` = m. Thus if
n=d2`n !p 0, (3.11) is satis�ed for ` = m = 1; :::; p. It is satis�ed for ` < m if
dm�`;n=d`ndmn !p 0. Clearly because d`n � n a su¢ cient condition for (3.11)
is that n

1
2 =d`n !p 0. This implies (3.9) and (3.10), the numerator of the latter

being 2.

4.2 d-dimensional lattice

Introduce the d-dimensional lattice Ld = fI : I = (i1; :::; id) ; ij = 0;�1; :::; j = 1; :::; dg,
for d > 1. We observe YI , for I 2 N = fI : ij = 1; :::; nj , j = 1; :::; dg, and take
n = �dj=1nj . Corresponding to (2.2) we have YI = �00xI + uI , I 2 N . Iden-
tifying the i-th element of un with UI (possibly with lexicographic ordering)
correspondingly denote the i-th element of ûn by ÛIn. Suppose UI is station-
ary with autocovariance Cov (UI ; UI+J) = (J ; �0) for J 2 Ld, where (J ; �) is
boundedly di¤erentiable in � but �0 is unknown. Denote 	I = (@=@�)  (I; 0) :
Thus �n and �n are given by (3.4) and (3.13) with

�̂2n = n�1
X
I2N

Û2In, ân =
X
I;J2N

	I�J ÛInÛJn; (4.9)

An =
X
I;J2N

	I�J	
0
I�J , B̂n =

X
I;J2N

	I�J	
0
I�J Û

2
InÛ

2
Jn: (4.10)

One example tests against long memory, taking d = 1 and�dj=1(1�Lj)�0UI =
"I where Lj is the lag-operator is the j-th dimension only, the "I are independent
and homoscedastic, and j�0j < 1

2 . Then 	I = �
d
j=1i

�1
j .

Tests against AR alternatives are also available. Let P be a set of p distinct
I indices, such that I 6= f0; :::; 0g, and consider the model

UI �
X
J2P

�OJ

dY
i=1

(j1;:::;jd)=J

LjiUI�J = "I ; (4.11)

with "I as before. Now �0 consists of scalars �OJ (which must satisfy station-
arity conditions if �0 6= 0). A typical element of 	1is

	IJ =
@

@�0J
(I; 0) = 1(I = J); J 2 P: (4.12)

However there is a restriction on P which a¤ects multilateral modelling moti-
vated by a lack of natural ordering in one or more of the dimensions; in spatio-
temporal data there is a natural ordering in the time dimension, but typically
not in the others. There is thus a temptation to include J in (4.1) that con-
tain some negative indices, as well as J with all non-negative ones. This can
present identi�cation problems as recently reviewed by Robinson and Vidal Sanz
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(2006). We encounter a corresponding problem. From (4.12) and the symmetry
property (I; �) = (�I; �) it is clear that for K = �J

	IK =

�
@

@�0K

�
 (I; 0) = �1(�I = K) = �1(I = J): (4.13)

Thus An (and B̂n) will not be invertible. We might also think of including such
mirror-image J but constraining their coe¢ cients to be equal. This avoids the
identi�ability condition but it is easily seen to produce the same statistic as if we
included only one of them. Altogether, taking, say, all J to have non-negative
elements, we get

�n =
X
J2P

0@n�1 X
I;I+J2N

ÛI ÛI+J

1A2

=�̂4n; (4.14)

a natural extension of the Box and Pierce (1970) statistic for time series. With
respect to potential "edge e¤ect", the discrepancy between the numbers of sum-
mands over I and N has no asymptotic e¤ect under the null hypothesis because
there is no bias, due to E (UIUI+J) = 0, J 6= f0; :::; 0g.
Tests can also be based on more parsimonious models that have the property

of isometry. For example take (I; �) = �kIk, for scalar � 2 (�1; 1). Then

�n =

0@X
I2N

UI
X

J:kJk=1

UI+J

1A2

=
� XX

1 (kI � Jk = 1)
�
: (4.15)

It is straightforward to extend the above statistics to allow for missing ob-
servations, in the manner of the previous sub-section.

4.3 Spatial autoregressive models

Spatial AR models are especially convenient when there is irregular spacing that
cannot be handled in the framework of missing values in an otherwise regular
time series or lattice, or when the space is economic rather than geographic.
Consider the model  

In �
pX
k=1

�0kWkn

!
un = "n; (4.16)

where "n is a vector of independent, homoscedastic variables, and the Wkn

are n � n weight matrices, possibly stochastically generated and possibly Xn-
dependent. The most familiar version of (4.16) has p = 1. Anselin (2001)
discussed LM tests for spatial independence against a related model where in-
stead of combining (2.2) with (4.16), one incorporates spatially lagged y�s in
(2.2). The null model is the same in both cases.
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Testing for spatial independence in (4.16) and related models has been widely
considered, and our purpose here is not to present new tests but to discuss condi-
tions in the Wkn for asymptotic validity, and consider the connection with in�ll
asymptotics. The identi�ability problem in (4.16) is similar to that discussed
by Anselin (2001) in his model. We have

 ijkn =
@

@�k
!ijn(0) = 2Wijkn; (4.17)

where Wijkn is the (i; j)-th element of Wkn. Then

An =

0@4 nX
i;j=1

WijknWij`n

1A (4.18)

indicating the (k; `)-th element. It is obvious that (2.5) requires in particular
that all the Wkn must di¤er. Anselin (2001) assumed that

nX
j=1

WijknWij`n = 0 (4.19)

for k 6= `, which implies that An is diagonal; a special case is where the n
observations are sub-divided into subsets such that Wkn has zero elements cor-
responding to the non-kth subsets, so �pk=1Wkn is block diagonal. Indeed (4.19)
requires existence of some negative weights unless Wijkn = 0 or Wij`n = 0 for
each i; j and each k 6= `.
The preceding discussion applies only to B̂n in �n. Kelejian and Robinson

(2004) combined heteroscedasticity in a spatial AR context but applied it to "n
and adopted a di¤erent approach to the problem.
With respect to both �n and �n, conditions (3.9)-(3.11) become

dhn =
nX

i;j=1

W 2
ijhn !p 1; h = 1; :::; p; (4.20)

max
1�i�n

nX
j=1

jWijhnj

d
1
2

hn

!p 0; h = 1; :::; p; (4.21)

nX
i;j=2

0@min(i;j)�1X
h=1

jWik`nWjkmnj

1A2

d`ndmn
!p 0; `;m = 1; :::; p (4.22)

(cf. Sen, 1976, Pinkse, 1999, 2004). Given (4.20), a su¢ cient condition for
(4.21) is that Whn have non-negative elements and are row-normalized. The
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left side of (4.22) has numerator bounded by

nXX
i;j=2

max
k
W 2
jkmn

 
nX
k=1

jWik`nj
!2

=d`ndmn = op

0@n nX
j=2

max
k
W 2
jkmn=dmn

1A :

(4.23)
SupposeWjkmn = Op

�
h�1m

�
uniformly (cf. Lee, 2002). Then (4.23) = op

�
n2=

�
h2mdmn

��
.

Thus (3.11) entails
n2

h2mdmn
= Op(1): (4.24)

Given (4.24), (3.9) is satis�ed by

n=hm !1; m = 1; :::; p: (4.25)

Indeed, dmn = Op
�
n2=h2m

�
so (4.25) is necessary for (3.9).

Some formal comparison is possible between our asymptotic discussion, and
(4.25) in particular, and in�ll asymptotics. Consider for simplicity in place of
(4.21) the �rst order spatial MA

un = (In + �0W1n) "n: (4.26)

On the other hand consider a process u(t), t 2 (0; 1] such that

u(t) = "t +
1

n

nX
s=1

�
�
t� s

n
; �0

�
"s; t 2 (0; 1] (4.27)

for a function �(t; �), jtj � 1, that is boundedly di¤erentiable in �. (Extension
to a process de�ned on a �nite region in d dimensions is immediate.) For exam-
ple, �(t; �) � �, where there is a close formal similarity with (4.26). Consider
sampling u(t) at intervals 1=n. Thus taking un = (u(1=n); :::; u(1� 1=n))0 and
applying the LM principle for testing �0 = 0 we �nd that (3.9) is violated .
Likewise we cannot take hn � n�1 in (4.26).
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APPENDIX 1: PROOF OF THEOREM 1

Proof. We write  ij for  ijn throughout. The limit distribution is independent
of the xi and  ij , so it su¢ ces to show that the result holds conditionally on
fxi; i � 1g and

�
 ij ; i; j = 1; :::; n; n � 1

	
; correspondingly, all expectations

in what follows will thereby be conditional, though we suppress reference to
this. De�ne an = �i;j ijuiuj ; writing  ij =  ijn and unquali�ed summation
over i covering i = 1; :::; n. The result follows from

�̂2n !p �2; (A.1)

A
� 1
2

n (ân � an) !p 0; (A.2)

and (conditionally)

A
� 1
2

n an !p N(0; Ip): (A.3)

We omit the proof of (A.1), as it is essentially implied by that of (A.2). To
consider this, write ûi = ûin, v̂i = ûi�ui =�jujbij , where bij = x0i (�hxhx

0
h)
�1
xj .

Thus
ân � an =

X
i;j

 ij (v̂iuj + uiûj + v̂iv̂j) : (A.4)

Since A� 1
2

n D
1
2
n

 � tr
n
D

1
2
nA

�1
n D

1
2
n

o
!p tr(R�1); (A.5)

we can prove (A.2) with A
� 1
2

n replaced by D
� 1
2

n . We consider an arbitrary
element, and so to avoid additional subscripting  ij for the time being represents
a scalar.
We have X

i;j

 ij v̂iuj =
X
i;j

 iju
2
jbij +

X
i;j

 ijuj
X
h6=j

uhbih: (A.6)

The modulus of the �rst term on the right has expectation bounded by

C
X
i;j

�� ijbij�� � C
X
i;j

�� ij�� (bii + bjj) (A.7)

because by the Cauchy and elementary inequalities jbij j � b
1
2
iib

1
2
jj � bii + bjj , C

denoting throughout a generic constant. Because �ibii = q and  ij =  ji, this
is bounded by Cmaxi �j

�� ij��. The second term has mean zero and variance
bounded by

C
X
i;j;`;m

 ij `mbimb`j + C
X
h;i;j;`

 ij `jbijb`h (A.8)
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� C

0@X
i;j

�� ij�� b 12iib 12jj
1A2

+ C
X
i;j;`

�� ij�� �� `j�� b 12iib 12``
� C

0@X
i;j

�� ij�� (bii + bjj)
1A2

+ C
X
i;j;`

�� ij�� �� `j�� (bii + b``)
� C

0@max
i

X
j

�� ij��
1A2

: (A.9)

Next,

X
i;j

 ij v̂iv̂j =
X
i;j

 ij

 X
`

u`bi`

! X
m

umbjm

!
=

X
i;j;`

 ijbi`bj`u
2
` +

XX
i;j;k

 ijbik
X
` 6=k

bi`uku`: (A.10)

The �rst term on the right has modulus with expectation bounded by

C
X
i;j

�� ij�� (bii + bjj) � Cmax
i

X
i

�� ij�� (A.11)

as before. The second term has mean zero and variance bounded byX
h;i;j;k;`;m

 ij hmbj` (bikbm` + bh`bmk)

� C

0@X
i

X
j

 ijb
1
2
iib

1
2
jj

1A � C

0@max
i

X
j

�� ij��
1A2

(A.12)

as before. Then (A.2) follows from Assumption 3. To prove (A.3) we show that
for all p� 1 vectors �, such that k�k2 = 1,

�0A
� 1
2

n an !d N(0; 1) (A.13)

conditionally. The left side can be written �izin, where

zin = 2ui�
0A
� 1
2

n

X
j<i

 ijuj : (A.14)

Clearly �izin has mean zero and variance 1, so (A.3) follows from Theorem 2
of Scott (1973) on showing that conditionallyX

i

E
�
z2in jui; j < i

�
!p 1 (A.15)
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X
i

E
�
z2in1 (jzinj � ")

	
!p 0; 8" > 0: (A.16)

It is easily seen that (A.15) follows if

D
� 1
2

n

8<:X
i

0@X
j<i

 ijuj

1A0@X
j<i

 ijuj

1A0

� �2
X
j<i

 ij 
0
ij

9=;D
� 1
2

n !p 0: (A.17)

Again we consider a typical element, and again identify a scalar  ij with this;
strictly speaking the di¤erential norming needs to be taken account of, but this
is a routine aspect. Thus in place of the expression in braces in (A.17) we
consider

2
X
i

X
j<i

 2ij
�
u2j � �2

�
+
X
i

XX
j;k<i
j 6=k

 ij ikujuk: (A.18)

By inequalities of Jensen and of von Bahr and Esseen (1965), the modulus of
the �rst term has mean bounded by

C

8><>:
X
i

������
X
j<i

 2ij

������
1+�=2

9>=>;
2=(2+�)

� C

8><>:
0@max

i

X
j

 2ij

1A�=2X
i;j

 2ij

9>=>;
2=(2+�)

� C

0@max
i

X
j

j j

1A�8<:X
i;j

 ij

9=;
2=(2+�)

= op

0@X
i;j

 2ij

1A ; (A.19)

as desired. The second term in (A.18) has zero mean and variance bounded by

C
X
h;i

j;k<i;h

�� ij ik�� ��� hj hk���

� C
X
i;j

0@X
k<i;j

�� ik kj��
1A2

= op

0@X
i;j

 2ij

1A (A.20)

by Assumption 3. This completes the proof of (A.15). To prove (A.16) we check
the su¢ cient Lyapunov conditionX

i

E jzinj2+� !p 0: (A.21)

We can instead check the condition with zin replaced by
�
�i;j 

2
ij

�� 1
2 ui�j<i ijnuj ,
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again treating  ij as a generic element. Thus we need0@X
i;j

 2ij

1A�1��=2X
i

E

0@X
j<i

 2iju
2
j

1A1+�=2

!p 0 (A.22)

by the Marcinkiewicz-Zygmund inequality. The sum is bounded by

C
X
i

E

0@X
j

�� ij��2+� E juj j2+�
1A � C

X
i

0@X
j

 2ij

1A�=2X
j

 2ijE juj j
2+�

� C

0@X
i;j

 2ij

1A 1
2

max
i

8<:X
j

�� ij��2
9=;
�=2

; (A.23)

as desired.

APPENDIX 2: PROOF OF THEOREM 2

Proof. In place of (A.1)-(A.3) we need that, as n!1,

D
� 1
2

n B̂nD
� 1
2

n !p S; (B.1)

B
� 1
2

n (ân � an) !p 0 (B.2)

B
� 1
2

n an !d N(0; Ip): (B.3)

To prove (B.1) we de�ne

Bn =
X
i;j

 ij 
0
ij�

q
i�
q
j (B.4)

and prove

D
� 1
2

n

�
~Bn �Bn

�
D
� 1
2

n !p 0; (B.5)

D
� 1
2

n

�
B̂n � ~Bn

�
D
� 1
2

n !p 0: (B.6)

In both cases, as in part of the proof of Theorem 1, it clearly su¢ ces to give the
proof as if p = 1, and shows that ~Bn �Bn and B̂n-B̂n are both op

�
�i;j 

2
ij

�
.

We have

~Bn �Bn =
X
i;j

 2ij
�
2�2i (u

2
j � �2j ) + (u2i � �2i )(u2j � �2j )

	
: (B.7)
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The contribution from the �rst term in braces has absolute value with expecta-
tion bounded by

C

8><>:
X
i

0@X
j

 2ij

1A1+�=2
9>=>;
2=(2+�)

= op

0@X
i;j

 2ij

1A (B.8)

as in (A.19). The contribution from the second term has mean zero (because
 ii = 0) and variance bounded by

C
X
i;j

 4ij � C

0@max
i

X
j

�� ij��
1A2X

i;j

 2ij ; (B.9)

as desired.
With respect to (B.6) routine development indicates that it su¢ ces to show

that each of the following expansions is op
�
�i;j 

2
ij

�
:

s1 =
X
i;j

 2iju
2
iuj v̂j ; s2 =

X
i;j

 2iju
2
i v̂
2
j ; (B.10)

s3 =
X
i;j

 2ijuiuj v̂iv̂j ; s4 =
X
i;j

 2ijuiv̂iv̂
2
j (B.11)

s5 =
X
i;j

 2ij v̂
2
i v̂
2
j : (B.12)

We have

s1 =
X
i 6=j

 2iju
2
iujbij +

X
i;j

 2iju
2
iuj

0@X
h6=j

bhjuh

1A : (B.13)

Feom previous calculations, the modulus of the �rst term is easily seen to be

O
��
maxi �j

�� ij���2�. The second term can be written

X
i;j

 2iju
3
iujbij +

X
i;j

 2iju
2
iuj

0@X
h6=i;j

bhjuh

1A : (B.14)

The modulus of the �rst term has expectationO
�
maxi

�
�j
�� ij���2�. The second

term has mean zero and variance bounded by

C
X
i;j;`;h

 2ij 
2
i`b

2
hj + C

X
i;j;k;`

 2ij 
2
k`b

2
`j (B.15)
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� C
X
i;j;`

 2ij 
2
i`bjj +

X
i;j;k;`

 2ij 
2
k` (b`` + bjj)

� Cmax
i

X
`

 2i`
X
i;j

 2ijbjj +
X
i;j

 2ijmax
`

X
k

�� 2k`��
� C

0@max
i

X
j

�� ij��
1A4

+ C

0@max
i

X
j

�� ij��
1A20@X

i;j

�� 2ij��
1A

= o

0B@
0@X

i;j

 2ij

1A2
1CA : (B.16)

Next,

E js2j � C
X
i;j

 2ij
�
Ev̂4j

� 1
2 �

X
i;j

 2ij

8<:X
h

b2hj +

 X
h

b4hj

! 1
2

9=;
� C

X
i;j

 2ij (bii + bjj) � C

0@max
i

X
j

�� ij��
1A2

: (B.17)

The remaining terms are dealt with similarly. Indeed application of Hölder�s
and elementary inequalities gives the same bound for E js3j as E js2j, while

E js4j � C
X
i;j

 2ij
�
Ev̂4i

� 1
4
�
Ev̂4j

� 1
2

� C
X
i;j

 2ij

 X
i

b2hi

! 1
2
 X

h

b2hj

!

� C
X
i;j

 2ijb
1
2
iibjj

� C

0@max
i

X
j

�� ij��
1A2

; (B.18)
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E js5j � C
X
i;j

 2ij
�
Ev̂4iEv̂

4
j

� 1
2

� C
X
i;j

 2ij

 X
h

b2hi

! X
h

b2hj

!
� C

X
i;j

 2ijbiibjj

� C

0@max
i

X
j

�� ij��
1A2

; (B.19)

in both cases using bii � 1. Thus (B.6) is proved.
The proofs of (B.2) and (B.3) hardly di¤er from those of (A.2) and (A.3).

With respect to (B.2), after replacing Bn by Dn there is no di¤erence due to
the uniform bound on relevant moments. The latter is also relevnt to (B.3); we
only note that in place of (A.8) we need to establish

D
� 1
2

n

8<:X
n

0@X
j<i

 ijuj

1A0@X
j<i

 ijuj

1A0

�
X
j<i

 ij 
0
ij�

2
j

9=;D
� 1
2

n !p 0; (B.20)

but the details di¤er only trivially.
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