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1 Introduction

This paper provides a unified treatment of generalized empirical likelihood (GEL) methods

for moment condition models defined using weakly dependent data via smoothing the

moment indicators using kernel function based weights which incorporate a bandwidth

parameter. These procedures generalize and extend earlier contributions, including those

of Kitamura and Stutzer (1997) and Smith (1997, 2000). Efficient GEL estimators are

provided which are asymptotically equivalent to efficient two-step generalized method

of moments (GMM) estimators [Hansen (1982)].1 New estimators for the Jacobian and

limiting variance matrices of the moment indicators are proposed. Examples of particular

choices of bandwidth parameter and kernel function are discussed. Efficient moment

estimators based on implied probabilities derived from the GEL method are also obtained,

of which efficient estimators of the stationary distribution of the data are a special case.

This approach generalizes that suggested by Back and Brown (1993) to GEL and Brown

and Newey (1998) to weakly dependent data. The paper also presents a unified set of

test statistics for over-identifying moment restrictions and combinations of moment and

parametric restriction hypotheses expressed in mixed form, which admit most forms of

restrictions as special cases. These test statistics also extend existing treatments.

The estimation of moment condition models is not only of theoretical interest but

has substantial empirical importance. In particular, it is now widely recognized that the

most commonly used efficient two-step generalized method of moments (GMM) estimator

[Hansen (1982)] may be severely biased for the sample sizes typically encountered in

applications. See, for example, the Special Section, July 1996, of the Journal of Business

and Economic Statistics. A number of alternative efficient estimators have been proposed

to ameliorate bias. Hansen, Heaton, and Yaron (1996) suggested the continuous updating

estimator (CUE). Other estimators include empirical likelihood (EL) [Imbens (1997), Qin

and Lawless (1994)], and exponential tilting (ET) [Imbens, Spady and Johnson (1998),

1Let T denote the sample size. The relevant optimality concept for estimation throughout this paper is
that of minimum asymptotic variance among root-T consistent and asymptotic normal GMM estimators
based on a given set of unconditional moment restrictions. See Newey and McFadden (1994, section 5.2,
pp.2164-2165) and below Theorem 2.3.
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Kitamura and Stutzer (1997)]. All of these estimators are members of the GEL class

considered here and outlined in Smith (1997) as are estimators based on the Cressie and

Read (1984) family of power divergence criteria. In a random sampling setting, Newey

and Smith (2004), henceforth NS, compare the asymptotic higher order bias of two-step

(and iterated) GMM estimators to estimators in the class of GEL estimators. Their

results account for the poor bias properties of two-step and iterated GMM estimators

which arise through the estimation of the Jacobian and efficient metric in the GMM

criterion function, the latter suggested as a cause of bias by the Monte Carlo experiments

conducted by Altonji and Segal (1996). The former source of asymptotic bias is absent for

GEL estimators and, in particular, the EL estimator behaves like the infeasible optimal

GMM estimator.

Given these encouraging findings for the GEL class of estimators, a primary aim of this

paper is to synthesise and extend this class of estimators to weakly dependent data. To

deal with the time series nature of the data, a smoothed version of the moment indicators

forms the basis of the suggested estimation procedure rather than the moment indicators

themselves as in standard GMM estimation; cf. Kitamura and Stutzer (1997).2 The GEL

method offers attractive alternative one-step efficient estimators, not requiring explicit

calculation or estimation of the efficient metric, that are asymptotically equivalent to

those based on efficient two-step GMM. Efficient moment estimators are also proposed.

Moreover, because of their quasi-likelihood construction, the elucidation of classical-

type test statistics for over-identifying moment conditions, additional moment conditions

and parametric restrictions is relatively straightforward. An additional emphasis of this

paper concerns issues of specification. In particular, this paper discusses specification

test statistics based on GEL criteria rather than the more typical approach of using

a quadratic form in estimated sample analogues of the assumed or implicit population

moment conditions; see Hansen (1982) and Newey (1985b). The tests presented here

mimic in a rather obvious way standard classical tests.

2An alternative approach for EL estimation in the time series context is suggested in Kitamura (1997)
using blockwise EL which should be adaptable for the GEL criteria considered here. Kitamura (1997)
also shows the Bartlett correctability of blockwise EL.
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Section 2 introduces GEL criteria for time series data which are formed by incor-

porating a kernel weighted sample version of the moment indicators. The parameter

vector and weights associated with these smoothed moment indicators are the respective

objects of interest for estimation and inference, the former from an economic-theoretic

standpoint and the latter for tests of specification. The GEL estimation procedure is

then described and the limiting distribution of the estimators is obtained. Consistent

estimators for the Jacobian and moment indicator limiting variance matrix are detailed

together with suggestions for the choice of bandwidth parameter and kernel function.

Section 3 describes moment estimators which optimally incorporate the moment infor-

mation and, therefore, dominate more traditional estimated sample average forms based

on the empirical distribution function. A special case of the moment estimator is one

for the stationary distribution of the data which, therefore, is more efficient than the

empirical distribution function. Section 4 is concerned with deriving classical-type tests

for over-identifying moment restrictions; cf. Hansen (1982). Section 5 presents a unified

treatment of classical-type tests for additional moment restrictions, cf. Newey (1985b),

and parametric contraints expressed in mixed form, see Gourieroux and Monfort (1989),

which are sufficiently general to include other forms of parametric constraint of interest.

Section 6 concludes. Proofs of the results are given in the Appendices.

The following abbreviations are used throughout the paper: w.p.a.1: with probability

approaching one;
a
=: differs by no more than an op(1) term;

p→: converges in probability
to;

d→: converges in distribution to; k.k: the matrix norm defined by kAk =
q
λmax(A0A)

where λmax(·) is the maximum eigenvalue of ·; p.d.: positive definite; n.d.: negative
definite; p.s.d.: positive semi-definite; f.c.r.: full column rank.

2 Generalized Empirical Likelihood

Let zt, (t = 1, ..., T ), denote observations on a finite dimensional stationary and strongly

mixing process {zt}∞t=1. Consider the moment indicator g(zt, β), an m-vector of known
functions of the data observation zt and the p-vector β of unknown parameters which are

[3]



the object of inferential interest, where m ≥ p. It is assumed that the true parameter

vector β0 uniquely satisfies the moment condition

E[g(zt, β0)] = 0, (2.1)

where E[·] denotes expectation taken with respect to the unknown distribution of zt.
Typically, (2.1) will arise from conditional moment restrictions. In such cases, zt may

also include lagged endogenous and current and lagged values of exogenous variables.

For economy of notation, we define gt(β) = g(zt, β), (t = 1, ..., T ), and ĝ(β) =

T−1
PT
t=1 gt(β).

2.1 Moment Indicators

Standard generalized method of moments (GMM) criteria are defined directly as quadratic

forms in terms of the moment indicators gt(β), (t = 1, ..., T ), and their sample average

ĝ(β). In contradistinction, we work here with the smoothed counterparts

gtT (β) =
1

ST

t−1X
s=t−T

k
µ
s

ST

¶
gt−s(β), (t = 1, ..., T ), (2.2)

where ST is a bandwidth parameter and k(·) a kernel function. As described in section
2.6 below the kernel weights 1

ST
k
³
s
ST

´
in (2.2) give rise to weights similar in nature to

those used in heteroskedastic and autocorrelation consistent (HAC) covariance matrix

estimation; see inter alia Andrews (1991) and Newey and West (1987). Theorem 2.1

below and the following discussion provide some intuition for the necessity of smoothing

gt(β), (t = 1, ..., T ), to achieve asymptotic efficiency; see also Kitamura and Stutzer

(1997). Kitamura and Stutzer (1997) and Smith (1997) employ particular choices for

the bandwidth parameter ST and kernel function k(·), the former also using a special
case of the class of GEL criteria defined below. Suitable choices of ST and k(·) which
ensure that GEL estimators are first order asymptotically equivalent to efficient GMM

estimators are discussed in section 2.6 below.

Let kj =
R∞
−∞ k(a)

jda, j = 1, 2.

The large sample properties of consistency and asymptotic normality of GMM esti-

mators rely on a uniform weak law (UWL) of large numbers and central limit theorem

[4]



(CLT) defined in terms of the sample average ĝ(β). Similar results in terms of the sample

average ĝT (β) = T
−1PT

t=1 gtT (β) of the smoothed moment indicators (2.2) are required

for the asymptotic properties of GEL estimators. In particular,

sup
β∈B

kĝT (β)− k1E[gt(β)]k = op(1), (2.3)

where B denotes the parameter space. In addition,

T 1/2[ĝT (β)− E[ĝT (β)]] d→ N(0, (k21)Ω(β)), (2.4)

where

Ω(β) = lim
T→∞

var[T 1/2ĝ(β)].

The limiting variance matrix of T 1/2ĝ(β0), Ω = Ω(β0), is assumed p.d.. Detailed state-

ments of and proofs for (2.3) and (2.4) are provided by Lemmas A.1 and A.2 respectively

in Appendix A.

2.2 GEL Criteria

Let ρ(·) be a function that is concave on its domain V, an open interval containing zero.
It will be convenient to impose a normalization on ρ(·). Let ρj(·) = ∂jρ(·)/∂vj and ρj =
ρj(0), (j = 0, 1, 2, ...).We normalize so that ρ1 = ρ2 = −1. As long as ρ1 6= 0 and ρ2 < 0,
which we will assume to be true, this normalization can always be imposed by replacing

ρ(·) by [−ρ2/ρ21]ρ([ρ1/ρ2]·), which does not affect the estimator of β. It is satisfied by the
ρ(·) given below for EL, ET and CUE.
We introduce am-vector of auxiliary parameters λ, each element of which is associated

with a corresponding element of the smoothed indicator gtT (β) of (2.2). The class of GEL

criteria considered here is then defined as

P̂ (β,λ) =
TX
t=1

[ρ(kλ0gtT (β))− ρ0]/T. (2.5)

The normalisation

k =
k1
k2

(2.6)

[5]



has no effect on the GEL estimator for β but makes the scale of the estimator of the

auxiliary parameters λ comparable for different choices of kernel function k(·).
We restrict the auxiliary parameters λ ∈ ΛT in order that w.p.a.1 kλ0gtT (β) is in the

domain V of ρ(·) for all λ ∈ ΛT , β ∈ B, and 1 ≤ t ≤ T . It suffices for the theory here that
ΛT places bounds on λ that shrink with T slower than (T/S

2
T )
−1/2 which is the rate of

convergence of the GEL estimator for λ; see Assumption 2.4 (b) and Theorem 2.2 below.

The GEL criterion (2.5) may be interpreted as an adaptation of the approach taken in

Chesher and Smith (1997) to the moment conditions context. Chesher and Smith (1997)

analyses likelihood ratio test statistics for implied moment conditions in a fully para-

metric likelihood setting with the likelihood obtained by augmenting the null hypothesis

parametric density multiplicatively by a carrier function h(·) of a weighted version of
the moment indicators underpinning the implied moment conditions as in (2.5).3 In the

GMM context, however, there is no explicit knowledge of the underlying density function

for {zt}∞t=1, the only parametric information being contained in the moment conditions
(2.1). Replacing the parametric density function in Chesher and Smith’s (1997) proce-

dure by the non-parametric empirical measures dµt = T−1, (t = 1, ..., T ), circumvents

this difficulty. Viewed in this light, the function ρ(·) is minus the logarithm of the carrier
function, − log h(·), in Chesher and Smith’s (1997) framework.
The GEL class admits a number of special cases which have been the focus of recent

attention in the statistics and econometrics literature. The EL estimator is a GEL es-

timator with ρ(v) = log(1 − v), see Imbens (1997), Qin and Lawless (1994) and Smith
(2000), and the ET estimator of Imbens, Spady, and Johnson (1998) is also GEL with

ρ(v) = − exp(v). The CUE of Hansen, Heaton and Yaron (1996) is obtained if ρ(·) is
quadratic; see Theorem 2.1, p.223, of NS. Similarly, the criterion suggested by Kitamura

and Stutzer (1997) based on (2.2) is − log
³
T−1

PT
t=1 exp(kλ

0gtT (β))
´
with k(·) the trun-

cated kernel, see Example 2.1 of section 2.5, which, as log(1 + x)
.
= x, is approximately

1 −T−1PT
t=1 exp(λ

0gtT (β)). Hence, to the orders of magnitude considered in this paper,

3Many tests of specification in classical settings may be formulated as tests for implied moment
conditions; see inter alia Newey (1985a) and Tauchen (1985).
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Kitamura and Stutzer’s (1997) criterion is equivalent to GEL with ρ(v) = − exp(v), that
is, the ET criterion. Moreover, the ET estimator is identical to that based on the cri-

terion − log
³
T−1

PT
t=1 exp(kλ

0gtT (β))
´
since it is a monotonic transformation of the ET

criterion. More generally, members of the Cressie-Read (1984) power divergence family

of discrepancies discussed by Imbens, Spady, and Johnson (1998) are included in the

GEL class with ρ(v) = −γ2(1 + v)(γ+1)/γ/(γ + 1). In this case, the GEL optimisation
problem is a dual of that arising from the Cressie-Read (1984) family. GEL estimators

are also related to minimum discrepancy (MD) estimators considered by Corcoran (1998)

but do not necessarily coincide unless the first inverse derivative of the MD function is

homogenous. An advantage of the GEL class over MD is that GEL estimators are ob-

tained from a much smaller dimensional optimization problem than that for MD which

increases with T .4 Moreover, the ability to estimate the distribution of the data is not

lost for GEL as detailed in section 3. See NS for further discussion.

2.3 GEL Estimation

GEL estimators are obtained as the solution to a saddle point problem. Firstly, the

GEL criterion P̂ (β,λ) is maximised for given β. That is, λ̂(β) = arg supλ∈ΛT P̂ (β,λ) and

satisfies the GEL first order conditions5

T−1
TX
t=1

ρ1(kλ̂(β)
0gtT (β))gtT (β) = 0. (2.7)

Consequently, (2.7) indicates that the moment conditions are satisfied in the sample.

Secondly, the GEL estimator β̂ is the minimiser of the profile GEL criterion P̂ (β, λ̂(β))

β̂ = argmin
β∈B

P̂ (β, λ̂(β)) = argmin
β∈B

sup
λ∈ΛT

P̂ (β,λ). (2.8)

4The Cressie-Read (1984) family is parameterised through the single parameter γ. Higher order
asymptotic expansions for GEL estimators and test statistics involve derivatives evaluated at zero of ρ(·)
at least to the third order which confers greater flexibility on GEL criteria, a feature also possessed by
MD criteria. For example, see NS for an analysis of asymptotic bias and higher order efficiency in the
i.i.d. context.

5Appendix D details the second order derivatives of P̂ (·, ·). In particular, if PT
t=1 gtT (β)gtT (β)

0 is
p.d., λ̂(β) is a unique maximiser of P̂ (β, ·).

[7]



Writing λ̂ = λ̂(β̂), β̂ satisfies the GEL first order conditions

T−1
TX
t=1

ρ1(kλ̂
0gtT (β̂))GtT (β̂)0λ̂ = 0, (2.9)

where GtT (β) = ∂gtT (β)/∂β
0, (t = 1, ..., T ). Hence, the solutions β̂ and λ̂ define a saddle

point of the GEL criterion P̂ (β,λ).6 As is evident from the GEL first order conditions

(2.7) and (2.9) the introduction of the auxiliary parameters λ renders the first order

conditions determining the GEL estimator β̂ and λ̂ as corresponding to a just-identified

GMM problem. In the just-identified case m = p, λ̂ = 0 from (2.9) and, thus, (2.7)

reduces to the familiar GMM first order conditions for a just-identified problem.

A re-interpretation of the GEL first order conditions (2.7) and (2.9) aids understand-

ing of the efficiency of the GEL estimator β̂ and why GEL might be expected to be less

biased than efficient GMM.

Let Gt(β) = ∂gt(β)/∂β
0, (t = 1, ..., T ), Ĝ(β) =

PT
t=1Gt(β)/T and Ω̂(β̃) denote a

consistent estimator of Ω constructed, for example, as in Andrews (1991) or section 2.5

below with β̃ an initial T 1/2-consistent estimator for β0. The GMM first order conditions

imply

Ĝ(β̂GMM)
0Ω̂(β̃)−1ĝ(β̂GMM) = 0, (2.10)

where β̂GMM denotes the GMM estimator.

An analogous expression may also be obtained for any GEL estimator β̂. Define

p(v) = [ρ1(v) + 1]/v, v 6= 0 and p(0) = −1. Also, let p̂t = p(kλ̂0ĝtT )/PT
s=1 p(kλ̂

0ĝsT ) and

π̂t = πt(β̂, λ̂) be as defined in (3.1) below.

Theorem 2.1 The GEL first order conditions imply

[
TX
t=1

π̂tGtT (β̂)]
0[ST

TX
t=1

p̂tgtT (β̂)gtT (β̂)
0]−1ĝT (β̂) = 0, (2.11)

where p̂t = π̂t for EL and p̂t = 1/T for CUE.

6Imbens, Spady and Johnson (1998) detail a robust method for the computation of λ̂ and β̂ for the
Cressie-Read power divergence family which may be suitably adapted for the GEL class. A consistent
estimator for β0 to initiate an iterative procedure to locate λ̂ and β̂ is any GMM estimator, optimal or
otherwise.

[8]



Let Gt = Gt(β0) and G = E[Gt]. Theorem 2.1 mirrors Theorem 2.3, p.224, in NS

for the random sampling case. It is straightforward to show that under the assumptions

given below T 1/2[ĝT (β̂) − k1ĝ(β̂)] a
= 0. Hence, when comparing the GMM and GEL

first order conditions (2.10) and (2.11), we see that each approximately sets a particular

linear combination of ĝ(β) equal to zero. Furthermore, as described in section 3, π̂t

(and p̂t similarly) behaves like the empirical measure dµt = T−1, (t = 1, ..., T ), i.e.

T−1(1 + op(1)), see (B.5) in the proof of Theorem 3.1. Therefore,
PT
t=1 π̂tGtT (β̂)

p→
k1G and ST

PT
t=1 p̂tgtT (β̂)gtT (β̂)

0 p→ k2Ω, cf. section 2.5 below. GMM thus consistently

estimates the Jacobian term G using the sample average Ĝ(β̂GMM) whereas GEL uses the

re-weighted smoothed derivative estimator
PT
t=1 π̂tGtT (β̂)/(k1). The estimators for the

variance matrix Ω are correspondingly Ω̂(β̃) and ST
PT
t=1 p̂tgtT (β̂)gtT (β̂)

0/(k2). Efficient

GMM and GEL estimators therefore approximately solve the same first order conditions

by setting the optimal linear combination G0Ω−1ĝ(β) equal to zero.

All GEL estimators implicitly use an efficient estimator
PT
t=1 π̂tGtT (β̂)/(k1) of the

Jacobian term; see Theorem 3.1. It is also interesting to note that EL uses a similar

weighting scheme in the estimation of Ω whereas CUE uses the sample average, and other

GEL estimators use other weighted averages. Theorem 3.1 demonstrates that efficient

moment estimators are asymptotically uncorrelated with ĝT (β̂) or ĝ(β̂). As noted by

NS for random sampling, correlations between corresponding terms in the first order

conditions are an important source of bias. Similarly to NS, therefore, one might expect

that GEL will also be less prone to bias than GMM when the data are weakly dependent.

2.4 Asymptotic Theory for GEL Estimators

To describe the asymptotic results for β̂ and λ̂, let

Σ = (G0Ω−1G)−1, H = ΣG0Ω−1,

P = Ω−1 −Ω−1GΣG0Ω−1.

We firstly detail some regularity conditions sufficient for a consistency result. These

assumptions are quite standard and are similar to those given in Andrews (1991) and

[9]



Kitamura and Stutzer (1997).

Assumption 2.1 The process {zt}∞t=1 is a finite dimensional stationary and strong mix-
ing with mixing coefficients

P∞
j=1 j

2α(j)(ν−1)/ν <∞ for some ν > 1.

Hence, {gt(β)}∞t=1 satisfies Assumption 2.1 and is therefore ergodic which ensures the
uniform convergence of certain sample averages to their population counterparts; see, for

example, (2.3).

The next assumption introduces standard conditions on the bandwidth parameter ST

and kernel function k(·) which ensure that ST obeys conditions similar to those described
in Andrews (1991, Theorem 1 (a), p.827). Let

k̄(x) =

(
supy≥x |k(y)| if x ≥ 0
supy≤x |k(y)| if x < 0

and K(λ) = (2π)−1
R
k(x) exp(−ιxλ)dx denote the spectral window generator of the

kernel k(·).

Assumption 2.2 (a) ST → ∞, ST/T 2 → 0 and ST = O(T
1
2
−η) for some η > 0; (b)

k(·) : R→ [−kmax, kmax], kmax <∞, k(0) 6= 0, k1 6= 0, and is continuous at 0 and almost
everywhere; (c)

R
(−∞,∞) k̄(x)dx <∞; (d) |K(λ)| ≥ 0 for all λ ∈ R.

Assumptions 2.2 (b) and (c) ensure k2 > 0. Assumptions 2.2 (b) and (c) also guarantee

that the induced kernel k∗(·)

k∗(a) =
1

k2

Z ∞

−∞
k(b− a)k(b)db, (2.12)

which arises implicitly in GEL estimation based on (2.5), is a member of the p.s.d. class

of kernels K2 used in HAC covariance matrix estimation [Andrews (1991, p.822)] which
is defined in (2.15) of section 2.5 below; see Lemma C.3 in Appendix C. Assumption 2.2

(c) is required to ensure that certain normalised sums defined in terms of the kernel k(·)
converge appropriately to their integral representation counterparts; see Jansson (2002).

While the next assumption in part states regularity conditions which are usual for

the consistency of GMM estimators, the existence of higher moments is required for GEL

estimators.

[10]



Assumption 2.3 (a) β0 ∈ B is the unique solution to E[gt(β)] = 0; (b) B is compact;
(c) gt(β) is continuous at each β ∈ B with probability one; (d) E[supβ∈B kgt(β)kα] <∞
for some α > max

³
4ν, 1

η

´
; (e) Ω(β) is finite and p.d. for all β ∈ B.

Assumption 2.1 together with Assumption 2.3 (d) ensures {gt(β)−E[gt(β)]}∞t=1 will satisfy
the hypotheses of Lemma 1, p.824, of Andrews (1991).

Assumption 2.4 (a) ρ(·) is twice continuously differentiable and concave on its domain,
an open interval V containing 0, ρ1 = ρ2 = −1; (b) λ ∈ ΛT where ΛT = {λ : kλk ≤
D(T/S2T )

−ζ} for some D > 0 with 1
2
> ζ > 1

2αη
.

Assumption 2.4 (b) specifies bounds on λ which shrink slower than the stochastic order

of the auxiliary parameter estimator λ̂ stated in Theorem 2.2 below. When combined

with the existence of higher than second moments in the previous assumption and the

restriction in Assumption 2.3 (d) on α, this condition leads to the argument kλ0gtT (β)

being in the domain V of ρ(·) w.p.a.1 for all β and 1 ≤ t ≤ T .
The above conditions lead to a consistency result.

Theorem 2.2 If Assumptions 2.1-2.4 are satisfied then β̂
p→ β0 and λ̂

p→ 0. Moreover,

kλ̂k = Op[(T/S2T )−1/2] and kĝT (β̂)k = Op(T−1/2).

For asymptotic normality we need additional regularity conditions.

Assumption 2.5 (a) β0 ∈ int(B); (b) g(·, β) is differentiable in a neighborhood N of

β0 and E[supβ∈N k∂gt(β)/∂β 0kα/(α−1)] <∞; (c) rank(G) = p.

Theorem 2.3 Let Assumptions 2.1-2.5 hold. Then

T 1/2(β̂ − β0) d→ N(0,Σ), (T/S2T )
1/2λ̂

d→ N(0, P ),

and the GEL estimator β̂ and the auxiliary parameter estimator λ̂ are asymptotically

uncorrelated.
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The asymptotic variance matrix Σ = (G0Ω−1G)−1 is the efficiency lower bound for GMM

estimators based on the quadratic form T ĝ(β)0Ŵ ĝ(β) where Ŵ is p.s.d., Ŵ
a
= W and

W is p.d.; see Newey and McFadden (1994, section 5.2, pp.2164-2165). The lack of

asymptotic correlation between β̂ and λ̂ underlines that the moment conditions (2.1) are

used efficiently in the estimation of β and, therefore, that β̂ is asymptotically equivalent

to efficient GMM estimators. Furthermore, (T/S2T )
1/2λ̂

a
= −Ω−1T 1/2ĝ(β̂). Hence, the

auxiliary parameter estimator λ̂ may be used to assess the validity or otherwise of the

moment conditions (2.1); see section 4.

2.5 Estimation of Ω and G

The Hessian of the optimised GEL criterion (2.5) given in Appendix C provides a basis

for the consistent estimation of Ω and G.

Let ĝtT = gtT (β̂) and ĜtT = GtT (β̂), (t = 1, ..., T ).

The (λ,β)-block ∂2P̂ (β̂, λ̂)/∂λ∂β 0 (D.1) of the Hessian provides a basis for the con-

sistent estimation of G.

Theorem 2.4 (Consistent Estimation of G.) Under Assumptions 2.1-2.5, the re-scaled

(λ, β)-block of the Hessian, −(k2/k21)(∂2P̂ (β̂, λ̂)/∂λ∂β0), is a consistent estimator of G.

By adapting UWL Lemma A.1,
PT
t=1GtT (β̂)/(Tk1), as well as

PT
t=1Gt(β̂)/T , is also

a consistent estimator of G.

The (λ,λ)-block ∂2P̂ (β̂, λ̂)/∂λ∂λ0 (D.2) of the Hessian is k2
PT
t=1 ρ2(kλ̂

0ĝtT )ĝtT ĝ0tT/T ,

which is n.d. if
PT
t=1 ĝtT ĝ

0
tT is p.d..

Theorem 2.5 (Consistent Estimation of Ω.) Let Assumptions 2.1-2.5 be satisfied. Then

the re-scaled (λ,λ)-block of the Hessian, −(k2/k21)ST (∂2P̂ (β̂, λ̂)/∂λ∂λ0), is a consistent
estimator of Ω.

The proof of Theorem 2.5 shows that ST
PT
t=1 ρ2(kλ̂

0ĝtT )ĝtT ĝ0tT/(Tk2)
a
= −Ω̂T (β0) where

Ω̂T (β) = ST
TX
t=1

gtT (β)gtT (β)
0/(Tk2). (2.13)
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Lemma A.3 in Appendix A, a subsidiary result of particular importance in the proofs

of Theorems 2.2, 2.3 and 2.5, establishes the validity of Lemma 2.1 in Smith (2005), i.e.

Ω̂T (β0)
p→ Ω, the proof of which was omitted there. Theorem 2.1 of Smith (2005) then

shows that evaluation of Ω̂T (β) at a T
1/2-consistent estimator for β0 offers an alternative

to those p.s.d. consistent estimators for Ω described inter alia in Andrews (1991) and

Newey and West (1987). Therefore, ST
PT
t=1 ĝtT ĝ

0
tT/(Tk2)

p→ Ω.7

Alternative estimators for Ω and G are obtained if the empirical measure dµt =

T−1 is replaced by the GEL implied probability πt(β̂, λ̂), (t = 1, ..., T ), defined in (3.1)

below. The scaling constants k1 and k2 may also be replaced by their respective sample

counterparts k̂j =
PT−1
s=1−T k

³
s
ST

´j
/ST , (j = 1, 2).

2.6 Kernel k(·) and Bandwidth Parameter ST Choices
Consider the class of symmetric kernels K1 defined by

K1 = {k∗(·) : R→ [−1, 1]|k∗(0) = 1, k∗(−a) = k∗(a)∀x ∈ R,
Z
[0,∞)

k̄∗(a)da <∞,
k∗(·) continuous at 0 and almost everywhere}. (2.14)

where k̄∗(a) = supb≥|a| |k∗(b)|; see, for example, Andrews (1991) and Andrews and Mon-
ahan (1992).8 The p.s.d. class K2 is then defined as in Andrews (1991, p.822) by

K2 = {k∗(·) ∈ K1 : K∗(λ) ≥ 0 for all λ ∈ R}, (2.15)

whereK∗(λ) = (2π)−1
R
k∗(x) exp(−ιxλ)dx is the spectral window generator of the kernel

k∗(·).
7Theorems 3.1 and 3.2 in Smith (2005) demonstrate that under the hypotheses of Theorems 2.2 and

2.3, two-step and iterated GMM estimators based on the criterion ĝT (β)
0Ω̂T (β̃)

−1ĝT (β), where β̃ is an
initial T 1/2-consistent estimator for β0, are consistent estimators for β0, asymptotically equivalent to
the GEL estimator β̂ and, thus, asymptotically efficient.

8Neither the square integrability condition
R∞
−∞ k

∗(x)2dx < ∞ in Andrews (1991, (2.6), p.821) nor

the stronger absolute integrability condition
R∞
−∞ |k∗(x)| dx <∞ in Andrews and Monahan (1992, (2.5),

p.955) is sufficient for the consistency results claimed in those papers; see Jansson (2002). The conditionR
[0,∞)

k̄∗(x)dx < ∞ ensures that particular summations used in those papers converge appropriately;

see Lemma 1 of Jansson (2002).

[13]



In the proof of Lemma A.3, it is required that the infeasible estimator

ΩT (β0) =
T−1X
s=1−T

k∗T

µ
s

ST

¶
CT (s)/k2 (2.16)

p→ Ω,

where k∗T
³
s
ST

´
= 1

ST

Pmin[T−1,T−1+s]
t=max[1−T,1−T+s] k

³
t−s
ST

´
k
³
t
ST

´
/k2 and the infeasible sample covari-

ances CT (s) =
Pmin[T,T−s]
t=max[1,1−s] gt+s(β0)gt(β0)

0/T , CT (−s) = CT (s)0, (s = 1 − T, ..., T − 1).
Lemma C.2 in Appendix A shows that k∗T (a) = k

∗(a) + o(1) uniformly where k∗(·) is the
induced kernel defined in (2.12).9 Moreover, Lemma C.3 proves that if Assumptions 2.2

(b) and (c) are satisfied then k∗(·) belongs to the p.s.d. class K2 (2.15), cf. Andrews
(1991, p.822).

Therefore choices for the bandwidth parameter ST and kernel function k(·) should
satisfy the conditions set out above in Assumption 2.2; see also Andrews (1991, Theorem

1 (a), p.827). In particular, we require ST = o(T
1/2), see Assumption 2.2 (a), and that

k(·) implies k∗(·) ∈ K2, see Assumptions 2.2 (b) and (c). The spectral window generator
for k∗(·) is related to that of k(·) by K∗(λ) = (2π)−1

R
exp(−iaλ)k∗(a)da = 2π |K(λ)|2;

see the proof of Lemma C.3. This relationship between K(·) and K∗(·) allows the kernel
k(·) employed in (2.2) to be straighforwardly deduced from suitable choices for k∗(·) as
the examples given below attest. The optimal rate for ST will depend on the particular

kernel k(·) (and, thus, implicit k∗(·)) chosen; see Andrews (1991, section 5, pp.830-832).
The following examples detail the optimal rate for ST and the kernel k(·) correspond-

ing to particular choices for k∗(·). The quadratic spectral kernel k∗(·) of Example 2.3
below is the optimal kernel in a truncated asymptotic mean squared error sense for HAC

consistent estimation of Ω; see Andrews (1991, Theorem 2, p.829).

Example 2.1: Bartlett Kernel.

9The estimator ΩT (β0) (2.16) belongs the general class of quadratic estimators [Grenander and Rosen-
blatt (1984, Section 4.1)] and has Toeplitz weight matrix. As Ω̂T (β0) (2.13) and ΩT (β0) are asymptoti-

cally equivalent, i.e. Ω̂T (β0)−ΩT (β0)
a
= 0, it might be expected that the estimators for Ω suggested in

section 2.5 would inherit the desirable asymptotic mean squared error properties of standard lag kernel
estimators [Grenander and Rosenblatt (1984, Section 4.2)].
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Consider the truncated kernel k(x) = 1, |x| ≤ 1, and 0, |x| > 1, k1 = 2 and k2 = 2.
Hence, defining the bandwidth parameter ST = (2mT + 1)/2,

gtT (β) = (2mT + 1)
−1

min[t−1,mT ]X
s=max[t−T,−mT ]

gt−s(β), (t = 1, ..., T ).

The truncated kernel has spectral window generator K(λ) = π−1[(sinλ)/λ]. It is imme-

diate that the induced kernel is the Bartlett kernel k∗(x) = 1 − |x/2|, |x| ≤ 2, and 0,

|x| > 2, as its spectral window generator is K∗(λ) = (2π)−1[(sinλ/2)/(λ/2)]2. Hence, the

optimal bandwidth parameter rate is mT = O(T
1/3), see Andrews (1991, (5.3), p.830).

Cf. Kitamura and Stutzer (1997).

Example 2.2: Parzen Kernel.

For the Bartlett kernel k(x) = 1− |x|, |x| ≤ 1, and 0, |x| > 1, k1 = 1 and k2 = 2/3.
Hence, again defining the bandwidth parameter ST = (2mT + 1)/2,

gtT (β) = (2mT + 1)
−1

min[t−1,mT ]X
s=max[t−T,−mT ]

µ
1− 2

2mT + 1

¶
gt−s(β), (t = 1, ..., T ).

The spectral window generator for the Parzen kernel isK∗(λ) = (8π/3)−1[(sinλ/4)/(λ/4)]2.

Therefore, it follows that the induced kernel corresponding to the Bartlett kernel is the

Parzen kernel k∗(x) = 1 − 6(x/2)2 + 6 |x/2|3, |x| ≤ 1, 2(1 − |x/2|)3, 1 < |x| ≤ 2 and 0,
|x| > 2. The optimal bandwidth parameter rate is mT = O(T

1/5), see Andrews (1991,

(5.3), p.830).

Example 2.3: Quadratic Spectral Kernel.

The quadratic spectral kernel is defined by

k∗(x) =
3

(ax)2

µ
sin ax

ax
− cos ax

¶
, x ∈ R,

where a = 6π/5; see Andrews (1991, (2.7), p.821). Hence, using 3.741.2 and 3.714.3,

p.414, of Gradshteyn and Ryzhik (1980), hereafter GR, the spectral window generator

of the quadratic spectral kernel is

K∗(λ) =

 3
4a

µ
1−

³
λ
a

´2¶
, |λ| ≤ a

0, |λ| > a
.

[15]



Let the kernel k(·) have spectral window generator K(λ) = K∗(λ)1/2, that is,

K(λ) =


³
3
4a

´1/2 µ
1−

³
λ
a

´2¶1/2
, |λ| ≤ a

0, |λ| > a
.

Therefore, using the inverse Fourier transform and GR (3.752.2, p.419),

k(x) =
µ
5π

8

¶1/2 1
x
J1

µ
6πx

5

¶
, x ∈ R,

where the Bessel function, see GR (8.402, p.951),

Jν(z) =
zν

2ν

∞X
k=0

(−1)k z2k

22kΓ(k + 1)Γ(ν + k + 1)
.

Thus, k1 = (5π/2)1/2, GR (6.561.14, p.684), and k2 = 2π, GR (6.574.2, p.692). The

optimal bandwidth parameter rate is ST = O(T
1/5), see Andrews (1991, (5.3), p.830).

3 Efficient Moment Estimation

Given the conditions on the function ρ(·) in Assumption 2.4 (a) and as the argument
kλ̂0gtT (β̂) ∈ V w.p.a.1, (t = 1, ..., T ), from Lemma A.4, the ratios

πt(β̂, λ̂) =
ρ1(kλ̂

0gtT (β̂))PT
s=1 ρ1(kλ̂

0gsT (β̂))
, (t = 1, ..., T ), (3.1)

may be thought of as implied probabilities being bounded between zero and unity w.p.a.1

and also summing to unity; cf. Back and Brown (1993). The ratios πt(β̂, λ̂), (t = 1, ..., T ),

are thus empirical measure counterparts to the expectation operator in (2.1) that ensure

that the moment conditions are satisfied in the sample; see (2.7).10 In contrast, the

empirical measures dµt = T−1, (t = 1, ..., T ), from which the empirical distribution

function (EDF) µ̂(z) =
PT
t=1 1(zt ≤ z)dµt is constructed, where 1(·) denotes an indicator

function, underpin the calculation of sample mean-like quantities.11

10In a random sampling setting, Brown and Newey (2002) independently propose similar empirical
measures to (3.1) in which the GMM estimator is substituted in (2.5) and, thus, (2.7) and optimisation
is with respect to λ alone. See also NS, p.223.

11The empirical measures dµt, (t = 1, ..., T ), are nonparametric maximum likelihood estimators which

maximise the non-parametric log-likelihood
PT

t=1 log dµt subject to the constraints 0 < dµt < 1, (t =

1, ..., T ), and
PT

t=1 dµt = 1.
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Let α0 denote a r-vector of moments of interest derived from the stationary distri-

bution of the process {zt}∞t=1. Suppose that E[a(z,β0)] = α0, where a(z, β) is a known
vector of functions of the data observation vector z and parameter vector β. The infor-

mation contained in the moment conditions E[gt(β0)] = 0 (2.1) may then be exploited

using (3.1) to provide an efficient estimator of the moment vector α0 which therefore

dominates the EDF based estimator
PT
t=1 a(zt, β̂)/T .

Let at(β) = a(zt, β), (t = 1, ..., T ). We use a simple adaptation of Back and Brown’s

(1993) method for the GEL context; cf. Brown and Newey (1998) for i.i.d. data. De-

fine the additional moment indicator vector a(z, β) − α with its smoothed counterpart
as atT (β) − ktTα where atT (β) = 1

ST

Pt−1
s=t−T k

³
s
ST

´
at(β) and the normalisation factor

ktT =
1
ST

Pt−1
s=t−T k

³
s
ST

´
, (t = 1, ..., T ), cf. (2.2). We associate the auxiliary parameter

vector ϕ with the smoothed moment indicator atT (β)− ktTα, (t = 1, ..., T ), and incorpo-
rate this indicator into the GEL criterion (2.5), i.e. P̂ (α,β,ϕ,λ) =

PT
t=1[ρ(k(λ

0gtT (β) +

ϕ0(atT (β) − ktTα))) − ρ0]/T . From the first order conditions, cf. (2.9), optimisation of

P̂ (α, β,ϕ,λ) over the parameter vectors (α,β) and auxiliary parameters (ϕ,λ) results in

the additional auxiliary parameter ϕ being estimated as identically zero since the deriva-

tive matrix of the augmented smoothed moment indicator is block triangular between α

and β. Therefore, the GEL estimators β̂ and λ̂ defined in section 2.3 are solutions to this

optimisation problem. Moreover, the corresponding GEL estimator for α is given by

α̂ =
1PT

t=1 ktTπt(β̂, λ̂)

TX
t=1

πt(β̂, λ̂)atT (β̂). (3.2)

LetA(β) = E[∂at(β)/∂β
0] and Ξ(β) = limT→∞ var[T 1/2â(β)], where â(β) =

PT
t=1 at(β)/T .

Also define A = A(β0) and Ξ = Ξ(β0). The following assumption modifies Assumptions

2.3-2.5 appropriately for a(z,β).

Assumption 3.1 (a) at(β) is continuous at each β ∈ B with probability one; (b)

E[supβ∈B kat(β)kα] <∞ for some α > max
³
4ν, 1

η

´
; (c) Ξ(β) is finite and p.d. for all β ∈

B; (d) a(·,β) is differentiable in a neighborhood N of β0 and E[supβ∈N k∂at(β)/∂β 0kα/(α−1)] <
∞.
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The next result on the asymptotic properties of the GEL moment estimator α̂ (3.2)

follows as a consequence.

Theorem 3.1 (Consistency and Limit Distribution of the GEL Moment Estimator α̂.)

If Assumptions 2.1-2.5 and 3.1 are satisfied, then α̂
p→ α0 and has limiting distribution

given by

T 1/2(α̂− α0) d→ N(0,Ψ−BPB0),

where Ψ = Ξ − AHB0 − BH 0A0 + AΣA0 and B =
P∞
s=−∞E[at(β0)gt−s(β0)

0]. The GEL

moment estimator α̂ and ĝT (β̂) (or ĝ(β̂)) are asymptotically uncorrelated.

It is clear both from the proof of Theorem 3.1 and the above derivation that the GEL

moment estimator α̂ has an asymptotic variance identical to that of the efficient GMM es-

timator for α0 based on the unconditional moment conditions (2.1) and E[a(z, β0)] = α0.

The GEL moment estimator α̂ thus efficiently incorporates the moment information (2.1).

Under the conditions of Theorem 3.1, the sample average moment estimator â(β̂) has a

limiting distribution described by T 1/2(â(β̂)− α0) d→ N(0,Ψ). Hence, the GEL moment

estimator α̂ clearly dominates the EDF based â(β̂). Likewise, the conclusions of Theorem

3.1 hold without alteration for any first order equivalent estimator substituted for the

GEL estimator β̂, for example, a two-step efficient GMM estimator, where optimisation

of (2.5) would now take place solely in terms of λ; cf. Brown and Newey (2002).

Consistent estimators for the additional components Ξ, A and B in the limiting

variance matrix Ψ −BPB0 are straightforwardly obtained in a similar manner to those
for Ω and G described in section 2.5. Let ĝtT = gtT (β̂), âtT = atT (β̂), Ât = ∂at(β̂)/∂β

0 and

ÂtT = ∂atT (β̂)/∂β
0, (t = 1, ..., T ). Similarly to Theorem 2.4, −(k2/k21) times the (ϕ,α)-

block of the Hessian provides a consistent estimator for A. From UWL Lemma A.1,PT
t=1AtT (β̂)/(Tk1), as well as

PT
t=1At(β̂)/T , is also a consistent estimator of A. The

(ϕ,ϕ) block of the Hessian of the optimised GEL criterion is k2
PT
t=1 ρ2(kλ̂

0ĝtT )(âtT −
ktT α̂)(âtT − ktT α̂)0/T , which as ST PT

t=1 ρ2(kλ̂
0ĝtT )(âtT − ktT α̂)(âtT − ktT α̂)0/T p→ −k2Ξ,

cf. the proof of Theorem 2.5, provides a basis for consistent estimation of Ξ. Likewise,

ST
PT
t=1(âtT − ktT α̂)(âtT − ktT α̂)0/T p→ k2Ξ. The (λ,ϕ)-block of the Hessian is given

[18]



by k2
PT
t=1 ρ2(kλ̂

0ĝtT )(âtT − ktT α̂)ĝ0tT/T . Consistent estimators for B may be derived by
noting ST

PT
t=1 ρ2(kλ̂

0ĝtT )(âtT − ktT α̂)ĝ0tT/T a
= ST

PT
t=1 ρ2(kλ̂

0ĝtT )âtT ĝ0tT/T
p→ −k2B and

ST
PT
t=1(âtT − ktT α̂)ĝ0tT/T a

= ST
PT
t=1 âtT ĝ

0
tT/T

p→ k2B.

A special case of the above analysis concerns efficient estimation of the stationary

distribution µ(z) = P{zt ≤ z} of the process {zt}∞t=1. Let at(β) = 1(zt ≤ z) and

1tT (z) =
1
ST

Pt−1
s=t−T k

³
s
ST

´
1(zt ≤ z), (t = 1, ..., T ), where 1(·) denotes the indicator

function. Here α0 = µ(z). Therefore, from (3.2), the GEL c.d.f estimator for µ(z) is

µ̂T (z) =
1PT

t=1 ktTπt(β̂, λ̂)

TX
t=1

πt(β̂, λ̂)1tT (z). (3.3)

If k(a) ≥ 0 for all a, the GEL c.d.f. estimator µ̂T (z) is a proper c.d.f.; that is, 0 ≤
µ̂T (z) ≤ 1 for all z and is increasing in z. More generally, µ̂T (z) may not be proper for
particular realisations zt, (t = 1, ..., T ) but is w.p.a.1; see the proof of Theorem 3.1. The

next result follows immediately from Theorem 3.1.

Corollary 3.1 (Limit Distribution of the GEL c.d.f. estimator µ̂T (z).) If Assumptions

2.1-2.5 are satisfied, µ̂T (z)
p→ µ(z), where µ(z) = P{zt ≤ z}, and has limiting distribu-

tion given by

T 1/2 (µ̂T (z)− µ(z)) d→ N(0,σ2 − b0Pb),

where σ2 =
P∞
s=−∞(E[1(zt ≤ z)1(zt−s ≤ z)]−µ(z)2) and b =

P∞
s=−∞E[1(zt ≤ z)gt−s(β0)].

The estimator µ̂T (z) is an efficient estimator for µ(z). Clearly µ̂T (z) dominates the EDF

µ̂(z) which has limiting distribution T 1/2 (µ̂(z)− µ(z)) d→ N(0, σ2). If the GEL criterion

chosen is that for the CUE, that is, if ρ(·) is quadratic, see section 2.2, the structure of the
GEL c.d.f. estimator µ̂T (z) is very similar to that described by Back and Brown (1993).

If the moment indicators gt(β0), (t = 1, 2, ...), are uncorrelated as occurs, for example,

in the random sampling context, the kernel k(·) is the Dirac delta function, k(a) = 1 if
a = 0 and 0 otherwise, in which case µ̂T (z) is identical in form to that given by Brown

and Newey (2002, p.509) which forms the basis of their suggestion for bootstrapping

GMM test statistics for over-identifying moment conditions.

[19]



4 Over-Identifying Moments

This section discusses alternative test statistics based on GEL for gauging the validity of

the over-identifying moment conditions (2.1). The structure of these statistics is classical

in construction, some of which resemble those described in Imbens, Spady and Johnson

(1998), Kitamura and Stutzer (1997) and Smith (1997, 2000). As will be seen below,

these statistics are first order equivalent to that suggested by Hansen (1982) based on

the optimised GMM criterion, i.e.

J = T ĝ(β̂)0Ω̇−1ĝ(β̂) (4.1)

where Ω̇ is a preliminary p.s.d. consistent estimator for Ω and β̂ is an efficient two-step

GMM estimator. Under suitable conditions such as those described in section 2.4 J may

be shown to be asymptotically chi-square with (m− p) degrees of freedom.
Firstly, consider the likelihood ratio-like (LR) statistic based on the optimized GEL

criterion (2.5)

LR = 2(T/ST )P̂ (β̂, λ̂)/(k
2
1/k2). (4.2)

Now, interpreting the GEL criterion as a quasi-likelihood, cf. Chesher and Smith (1997)

and the discussion in section 2.2, P̂ (β, 0) = ρ(0) corresponds to the imposition of the

parametric restriction that the auxiliary parameter λ = 0. The hypothesis λ = 0 may be

regarded as the dual of the moment conditions E[gt(β0)] = 0 (2.1). For the Cressie-Read

family of power divergence criteria, this is explicitly the case as λ is a Lagrange multiplier

which ensures that the moment conditions are satisfied in the sample, see (2.7). Thus,

LR (4.2) is a likelihood ratio-like statistic for testing the hypothesis λ = 0 which also

directly examines the validity of the moment conditions (2.1).

The duality between over-identifying moments and the parametric restriction λ =

0 suggests other classical-like statistics. A GEL LM-type statistic for (2.1) is defined

directly in terms of the auxiliary parameter estimator λ̂

LM = (T/S2T )λ̂
0Ω̂λ̂, (4.3)
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where Ω̂ is a p.s.d. consistent estimator for Ω, for example, as in section 2.5, with Ω a

generalized inverse for the asymptotic variance matrix P of (T/S2T )
1/2λ̂ given in Theorem

2.3. A score-like statistic encounters the difficulty that β is no longer identified if λ = 0

but this is simply circumvented by evaluating the scores (2.7) and (2.9) at λ = 0 and the

GEL estimator β̂ which yields −(ĝT (β̂)0, 00)0. Hence, the GEL score statistic is defined as

S = T ĝT (β̂)0Ω̂−1ĝT (β̂)/(k21); (4.4)

cf. the optimal GMM statistic J (4.1).12

Theorem 4.1 (Limit Distribution of the GEL statistics LR, LM and S for Over-

Identifying Moments.) If Assumptions 2.1-2.5 are satisfied, the GEL statistics LR, LM
and S are asymptotically equivalent and have a limiting distribution described by

LR,W ,S d→ χ2(m− p).

Because the GEL estimator β̂ is first order equivalent to optimal two-step GMM es-

timators, it obeys in an asymptotic sense the corresponding GMM first order conditions.

More precisely, T 1/2ĝT (β̂)
a
= (k1)T

1/2ĝ(β̂); see (2.4) and Lemma A.2. Hence, an equiv-

alent score-type statistic may be based on T ĝ(β̂)0Ω̂−1ĝ(β̂), which is the GMM statistic

J (4.1) using the GEL estimator β̂. Moreover, the classical-type GEL statistics (4.2),

(4.3), (4.4) and J are first order equivalent as (T/S2T )
1/2λ̂

a
= −Ω−1T 1/2ĝ(β̂), i.e., LR,

LM, S a
= J .

Although not discussed here, other first order equivalent tests based on the C(α)
principle may also be defined in a parallel fashion; cf. inter alia Neyman (1959) and

Smith (1987).

5 Specification Tests

This section is concerned with tests for the validity of additional information on β0. Let

θ = (α0, β 0)0 and θ00 = (α
0
0,β

0
0)
0 where α is a q-vector of additional parameters. To provide

12The optimised normalised form T ĝT (β)
0Ω̂T (β)

−ĝT (β)/(k
2
1) of the alternative GMM criterion sug-

gested in Smith (2005, section 3) provides another test of the moment conditions (2.1) which is first
order equivalent to LR, LM and S under the hypotheses of Theorem 4.1.
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sufficient generality which covers both parametric hypotheses and additional moment

conditions, we consider constraints in mixed form, see Gouriéroux and Monfort (1989),

E[h(zt, θ0)] = 0, r(θ0) = 0, (5.1)

where both the s-vector of moment indicators h(·, ·) and the r-vector of parametric con-
straints r(·) depend on α as well as β.13

Let ht(θ) = h(zt, θ), (t = 1, ..., T ). A number of special cases are covered by (5.1). The

exclusion of either α or β from ht(·) is permitted. Moreover, the mixed form for the para-
metric function r(·) is sufficiently general to include other types of constraints as special
cases; viz. freedom equation, r(θ0) = β0 − β(α0) = 0 [Seber (1964)], constraint equation,
r(θ0) = (rα(α0)

0, rβ(β0)0)0 = 0 [Aitchison (1962) and Sargan (1980)], and restrictions

in mixed implicit and constraint equation form, r(θ0) = (rθ(θ0)
0, rα(α0)0, rβ(β0)0)0 = 0

[Szroeter (1983)], encountered in simultaneous equations models. Furthermore, the con-

straints (5.1) and the test statistics defined below are easily adapted for either additional

moment restrictions E[h(zt, θ0)] = 0 or parametric restrictions r(θ0) = 0.

Following section 2.2, an appropriate GEL criterion similar in form to (2.5) which

incorporates (5.1) is defined as

P̂ (θ, η, µ) =
TX
t=1

[ρ(k(ϕ0qtT (θ) + k1µ0r(θ)))− ρ0]/T, (5.2)

where ϕ = (λ0,ψ0)0 and qtT (θ) = (gtT (β)0, htT (θ)0)0 with htT (θ) = 1
ST

Pt−1
s=t−T k

³
s
ST

´
ht−s(θ),

(t = 1, ..., T ). The corresponding GEL and auxiliary saddle point estimators are denoted

by θ̃, ϕ̃ and µ̃.

We need to modify Assumptions 2.3-2.5 appropriately for the results of this section.

Let qt(θ) = (gt(θ)
0, ht(θ)0)0, (t = 1, ..., T ), q̂(θ) =

PT
t=1 qt(θ)/T and

Σ(θ) = lim
T→∞

var[T 1/2q̂(θ)].

We also define Σ = Σ(θ0), Hα = E[∂h(zt; θ0)/∂α
0] and Rα = ∂r(θ0)/∂α0.

13Without loss of generality, it is assumed that parametric restrictions in freedom equation form,
δ0 = δ(α0), have been substituted out.
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Assumption 5.1 (a) θ0 = (α
0
0,β

0
0)
0 ∈ Θ, Θ = A×B, is the unique solution to E[qt(θ)] =

0 and r(θ) = 0; (b) A and B are compact; (c) qt(θ) and r(θ) are continuous at each
θ ∈ Θ with probability one; (d) E[supθ∈Θ kqt(θ)kα] < ∞ for some α > max

³
4ν, 1

η

´
; (e)

Σ(θ) is finite and p.d. for all θ ∈ Θ.

Assumption 5.2 (a) ρ(·) is twice continuously differentiable and concave on its domain,
an open interval V containing 0, ρ1 = ρ2 = −1; (b) ϕ ∈ ∆T where ∆T = {ϕ : kϕk ≤
D(T/S2T )

−ζ} for some D > 0 with 1
2
> ζ > 1

2αη
.

Assumption 5.3 (a) θ0 ∈ int(Θ); (b) q(·; θ) is differentiable in a neighborhood N of

θ0 and E[supθ∈N k∂qt(θ)/∂θ0kα/(α−1)] < ∞; (c) r(·) is continuously differentiable in a
neighborhood N of θ0 and supθ∈N k∂r(θ)/∂θ0k <∞; (d) rank(G) = p, rank(R) = r and
rank((H 0

α, R
0
α)
0) = q.

The rank conditions of Assumption 5.3 (d) are sufficient to guarantee the local inde-

pendence of the constraints (2.1) and (5.1) and the local identifiability of θ0. Furthermore,

(Q0, R0)0 is f.c.r., which together with Assumption 5.1 (e), implies Q0Σ−1Q+R0R p.d.

As a preliminary, we firstly detail the limiting properties of the GEL and auxiliary

parameter estimators θ̃, ϕ̃ and µ̃ mirroring Theorems 2.2 and 2.3.

Theorem 5.1 (Consistency and Limiting Distribution of the GEL estimators θ̃, η̃ and

µ̃.) If Assumptions 2.1, 2.2 and 5.1-5.3 are satisfied, then θ̃
p→ θ0, ϕ̃

p→ 0 and µ̃
p→ 0

and

T 1/2(θ̃ − θ0) d→ N(0, K),

(T/S2T )
1/2

Ã
ϕ̃
µ̃

!
d→ N

ÃÃ
0
0

!
,

Ã
Σ−1 − Σ−1QKQ0Σ−1 −Σ−1QMR0(RMR0)−1
−(RMR0)−1RMQ0Σ−1 (RMR0)−1 − Ir

!!
,

where M = (Q0Σ−1Q+ R0R)−1, K = M −MR0(RMR0)−1RM , Q = E[∂qt(θ0)/∂θ0] and
R = ∂r(θ0)/∂θ

0. Moreover, the GEL estimator θ̃ and auxiliary parameter estimators ϕ̃

and µ̃ are asymptotically uncorrelated.

As in section 4, classical-like statistics may be constructed for the additional mo-

ment conditions and parametric restrictions (5.1) by considering GEL-based tests for the
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parametric hypothesis ψ = 0 and µ = 0 within the GEL criterion P̂ (θ,ϕ, µ) (5.2). The

approach due to Newey (1985b) would set up a conditional moment test for (5.1) based

on the difference between the normalised optimised GMM criterion constructed from the

sample moments q̂(θ), using as metric the inverse of a consistent estimator for Σ, and J
of (4.1); cf. (5.6) below.

Firstly, consider the difference of LR-like statistics based on the optimized GEL cri-

teria (2.5) and (5.2)

LRa = 2(T/ST )(P̂ (θ̃, ϕ̃, µ̃)− P̂ (β̂, λ̂))/(k21/k2). (5.3)

Note that P̂ (θ̃, ϕ̃, µ̃) = P̂ (θ̃, ϕ̃, 0) as r(θ̃) = 0. Similarly to the discussion below (4.2), the

optimised criterion P̂ (β̂, λ̂) corresponds to the imposition of the parametric constraints

ψ = 0 and µ = 0. Thus, LRa is a LR-like statistic for testing this parametric hypothesis

which also directly examines the validity of (5.1).

Secondly, a LM-type statistic for ψ = 0 and µ = 0 or (5.1) is defined in a standard

way via the auxiliary parameter estimators ψ̃ and µ̃; viz.

LMa = (T/S
2
T )

Ã
ψ̃
µ̃

!0S0ψ,µ
 Σ̃ Q̃ 0

Q̃0 0 R̃0

0 R̃ 0


−1

Sψ,µ


−1 Ã

ψ̃
µ̃

!
, (5.4)

where Sψ,µ is a (m+s+r+p+q, s+r) selection matrix such that S
0
ψ,µ(ϕ

0, θ0, µ0)0 = (ψ0, µ0)0,

Σ̃ is a p.s.d. consistent estimator for Σ and Q̃ and R̃ are consistent estimators for Q and

R defined similarly to those for Ω and G described in section 2.5 using the GEL and

auxiliary parameter estimators θ̃, ϕ̃ and µ̃.

Thirdly, cf. section 4, α is no longer identified if ψ = 0 and µ = 0. Evaluation of

the scores for (5.2), cf. (2.7) and (2.9), at θ̂ = (α̃0, β̂ 0)0, ϕ̂ = Sgλ̂ and µ̂ = 0 avoids this

difficulty where Sg is a selection matrix such that S
0
gϕ = λ. That is, the score becomesPT

t=1 ρ1(kλ̂
0gtT (β̂))(htT (θ̂)0, k1r(θ̂)0)0. Hence, as

PT
t=1 ρ1(kλ̂

0gtT (β̂))gtT (β̂) = 0 from (2.7),

a GEL score-type statistic is given by

Sa = (k1)−2T−1
TX
t=1

ρ1(kλ̂
0gtT (β̂))

Ã
qtT (θ̂)

k1r(θ̂)

!0
(5.5)
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×
Ã
Σ̃−1 − Σ̃−1Q̃K̃Q̃0Σ̃−1 −Σ̃−1Q̃M̃R̃0(R̃M̃R̃0)−1
−(R̃M̃R̃0)−1R̃M̃Q̃0Σ̃−1 (R̃M̃R̃0)−1 − Ir

!
TX
t=1

ρ1(kλ̂
0gtT (β̂))

Ã
qtT (θ̂)

k1r(θ̂)

!
,

where M̃ = (Q̃0Σ̃−1Q̃+ R̃0R̃)−1 and K̃ = M̃ − M̃R̃0(R̃M̃R̃0)−1R̃M̃ .
Therefore

Theorem 5.2 (Limiting Distribution of GEL Statistics LRa, LMa and Sa for Addi-
tional Moment Restrictions and Parametric Hypotheses.) Let Assumptions 2.1, 2.2 and

5.1-5.3 hold. Then the GEL statistics LRa, LMa and Sa are asymptotically equivalent
and have a limiting distribution described by

LRa,LMa,Sa d→ χ2(s+ r − q).

Let q̂T (θ) =
PT
t=1 qtT (θ)/T and Sβ denote a selection matrix such that S

0
βθ = β. From

the Proofs of Theorems 2.3 and 3.1 in Appendix B,

T−1/2
TX
t=1

ρ1(kλ̂
0gtT (β̂))qtT (θ̂)

a
= −T 1/2q̂T (θ̃) + ΣSgΩ−1T 1/2ĝT (β̂)

−k1QSβT 1/2(β̂ − β̃),

T−1/2
TX
t=1

ρ1(kλ̂
0gtT (β̂))k1r(θ̂)

a
= −k1RSβT 1/2(β̂ − β̃).

Therefore, as (Σ−1−Σ−1QKQ0Σ−1)Q = Σ−1QMR0(RMR0)−1R and (RMR0)−1RMQ0Σ−1Q =
((RMR0)−1 − Ir)R,

Sa a
= T (q̂T (θ̃)− ΣSgΩ−1ĝT (β̂))0(Σ−1 − Σ−1QKQ0Σ−1)(q̂T (θ̃)− ΣSgΩ−1ĝT (β̂))/(k21)

a
= T (q̂T (θ̃)−ΣSgΩ−1ĝT (β̂))0Σ−1(q̂T (θ̃)− ΣSgΩ−1ĝT (β̂))/(k21)
a
= T (q̂T (θ̃)

0Σ̃−1q̂T (θ̃)− ĝT (β̂)0Ω̂−1ĝT (β̂))/(k21)
a
= T (q̂(θ̃)0Σ̃−1q̂(θ̃)− ĝ(β̂)0Ω̂−1ĝ(β̂)), (5.6)

noting T 1/2q̂T (θ̃)
a
= (Im+s−QKQ0Σ−1)T 1/2q̂T (θ0), T 1/2ĝT (β̂) a

= (Im−GH)T 1/2ĝT (β0) and
Q0SgΩ−1T 1/2ĝT (β̂)

a
= 0. Hence, Sa is first order equivalent to optimal GMM statistics

for (5.1) based on the GEL estimators (β̂, λ̂) and (θ̃, ϕ̃, µ̃); cf. Newey (1985b). Although

the first and second expressions for Sa in (5.6) are p.s.d., neither the third nor the last
need be even if the estimator Ω̂ is the (m,m) top left diagonal block of Σ̃.
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Asymptotically equivalent classical-like statistics are straightforwardly defined for

tests of the full vector of constraints, (2.1) and (5.1), which have a limiting chi-squared

distribution with (m+ s+ r)− (p+ q) degrees of freedom; cf. section 4.
Other statistics asymptotically equivalent to the above GEL-based statistics may be

defined. For example, a minimum chi-squared statistic is given by

MCa = (T/S2T )(ϕ̃− ϕ̂)0Σ̃(ϕ̃− ϕ̂). (5.7)

Asymptotically equivalent p.s.d. score-type statistics which only use the GEL estimators

θ̃, ϕ̃ and µ̃ are

T q̂T (θ̃)
0(Σ̃−1 − SgP̃ S0g)Σ̃(Σ̃−1 − SgP̃S 0g)q̂T (θ̃)/(k21)

= T (q̂T (θ̃)
0Σ̃−1q̂T (θ̃)− ĝT (β̃)0P̃ ĝT (β̃))/(k21)

a
= T (q̂(θ̃)0Σ̃−1q̂(θ̃)− ĝ(β̃)0P̃ ĝ(β̃)),

where P̃ = Ω̃−1 − Ω̃−1G̃Σ̃G̃0Ω̃, Σ̃ = (G̃0Ω̃−1G̃)−1, G̃ a consistent estimator for G based

on θ̃, ϕ̃ and µ̃ and Ω̃ is the (m,m) top left diagonal block of Σ̃.

Similarly to section 2.5, let Σ̃(θ) = ST
PT
t=1 qtT (θ)qtT (θ)

0/(Tk2). Two-step efficient,

iterated and continuous updating estimators are provided by the alternative GMM La-

grangean criterion q̂T (θ)
0Σ̃(θ)−1q̂T (θ) − µ0r(θ). From the first order conditions, un-

der the hypotheses of Theorem 5.1, T 1/2(θ̃ − θ0) a
= −KQ0Σ−1T 1/2q̂T (θ0) and T 1/2µ̃ a

=

(RMR0)−1RMQ0Σ−1T 1/2q̂T (θ0) where θ̃ and µ̃ denote the corresponding GMM and La-

grange multiplier estimators; cf. proof of Theorem 5.1 in Appendix B. These relationships

yield the limiting results T 1/2(θ̃−θ0) d→ N(0, (k21)K), T
1/2µ̃

d→ N(0, (k21)((RMR
0)−1−Ir))

and θ̃ and µ̃ asymptotically uncorrelated. Under the hypotheses of Theorem 5.2, cf. (5.6),

the normalised difference of GMM criteria T (q̂T (θ̃)
0Σ̃(θ)−1q̂T (θ̃)−ĝT (β̂)0Ω̃(β)−1ĝT (β̂))/(k21)

based on a common T 1/2-consistent estimator for θ in Σ̃(θ) and Ω̃(β), the (m,m) top left

diagonal block of Σ̃(θ), is p.s.d. and asymptotically equivalent to LRa, LMa, Sa and
MCa; cf. Newey (1985b) and Smith (2005).
The proof of Theorem 5.2 demonstrates the GEL-based statistics LRa, LMa, Sa

and MCa are all first order equivalent. It also immediately follows because LRa is
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expressed as the difference of likelihood ratio-like statistics that equivalent statistics

may be obtained as the difference of appropriately defined Lagrange multiplier-like and

score-like statistics. However, these statistics may not possess positive support although

common estimator choices for Σ, Q and R may ameliorate this problem. Furthermore,

given the discussion in section 4 concerning the equivalence of those GEL-based statistics

with the GMM statistic J of (4.1), the statistics of this section are equivalent to the

difference of estimated GMM criteria and, as noted above, to the GMM statistic for the

additional constraints (5.1); cf. (5.6). A final point is that, if the moment and parametric

constraints, (2.1) and (5.1), hold, all of the statistics of this section are asymptotically

independent of the over-identifying moment tests of section 4, a property also displayed

by classical tests for a sequence of nested hypotheses; see inter alia Aitchison (1962) and

Sargan (1980).

6 Summary and Conclusions

This paper analyses a class of GEL criteria for the one-step estimation of models specified

by moment conditions defined in terms of weakly dependent data. This class includes

EL, ET, CUE and Cressie-Read power divergence criteria as special cases. The resultant

GEL estimators are asymptotically equivalent to two-step efficient GMM estimators. An

efficient moment estimator is also described, a special case of which is the stationary

distribution of the data. The latter application may potentially be of use in the devel-

opment of tests for the distributional form in fully parametric models which also imply

the moment conditions underpinning the GEL criterion. The structure of GEL criteria

parallels conventional likelihood. Thus, likelihood ratio-, Lagrange multiplier- and score-

like statistics are obtained for testing over-identifying moment conditions. This analysis

is extended to tests of a combination of additional moment conditions and parametric

constraints expressed in mixed form which are sufficiently general to admit as special

cases most forms of moment and parametric restrictions of practical interest.

The finite sample behaviour of GEL estimators and GEL-based statistics and choices
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of GEL function have not been studied in this paper. The GEL implied probabilities offer

the possibility of improved inference with weakly dependent data using bootstrap samples

along the lines suggested by Brown and Newey (2002) in the random sampling context.

However, the exploration of this topic lies outside the scope of the paper but is the subject

of current research. Given the parallels with conventional likelihood, Edgeworth expan-

sions offer a feasible method for the improvement of the quality of first order asymptotic

approximations and the ability to detect circumstances in which these approximations

are likely to be poor. This research agenda is also currently under investigation.
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Appendix A: Preliminary Lemmata

Throughout these Appendices, C will denote a generic positive constant that may be

different in different uses, and C, CS, H, J and T Chebychev, Cauchy-Schwarz, Hölder,

Jensen and triangle inequalities respectively. Unless otherwise stated, UWL and CLT

refer to Lemma A.1 and Lemma A.2 below respectively.

Let kT (a) = k((s− 1)/ST ), (s− 1)/ST ≤ a < s/ST , if s ≤ 0, k(s/ST ), (s− 1)/ST <
a ≤ s/ST , if s > 0. Also let [·] denote the integer part of ·.
Let g(β) = E[gt(β)].

Lemma A.1 (UWL) If Assumptions 2.1, 2.2 and 2.3 (b)-(d) with α = 1 are satisfied,

then

sup
β∈B

kĝT (β)− k1g(β)k = op(1).

Proof: By T

sup
β∈B

kĝT (β)− k1g(β)k ≤ sup
β∈B

kĝT (β)−E[ĝT (β)]k+ sup
β∈B

kE[ĝT (β)]− k1g(β)k . (A.1)

Consider the first term in eq. (A.1)

ĝT (β)− E[ĝT (β)] = T−1
TX
t=1

1

ST

t−1X
s=t−T

k
µ
s

ST

¶
(gt−s(β)− E[gt−s(β)]) (A.2)

= T−1
TX
t=1

(gt(β)− g(β)) 1
ST

T−tX
s=1−t

k
µ
s

ST

¶
.

Now, ¯̄̄̄
¯̄ 1ST

T−tX
s=1−t

k
µ
s

ST

¶¯̄̄̄¯̄ ≤ 1

ST

T−1X
s=1−T

¯̄̄̄
k
µ
s

ST

¶¯̄̄̄
. (A.3)

Using the change of variable s = [STa], as T/ST →∞ by Assumption 2.2 (a),

1

ST

T−1X
s=1−T

¯̄̄̄
k
µ
s

ST

¶¯̄̄̄
≤ lim

T→∞
1

ST

T−1X
s=1−T

¯̄̄̄
k
µ
s

ST

¶¯̄̄̄
(A.4)
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= lim
T→∞

Z (T−1)/ST

(1−T )/ST
|kT (a)| da+ lim

T→∞
1

ST
|k(0)|

≤ lim
T→∞

Z (T−1)/ST

(1−T )/ST
k̄(a)da+ o(1)

=
Z ∞

−∞
k̄(a)da+ o(1).

Then, by Assumption 2.2 (c), from eqs. (A.3) and (A.4),¯̄̄̄
¯̄ 1ST

T−tX
s=1−t

k
µ
s

ST

¶¯̄̄̄¯̄ = O(1) (A.5)

uniformly t. Hence, we may rewrite eq. (A.2) as

ĝT (β)− E[ĝT (β)] = O(1)(ĝ(β)− g(β)).

Using UWL Lemma 2.4, p.2129, of Newey and McFadden (1994) for stationary and

mixing (and, thus, ergodic) processes, supβ∈B kĝ(β)− g(β)k p→ 0 by Assumptions 2.1

and 2.3 (d). Therefore,

sup
β∈B

kĝT (β)− E[ĝT (β)]k p→ 0. (A.6)

For the second term in eq. (A.1), we firstly note that

ĝT (β) =
1

ST

T−1X
s=1−T

k
µ
s

ST

¶
T−1

min[T,T−s]X
t=max[1,1−s]

gt(β). (A.7)

Next, using the stationarity of {gt(β)}∞t=1, by Lemma C.1

E[ĝT (β)] =
1

ST

T−1X
s=1−T

Ã
1− |s|

T

!
k
µ
s

ST

¶
E[gt(β)] (A.8)

=

 1

ST

T−1X
s=1−T

k
µ
s

ST

¶
+ o(1)

 g(β)
where the remainder term is uniform s. From eq. (A.8), by Assumption 2.3 (d),

kE[ĝT (β)]− k1g(β)k ≤
¯̄̄̄
¯̄ 1ST

T−1X
s=1−T

k
µ
s

ST

¶
− k1

¯̄̄̄
¯̄ sup
β∈B

kg(β)k+ o(1).

Now, using the change of variable s = [STa],

lim
T→∞

1

ST

T−1X
s=1−T

k
µ
s

ST

¶
= lim

T→∞

Z (T−1)/ST

(1−T )/ST
kT (a)da+

1

ST
k(0) (A.9)

=
Z ∞

−∞
k(a)da+ o(1) = k1 + o(1).
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Therefore, by Assumption 2.3 (d),

kE[ĝT (β)]− k1g(β)k ≤ o(1)E[sup
β∈B

kgt(β)k] + o(1) (A.10)

= o(1)

uniformly β. The conclusion follows from eqs. (A.6) and (A.10).

Let g∗t (β) = gt(β) − g(β), g∗tT (β) = 1
ST

Pt−1
s=t−T k

³
s
ST

´
g∗t−s(β), (t = 1, ..., T ). Write

g∗t = g
∗
t (β) and g

∗
tT = g

∗
tT (β), (t = 1, ..., T ).

Lemma A.2 (CLT) If Assumptions 2.1, 2.2 and 2.3 (b)-(e) are satisfied,

T 1/2[ĝT (β)− E[ĝT (β)]] d→ N(0, (k21)Ω(β)).

Proof: Let ĝ∗T (β) = T
−1PT

t=1 g
∗
tT (β). Similarly to eq. (A.7), the normalised sample

average

T 1/2ĝ∗T (β) =
1

ST

T−1X
s=1−T

k
µ
s

ST

¶
T−1/2

min[T,T−s]X
t=max[1,1−s]

g∗t .

The difference between
Pmin[T,T−s]
t=max[1,1−s] g

∗
t and ĝ

∗(β) =
PT
t=1 g

∗
t consists of |s| terms. By C,

using White (1984, Lemma 6.19, p.153),

P

¯̄̄̄
¯̄ |s|X
t=1

g∗t /T

¯̄̄̄
¯̄ ≥ ε

 ≤ E


¯̄̄̄
¯̄ |s|X
t=1

g∗t

¯̄̄̄
¯̄
2
 /(Tε)2

= |s|O(T−2)

where the O(T−2) term is independent of s. Therefore, by Lemma C.1 and eq. (A.9),

T 1/2ĝ∗T (β) =
1

ST

T−1X
s=1−T

k
µ
s

ST

¶
T 1/2(ĝ∗(β) + |s|Op(T−2)) (A.11)

=
1

ST

T−1X
s=1−T

k
µ
s

ST

¶
T 1/2ĝ∗(β) +Op(T−1/2)

= (k1 + o(1))T
1/2ĝ∗(β) +Op(T−1/2)

d→ N(0, (k21)Ω(β))

[A.3]



using, for example, CLT Theorem 5.19, p.124, of White (1984).

Let

Ω̂∗T (β) =

 1

ST

T−1X
t=1−T

k
µ
t

ST

¶2−1 ST TX
t=1

g∗tT (β)g
∗
tT (β)

0/T.

Lemma A.3 If Assumptions 2.1, 2.2 and 2.3 (d) and (e) are satisfied, then Ω̂∗T (β)
p→

Ω(β).

Proof: The numerator of Ω̂∗T (β) may be written as

ST
TX
t=1

g∗tTg
∗0
tT/T =

TX
t=1

1

ST

TX
s=1

k
µ
t− s
ST

¶
g∗s

TX
r=1

k
µ
t− r
ST

¶
g∗0r /T

=
TX
r=1

1

ST

T−rX
s=1−r

g∗r+sg
∗0
r

"
T−1

TX
t=1

k

Ã
t− (s+ r)

ST

!
k
µ
t− r
ST

¶#

=
T−1X
s=1−T

T−1
min[T,T−s]X
r=max[1,1−s]

g∗r+sg
∗0
r

 1
ST

T−rX
t=1−r

k
µ
t− s
ST

¶
k
µ
t

ST

¶
=

T−1X
s=1−T

 1
ST

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶T−1 min[T,T−s,T−t]X
r=max[1,1−s,1−t]

g∗r+sg
∗0
r .

Define the infeasible sample autocovariance estimators C∗T (s) =
Pmin[T,T−s]
r=max[1,1−s] g

∗
r+sg

∗0
r /T ,

C∗T (−s) = C∗T (s)0, (s = 1−T, ..., T−1). The difference between
Pmin[T,T−s,T−t]
r=max[1,1−s,1−t] g

∗
r+sg

∗0
r /T

and C∗T (s) consists of no more than |t| terms. By C, using White (1984, Lemma 6.19,
p.153),

P

¯̄̄̄
¯̄ 1T

|t|X
r=1

(g∗r+sg
∗0
r − Γ∗(s))

¯̄̄̄
¯̄ ≥ ε

 ≤ E


¯̄̄̄
¯̄ |t|X
r=1

(g∗r+sg
∗0
r − Γ∗(s))

¯̄̄̄
¯̄
2
 /(Tε)2

= |t|O(T−2)

uniformly s and the O(T−2) term is independent of t, where Γ∗(s) = E[g∗r+sg
∗0
r ]. There-

fore, °°°°°° 1T
min[T,T−s,T−t]X
r=max[1,1−s,1−t]

g∗r+sg
∗0
r − C∗T (s)

°°°°°° ≤ |t|
T
kΓ∗(s)k+ |t|Op(T−2)

[A.4]



uniformly s. Now, by Lemma C.1,

lim
T→∞

¯̄̄̄
¯̄ 1ST

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

|t|
T
k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄¯̄ ≤ lim
T→∞

1

ST

T−1X
t=1−T

|t|
T

¯̄̄̄
k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄

≤ sup
a
k̄(a) lim

T→∞
1

ST

T−1X
t=1−T

|t|
T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
= 0.

Hence, by Lemma C.2, as limT→∞
PT−1
s=1−T kΓ∗(s)k < ∞ [see Assumption A, p.823, and

Lemma 1, p.824, in Andrews (1991)],

Ω̂T (β) =
T−1X
s=1−T

 1
ST

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶C∗T (s)/k2 + op(1)
=

T−1X
s=1−T

(k∗
µ
s

ST

¶
+ o(1))C∗T (s) + op(1)

=
T−1X
s=1−T

k∗
µ
s

ST

¶
C∗T (s) + op(1),

where the remainder terms are uniform in s, since limT→∞ E[
PT−1
s=1−T C

∗
T (s)] = Ω(β)

and limT→∞ var[
PT−1
s=1−T C

∗
T (s)] = O(1) by standard results on the inconsistency of the

periodogram. Therefore, as k∗(·) ∈ K2 by Lemma C.3, it follows that Ω̂T (β) p→ Ω(β).

Let bt = supβ∈B kgt(β)k.

Lemma A.4 If Assumptions 2.1 and 2.3 (d) are satisfied then supβ∈B,λ∈ΛT ,1≤t≤T |λ0gtT (β)|
p→

0. Also w.p.a.1 ΛT ⊆ Λ̂T (β) where Λ̂T (β) = {λ : kλ0gtT (β) ∈ V, (t = 1, ..., T )}.

Proof: By Assumption 2.3 (d) it follows by M that max1≤t≤T bt = Op(T 1/α). Then

by CS,

sup
β∈B,λ∈ΛT ,1≤t≤T

|λ0gtT (β)| ≤ D(T/S2T )−ζ sup
β∈B,1≤t≤T

kgtT (β)k .

From eq. (A.5)

sup
β∈B

kgtT (β)k ≤ bt
1

ST

t−1X
s=t−T

¯̄̄̄
k
µ
s

ST

¶¯̄̄̄
≤ btO(1)

[A.5]



where the remainder term is uniform t. Therefore,

sup
β∈B,λ∈ΛT ,1≤t≤T

|λ0gtT (β)| ≤ (T/S2T )−ζOp(T 1/α) p→ 0.

giving the first conclusion. W.p.a.1 kλ0gtT (β) ∈ V for all β ∈ B and λ ∈ ΛT .

We now give two preliminary lemmas which will prove useful in the proofs of Theorems

2.2 and 2.3.

Lemma A.5 Let Assumptions 2.1-2.4 be satisfied. Then there is a C such that w.p.a.1,

1

ST
sup
λ∈ΛT

P̂ (β0,λ) ≤ CkĝT (β0)k2.

Proof: Let gtT = gtT (β0), λ̄ = argmaxλ∈ΛT P̂ (β0,λ) and λ̇ = τ λ̄, 0 ≤ τ ≤ 1. Then,
by Lemma A.4,

max
1≤t≤T

|ρ2(kλ̇0gtT )− ρ2(0)| p→ 0.

Hence, by Lemma A.3, ST
PT
t=1 ρ2(kλ̇

0gtT )gtTg0tT/T
p→ −k2Ω. It then follows by Ω p.d.

that w.p.a.1 ST
PT
t=1 ρ2(kλ̇

0gtT )gtTg0tT/T ≤ −CIm in the p.s.d. sense.

By a second-order Taylor expansion with Lagrange remainder, we have w.p.a.1,

1

ST
sup
λ∈ΛT

P̂ (β0,λ) =
1

ST
P̂ (β0, λ̄)

= −k(λ̄/ST )0ĝT (β0) + k2(λ̄/ST )0
"
ST

TX
t=1

ρ2(λ̇
0gtT )gtTg0tT/T

#
(λ̄/ST )/2

≤ −k(λ̄/ST )0ĝT (β0)− Ck2(λ̄/ST )0(λ̄/ST )/2
≤ sup

λ∈Rm
[−λ0ĝT (β0)− Cλ0λ/2] = CkĝT (β0)k2.

Lemma A.6 If Assumptions 2.1-2.4 hold then β̂
p→ β0 and

°°°ĝT (β̂)°°° = Op(T−1/2).

[A.6]



Proof: Let ĝtT = gtT (β̂) and δT = D(T/S
2
T )
−ζ for ζ and D as in Assumption 2.4 (b).

Also let λ̄ = −ĝT (β̂)δT/kĝT (β̂)k. So λ̄ ∈ ΛT . Write gtT = gtT (β), (t = 1, ..., T ).
Now, gtTg

0
tT = g∗tTg

∗0
tT + g

∗
tTE[g

0
tT ] + E[gtT ]g

∗0
tT + E[gtT ]E[g

0
tT ], (t = 1, ..., T ). By

Lemma A.3, ST
PT
t=1 g

∗
tTg

∗0
tT/T

p→ k2Ω(β). From eq. (A.5), by Assumption 2.3 (d),

E[gtT ] = E[gt(β)]O(1) = O(1) uniformly β and t. Using CLT, ST
PT
t=1 g

∗
tTE[g

0
tT ]/T =

(T/S2T )
−1/2T 1/2ĝ∗T (β)O(1) = op(1) by Assumption 2.2 (a) where ĝ

∗
T (β) =

PT
t=1 g

∗
tT/T .

Similarly,
PT
t=1E[gtT ]E[g

0
tT ]/T = g(β)g(β)

0O(1) = O(1). Hence,
PT
t=1 ĝtT ĝ

0
tT/T = Op(1).

Let λ̇ = τλ̄, 0 ≤ τ ≤ 1. It then follows as maxλ∈ΛT ,1≤t≤T |λ0ĝtT | p→ 0 from Lemma A.4 thatPT
t=1[ρ2(kλ̇

0ĝtT )−ρ2(0)]ĝtT ĝ0tT/T p→ 0. Therefore, w.p.a.1
P
t ρ2(kλ̇

0ĝtT )ĝtT ĝ0tT/T ≥ −CIm
in the p.s.d. sense. So by a second-order Taylor expansion

P̂ (β̂, λ̄) ≥ −kλ̄0ĝT (β̂)− k2Cλ̄0λ̄
= kkĝT (β̂)kδT − k2Cδ2T

w.p.a.1. Noting that P̂ (β̂, λ̄) ≤ supλ∈ΛT P̂ (β̂,λ) ≤ supλ∈ΛT P̂ (β0,λ), it follows by Lemma
A.5 that w.p.a.1, (kkĝT (β̂)kδT − k2Cδ2T )/ST ≤ CkĝT (β0)k2. Solving for kĝT (β̂)k then
gives

kkĝT (β̂)k ≤ CkĝT (β0)k2/(kδT/ST ) + kCδT = Op(δT ),

as kĝT (β0)k2 = Op(T−1) by CLT and δ2T/ST is of higher order than T−1.
As kĝT (β̂)k = Op(δT ), ĝT (β̂) p→ 0. By UWL, supβ∈B kĝT (β)− k1g(β)k p→ 0 and g(β)

is continuous. Then T gives g(β̂)
p→ 0. Since g(β) = 0 has a unique zero at β0, kg(β)k

must be bounded away from zero outside any neighborhood of β0. Therefore, β̂ must be

inside any neighborhood of β0 w.p.a.1, i.e. β̂
p→ β0.

Therefore, ST
PT
t=1 ĝtT ĝ

0
tT/T = Op(1), cf. Kitamura and Stutzer (1997, Proof of Theo-

rem 1, p.871). As ST
PT
t=1[ρ2(kλ̇

0ĝtT )−ρ2(0)]ĝtT ĝ0tT/T p→ 0, then w.p.a.1 ST
PT
t=1 ρ2(kλ̇

0ĝtT )ĝtT ĝ0tT/T

≥ −CIm in the p.s.d. sense. Hence,
1

ST
P̂ (β̂, λ̄) ≥ −k(λ̄/ST )0ĝT (β̂)− k2C(λ̄/ST )0(λ̄/ST )

= kkĝT (β̂)k(δT/ST )− k2C(δT/ST )2,

[A.7]



w.p.a.1. By a similar argument to that above, kkĝT (β̂)k(δT/ST ) − k2C(δT/ST )
2 ≤

CkĝT (β0)k2 and

kĝT (β̂)k ≤ CkĝT (β0)k2/(kδT/ST ) + kC(δT/ST ) = Op(δT/ST ). (A.12)

Now, for any εT → 0, re-define λ̄ = −STεT ĝT (β̂). Note that λ̄ = op(δT ) by eq. (A.12),
so that λ̄ ∈ ΛT w.p.a.1. Then,

kεTkĝT (β̂)k2(1− εTC) ≤ CkĝT (β0)k2 = Op(T−1).

Since, for all T large enough, 1 − εTC is bounded away from zero, it follows that

εTkĝT (β̂)k2 = Op(T
−1). The conclusion then follows by a standard result from prob-

ability theory, that if εTYT = Op(T
−1) for all εT → 0, then YT = Op(T

−1).

Appendix B: Proofs of Theorems

Proof of Theorem 2.1: Let ĜtT = GtT (β̂) and ĝtT = gtT (β̂). By eq. (2.7) and the

definition of p(v),

0 =
TX
t=1

ρ1(kλ̂
0ĝtT )ĝtT =

TX
t=1

[ρ1(kλ̂
0ĝtT ) + 1]ĝtT − T ĝT (β̂)

= k
TX
t=1

p(kλ̂0ĝtT )ĝtT ĝ0tT λ̂− T ĝT (β̂).

Solving for λ̂, substituting into eq. (2.9), and multiplying by k
PT
s=1 p(kλ̂

0ĝsT )/(TST )

gives the first result. Note that for EL p(v) = [−(1− v)−1 + 1]/v = −(1− v)−1 = ρ1(v)
and for CUE p(v) = [−(1 + v) + 1]/v = −1 is constant.

Proof of Theorem 2.2: The first and third results follow from Lemma A.6. Let

ĝtT = gtT (β̂). By Lemma A.4, for any λ̇ = τλ̂, 0 ≤ τ ≤ 1, as λ̂ ∈ ΛT , max1≤t≤T |λ̇0ĝtT | p→ 0

and, thus, max1≤t≤T |ρ2(kλ̇0ĝtT )−ρ2(0)| p→ 0. Hence, by a second-order Taylor expansion,

as P̂ (β̂, 0) = 0 and ST
PT
t=1 ρ2(λ̇

0ĝtT )ĝtT ĝ0tT/T ≤ −CIm,

0 ≤ S−1T P̂ (β̂, λ̂)

[A.8]



= −kS−1T λ̂0ĝT (β̂) + k2S−2T λ̂0[ST
TX
t=1

ρ2(λ̇
0ĝtT )ĝtT ĝ0tT/T ]λ̂

≤ kkS−1T λ̂kkĝT (β̂)k− CkkS−1T λ̂k2,

w.p.a.1. Dividing through by kkS−1T λ̂k and solving gives kkS−1T λ̂k ≤ CkĝT (β̂)k =
Op(T

−1/2) from Lemma A.6. Hence, kλ̂k = Op[(T/S
2
T )
−1/2] and, thus, λ̂ p→ 0 by As-

sumption 2.2 (a).

Proof of Theorem 2.3: By Theorem 2.2, w.p.a.1 the constraint on λ is not binding,

and by β0 in the interior of B neither is the constraint β ∈ B. Therefore, the first order
conditions of eqs. (2.7) and (2.9) are satisfied w.p.a.1. Then by a mean-value expansion

of the former of these conditions we have, for ĝtT = gtT (β̂), θ̂T = (β̂0, (λ̂/ST )0)0 and

θ0 = (β
0
0, 0

0)0,

0 = −T 1/2
Ã

0
ĝT (β0)

!
+ M̄T 1/2(θ̂T − θ0), (B.1)

M̄ =

Ã
0

PT
t=1 ρ1(kλ̂

0ĝtT )GtT (β̂)0/TPT
t=1 ρ1(kλ̄

0ĝtT )GtT (β̄)/T ST
PT
t=1 kρ2(kλ̄

0ĝtT )gtT (β̄)ĝ0tT/T

!
,

where β̄ and λ̄ are mean-values that may differ from row to row of the matrix M̄ .

As λ̄ = Op[(T/S
2
T )
−1/2] by Theorem 2.2, it follows from Assumptions 2.2 (a) and 2.3

(d) by an argument like that for the proof of Lemma A.4 that for λ̃ equal to λ̂ or λ̄,

max
1≤t≤T

|λ̃0ĝtT | ≤ kλ̃k max
1≤t≤T

kĝtTk = Op[(T/S2T )−1/2T 1/α] p→ 0.

Therefore,

max
1≤t≤T

|ρ1(kλ̃0ĝtT )− ρ1(0)| p→ 0, max
1≤t≤T

|ρ2(kλ̄0ĝtT )− ρ2(0)| p→ 0.

Similar arguments to the proof of UWL applied to the off-diagonal components of M̄

show that
PT
t=1 ρ1(kλ̄

0ĝtT )GtT (β̄)/T
p→ −k1G and PT

t=1 ρ1(kλ̂
0ĝtT )GtT (β̂)0/T

p→ −k1G0.
From Lemma A.6 a first order Taylor expansion of T 1/2ĝT (β̂) about β0 yields Op(1) =

T 1/2ĝT (β0) + ĜT (β̄)T
1/2(β̂ − β0) where ĜT (β) = PT

t=1GtT (β)/T and β̄ lies on the line

[A.9]



segment joining β̂ and β0 and may differ from row to row. An application of UWL adapted

for ĜT (β) shows that ĜT (β)
p→ k1G. Hence, by Assumption 2.5 (c), as T

1/2ĝT (β0) =

Op(1) from CLT, T
1/2(β̂−β0) = Op(1). By H, from Assumption 2.5 (b), eq. (A.2) in the

proof of Theorem 2.1 in Smith (2005) may be replaced by

sup
|s|≥1

°°°°°°
min[T,T−s]X
r=max[1,1−s]

gr+s,k(β̄)∂gr(β̄)/∂β
0/T

°°°°°° ≤
Ã

TX
r=1

sup
β∈N

|gr,k(β)|α /T
! 1

α

(B.2)

×
Ã

TX
r=1

sup
β∈N

k∂gr(β)/∂β 0k
α

α−1 /T

!α−1
α

= Op(1),

(k = 1, ...,m). Therefore, because β̂ is T 1/2-consistent, it follows from Smith (2005,

Theorem 2.1) using Lemma A.3 that ST
PT
t=1 kρ2(kλ̄

0ĝtT )gtT (β̄)ĝ0tT/T
p→ −k1Ω.

Hence M̄
p→M where

M = −k1
Ã
0 G0

G Ω

!
,M−1 = −(k1)−1

Ã −Σ H
H 0 P

!
.

As M̄ is p.d. w.p.a.1, inverting and solving eq. (B.1), as T 1/2ĝT (β0) = Op(1) from eq.

(A.11),

T 1/2(θ̂T − θ0) = −M̄−1(0,−T 1/2ĝT (β0)0)0 = −M−1(0,−T 1/2ĝT (β0)0)0 + op(1)
= −(k1)−1(H 0, P )0T 1/2ĝT (β0) + op(1). (B.3)

The conclusions of the theorem then follow from eq. (B.3) and CLT.

Proof of Theorem 2.4: As ρ2(kλ̂
0ĝtT )

p→ ρ2(0), ST
PT
t=1(ρ2(kλ̂

0ĝtT−ρ2(0))ĝtT (β̂)(λ̂0ĜtT )/T p→
0. Similarly to the proof of Lemma A.3 and Smith (2005, Theorem 2.1), ST

PT
t=1 ĝtT,kĜtT/T =

Op(1), (k = 1, ...,m). Because λ̂ = Op[(T/S
2
T )
−1/2], the (λ,β)-block of the Hessian

(D.1) may thus be written as k
PT
t=1 ρ1(kλ̂

0ĝtT )GtT (β̂)/T + op(1). As ρ1(kλ̂0ĝtT )
p→ ρ1(0),

k
PT
t=1[ρ1(kλ̂

0ĝtT ) − ρ1(0)]GtT (β̂)/T p→ 0. Adapting UWL,
PT
t=1GtT (β̂)/T

p→ k1G from

which the result is proved.
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Proof of Theorem 2.5: By Lemma A.4, from Assumptions 2.4 (a) and (b), ρ2(kλ̂
0ĝtT )

p→
ρ2(0). Thus, ST

PT
t=1[ρ2(kλ̂

0ĝtT ) − ρ2(0)]ĝtT ĝ0tT/T p→ 0. Therefore, because β̂ is T 1/2-

consistent by Theorem 2.3, it follows by Smith (2005, Theorem 2.1) using (B.2) and

Lemma A.3 that ST
PT
t=1 ĝtT ĝ

0
tT/T

p→ k2Ω.

Proof of Theorem 3.1: Let ĝtT = gtT (β̂), âtT = atT (β̂) and π̂t = πt(β̂, λ̂), (t =

1, ..., T ). A mean value expansion of π̂t around λ = 0 yields

π̂t = T
−1 + T−1

Ã
kρ2(kλ̇

0ĝtT )λ̂0ĝtT
T−1

PT
s=1 ρ1(kλ̇

0ĝsT )
− kρ1(kλ̇

0ĝtT )(T−1
PT
s=1 ρ2(kλ̇

0ĝsT )ĝ0sT )λ̂

(T−1
PT
s=1 ρ1(kλ̇

0ĝsT ))2

!
(B.4)

where λ̇ = τλ̂, 0 ≤ τ ≤ 1. By Lemma A.4, max1≤t≤T |ρ1(kλ̇0ĝtT ) − ρ1(0)| p→ 0 and

max1≤t≤T |ρ2(kλ̇0ĝtT )−ρ2(0)| p→ 0. Thus, from Assumption 2.4 (a),
PT
s=1 ρ1(kλ̇

0ĝsT )/T
p→

−1 and PT
s=1 ρ2(kλ̇

0ĝsT )/T
p→ −1. As T 1/2ĝT (β̂) = Op(1), λ̂ = Op[(T/S2T )−1/2] by Theo-

rem 2.2 and max1≤t≤T |λ̂0ĝtT | p→ 0, from eq. (B.4),

π̂t = T−1 + T−1(k + op(1))λ̂0ĝtT +Op(ST/T )) (B.5)

= T−1(1 + op(1))

uniformly t. Also, using Lemma C.1 and eq. (A.9), substituting for π̂t from eq. (B.5),

TX
t=1

ktT π̂t = (1 + op(1))
1

T

TX
t=1

1

ST

t−1X
s=t−T

k
µ
s

ST

¶
(B.6)

= (1 + op(1))
1

ST

T−1X
s=1−T

Ã
1− |s|

T

!
k
µ
s

ST

¶
= k1 + op(1).

Similarly,
TX
t=1

π̂tâtT = (1 + op(1))âT (β̂) (B.7)
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where âT (β̂) =
PT
t=1 âtT/T . Hence, substituting eqs. (B.6) and (B.7) into eq. (3.2), the

first conclusion follows from

α̂ =
1

(k1 + op(1))
(1 + op(1))âT (β̂)

= α0 + op(1)

as âT (β̂)
p→ k1α0 by UWL.

For the second conclusion, from eq. (3.2), substituting the first order Taylor expansion

(B.5) and (B.6),

T 1/2 (α̂− α0) =
1PT

t=1 ktT π̂t
T 1/2

TX
t=1

π̂t(âtT − ktTα0) (B.8)

=
1

(k1 + op(1))

Ã
T−1/2

TX
t=1

(âtT − ktTα0)

+

Ã
(k + op(1))ST

TX
t=1

(âtT − ktTα0)ĝ0tT/T
!
(T/S2T )

1/2λ̂

+Op[(T/S
2
T )
−1/2]

TX
t=1

(âtT − ktTα0)/T
!
.

By UWL
PT
t=1(âtT −ktTα0)/T = op(1) as

PT
t=1 ktT/T = k1+op(1) from eq. (B.6). Hence,

the third term in eq. (B.8) is op[(T/S
2
T )
−1/2] = op(1) by Assumption 2.2 (a). As β̂ is

T 1/2-consistent from Theorem 2.3, by an argument like that in the proofs of Theorem

2.3 and 2.5 above, ST
PT
t=1(âtT − ktTα0)ĝ0tT/T p→ B. Hence, the second term becomes

B(T/S2T )
1/2λ̂+ op(1). Therefore, from eqs. (B.3) and (B.8),

T 1/2 (α̂− α0) = T−1/2
1

k1

TX
t=1

(atT (β0)− ktTα0) (B.9)

+AT 1/2(β̂ − β0)(1 + op(1)) +B(T/S2T )1/2λ̂+ op(1)

=
1

k1

³
Ir −AH −B0P

´
T−1/2

TX
t=1

Ã
atT (β0)− ktTα0

gtT (β0)

!
+ op(1).

By an adaptation of CLT,

T−1/2
TX
t=1

Ã
atT (β0)− ktTα0

gtT (β0))

!
d→ N

ÃÃ
0
0

!
, (k1)

2

Ã
Ξ B
B0 Ω

!!
. (B.10)

Therefore the second conclusion follows immediately from eq. (B.9).
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As T 1/2ĝT (β̂) = (k1)T
1/2ĝ(β̂) + op(1) = (k1)ΩPT

1/2ĝ(β0) + op(1), the asymptotic

correlation between α̂ and ĝ(β̂) is given from eqs. (B.9) and (B.10) by

³
Ir −AH −B0P

´Ã Ξ B
B0 Ω

!Ã
0
PΩ

!
= 0

from which the final conclusion is obtained.

Proof of Corollary 3.1: Immediate from Theorem 3.1.

Proof of Theorem 4.1: Define P̄G = Im − GH. An expansion of ĝT (β̂) about β0
gives

T 1/2ĝT (β̂) = P̄GT
1/2ĝT (β0) + op(1) (B.11)

= −(k1)Ω(T/S2T )1/2λ̂+ op(1).

Let ĝtT = gtT (β̂), (t = 1, ..., T ). Expanding P̂ (β̂, λ̂) about λ = 0,

2(T/ST )P̂ (β̂, λ̂) = −2k(T/S2T )1/2λ̂0T 1/2ĝT (β̂) + k2(T/S2T )λ̂0(ST
TX
t=1

ρ2(kλ̄
0ĝtT )ĝtT ĝ0tT/T )λ̂

= −2(k1/k2)(T/S2T )1/2λ̂0T 1/2ĝT (β̂)− (k21/k2)(T/S2T )λ̂0Ωλ̂+ op(1)
= T ĝT (β̂)

0Ω−1ĝT (β̂)/(k2) + op(1).

It follows as in Hansen (1982) from CLT that T ĝT (β̂)
0Ω−1ĝT (β̂)

d→ (k1)
2χ2(m− p) from

which the conclusions for LR and S follow. The result for LM is obtained directly from

the above expansion and (B.11).

Proof of Theorem 5.1: Consider the first order conditions, cf. eqs. (2.7) and (2.9),

determining θ̃ and ϕ̃:

TX
t=1

ρ1(k(ϕ̃
0qtT (θ̃) + k1µ̃0r(θ̃)))

 qtT (θ̃)

QtT (θ̃)
0ϕ̃ + k1R(θ̃)0µ̃

r(θ̃)

 =
 0
0
0

 , (B.12)
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where QtT (θ) = E[∂qtT (θ)/∂θ
0] and R(θ) = ∂r(θ)/∂θ0. It is immediate from eq. (B.12)

that the constrained GEL estimator θ̃ satisfies the parametric constraints, viz. r(θ̃) =

0. Hence, a similar proof to that of Theorem 2.2 establishes that, if Assumptions

2.1, 2.2, 5.1 and 5.2 hold, θ̃
p→ θ0 and ϕ̃

p→ 0. Therefore, from eq. (B.12), as

max1≤t≤T
¯̄̄
ρ1(kϕ̃

0qtT (θ̃))− ρ1(0)
¯̄̄
p→ 0, using a UWL similar to Lemma A.1, µ̃

p→ 0 by

Assumptions 5.3 (c) and (d). Arguments like those in the proof of Theorem 2.3 give

T 1/2q̂T (θ0) + k1Σ(T/S
2
T )
1/2ϕ̃+ k1QT

1/2(θ̃ − θ0) = op(1), (B.13)

Q0(T/S2T )
1/2ϕ̃+R0(T/S2T )

1/2µ̃ = op(1),

RT 1/2(θ̃ − θ0) = op(1).

Let Hβ = E[∂ht(θ0)/∂β
0] and Rβ = ∂r(θ0)/∂β

0. Because G, (Q0α, R
0
α)
0 ≡ (00, H 0

α, R
0
α)
0

and (Q0β, R
0
β)
0 ≡ (G0, H 0

β, R
0
β)
0 are full column rank by Assumption 5.3 (d), Q0Σ−1Q+R0R

is p.d.. Hence, from eq. (B.13),

(T/S2T )
1/2µ̃ = −(RMR0)−1RMQ0(T/S2T )1/2ϕ̃+ op(1) (B.14)

and, thus,

KQ0(T/S2T )
1/2ϕ̃ = op(1). (B.15)

Therefore, premultiplying the first equation in eq. (B.13) by KQ0Σ−1 and using eq.

(B.15),

KQ0Σ−1T 1/2q̂T (θ0) + k1KQ0Σ−1QT 1/2(θ̃ − θ0) = op(1).

Now, Q0Σ−1Q =M−1 −R0R and KQ0Σ−1Q = KM−1. Hence,

KQ0Σ−1T 1/2q̂T (θ0) + k1T 1/2(θ̃ − θ0) = op(1),

using eq. (B.13), and, as T 1/2q̂T (θ0) = k1T
1/2q̂(θ0) + op(1),

T 1/2(θ̃ − θ0) = −KQ0Σ−1T 1/2q̂(θ0) + op(1). (B.16)

Substituting eq. (B.16) back into eq. (B.13),

(T/S2T )
1/2ϕ̃ = −(Σ−1 −Σ−1QKQ0Σ−1)T 1/2q̂(θ0) + op(1), (B.17)
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and, thus, from eq. (B.14),

(T/S2T )
1/2µ̃ = (RMR0)−1RMQ0Σ−1T 1/2q̂(θ0) + op(1), (B.18)

as RMQ0Σ−1QK = 0. The result follows immediately from eqs. (B.16)-(B.18) as

T 1/2q̂(θ0)
d→ N(0,Σ) by a CLT similar to Lemma A.2.

Proof of Theorem 5.2: Let P̄G = Im −GH and Sg denote a selection matrix such

that S 0gqtT (θ) = gtT (β), (t = 1, ..., T ). Similarly to the proof of Theorem 4.1,

2(T/ST )P̂ (θ̃, ϕ̃, µ̃) = T q̂T (θ̃)
0Σ−1q̂T (θ̃)/(k2) + op(1)

= T q̂T (θ0)
0(Σ−1 −Σ−1QKQ0Σ−1)q̂T (θ0)/(k2) + op(1).

Hence,

2(T/ST )(P̂ (θ̃, ϕ̃, µ̃)− P̂ (β̂, λ̂))/(k21/k2) = T q̂(θ0)
0(Σ−1 −Σ−1QKQ0Σ−1 − SgP̄ 0GΩ−1P̄GS 0g)q̂(θ0)

+op(1). (B.19)

As Ω = S 0gΣSg and S
0
gQ = (G, 0),

Σ(Σ−1 − Σ−1QKQ0Σ−1 − SgP̄ 0GΩ−1P̄GS 0g)Σ(Σ−1 − Σ−1QKQ0Σ−1 − SgP̄ 0GΩ−1P̄GS 0g)Σ

= Σ(Σ−1 −Σ−1QKQ0Σ−1 − SgP̄ 0GΩ−1P̄GS0g)Σ.

Therefore, the result for LRa follows from Rao and Mitra (1971, Theorem 9.2.1, p.171)

with degrees of freedom given by

tr[Σ(Σ−1−Σ−1QKQ0Σ−1−SgP̄ 0GΩ−1P̄GS0g)] = tr[Σ(Σ−1−Σ−1QKQ0Σ−1)]−tr[ΣSgP̄ 0GΩ−1P̄GS 0g]

= tr[Im+s]− tr[QKQ0Σ−1]− tr[ΣSgP̄ 0GΩ−1P̄GS 0g]

= (m+ s)− (p + q − r)− (m− p) = s+ r − q.

As (T/S2T )
1/2λ̂ = −Ω−1P̄GT 1/2ĝ(θ0) + op(1), from eq. (B.17),

(T/S2T )
1/2(ϕ̃− ϕ̂) = −(Σ−1 − Σ−1QKQ0Σ−1 − SgΩ−1P̄GS 0g)T 1/2q̂(θ0) + op(1). (B.20)
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Eq. (B.20) yields the intermediate result that the GEL minimum chi-squared statistic

MCa eq. (5.7)

MCa = (T/S2T )(ϕ̃− ϕ̂)0Σ̂(ϕ̃− ϕ̂) (B.21)

= T q̂(θ0)
0(Σ−1 − Σ−1QKQ0Σ−1 − SgP̄ 0GΩ−1P̄GS 0g)T 1/2q̂(θ0) + op(1)

and is asymptotically equivalent to LRa from eq. (B.19).

We now consider the statistics LMa and Sa. Firstly, a Taylor expansion for the score
eq. (B.12) at (θ̃, ϕ̃, µ̃) around (θ̂, ϕ̂, 0) yields

T 1/2
TX
t=1

ρ1(kλ̂
0gtT (β̂))

 qtT (θ̂)
0

k1r(θ̂)

 = k1

 Σ Q 0
Q0 0 R0

0 R 0

T 1/2
 (ϕ̃− ϕ̂)/ST

(θ̃ − θ̂)
µ̃/ST


+op(1) (B.22)

as
PT
t=1 ρ1(kλ̂

0gtT (β̂))GtT (β̂)0λ̂ = 0. Hence,

−k1T 1/2
 (ϕ̃− ϕ̂)/ST

(θ̃ − θ̂)
µ̃/ST

 = −
 Σ Q 0
Q0 0 R0

0 R 0


−1

T 1/2
TX
t=1

ρ1(kλ̂
0gtT (β̂))

 qtT (θ̂)
0

k1r(θ̂)


+op(1)

= −
 Σ Q 0
Q0 0 R0

0 R 0


−1

Sψ,µT
1/2

TX
t=1

ρ1(kλ̂
0gtT (β̂))

Ã
htT (θ̂)

k1r(θ̂

!

+op(1) (B.23)

as
PT
t=1 ρ1(kλ̂

0gtT (β̂))gtT (β̂) = 0. Secondly, the GEL LM-like statistic may alternatively

be expressed as

LMa = T

 (ϕ̃− ϕ̂)/ST
(θ̃ − θ̂)
µ̃/ST


0

Sψ,µ

S/ψ,µ
 Σ Q 0
Q0 0 R0

0 R 0


−1

Sψ,µ


−1

S0ψ,µ

 (η̃ − η̂)/ST
(θ̃ − θ̂)
µ̃/ST


+op(1). (B.24)

Therefore, substituting (B.23) into (B.24),

LMa = (k1)
−2T

TX
t=1

ρ1(kλ̂
0gtT (β̂))

 qtT (θ̂)
0

k1r(θ̂)


0 Σ Q 0

Q0 0 R0

0 R 0


−1

(B.25)
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×
TX
t=1

ρ1(kλ̂
0gtT (β̂))

 qtT (θ̂)
0

k1r(θ̂)

+ op(1).
Thirdly, as Σ Q 0
Q0 0 R0

0 R 0


−1

=

 Σ−1 −Σ−1QKQ0Σ−1 Σ−1QK −Σ−1QMR0(RMR0)−1
KQ0Σ−1 −K MR0(RMR0)−1

−(RMR0)−1RMQ0Σ−1 (RMR0)−1RM (RMR0)−1 − Ir

 ,
from (5.5), Sa may also be expressed as

Sa = (k1)−2T−1
TX
t=1

ρ1(kλ̂
0gtT (β̂))

Ã
htT (θ̂)

k1r(θ̂)

!0
S 0ψ,µ

 Σ̃ Q̃ 0

Q̃0 0 R̃0

0 R̃ 0


−1

(B.26)

×Sψ,µ
TX
t=1

ρ1(kλ̂
0gtT (β̂))

Ã
htT (θ̂)

k1r(θ̂)

!
.

Therefore, from (B.23), (B.25) and (B.26), LMa = Sa + op(1).
Substituting (B.22) into (B.25) yields

LMa = T
TX
t=1

 (ϕ̃− ϕ̂)/ST
(θ̃ − θ̂)
µ̃/ST


0 Σ Q 0

Q0 0 R0

0 R 0

 TX
t=1

 (ϕ̃− ϕ̂)/ST
(θ̃ − θ̂)
µ̃/ST

+ op(1).
Eq. (B.21) obtains apart from asymptotically negligible terms upon recallingQ0(T/S2T )

1/2ϕ̃+

R0(T/S2T )
1/2µ̃ = op(1) and G

0(T/S2T )
1/2λ̂ = op(1).

Appendix C: Technical Lemmata

The following result is an adaptation of Kronecker’s Lemma.

Lemma C.1 Let Assumption 2.2 hold. Then

lim
T→∞

1

ST

T−1X
t=1−T

|t|
T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
= 0.

Proof: We may re-express

lim
T→∞

1

ST

T−1X
t=1−T

|t|
T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
= lim

T→∞

Z
|a|≤(T−1)/ST

|a|
(T/ST )

|kT (a)| da.
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Because kT (·) → k(·) a.e., the result will follow by the dominated convergence theorem
as |k(·)| ≤ k̄(·) a.e. if

lim
T→∞

Z
|a|≤(T−1)/ST

|a|
(T/ST )

k̄(a)da = 0.

From Assumption 2.2 (c), given any ² > 0, there exists a T such thatZ
|a|≥T/S

T

k̄(a)da < ².

Therefore, for all T >T ,Z
|a|≤(T−1)/ST

|a|
(T/ST )

k̄(a)da =
Z
|a|≤(T−1)/S

T

|a|
(T/ST )

k̄(a)da+
Z
T/S

T
≤|a|≤(T−1)/ST

|a|
(T/ST )

k̄(a)da

<
1

(T/ST )

Z
|a|≤(T−1)/S

T

|a| k̄(a)da+ ².

For fixed T , as ST/T → 0 by Assumption 2.2 (a),

lim
T→∞

1

(T/ST )

Z
|a|≤(T−1)/S

T

|a| k̄(a)da = 0.

Since ² is arbitrary,

lim
T→∞

Z
|a|≤(T−1)/S

T

|a|
(T/ST )

k̄(a)da = 0

which concludes the proof.

Lemma C.2 If Assumption 2.2 is satisfied, then

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶
/

T−1X
t=1−T

k
µ
t

ST

¶2
= k∗

µ
s

ST

¶
+ o(1)

uniformly s.

Proof: Consider the difference

∞X
t=−∞

k
µ
t− s
ST

¶
k
µ
t

ST

¶
−

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶

=
∞X

t=min[T,T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶
+
max[−T,−T+s]X

t=∞
k
µ
t− s
ST

¶
k
µ
t

ST

¶

[A.18]



Firstly, if s ≥ 0, min[T, T + s] = T . Then¯̄̄̄
¯
∞X
t=T

k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄
¯ ≤

∞X
t=T

¯̄̄̄
k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄

≤ sup
a
k̄(a)

∞X
t=T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
.

Secondly, if s ≤ 0, min[T, T + s] = T + s. Then¯̄̄̄
¯̄ ∞X
t=T+s

k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄¯̄ ≤ sup
a
k̄(a)

∞X
t=T+s

¯̄̄̄
k
µ
t− s
ST

¶¯̄̄̄

= sup
a
k̄(a)

∞X
t=T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
.

Therefore, ¯̄̄̄
¯̄ ∞X
t=min[T,T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄¯̄ ≤ sup
a
k̄(a)

∞X
t=T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
.

Similarly, ¯̄̄̄
¯̄max[−T,−T+s]X

t=−∞
k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄¯̄ ≤ sup
a
k̄(a)

−TX
t=−∞

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
.

Using the change of variable t = [ST b], by Assumption 2.2 (c),

lim
T→∞

1

ST

∞X
t=T

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
= lim

T→∞

Z ∞

T/ST
|kT (b)| db

≤ lim
T→∞

Z ∞

T/ST
k̄(b)db = o(1).

Likewise,

lim
T→∞

1

ST

−TX
t=−∞

¯̄̄̄
k
µ
t

ST

¶¯̄̄̄
= o(1).

Therefore,

1

ST

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶
=
1

ST

∞X
t=−∞

k
µ
t− s
ST

¶
k
µ
t

ST

¶
+ o(1)

uniformly s. A similar argument establishes

1

ST

T−1X
t=1−T

k
µ
t− s
ST

¶
k
µ
t

ST

¶
=
1

ST

∞X
t=−∞

k
µ
t− s
ST

¶
k
µ
t

ST

¶
+ o(1)

uniformly s. Therefore,

1

ST

min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶
=
1

ST

T−1X
t=1−T

k
µ
t− s
ST

¶
k
µ
t

ST

¶
+ o(1)
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uniformly s.

Using the change of variables s = [STa] and t = [ST b],

1

ST

∞X
t=−∞

k
µ
t− s
ST

¶
k
µ
t

ST

¶
= lim

T→∞
1

ST

T−1X
t=1−T

k
µ
t− s
ST

¶
k
µ
t

ST

¶

= lim
T→∞

Z (T−1)/ST

(1−T )/ST
kT (b− a)kT (b)db

+
1

ST
(k(0)k

µ
s

ST

¶
+ k

µ−s
ST

¶
k(0))

=
Z ∞

−∞
k(b− a)k(b)db+ o(1)

uniformly s as |k(a)| ≤ supa k̄(a). Therefore,
min[T−1,T−1+s]X
t=max[1−T,1−T+s]

k
µ
t− s
ST

¶
k
µ
t

ST

¶
/

T−1X
t=1−T

k
µ
t

ST

¶2
=

1

ST

T−1X
t=1−T

k
µ
t− s
ST

¶
k
µ
t

ST

¶

÷ 1

ST

T−1X
t=1−T

k
µ
t

ST

¶2
+ o(1)

= k∗
µ
s

ST

¶
+ o(1)

uniformly s as, using the change of variable t = [ST b], by the dominated convergence

theorem,

lim
T→∞

1

ST

T−1X
t=1−T

k
µ
t

ST

¶2
= lim

T→∞

Z (T−1)/ST

(1−T )/ST
kT (b)

2da+
1

ST
k(0)2

=
Z ∞

−∞
k(b)2db+ o(1)

= k2 + o(1) > 0.

Lemma C.3 Let Assumptions 2.2 (b) and (c) hold. Then k∗(·) ∈ K2.

Proof: Firstly, k∗(·) : R→ [−1, 1] by CS and k∗(0) = 1.
Secondly, k∗(·) is symmetric as k∗(a) = R∞

−∞ k(b − a)k(b)db/k2 =
R∞
−∞ k(c)k(c −

(−a))dc/k2 = k∗(−a) using the change of variable c = b− a.
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Thirdly, we show that
R
[0,∞) k̄

∗(a)da <∞. Initially, however, note that R(−∞,∞) k(c−
b)k(c)dc =

R
(−∞,0) k(c− b)k(c)dc+

R
[−b,∞) k(d+ b)k(d)dd. Now,

sup
b≥a

¯̄̄̄
¯
Z
(−∞,0)

k(c− b)k(c)dc
¯̄̄̄
¯ ≤

Z
(−∞,0)

sup
b≥a

|k(c− b)| |k(c)| dc

≤ k̄(−a)
Z
(−∞,0)

|k(c)| dc.

Therefore,

Z
[0,∞)

sup
b≥a

¯̄̄̄
¯
Z
(−∞,0)

k(c− b)k(c)dc
¯̄̄̄
¯ ≤

Z
[0,∞)

k̄(−a)
ÃZ

(−∞,0)
|k(c)| dc

!
da ≤

ÃZ
(−∞,0]

k̄(a)da

!2
.

Next, note
R
[−b,∞) k(d+ b)k(d)dd =

³R
[−b,−a)+

R
[−a,∞)

´
k(d+ b)k(d)dd. Firstly,

Z
[0,∞)

sup
b≥a

¯̄̄̄
¯
Z
[−a,∞)

k(d+ b)k(d)dd

¯̄̄̄
¯ da ≤

Z ∞

−∞
|k(d)|

µZ ∞

−∞
k̄(a)da

¶
dd

≤
µZ ∞

−∞
k̄(a)da

¶2
as

sup
b≥a

¯̄̄̄
¯
Z
[−a,∞)

k(d+ b)k(d)dd

¯̄̄̄
¯ ≤

Z
[−a,∞)

k̄(d+ a) |k(d)| dd

≤
Z ∞

−∞
k̄(d+ a) |k(d)| dd.

Also, ¯̄̄̄
¯
Z
[−b,−a)

k(d+ b)k(d)dd

¯̄̄̄
¯ ≤ k̄(−a)

Z
[−b,−a)

|k(d+ b)| dd ≤ k̄(−a)
Z
[0,∞)

k̄(c)dc

yieldingZ
[0,∞)

sup
b≥a

¯̄̄̄
¯
Z
[−b,−a)

k(d+ b)k(d)dd

¯̄̄̄
¯ da ≤

ÃZ
(−∞,0]

k̄(a)da

!ÃZ
[0,∞)

k̄(a)da

!
.

Therefore
R
[0,∞) k̄

∗(a)da <∞.
Fourthly, by Assumption 2.2 (b), k∗(·) is continuous at 0 and almost everywhere.

Therefore, k∗(·) ∈ K1.
Finally,K∗(λ) = (2π)−1

R
exp(−iaλ)k∗(a)da = 2π |K(λ)|2 /(k2). Therefore, as |K(λ)| ≥

0 for all λ ∈ R by Assumption 2.2 (d), K∗(λ) ≥ 0 and, moreover, k∗(·) ∈ K2.
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Appendix D: Second Order Derivatives

Differentiating twice with respect to λ and β,

∂P̂ (λ, β)

∂λ∂β0
=

TX
t=1

³
k2ρ2(kλ

0gtT (β))gtT (β)(λ0GtT (β)) + kρ1(kλ0gtT (β))GtT (β)
´
/T. (D.1)

Moreover,
∂P̂ (λ, β)

∂λ∂λ0
= k2

TX
t=1

ρ2(kλ
0gtT (β))gtT (β)gtT (β)0/T, (D.2)

which is n.d. if
PT
t=1 gtT (β)gtT (β)

0 is p.d. as ρ2(kλ0gtT (β)) < 0 by the concavity of ρ(·)
on its domain V. Hence, λ̂(β) defines a unique minimum of P̂ (λ, β) and is continuously

differentiable by the implicit function theorem. Hence,

∂λ̂(β)

∂β0
= −

Ã
∂P̂ (λ,β)

∂λ∂λ0

!−1
∂P̂ (λ,β)

∂λ∂β 0
.

Also

∂P̂ (λ, β)

∂β∂β 0
=

TX
t=1

Ã
k2ρ2(kλ

0gtT (β))(GtT (β)0λ)(λ0GtT (β)) + kρ1(kλ0gtT (β))
mX
k=1

∂gtT,k(β)

∂β∂β 0
λk

!
/T,

where gtT,k(β) denotes the kth element of gtT (β), (k = 1, ...,m).
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