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1 Introduction

Estimation of heteroskedasticity and autocorrelation consistent covariance matrices (HACs) is a
well established problem in time series. Results have been established under a variety of weak
conditions on temporal dependence and heterogeneity that allow one to conduct inference on a
variety of statistics, see Newey and West (1987), Hansen (1992), de Jong and Davidson (2000), and
Robinson (2004). Indeed there is an extensive literature on automating these procedures starting
with Andrews (1991). Alternative methods for conducting inference include the bootstrap for which
there is also now a very active research program in time series especially, see Lahiri (2003) for an
overview. One convenient method for time series is the subsampling approach of Politis, Romano,
and Wolf (1999). This method was used by Linton, Maasoumi, and Whang (2003) (henceforth LMW)
in the context of testing for stochastic dominance.

This paper is concerned with the practical problem of conducting inference in a vector time series
setting when the data is unbalanced or incomplete. In this case, one can work only with the common
sample, to which a standard HAC/bootstrap theory applies, but at the expense of throwing away
data and perhaps losing efficiency. An alternative is to use some sort of imputation method, but
this requires additional modelling assumptions, which we would rather avoid.! We show how the
sampling theory changes and how to modify the resampling algorithms to accommodate the problem

of missing data. We also discuss efficiency and power. Unbalanced data of the type we consider are
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IBut if we did go down that path we would advocate a general to specific approach.



quite common in financial panel data, see for example Connor and Korajczyk (1993). These data

also occur in cross-country studies.

2 Model and Set-up

Suppose we have two samples denoted [y and Iy on X and Y respectively with cardinalities T'x and

Ty. We will suppose that the samples are staggered and in particular Ix = {Xi,..., X7, } and Iy =

{Yrxi1,...,Yrx p, }. These observations can be partitioned into TXY common observations, denoted
XY = {(Xpxy1, Yrxgn), o, (Xpxopxv, Yex opxv) b, T separate observations on X, denoted [ =
{X1,...,Xpx}, and TY separate observations on Y, denoted IY = {Yrx  rxv,1,..., Yrx 7, }, so that

Tx =TX +T*Y and Ty = TY 4+ TXY. There are a number of cases of interest with regard to the
relative magnitudes of 7%, 7Y, and TXY. The main case of interest theoretically is where they are

TXY

all of approximately the same size. The case where is large relative to T, T is trivial, while

TXY can be viewed as a limiting version of the main

the case where T, TV are large relative to
case. In any case we assume throughout that T'y,7Ty — oo, and denote by T' = TxTy /(Tx + Ty)
the dominant magnitude. We suppose that the data are temporally and cross-sectionally dependent,
but are stationary and mixing. We assume that the ‘missing data’ arises exogenously, i.e., the MAR
assumption applies, Little and Rubin (1987).

We are concerned with testing hypotheses about the marginal distributions of X; and Y;. There
are two general types of hypotheses of interest.

ExAaMPLE 1. We want to test the hypothesis that
Ho: px = E(Xy) = E(Y:) = py (1)

with alternative either one sided or two-sided. This is a special case of the problem of testing whether
f(mx) = f(my), where mx, my are vectors of moments (including quantiles) from the distributions
X, Y respectively, and f is a smooth function. A more general version of this would involve regression
on a benchmark variable Z;. Thus suppose that Y; = 6;& + uy; and X; = B;Zt + ux¢, where
E(ug|Z;) = 0 with u; = (uys,ux)', and we observe Y;, X; as stated above but that Z; is observed
throughout ¢t = 1,..., 7% +Ty. Want to test whether f(3y) = f(8y) for some smooth function f. A
leading example here would concern comparison of two funds o/s (where these are computed relative
to a benchmark fund 7).

EXAMPLE 2. We want to test the hypothesis that the distribution of X, first order dominates
the distribution of Y;. Let Fx, Fy denote the c.d.f. of X and Y respectively, the hypothesis can be

stated as
Hy : SLzlp{Fx(Z) —Fy(2)} <0 (2)
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with the alternative hypothesis that sup,{Fx(z) — Fy(z)} > 0. More generally can consider tests of
higher order dominance and other related tests.

In the former case, we can expect a normal distribution theory to apply under moment and mixing
conditions, with the possibility of obtaining asymptotically pivotal test statistics, while in the latter
type we expect a more complicated non-normal distribution theory, with complicated dependence on
nuisance parameters precluding asymptotic pivotality.

In example 1 a natural test statistic to use is
T = \/T(7 - ?)7 (3)

where X = T3S X, and YV = Ty Z;‘F:XTZTY Y;. Under standard conditions 7/ = N(0,1)
under the null hypothesis, where 02 = avar(v/T(X —Y)) and 6 is a consistent estimate thereof. The
test is based on comparing the studentized 7 with standard normal critical values. An alternative

test statistic would be based on only the common sample IXY, 7%V = /TXY (YXY — VXY), where

D (TXY) 1Y, pxv X¢ and v = (TXY) 13, crxv Y. In this case also 7Y /& = N(0,1)

under the null, where w? = avar(v/TXY (YXY - VXY)) and &2 is a consistent estimate thereof. In
some cases this test may be an attractive option, but when T and/or TV is large, this approach
while convenient, may lose power.
In example 2 a natural test statistic is

5= VT max {Fx(z)— Fr(z)} (@)
where Fy(z) = TS 1(X, < 2) and Fy(z) = ! ZZ(TJ;TY 1(Y; < z) are the empirical dis-
tribution functions. Here, z, are grid points whose cardinality L(T') increases with sample size.
In this case, the limiting null distribution is Ar = sup, Wg(z), where Wr is a Gaussian process
with covariance function depending on the joint distribution of X,Y and on the joint autodepen-
dence of these processes. The only feasible way of conducting inference here is to use some sort
sXY —

of bootstrap procedure. LMW have proposed a subsampling algorithm for the statistic
VTXY maxy <. <y { FY (20)— FYY (20) }, where FEY (2) = (TXY) 71 S0, v 1(X; < 2) and FYY (2) =
(TXY)1 Y, cpxv 1(Y; < 2) are the empirical distributions based on the common sample. Because
6" is using less data it can also be less powerful than §. We show below how to modify the LMW

subsampling algorithm to obtain a consistent test based on §.



3 Inference

3.1 Estimation of Long Run Variance

2

Here, we show how to estimate o and conduct the test based on a studentized version of 7. Let

vx(j) and 7y (j) be the marginal covariance functions of the processes X,Y respectively, and let
Yxy (J) = cov(Xe, Yij).

THEOREM 1. Suppose that (X;,Y;) is jointly stationary with absolutely summable covariance
function such that 322 jlvxy(j)| < oo. Suppose that Tx, Ty — oo, and let T = TxTy /(Tx +Ty) —

oo. Then

X
Y

var +o(T™H).

. TXY .
_[7§§Eimﬁxﬁ) oty Lo Vv ()
- TXY . .

TxTy Z;)i—oo Vxy (J) % ;i—oo Yy (7)
This shows that the marginal variances are the usual terms proportional to the full marginal
sample sizes, while the covariance is proportional to the common sample size 7%Y. The reason is
basically b like "2 X, and SR,
asically because terms like >, _;x,, Xyand Y, ok pxy 4

restriction Y7 j|vyxy (j)| < oo is only needed for the covariance term, but in its absence this term

Y, are asymptotically independent. The

may change.

A consequence of Theorem 1 is that

e B S S ) 2 S ) )

while w? > 372y () + 2 oy () — 23072 o Yxv(j). To estimate these quantities we now
apply the HAC theory. Specifically, we can estimate the long-run variances Irv(X) = Z;’;_oo vx (7)),
v(Y) =327 vy (d), and Ircov(X,Y) = >°72  vxy(j) by corresponding HAC estimators based
respectively on the full sample of X's, the full sample of Y’s, and on the common sample I*Y. For
example, let 7 (j) = (Tx — j) " 27 (X, — X)(Xoyj — X) for j =1,..., J(Tx) and let

I (X) = gﬁ)k(ﬁ%j)aﬂﬁ, )
j=—J(Tx) *

where k(.) is a weight function with support [—1, 1] and J(Tx) is a bandwidth parameter satisfying
J(Tx) — oo and J(Tx)/Tx — 0. See Andrews (1991) for methods and results on how to choose
J(Tx), and Xiao and Linton (2002) and Phillips (2004) for alternative strategies.

We now turn to the properties of the studentized tests 7/7 and 7XY /@, where &, & are consistent

estimates of w, 0. Under local alternatives of the form py = py + A/V/T, we have

TXY T
T:>N(7TXY,1) and;=>N(7r,1),
w o



where

T=—and 7

o W Tx, Ty —o0 TX Ty

v _ A \/TXY(TX +1y)

Clearly, when T%Y /min{T, Ty} — 0 the common sample test has no power against these alter-
natives and 7 is preferable. However, the ranking could go the other way. Suppose that 7% =
TY = TXY in which case T = Tx/2 = Ty/2 = T*Y so that 7Y = A/w. We then have
0? = (1/2) 3272 vx()+(1/2) 3272 vy () —(1/2) 3252 Yy (4), and it is possible that w? < o2,
at least when > 22 vxy(j) > 0. For example suppose that 3 72 vy (j) =372 7y (j) =¥ and

>0 oo Vxy(j) = pV, then w? — 0 = ¥(2 — 3p)/2, which can be negative for p > 2/3 2
In conclusion, we have found that although X is always more efficient than X" , Y the ranking of
7XY 7 as test statistics could go either way - it depends on the relative sample sizes and on their

mutual dependence. We discuss further below the issue of efficiency and local power.

3.2 Subsampling

In the second class of testing problems it is not possible to obtain pivotality by studentizing the
statistic, and inference is usually based on some sort of resampling scheme. We concentrate on the
subsampling method because it has certain advantages in example 2, see LMW for more discussion.
The problem here is that just subsampling through the data as usual gives you missing data or
confines you only to /XY, which would not adequately reflect the sampling error of 7 or .

We propose a simple modification of the subsampling procedure suitable for the full dataset
and show that it works in our example 2. Rewrite § = g(I*X, I*Y IY) for some function g. Define
subsample sizes b%,bXY | and b¥ with ¥ — oo and V//TV — 0 for j = X,Y,XY. Then define

subsamples 1540 from X with
IO =X X fori =1, TX =X 41,

likewise define subsamples I¥**" from IV

IY’i’bY = {YTX+TXY+i, Ce 7YTX+TXY+i+bY—1} for 1 = 1, C ,TY — bY + 1,
and define subsamples IXY#0™" from [XY
IXY’i’bXY = {(XTX+i7 YTX+i) e (XTX+i+bXY—17 YTX+i+bXY—1)} for i = 1, A ,TXY — bXY + 1.

2The extreme case of i.i.d. data with perfect mutual correlation makes the intuition clear - in that case 7%V is

constant, while 7 will have randomness due to the unmatched samples.



Then define the subsample statistic 67,,; = g(1X%0" | [XH0 [Y40") and likewise 77, specifically

1 i+bX -1 TX 4i46XY -1
6T,b,i = 1<II1<ELXL(T) \/B m Z 1(Xs < Zg) -+ Z 1(Xs < Zg)
S s5=i s=TX 44
1 TX +i+bXY —1 TX4+TXY 1 4pY —1
T > WYi<z)+ > L(Ys < z)
s=TX+4 s=TX4+TXY 44

Here, b(T) is chosen to satisfy (asymptotically)

Ty b Tx b ™ bbxY 0
Tx +Ty VX +0XY7 Tx+Ty WY+ Tx+Ty (B + X)) (Y + YY)

For example, when Tx = Ty = 27%Y and b* = b" = b*Y we can take b = b¥.
We approximate the sampling distribution of § (or 7) using the distribution of the values of 07

(or 775,;) computed over the different subsamples. That is, we approximate the sampling distribution
GT of § by

N

~ 1

Grp(w) = N Z 1 (0pp,: <w), (8)
=1

where N(T) = min{T% — bX + 1,7V — 0¥ + 1, 7% — b*XY + 1} is the number of different feasible
subsamples.® Let gr,(1 — a) denote the (1 — «)-th sample quantile of @T,b(-), ie.,

grp(1 — ) = inf{w : @Tb(w) >1—a}l.

We call it the subsample critical value of significance level o. Thus, we reject the null hypothesis at
the significance level a if 7 > gr (1 — ).
Although this algorithm does not seem to replicate precisely the temporal ordering [for example,

[Xib* IXY4b™) this does not matter for the first order

the sample is separated temporally from
asymptotics because of the asymptotic independence argument.

THEOREM 2. Suppose that (X, Y:) is jointly stationary and alpha mizing random sequence, and
suppose that under the null hypothesis (2) 0 converges in distribution to the random variable Ap

whose (1 — «)-th quantile is denoted by g(1 — «). Then, under the null hypothesis (2),

g(1 —a) if sup,{Fx(z) — Fy(2)} =0

grp(l —a) = { —oo if sup{Fx(z) — Fy(2)} <0.

% A more general approach can be based on 7,4 ; i i = f(IX’i’bX ) [XYADY ; IY”:””’Y) and then taking the empirical

distribution across all consistent {7,4’,3"}.



4 Efficient Estimation and Testing

It is well known that the sample mean is an efficient estimate of a population mean in both the
i.i.d. case, Bickel, Klaassen, Ritov, and Wellner (1993, pp 67-68), and in some time series cases,
Grenander (1954). Indeed, this is a case where “OLS=GLS”. We show that this no longer holds
in the unbalanced case and one can obtain a more efficient estimator than the sample mean. This
result carries over to estimation of other quantities like distribution functions. See Bickel, Ritov, and
Wellner (1991) for a more general problem of this type in the i.i.d. case. The more efficient estimator
translates into a more powerful test. In this section we assume that 7%, 7Y, and TX" are of similar
magnitude to avoid degeneracy.

Define the vector of sample moments

T
m= T—lszu% Z Xty% Z Yta%ZYt :[ml,mg,m3,m4]T.

terX tel Xy tel XY tely
The vector m contains unbiased estimators of the parameter vector 0 = (uy, uy ). We consider
estimators that minimize the minimum distance criterion (m—A0)"¥(m— Af), where A is the 4 x 2
matrix of zeros and ones that takes (py, ity) | into (pix, fix, fy, iy ) |, while ¥ is a symmetric positive
definite weighting matrix. The resulting estimator has closed form 0= (AT\IIA)_l ATWUm, ie., it is

a linear combination of the elements of m.* This estimator has asymptotic variance proportional to
(AT\IIA)_1 ATUVIUA (AT\I!A)_1 , where V is the asymptotic variance of m :

7% Do ¥x(j) 0 0 0
V= 0 T%/Z;i_oo%{(j) TTIYZ;Z—OO/VXY(])
0 T>+Y Z;i_oo Txy (]) Tle Z;i_oo Ty (]) 0
0 0 0 T o0 Yy ()

The optimal choice of ¥ is proportional to V!, in which case 0 has asymptotic variance proportional
to (ATV_lA) ~'. The full sample mean f = (X,Y)" is also a linear combination of m, § = Sm, where
S is the 2 x 4 matrix with first row S; = T} (T, T*Y 0, 0) and second row S, = T}-1(0,0, 7Y TY).
Likewise the subsample mean g = (YXY, ?XY)T = SXY'm, where S*Y is the 2 x 4 matrix with first

row SiY = (0, 1,0, 0) and second row S3*¥ = (0,0, 1, 0). It is easy to show that SV.ST > (ATV_lA)_l

*Suppose that T = T% = T and that 3272 yx () = 222 7y () = ¢ and 3252 vxy(4) = pv. The

estimator has the natural form:

1 (2 — p?)m1 + 2ma + p(my — m3)

p(mi —ma) + 2mg + (2 — p?)my



and SXYV(SXY)T > (ATV_IA)_1 in the matrix partial order so that @ is more efficient than both
0 and @ . Suppose that 7% = TV = T%Y and that > e x() = X2 o y(d) = ¥ and
Zji_oo Vxy(j) = pU. Then:

~ 0 —&2 2, - 9|1 £ —xy, U 2p
~ p 4—p . ~ 2 . v
var(0) ~ T 4_p2 44__2pp22 ; var(f) ~ T|e ;var(0” ) ~ T|op o |

For all p, var(d) —var(f) is positive definite, strictly so for p # 0. For all p, var(@XY) —var(f) is positive
definite, strictly so for p # 1. We conjecture that 0 is semiparametrically efficient for estimation of
0. A feasible version of 5, which shares its limiting distribution, can be obtained from estimates of
V, which can be obtained from the estimates of lrv(X), Irv(Y'), and Ircov(X,Y") defined like in (6).
We now turn to the testing problem. Define 7 = v/T/(1,—1)f and let 5 be a consistent estimate
of o, which can be obtained from the estimates of V' as already discussed. It follows that under

local alternatives iy = pty + \/V/T,
— = N (’NE, 1) ,

where T = \/op. Furthermore, |75| > max{|r|, |7*Y|} so that 75/ x is the most powerful test in
this class. Consider the special case that T =T = T, 372 4y (j) = Y272 7y (j) =¥ and
Z;O_—oo Yxy(j) = pU. We have

, M 2-p A2 1 2

Th= o 2 > max{(r*Y)% 72} = 5 maX{2 YAk

}.

For the range p € [—1,0.5], 7% /7% is quite modest, it lies in [1,1 - 12], but as p — 1, 7% /7> — oo.
On the other hand 7% /(7*Y)? =2 —p € [1,3].5

We briefly report the results of a simulation study that investigates 7,7, 7
X, = X+ NVT with X; = ¢X7 | + &,V = ¢Y,_1 +1,, where (g,,7,) are jointly standard normal
with correlation p. In this case, 2% vx(j) = 2272 () = (1 —¢) 2 and 32 vxy(j) =
(1 — ¢)2p. We take T =T = TXY = 60 corresponding to 5 years of monthly data and ¢ = 0.5
throughout, while varying p € {—0.9,0,0.5,0.9}. The power curves for the 0.05 level two sided tests

XY in the case where

are shown in Figure 1 calculated from 100,000 replications.

5In this case we can write

TR = \/T%p (1= p)(m1 —my) + (ma —m3)],

which gives a nice interpretation - as p increases more weight is put on the common sample difference.
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Figure 1.

Throughout, the test based on 7z has the higher power curve, but who comes second changes
according to the design: the common sample test does very poorly when p = —0.9, while the full
sample test does very poorly when p = 0.9, as predicted by the theory. We acknowledge that the
feasible version of 7 can suffer from small sample effects that might diminish its edge, and we intend
to investigate this in future work.

Finally, this estimation/testing strategy can also be applied to the c.d.f.’s in example 2. Specifi-

cally, define for each z the vector of sample moments

1 1 1
me= 7y ) 1K <2 ey ) MK <) gy ) WM< 2) gy ) 1<)

telX teIXY tel Xy tely
and define estimates FZ(z) and F(z) by the above minimum distance strategy. Then define §° =
VT maxy <. <y { FE(z) — FE(2)}. By construction F£(z) and FZ(z) are more efficient than Fy ()
and F\y(Z), and it may be possible to show that tests based on 6” are more powerful than those based

on J. The same subsampling algorithm described in section 3.2 could be used to set critical values.

9



5 Concluding Remarks

We have shown how to modify inference procedures in the case of unbalanced data. In particular,
we showed how to conduct valid inference for the ‘natural’ full sample test statistics 7,0 in our two
examples. We also showed that these may not be the most powerful tests, and indeed there are
situations where using only the common sample may be superior. We proposed more efficient tests

that use all the data and require estimates of long run variances to do the optimal weighting.

6 Appendix

PrOOF OF THEOREM 1. By standard arguments
var(X Z vx(j) and var(Y TY Z vy (4
j_—OO Jj=—00

It remains to calculate cov(X,Y). For notational brevity write 2, = X; — F(X;) and i, = Y; — E(Y}).
Then

] M/ rx TX L XY TX 4Ty TX L TXY
cov(X,Y) = T E th—l- Z Ty Z Y + Z Yt
XY |\ =1 t=TX 41 {=TX 4TXY 11 t=TX 41
] (X XY TX 4Ty TX 4Ty
= ToT FE Z Ty Z Yy T T ZIt Z Yi
XY | t=TX+1  t=TX4TXY 41 X4y t=1  =TX4TXY 4]
1 TX+TXY TX+TXY TX TX+TXY
sl ED DR D DI TXTY Do Y, v
t=TX+1 t=TX+1 t=1 t=TX+1
= I+I1IT+1IIT+1V.
We have
Y ] ™5 O(T-1
= 1 ——— ) ~ ) =01
Ty ~ny ( TXY) Yxy () TxTy ; Vxv (7) ( )
l7|<T J=—00

by dominated convergence. Define the integer sets

I, = {t:s—t=wus=T4+T*Y +1,... . T +Ty;t=1,...,T*},
I = {tis—t=us=T"+T*Y +1,... . T+ Ty;t =T +1,.. T + TV}, u > 1,

10



and let n, (n]) denote the cardinality of I,, (I]), noting that n,,n, < u for all u. Then,

TX4+Ty 1 TX+Ty -1
11 = Yxy(s—t) = Ny xy (1)
1 oo
< ulyxy (u)| = o(T7?),
TXTY u—’I;-‘rl

because Y -, ulyxy (u)]| < co. Also,

TX+TXY  TX4Ty Ty—1

Z Z Yxy(s —1) = TxlTy ; myxy (u) = O(T72),

t=TX+1 s=TX4+TXY 41

TXY

by the same reasoning. Likewise IV = O(T2). u
PrOOF OF THEOREM 2. The proof is based on showing that

1 i+bX—1 TX 4i4+6XY -1
U() = Vb X N Z (X, <)+ Z (X, <)
s=1i s=TX 44
1 TX 4i4+6XY -1 TX4TXY 4j4pY —1
T LY Y. 1<)+ > (Y, <)
s=TX 41 s=TX+TXY 44

satisfies a functional central limit theorem with limit Wg(-). The main step is to show that U(z)

has asymptotically the same variance as vT{Fx(z) — Fy(z)}, and this follows using the proof of

Theorem 1, i.e.,

b b
VaI'(U(Z)) = bX bXY Z /YF)((Z ) by bXY Z rYFy(z ])

2 v Z 0
(X + 05) (0¥ + bXY) VFxy (z,2)\J

]_—OO

where VFX(z)(j) = cov(1(X; < 2),1(X;; < 2)), yFy(z)(j) = cov(1(Y: < 2),1(Yi—; < 2)), and
Yy (2.0 () = cov(L(X; < 2)1(Y; < 2),1(X;—; < 2)1(Yi; < 2)). The two variances coincide when
(7) holds.

|
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