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Abstract 
 

 In this paper, the regression discontinuity design (RDD) is generalized to account for 
differences in observed covariates X in a fully nonparametric way. It is shown that the 
treatment effect can be estimated at the rate for one-dimensional nonparametric 
regression irrespective of the dimension of X. It thus extends the analysis of Hahn, 
Todd and van der Klaauw (2001) and Porter (2003), who examined identification and 
estimation without covariates, requiring assumptions that may often be too strong in 
applications. In many applications, individuals to the left and right of the threshold 
differ in observed characteristics. Houses may be constructed in different ways across 
school attendance district boundaries. Firms may differ around a threshold that 
implies certain legal changes, etc. Accounting for these differences in covariates is 
important to reduce bias. In addition, accounting for covariates may also reduces 
variance. Finally, estimation of quantile treatment effects (QTE) is also considered. 
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1 Introduction

In this paper, the regression discontinuity design (RDD) approach is generalized to account

for di¤erences in observed covariates X in a fully nonparametric way. It is shown that under

mild regularity conditions, the treatment e¤ect of interest can be estimated at the rate for

one-dimensional nonparametric regression irrespective of the dimension of X. It thus extends

the analysis of Hahn, Todd, and van der Klaauw (2001) and Porter (2003), who examined

identi�cation and estimation without covariates, requiring assumptions that may often be too

strong in empirical applications.

The regression discontinuity design is a method frequently used in treatment evaluation,

when certain e.g. bureaucratic rules imply a threshold at which many subjects change their

treatment status. Consider a law specifying that companies with more than 50 employees have

to adhere to certain anti-discrimination legislation whereas smaller �rms are exempted. This

situation can be considered as a kind of local experiment: Some units, �rms or individuals

happen to lie on the side of the threshold at which a treatment is administered, whereas others

lie on the other side of the threshold. Units close to the threshold but on di¤erent sides can be

compared to estimate the average treatment e¤ect.

More often than not, however, the units to the left of the threshold di¤er in their observed

characteristics from those to the right of the threshold. Accounting for these di¤erences is

important to identify the treatment e¤ect. In the example referred to above, a comparison

of �rms with 49 employees to those with 51 employees could help to estimate the e¤ects of

anti-discrimination legislation on various outcomes. However, �rms near the threshold might

take the legal e¤ects into account when choosing their employment level. Therefore, �rms

with 49 employees might thus be quite di¤erent in observed characteristics from �rms with

51 employees, e.g. with respect to assets, sales, union membership, industry etc. One would

therefore like to account for the observed di¤erences between these �rms.

Consider a few other examples. Black (1999) examined the impact of school quality on

housing prices by comparing houses adjacent to school-attendance district boundaries. School

quality varies across the border, which should be re�ected in the prices of apartments. How-
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ever, if school quality was indeed valued by parents, developers would build di¤erent housing

structures on the two sides of the boundary: Flats with many bedrooms for families with chil-

dren on that side of the boundary where the good school is located, and apartments for singles

and couples without children on the other side of the border. Black (1999) therefore controls

for the number of bedrooms (and other characteristics of the apartments) in a linear model,

which could be done fully nonparametrically with the methods developed in this paper.

Such kind of geographic or administrative borders provide opportunities for evaluation in

various applications. E.g. individuals living close but on di¤erent sides of an administrative

border may be living in the same labour market, but in case of becoming unemployed they

have to attend di¤erent employment o¢ ces with potentially rather di¤erent types of support or

training programmes. These individuals living on the di¤erent sides of the border may however

also di¤er in other observed characteristics that one would like to control for.

Angrist and Lavy (1999) exploited a rule that school classes had to be split when class size

would be larger than 40 otherwise. This policy generates a discontinuity in class size when

the enrollment in a grade grows from 40 to 41. But apart from class size there may also be

other di¤erences in observed characteristics between the children in a grade with 40 versus 41

children. E.g. rich parents may pull their children out of public school (and send them to

private schools) if they realize that their child would be in a class of 40 students, whereas they

might not want to do so if class size is only about 20 students.

In these examples,1 observed covariates are di¤erently distributed across the threshold,

which can lead to spurious estimated e¤ects if these di¤erences are not accounted for. The

RDD approach without covariates has recently been studied in Hahn, Todd, and van der

Klaauw (2001) and Porter (2003). In this paper, I extend the RDD approach to include

additional covariates in a fully nonparametric way and examine nonparametric identi�cation

and estimation of the unconditional treatment e¤ect. It is shown that the rate for univariate

nonparametric regression, i.e. n�
2
5 , can be achieved irrespective of the number of variables in

X. Hence, the curse of dimensionality does not apply. This is achieved by smoothing over all

the covariates X.
1Other recent examples include Battistin and Rettore (2002), Lalive (2007) and Puhani and Weber (2007).
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Including covariates is often necessary for identi�cation. But even when the estimator

would be consistent without controlling for X, e¢ ciency gains can be achieved by accounting

for covariates. In Section 2, Identi�cation is considered. Section 3 proposes an estimator that

achieves n�
2
5 convergence rate. Section 4 considers estimation of quantile treatment e¤ects

(QTE) and other extensions.

2 RDD with covariates

Following the setup of Hahn, Todd, and van der Klaauw (2001), let Di 2 f0; 1g be a binary

treatment variable, let Y 0i , Y
1
i be the individual potential outcomes and Y

1
i �Y 0i the individual

treatment e¤ect. The potential outcomes as well as the treatment e¤ect are permitted to

vary freely across individuals, i.e. no constant treatment e¤ect is assumed. In the examples

mentioned, D may represent the applicability of anti-discrimination legislation, school quality,

class size etc. Let Zi be a variable that in�uences the treatment variable in a discontinuous

way, e.g. number of employees, location of house, total school enrollment etc.

In the literature, often two di¤erent designs are examined: the sharp design where Di

changes for everyone at a known threshold z0, and the fuzzy design where Di changes only

for some individuals. In the sharp design (Trochim 1984), participation status is given by a

deterministic function of Z, e.g.

Di = 1(Zi > z0). (1)

This implies that all individuals change programme participation status exactly at z0. The

fuzzy design, on the other hand, permits D to also depend on other factors but assumes that

the treatment probability changes discontinuously at z0:

lim
"!0

E [DjZ = z0 + "]� lim
"!0

E [DjZ = z0 � "] 6= 0. (2)

Note that the fuzzy design includes the sharp design as a special case when the left hand side

of (2) is equal to one. Therefore the following discussion focusses on the more general fuzzy

design.

The fuzzy design may apply when the treatment decision contains some element of discre-

tion. Case workers may have some discretion about whom they o¤er a programme, or they
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may base their decision also on criteria that are unobserved to the econometrician. It may

also often be appropriate in a situation where individuals are o¤ered a treatment or a grant or

�nancial support and decline their participation.2 (This is further discussed in Section 4.)

If the conditional mean of Y 0 is continuous at z0, a treatment e¤ect can be identi�ed.

Identi�cation essentially relies on comparing the outcomes of those individuals to the left of

the threshold with those to the right of the threshold. Hahn, Todd, and van der Klaauw (2001)

consider two alternative identifying assumptions (in addition to continuity of E
�
Y djZ = z

�
in

z at z0 for d = f0; 1g ):

HTK1: Y 1i � Y 0i ??DijZi for Zi near z0 (3)

or

HTK2:
�
Y 1i � Y 0i ; Di(z)

	
??Zi near z0 and there exists " > 0

such that Di(z0 + e) � Di(z0 � e) for all 0 < e < ". (4)

The former assumption (3) is some kind of selection on observables assumption and iden-

ti�es E[Y 1 � Y 0jZ = z0]. The second assumption (4) is some kind of instrumental variables

assumption and identi�es the treatment e¤ect only for a group of local compliers

lim
"!0

E
�
Y 1 � Y 0jD(z0 + ") > D(z0 � "); Z = z0

�
and corresponds to some kind of local LATE e¤ect. As discussed in Section 4, in the frequent

situation of a mixed sharp-fuzzy RDD design, it corresponds to the average treatment e¤ect

on the treated (ATET) E
�
Y 1 � Y 0jD = 1; Z = z0

�
. This is e.g. the case with one-sided non-

compliance. Whichever of these two assumptions is invoked, the estimator is the same.

Both assumptions above are in many applications too strong. The conditional independence

assumption (3) does not permit any kind of deliberate treatment selection which incorporates
2For example, van der Klaauw (2002) analyses the e¤ect of �nancial aid o¤ers to college applicants on their

probability of subsequent enrollment. College applicants are ranked according to their test score achievements

into a small number of categories. The amount of �nancial aid o¤ered depends largely on this classi�cation. Yet,

the �nancial aid o¢ cer also takes other characteristics into account, which are not observed by the econometri-

cian. Hence the treatment assignment is not a deterministic function of the test score Z, but the conditional

expectation E[DjZ] displays jumps because of the test-score rule.
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the individual gains Y 1i � Y 0i . But even the local IV assumption (4) can be too strong without

conditioning on any covariates. It requires that the individuals to the left and right of the

threshold have the same unobserved gains and also that there is no deliberate selection into

Zi < z0 versus Zi > z0. When the individuals left and right of the threshold di¤er in their

observed characteristics, one would be doubtful of the assumptions (3) or (4). In the following, I

will �rst examine identi�cation and estimation under a weaker version of the local IV condition

(4) in the fuzzy design. A discussion of a weaker version of (3) is postponed to Section 4.

We start with an informal discussion to provide intuition for what follows. As discussed by

examples in the introduction, the IV assumption may become more credible3 if we control for

a number of observed covariates X that may be related to Y , D and/or Z:

�
Y 1i � Y 0i ; Di(z)

	
??ZijXi for Zi near z0. (5)

We also maintain the monotonicity assumption:

Di(z0 + e) � Di(z0 � e) for all 0 < e < " and some " > 0. (6)

By an analogous reasoning as in HTK, and some more assumptions made precise below,

the treatment e¤ect on the local compliers conditional on X will be:

lim
"!0

E
�
Y 1 � Y 0 jX;D(z0 + ") > D(z0 � "); Z = z0

�
=
m+(X; z0)�m�(X; z0)

d+(X; z0)� d�(X; z0)
, (7)

wherem+(X; z) = lim
"!0

E [Y jX;Z = z + "] andm�(X; z) = lim
"!0

E [Y jX;Z = z � "] and d+(X; z)

and d�(X; z) de�ned analogously with D replacing Y .

Estimating the conditional treatment e¤ect for every value of X by (7), although sometimes

informative, has two disadvantages, particularly if the number of covariates in X is very large:

First, precision of the estimate decreases with the dimensionality of X, which is known as the

curse of dimensionality. Second, policy makers and other users of evaluation studies often

prefer to see one number and not a multidimensional estimate. We may therefore be interested

in the unconditional treatment e¤ect, in particular in estimating the average treatment e¤ect
3 In the following, it is assumed that the local conditional IV assumption is valid, but even it were not exactly

true it is nevertheless rather likely that accounting for observed di¤erences between units to the left and to the

right of the threshold would help to reduce bias, even if not eliminating it completely.
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in the largest subpopulation for which it is identi�ed. More precisely, we may be interested in

the treatment e¤ect on all compliers:

lim
"!0

E
�
Y 1i � Y 0i jDi(z0 + ") > Di(z0 � "); Z = z0

�
,

i.e. without conditioning on X. Under the assumptions (5) and (6), this is the largest subpop-

ulation, since only the treatment status of the local compliers is a¤ected by variation in Z. In

a one-sided non-compliance design, this is the ATET, see Section 4.

From inspecting the right-hand side of (7) one might imagine to estimate the unconditional

e¤ect by integrating out the distribution of X and plugging in nonparametric estimators in the

resulting expression: Z �
m+(X; z0)�m�(X; z0)

d+(X; z0)� d�(X; z0)

�
dFX . (8)

This approach, however, has two disadvantages. First, when X is high dimensional, the de-

nominator in (8) may often be very close to zero, leading to a very high variance of (8) in

small samples. Second, it does not correspond to a well-de�ned treatment e¤ect for a speci�c

population. The following theorem, however, shows that a nicer expression can be obtained

for the treatment e¤ect on the local compliers, which is in the form of a ratio of two integrals.

For stating the result, it is helpful to introduce more precise notation �rst. Let N" be an

" neighbourhood about z0 and partition N" into N+
" = fz : z � z0; z 2 N"g and N�

" = fz :

z < z0; z 2 N"g. According to their reaction to the instrument z over N" we can partition the

population into �ve subpopulations:

� i;" = a if min
z2N"

Di(z) = max
z2N"

Di(z) = 1

� i;" = n if min
z2N"

Di(z) = max
z2N"

Di(z) = 0

� i;" = c if min
z2N"

Di(z) < max
z2N"

Di(z) and Di(z) monotone over N"

� i;" = d if min
z2N"

Di(z) > max
z2N"

Di(z) and Di(z) monotone over N"

� i;" = i if min
z2N"

Di(z) 6= max
z2N"

Di(z) and Di(z) non-monotone.

These subpopulations are a straightforward extension of the LATE concept of Imbens and

Angrist (1994). The �rst group contains those units that will always be treated (for z 2 N"),
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the second contains those that will never be treated, the third and fourth group (the compliers

and de�ers) contain those units that react (weakly) monotonously over N" while the �fth group

(labelled inde�nite) contains all units that react non-monotonously, e.g. they may �rst switch

from D = 0 to 1 and then back for increasing values of z.

Under the assumptions given below, we can identify the treatment e¤ect for the local

compliers, i.e. those that switch from D = 0 to 1 at z0. When the group of always-treated

has measure zero, as in the one-sided non-compliance case, this also corresponds to ATET, as

discussed in Section 4.

Theorem 1 (Identi�cation of complier treatment e¤ect) Under the Assumption 1

given below, the local average treatment e¤ect 
 for the subpopulation of local compliers is

nonparametrically identi�ed as:


 = lim
"!0

E
�
Y 1 � Y 0 jZ 2 N"; � " = c

�
=

R
(m+(x; z0)�m�(x; z0)) � (f+(xjz0) + f�(xjz0)) dxR
(d+(x; z0)� d�(x; z0)) � (f+(xjz0) + f�(xjz0)) dx

.

(9)

(Proof in appendix.)

A straightforward estimator of (9) is


̂ =

nP
i=1
(m̂+(Xi; z0)� m̂�(Xi; z0) )Kh

�
Zi�z0
h

�
nP
i=1

�
d̂+(Xi; z0)� d̂�(Xi; z0)

�
Kh

�
Zi�z0
h

� , (10)

where m̂ and d̂ are nonparametric estimators and Kh (u) = 1
h�(u) is a positive, symmetric

kernel function with h converging to zero with growing sample size. In addition to its well

de�ned causal meaning, the estimator (10) is likely to behave more stable in �nite samples

than an estimator of (8) because the averaging over the distribution of X is conducted �rst

before the ratio is taken.

In the following the assumptions for identi�cation are discussed. They are presented some-

what di¤erently from (5) and (6), on the one hand to relax these assumptions a little bit and

state them more rigorously, but also to provide a more intuitive exposition, which may help to

judge their plausibility for a given application. It is assumed throughout that the covariates
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X are continuously distributed with a Lebesgue density. This is an assumption made for con-

venience to ease the exposition, particularly in the derivation of the asymptotic distributions.

Discrete covariates can easily be included in X and identi�cation does not require any continu-

ous X variables. The derivation of the asymptotic distribution only depends on the number of

continuous regressors in X. Discrete random variables do not a¤ect the asymptotic properties

and could easily be included at the expense of a more cumbersome notation. Only Z has to be

continuous near z0, but could have masspoints elsewhere.

Assumption 1:

i) Existence of compliers lim
"!0

Pr(� " = cjZ = z0) > 0

ii) Monotonicity lim
"!0

Pr (� " = tjZ 2 N") = 0 for t 2 fd; ig

iii) Independent IV lim
"!0

Pr (� " = tjX;Z 2 N+
" )� Pr (� " = tjX;Z 2 N�

" ) = 0 for t 2 fa; n; cg

iv) IV Exclusion lim
"!0

E
�
Y 1jX;Z 2 N+

" ; � " = t
�
� E

�
Y 1jX;Z 2 N�

" ; � " = t
�
= 0 for t 2 fa; cg

lim
"!0

E
�
Y 0jX;Z 2 N+

" ; � " = t
�
� E

�
Y 0jX;Z 2 N�

" ; � " = t
�
= 0 for t 2 fn; cg

v) Common support lim
"!0

Supp(XjZ 2 N+
" ) = lim

"!0
Supp(XjZ 2 N�

" )

vi) Density at threshold FZ(z) is di¤erentiable at z0 and fZ(z0) > 0

lim
"!0

FXjZ2N+
"
(x) and lim

"!0
FXjZ2N�

"
(x) exist and are di¤erentiable in x

with pdf f+(xjz0) and f�(xjz0), respectively.

vii) Bounded moments E[Y djX;Z] are bounded away from � in�nity a:s: over N" for d 2 f0; 1g

(Regarding notation: f+(x; z0) = f+(xjz0)f(z0) refers to the joint distribution of X and Z

whereas f+(xjz0) refers to the conditional distribution of X.)

Assumption (1ii) requires that, in a very small neighbourhood of z0, the instrument has a

weakly monotonous impact on Di(z): Increasing z does never decrease Di(z) a.s. Assumption

(1i) requires that E[DjZ] is in fact discontinuous at z0, i.e. assumes that some units change

their treatment status exactly at z0. Assumptions (1iii) and (1iv) essentially correspond to (5).

Assumption (1v) ensures that the integral in (9) is well de�ned. If it is not satis�ed, one can

re-de�ne (9) by restricting it to the common support. Assumption (1vi) requires that there is

positive density at z0, such that observations close to z0 exist. The assumption (1vii) requires

the conditional expectation functions to be bounded at some value from above and below in
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a neighbourhood of z0. It is invoked to permit interchanging the operations of integration

and taking limits via the Dominated Convergence Theorem. (It is certainly stronger than

needed and could be replaced with some kind of smoothness conditions on E[Y djX;Z] in a

neighbourhood of z0.)

As argued before, the IV restrictions (1iii) and (1iv) will often be plausible only if X

contains several covariates, depending on the process that generated the observed Z. The other

substantial assumption is the monotonicity condition (1ii), whereas the remaining assumptions

are mostly testable.

What happens if the monotonicity assumption is not valid? If there are de�ers (but no

individuals of the inde�nite type), the right hand side of (9) nevertheless still identi�es the

treatment e¤ect 
 if the average treatment e¤ect is the same for compliers and de�ers.4 (Proof

see appendix.) Hence, 
 is still identi�ed and the same estimators, discussed below, can be

used in this case.

3 Statistical properties

In this section, the statistical properties of two di¤erent estimators of (9) are discussed. It is

shown that the most obvious estimator (10) achieves at best a convergence rate of n�
1
3 . An

alternative estimator, however, achieves a convergence rate of n�
2
5 , i.e. the rate of univariate

nonparametric regression. This is achieved through smoothing with implicit double boundary

correction.

All three estimators proceed in two steps and require nonparametric �rst step estimates of

m+, m�, d+ and d�. These can be estimated nonparametrically by considering only obser-

vations to the right or the left of z0, respectively. Since this corresponds to estimation at a

boundary point, local linear regression is suggested, which is known to display better boundary

behaviour than conventional Nadaraya-Watson kernel regression. m+(x; z0) is estimated by

4And assuming that Assumptions (1iii) and (1iv) also hold for the de�ers.
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local linear regression as the value of a that solves

argmin
a;b;c

nX
j=1

�
Yj � a� b (Zj � z0)� c0 (Xj � x)

�2 �KjI+j (11)

where I+j = 1(Zj > z0) and a product kernel is used

Kj = Kj(x; z0) = �

�
Zj � z0
hz

�
�
LY
l=1

��

�
Xjl � xl
hx

�
. (12)

where � and �� are univariate kernel functions, where � is a second-order kernel and �� is a

kernel of order � � 2. The kernel � is assumed to be symmetric and integrating to one.

The following kernel constants will be used later: �l =
1R
�1
ul�(u)du and ��l =

1R
0

ul�(u)du and

~� = ��2
2 � ��

2
1. (With symmetric kernel ��0 =

1
2 .) Furthermore de�ne ��l =

1R
0

ul�2(u)du. The

kernel function �� is a univariate kernel of order �, with kernel constants of this kernel be

denoted as �l =
R
ul��(u)du and _�l =

1R
�1
ul��2(u)du. The kernel function being of order �

means that �0 = 1 and �l = 0 for 0 < l < � and �� 6= 0.5

A result derived later will require higher-order kernels if the number of continuous regressors

is larger than 3. For applications with at most 3 continuous regressors, a second-order kernel

will su¢ ce such that �� = � can be chosen.

Notice that three di¤erent bandwidths hz; hx; h are used. h is the bandwidth in the matching

estimator to compare observations to the left and right of the threshold, whereas hz and hx

determine the local smoothing area for the local linear regression, which uses observations only

to the right or only to the left of the threshold. We will need some smoothness assumptions as

well as conditions on the bandwidth values.

Assumption 2:

i) IID sampling: The data f(Yi; Di; Zi; Xi)g are iid from R� R� R� RL

ii) Smoothness:

- m+(x; z), m�(x; z), d+(x; z), d�(x; z) are � times continuously di¤erentiable with respect

5For the Epanechnikov kernel with support [�1; 1], i.e. K(u) = 3
4

�
1� u2

�
1 (juj < 1) the kernel constants

are �0 = 1, �1 = �3 = �5 = 0, �2 = 0:2, �4 = 6=70, ��0 = 0:5, ��1 = 3=16, ��2 = 0:1, ��3 = 1=16, ��4 = 3=70.
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to x at z0 with �-th derivative Hölder continuous in an interval around z0,

- f+(x; z) and f�(x; z) are �� 1 times continuously di¤erentiable with respect to x at z0

with (�� 1)-th derivative Hölder continuous in an interval around z0,

- m+(x; z), d+(x; z) and f+(x; z) have two continuous right derivatives with respect to z

at z0 with second derivative Hölder continuous in an interval around z0,

- m�(x; z), d�(x; z) and f�(x; z) have two continuous left derivatives with respect to z at z0

with second derivative Hölder continuous in an interval around z0,

iii) the univariate Kernel functions � and �� in (12) are bounded, Lipschitz and zero outside a

bounded set; � is a second-order kernel and �� is a kernel of order �,

iv) Bandwidths: The bandwidths satisfy h, hz, hx ! 0 and nh ! 1 and nhz ! 1 and

nhzh
L
x !1.

v) Conditional variances: The left and right limits of the conditional variances

lim
"!0

E
h
(Y �m+(X;Z))

2 jX;Z = z + "
i
and lim

"!0
E
h
(Y �m�(X;Z))

2 jX;Z = z � "
i
exist at z0.

With these preliminaries we consider two estimators in turn. The estimator 
̂ (10) will

be considered last as it has the worst statistical properties. The �rst estimator 
̂RDD consid-

ered below is a modi�cation of (10) where some type of boundary kernel is used in the second

smoothing step. Thereby a faster convergence rate can be achieved. The asymptotic distribu-

tion is derived for this estimator and it is shown that the asymptotic variance becomes smaller

the more covariates X are included. For the 
̂ estimator it is then shown that its convergence

rate is lower than that of 
̂RDD.
6 All estimators are straightforward to implement with any

statistical software package.

3.1 Boundary RDD kernel estimator

As will be seen later, the estimator (10) su¤ers from a low convergence rate. As an alternative,

we could use a kernel function which implicitly adapts to the boundary. We de�ne the RDD

6 In an earlier version of the paper, also a two-step local linear estimator was considered which also has lower

convergence rate than 
̂RDD.
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estimator as


̂RDD =

nP
i=1
(m̂+(Xi; z0)� m̂�(Xi; z0))K�

h

�
Zi�z0
h

�
nP
i=1

�
d̂+(Xi; z0)� d̂�(Xi; z0)

�
K�
h

�
Zi�z0
h

� , (13)

where the kernel function is

K�
h (u) = (��2 � ��1u) �Kh (u) . (14)

By using this kernel function, the estimator 
̂RDD achieves the convergence rate of a one

dimensional nonparametric regression estimator, irrespective of the dimension of X. Loosely

speaking, it achieves thus the fastest convergence rate possible and is not a¤ected by a curse

of dimensionality. This is achieved by smoothing over all other regressors and by an implicit

boundary adaptation.

In addition, the bias and variance terms due to estimating m+;m�; d+; d� and due to esti-

mating the density functions f
�(xjz0)+f+(xjz0)

2 by the empirical distribution functions converge

at the same rate.

For an optimal convergence result further below, we need to be speci�c about the choice of

the bandwidth values.

Assumption 3:

The bandwidths satisfy the following conditions:

lim
n!1

p
nh5 = r <1

lim
n!1

hz
h

= rz with 0 < rz <1

lim
n!1

h
�=2
x

h
= rx <1.

This assumption ensures that bias and standard deviation of the estimator converge at rate

n�
2
5 to zero, i.e. bias and variance converge to zero at the rate of a univariate nonparametric

regression.

Note that the last condition of Assumption 3 provides an upper bound on hx, whereas

Assumption (2iv) provides a lower bound on hx. Suppose that hx depends on the sample size

12



in the following way:

hx / n� ,

then the bandwidth conditions of Assumption 2 and 3 together require that

� 4

5L
< � � � 2

5�
. (15)

This implies that hx converges at a slower rate to zero than h and hz when L � 4, i.e. when

X contains 4 or more continuous regressors.

A necessary condition for Assumption 2 and 3 to hold jointly thus is that � 4
5L < �

2
5� or

equivalently � > L
2 . As further discussed below, this requires higher-order kernels if X contains

4 or more continuous regressors, whereas conventional kernels are su¢ cient otherwise.

Assumption 3 is su¢ cient for bias and variance to converge at the univariate nonparametric

rate, which is summarized in the following theorem:

Theorem 2 (Asymptotic distribution of 
̂RDD) a)Under Assumptions 1 and 2, the bias

and variance terms of 
̂RDD are of order

Bias(
̂RDD) = O(h2 + h2z + h
�
x)

V ar(
̂RDD) = O

�
1

nh
+

1

nhz

�
b) Under Assumptions 1, 2 and 3 the estimator is asymptotically normally distributed and

converges at the univariate nonparametric rate

p
nh (
̂RDD � 
)! N (BRDD;VRDD) .

where BRDD =

r

�

��22 � ��1��3
4~�f(z0)

Z �
m+(x; z0)�m�(x; z0)� 


�
d+(x; z0)� d�(x; z0)

���@2f+
@z2

(x; z0) +
@2f�

@z2
(x; z0)

�
dx

+
rr2z
�

��22 � ��1��3
2~�

Z �
@2m+(x; z0)

@z2
� @

2m�(x; z0)

@z2
� 
 @

2d+(x; z0)

@z2
+ 


@2d�(x; z0)

@z2

�
f�(x; z0) + f+(x; z0)

2f(z0)
dx

+
rr2x��
�

Z LX
l=1

(
@�m+(x; z0)

�! � @x�l
+
��1X
s=1

@sm+(x; z0)

@xsl
!+s �

@�m�(x; z0)

�! � @x�l
�
��1X
s=1

@sm�(x; z0)

@xsl
!�s

)
f�(x; z0) + f+(x; z0)

2f(z0)
dx

�
rr
2
x��
�

Z LX
l=1

(
@�d+(x; z0)

�! � @x�l
+
��1X
s=1

@sd+(x; z0)

@xsl
!+s �

@�d�(x; z0)

�! � @x�l
�
��1X
s=1

@sd�(x; z0)

@xsl
!�s

)
f�(x; z0) + f+(x; z0)

2f(z0)
dx
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where � =
R
(d+(x; z0)� d�(x; z0)) � f

�(xjz0)+f+(xjz0)
2 dx

and !+s =

(
@��sf+(Xi;z0)

s!(��s)!�@x��sl

� @��1f+(x0;z0)

@x
��1
1

�
�
@��2f+(x0;z0)

@x
��2
l

��1
(��2)!

(��1)!s!(��1�s)!
@��1�sf+(Xi;z0)

@x��1�sl

)
=f+(Xi; z0)

and !�s de�ned analogously

and VRDD =

��22��0 � 2��2��1��1 + ��21��2
�24~�2f2(z0)

� ( 1

rz

Z �
f+(x; z0) + f

�(x; z0)
�2

�
 
�2+Y (x; z0)� 2
�

2+
Y D(X; z0) + 


2�2+D (x; z0)

f+(x; z0)
+
�2�Y (x; z0)� 2
�

2�
Y D(X; z0) + 


2�2�D (x; z0)

f�(x; z0)

!
dx

+

Z �
m+(x; z0)� 
d+(x; z0)�m�(x; z0) + 
d

�(x; z0)
	2 � �f+(x; z0) + f�(x; z0)� dx ),

where �2+Y (X; z) = lim"!0
E
h
(Y �m+(X;Z))

2 jX;Z = z + "
i

and �2+Y D(X; z) = lim
"!0

E [(Y �m+(X;Z)) (D � d+(X;Z)) jX;Z = z + "] and �2+D (X; z) =

lim
"!0

E
h
(D � d+(X;Z))2 jX;Z = z + "

i
and analogously for �2+Y (X; z); �2+Y D(X; z) and

�2+D (X; z).

The part (15) of Assumption 3 requires that � > L
2 to control the bias due to smoothing in

the X dimension. If X contains at most 3 continuous regressors, a second order kernel � = 2

can be used. Otherwise, higher order kernels are required to achieve a n�
2
5 convergence rate.

Instead of using higher order kernels, one could alternatively use local higher order polynomial

regression instead of local linear regression (11). However, when the number of regressors

in X is large, this could be inconvenient to implement in practice since a large number of

interaction and higher order terms would be required, which could give rise to problems of

local multicollinearity in small samples and/or for small bandwidth values. On the other

hand, higher order kernels are very convenient to implement when a product kernel (12) is

used. Higher order kernels are only necessary for smoothing in the X dimension but not for

smoothing along Z.

When a second order kernel is used and X contains at most 3 continuous regressors, the
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bias term BRDD simpli�es to

r

�

��22 � ��1��3
4~�f(z0)

Z �
m+(x; z0)�m�(x; z0)� 


�
d+(x; z0)� d�(x; z0)

���@2f+
@z2

(x; z0) +
@2f�

@z2
(x; z0)

�
dx

+
rr2z
�

��22 � ��1��3
2~�

Z �
@2m+(x; z0)

@z2
� @

2m�(x; z0)

@z2
� 
 @

2d+(x; z0)

@z2
+ 


@2d�(x; z0)

@z2

�
�f
�(x; z0) + f+(x; z0)

2f(z0)
dx

+
rr2x�2
2�

Z LX
l=1

�
@2m+(x; z0)

@x2l
� @

2m�(x; z0)

@x2l
� 
 @

2d+(x; z0)

2 � @x2l
+ 


@2d�(x; z0)

2 � @x2l

�
�f
�(x; z0) + f+(x; z0)

2f(z0)
dx.

3.2 Variance reduction through the use of control variables

In most of the discussion so far, the role of the X variables was to make the identifying

assumptions more plausible. However, the X variables may also contribute to reducing the

variance of the estimator, which is shown in the following proposition.

Suppose that the characteristics are identically distributed on both sides of the threshold

such that 
 is identi�ed without controlling for any X. In this case one could estimate 
 con-

sistently by (13) with X being the empty set. This estimator is denoted 
̂noX henceforth. Al-

ternatively, one could use a set of control variables X in (13), which we denote as 
̂RDD as

before. Suppose that both estimators are consistent for 
.7 As shown below, 
̂noX generally

has a larger asymptotic variance than 
̂RDD, i.e. than the estimator that controls for X. On

the other hand, an ordering of squared bias seems not to be possible under general conditions.

However, one can always choose a bandwidth sequence such that r is very small in Assumption

3, which would imply that the bias is negligible for both estimators. Hence, there are preci-

sion gains by controlling for X even if the RDD estimator would be consistent without any

covariates.

For stating Proposition 3 in a concise way, some new notation is required. Let w+(X; z) =

lim
"!0

E [Y � 
DjX;Z = z + "] be the right limit of the di¤erence between Y and 
D, and

w+(z) = lim
"!0

E [Y � 
DjZ = z + "] be the corresponding expression without conditioning on

X. De�ne further the variance of w+(X; z0) as V + =
R
fw+(x; z0)� w+(z0)g2 f(xjz0)dx.

De�ne w�(X; z), w�(z) and V � analogously as the left limits. Proposition 3 shows that there

are e¢ ciency gains if V + 6= 0 and/or V � 6= 0.
7Hence, X should not include e.g. variables that are on the causal pathway or causally a¤ected by D.
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To gain some intuition: V + is the variance of the conditional expectation of Y given X

plus the variance of the conditional expectation of D given X minus the covariance between

these two terms. Hence, V + is nonzero if X is a predictor of Y and/or of D. On the other

hand, V + and V � are zero only if X neither predicts Y nor D.8

De�ne further the covariance C as
R
(w+(x; z0)� w+(z0)) (w�(x; z0)� w�(z0)) f(xjz0)dx

and the correlation coe¢ cient R = Cp
V +V �

. Now, we can state the result in terms of the

variances and the correlation coe¢ cient. The results also depend on the bandwidth sequences.

The variance of 
̂RDD depends on the smoothing in the Z dimension via h and hz. The 
̂noX

estimator only depends on hz since there is no smoothing in the second step. A natural choice

would thus be h = hz.9

Proposition 3 Let 
̂RDD be the estimator (13) using the set of regressors X and let 
̂noX be

the estimator with X being the empty set. Denote the asymptotic variance of 
̂noX by VnoX and

assume that both estimators consistently estimate 
 and satisfy Assumptions 2 and 3. Assume

further that the distribution of X is continuous at z0, i.e. f+(X; z0) = f�(X; z0) a.s..

(a) If V + = V � = 0 then

VRDD � VnoX = 0.

(b) Under any of the following conditions

VRDD � VnoX < 0,

- if V + = 0 and V � 6= 0 or vice versa and rz < 2

- or if V + 6= 0 6= V � and R � 0 and rz < 2

- or if V + 6= 0 6= V � and �1 < R < 0 and rz < 2 1+R1�R2 .

- or if V + 6= 0 6= V � and R = �1 and rz < 1.

(Proof see appendix).

Hence, if, in case (a) of Proposition 3, X has no predictive power neither for Y nor for D,

the asymptotic variances are the same. On the other hand, if X has predictive power either
8Excluding the unreasonable case where it predicts both but not Y � 
D.
9The variance of 
̂RDD can be reduced even further relative to 
̂noX by choosing hz < h, but this would be

more of a technical trick than a substantive result.

16



for Y or for D and one uses the same bandwidths for both estimators (hz = h), the RDD

estimator with covariates has a strictly smaller variance. This holds in all cases except for

the very implausible scenario where w+(X; z0) and w�(X; z0) are negatively correlated with a

correlation coe¢ cient of �1. In most economic applications one would rather expect a clearly

positive correlation.

Proposition 3 can easily be extended to show that the RDD estimator with a larger regressor

set X, i.e. where X � X, has smaller asymptotic variance than the RDD estimator with

X. (The proof is analogous and is omitted.) Hence, one can combine including some X for

eliminating bias with adding further covariates to reduce variance. The more variables are

included in X the smaller the variance will be.10

3.3 Naive RDD estimator

Finally, we examine the properties of the straightforward estimator (10):


̂ =

nP
i=1
(m̂+(Xi; z0)� m̂�(Xi; z0) )Kh

�
Zi�z0
h

�
nP
i=1

�
d̂+(Xi; z0)� d̂�(Xi; z0)

�
Kh

�
Zi�z0
h

� ,
i.e. which uses the conventional Nadaraya-Watson type weighting by Kh (u). In essence, it is a

combination between local linear regression in the �rst step and Nadaraya-Watson regression in

the second step. Although this estimator appears to be the most obvious and straightforward

way to estimate (9) it has worse statistical properties than the previous estimator in the sense

that it achieves only a lower rate of convergence. The intuition for this is the missing boundary

correction in the second step, which is implicitly included in the previous estimator.

Proposition 4 (Aymptotic properties of 
̂) Under Assumptions 1 and 2, the bias and

variance terms of 
̂ are of order

Bias(
̂) = O(h+ h2z + h
�
x)

V ar(
̂) = O

�
1

nh
+

1

nhz

�
.

10Proposition 3 is derived under the assumption that dim(X) does not grow with sample size. If dim(X) is

very large in a particular application, the result of Proposition 3 may not be appropriate anymore. This will be

examined in further research.
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(The exact expressions for bias and variance are given in the appendix).

From this result it can be seen that the fastest rate of convergence possible by appropriate

bandwidth choice is n�
1
3 . It is straightforward to show asymptotic normality for this estimator,

but the (�rst order) approximation may not be very useful as it would be dominated by the

bias and variance terms O(h) and O( 1nh). The terms corresponding to the estimation error of

m̂+(x; z0); m̂
�(x; z0); d̂+(x; z0); d̂�(x; z0) would be of lower order and thus ignored in the �rst-

order approximation. The bias and variance approximation thus obtained would be the same

as in a situation wherem+(x; z0);m
�(x; z0); d+(x; z0); d�(x; z0) were known and not estimated.

A more useful approximation can be obtained by retaining also the lower order terms. Overall,

however, it seems to be more useful to use the previously proposed estimator 
̂RDD instead.

4 Extensions and quantile treatment e¤ects

4.1 Conditional independence and sharp design

The previous sections showed how to incorporate di¤erences in covariates X in a regression

discontinuity design (RDD) in a fully nonparametric way. Identi�cation and estimation was

examined for the fuzzy design under a local IV condition (5), which permits unobserved het-

erogeneity.

Alternatively, one could consider weakening the conditional independence assumption (3)

to

Y 1i � Y 0i ??DijXi; Zi for Zi near z0. (16)

Analogously to the derivations in Hahn, Todd, and van der Klaauw (2001) it follows then that

E
�
Y 1 � Y 0jX;Z = z0

�
=
m+(X; z0)�m�(X; z0)

d+(X; z0)� d�(X; z0)
.

Similarly to the derivations for Theorem (1), one can show that the unconditional treatment

e¤ect for the population near the threshold would then be

E
�
Y 1 � Y 0jZ = z0

�
=

Z
m+(x; z0)�m�(x; z0)

d+(x; z0)� d�(x; z0)
� f

+(xjz0) + f�(xjz0)
2

dx.
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This expression may be di¢ cult to estimate in small samples as the denominator can be very

small for some values of x.11 In this case it may be helpful to strengthen the CIA assumption

(16) to

Y 1i ; Y
0
i ??DijXi; Zi for Zi near z0. (17)

This permits to identify the treatment e¤ect as

E
�
Y 1 � Y 0jZ = z0

�
=

Z
(E [Y jD = 1; X = x;Z = z0]� E [Y jD = 0; X = x;Z = z0]) �

f+(xjz0) + f�(xjz0)
2

dx,

where E [Y jD;X;Z = z0] can be estimated by a combination of the left hand side and the right

hand side limit. This approach does no longer have to rely only on comparing observations

across the threshold but also uses variation within either side of the threshold.

For the sharp design, all these di¤erent parameters are identi�ed asZ �
m+(x; z0)�m�(x; z0)

�
� f

+(xjz0) + f�(xjz0)
2

dx. (18)

This follows because d+(x; z0)� d�(x; z0) = 1 in the sharp design since everyone is a complier.

The estimators discussed in the previous section can be used to estimate (18) by straightforward

modi�cations and all the previously obtained results apply analogously.

4.2 Combination of sharp and fuzzy design

An interesting situation occurs when the RDD is sharp on the one side but fuzzy on the

other. An important case is when eligibility depends strictly on observed characteristic but

participation in treatment is voluntary. For example, eligibility to certain treatments may be

means tested (e.g. food stamps programmes) with a strict eligibility threshold z0, but take-

up of the treatment may be less than 100 percent. As another example, eligibility to certain

labor market programmes may depend on the duration of unemployment or on the age of

individuals. E.g. the "New Deal for Young People" in the UK o¤ers job-search assistance (and

11This problem is of much less concern for the estimators of the previous section as those were based on a ratio

of two integrals and not on an integral of a ratio. For those estimators the problem of very small denominators

for some values of X averages out.

19



other programmes) to all individuals aged between eighteen and twenty-four who have been

claiming unemployment insurance for six months.

Accordingly, the population consists of three subgroups (near the threshold): ineligibles,

eligible non-participants and participants. This setup thereby rules out the existence of de�ers

such that the monotonicity condition (Assumption 1ii) is automatically ful�lled close to z0. In

addition, the average treatment e¤ect on the treated (ATET) is now identi�ed12 and is given

by

lim
"!0

E
�
Y 1 � Y 0 jD = 1; Z 2 N"

�
=

R
(m+(x; z0)�m�(x; z0)) (f+(xjz0) + f�(xjz0)) dxR

d+(x; z0) � (f+(xjz0) + f�(xjz0)) dx
. (19)

where it has been supposed that only individuals above a threshold z0 are eligible. The previ-

ously examined estimators apply with obvious modi�cations.

4.3 Quantile treatment e¤ects

The previous discussion only referred to the estimation of the average treatment e¤ect. In

many situations one might be interested in distributional aspects as well, e.g. educational

inequality of a particular schooling intervention or wage inequality e¤ects of a labour market

intervention. Quantile treatment e¤ects (QTE) have received considerable attention in

recent years, see e.g. Abadie, Angrist, and Imbens (2002). The following theorem shows

identi�cation of the distribution of the potential outcomes under a local IV condition, which

permits unobserved heterogeneity. (The adjustments necessary for the sharp or mixed

sharp-fuzzy design or when using the conditional independence assumption (16) or (17) are

straightforward and are omitted here.) By strengthening Assumption 1 a little, the potential

outcome distributions are identi�ed:

Theorem 5 (Distribution of potential outcomes) Under Assumption 1, where in

Assumption (1iv) the symbols Y 1 and Y 0 are replaced by 1
�
Y 1 � u

�
and 1

�
Y 0 � u

�
,

12This is because there are no always-participants in this setup. Hence, the treated are the compliers.
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respectively, the potential outcome distributions for the local compliers are identi�ed as

lim
"!0

FY 1jZ2N";�"=c(u) =

R
( �F 1(u;D; x; z0)� �F 0(u;D; x; z0)) (f

+(xjz0) + f�(xjz0)) dxR
(d+(x; z0)� d�(x; z0)) (f+(xjz0) + f�(xjz0)) dx

(20)

lim
"!0

FY 0jZ2N";�"=c(u) =

R
( �F 1(u;D � 1; x; z0)� �F 0(u;D � 1; x; z0)) (f+(xjz0) + f�(xjz0)) dxR

(d+(x; z0)� d�(x; z0)) (f+(xjz0) + f�(xjz0)) dx

where �F 1(u; d; x; z) = lim
"!0

E [1 (Y � u) � djX = x;Z = z + "]

and �F 0(u; d; x; z) = lim
"!0

E [1 (Y � u) � djX;Z = z � "]. (Proof see appendix.)

The quantile treatment e¤ect for quantile � is now obtained by inversion

QTE� = lim
"!0

F�1
Y 1jZ2N";�"=c(�)� lim"!0F

�1
Y 0jZ2N";�"=c(�). (21)

The previous methods could thus be used for the estimation of quantile treatment e¤ects

by straightforward modi�cations. The asymptotic variance formula will be somewhat more

complex for QTE� because of the correlation between the two terms in (21). Alternative

estimators based on direct estimation of the quantiles could be developed along the lines of

Frölich and Melly (2006). This is left for future research.

5 Conclusions

In this paper, the regression discontinuity design (RDD) has been generalized to account for

di¤erences in observed covariates X. Incorporating covariates X will often be important to

eliminate (or at least reduce) bias. In addition, accounting for covariates also reduces variance.

It has been shown that the curse of dimensionality does not apply and that the average treat-

ment e¤ect (on the local compliers) can be estimated at rate n�
2
5 irrespective of the dimension

of X. For achieving this rate, a boundary RDD estimator and a 2SLL estimator have been

suggested. (A naive kernel estimator would only achieve a lower convergence rate.)

If X contains at most 3 continuous regressors, conventional second order kernels can be

used. If X contains more continuous regressors, higher order kernels are required, which can

conveniently be implemented in the form of product kernels.

In a mixed sharp-fuzzy design, e.g. when eligibility rules are strict but treatment is volun-

tary, the treatment e¤ect on the treated (ATET) is identi�ed. Finally, estimation of QTE has

been considered, which can be achieved at the same rate.
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