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1 Introduction

Empirical applications of instrumental variables estimation often give imprecise results.

Using many valid instrumental variables can improve precision. For example, as we show,

using all 180 instruments in the Angrist and Krueger (1991) schooling application gives

tighter correct confidence intervals than using 3 instruments. An important problem with

using many instrumental variables is that conventional asymptotic approximations may

provide poor approximations to the sampling distributions of the resulting estimators.

Two stage least squares (2SLS) is well known to have large biases when many instruments

are used. The limited information maximum likelihood (LIML henceforth) or Fuller

(1977, FULL henceforth) estimators correct this bias, but the usual standard errors are

too small.

We give corrected standard errors (CSE) that improve upon the usual ones, leading

to a better normal approximation to t-ratios under many instruments. The CSE are

an extension of those of Bekker (1994) that allow for non Gaussian disturbances. We

show that the normal approximation with FULL and CSE is asymptotically correct with

nonnormal disturbances under variety of many instrument asymptotics, including the

many instrument sequence of Kunitomo (1980), Morimune (1983), and Bekker (1994)

and the many weak instruments sequence of Chao and Swanson (2002, 2003, 3004, 2005)

and Stock and Yogo (2004). We also find that there is no penalty for many instruments in

the rate of approximation for t-ratios when the CSE are used and an additional condition

is satisfied. That is, the rate of approximation is the same as with a fixed number of

instruments. In addition, we give a version of the Kleibergen (2002) test statistic that is

valid under many instruments, as well as under weak instruments.

We carry out a wide range of simulations to check the asymptotic approximations. We

find that FULL with the CSE give confidence intervals with actual coverage quite close to

nominal. We also show that LIML with the CSE has identical asymptotic properties to

FULL and performs quite well in our simulations, as in those of Hahn and Inoue (2002).

Our results also demonstrate that the concentration parameter (which can be estimated)
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provides a better measure of accuracy for standard inference with FULL or LIML than

the F-statistic, R2, or other statistics previously considered in the literature.

In relation to previous work, the CSE, the rate of approximation results, and our many

instrument view of the Angrist and Krueger (1991) application appear to be novel. The

limiting distribution results build on previous work. For many instrument asymptotics

we generalize LIML results of Kunitomo (1980), Morimune (1983), Bekker (1994), and

Bekker and van der Ploeg (2005) to FULL, disturbances that are not Gaussian, and

general instruments. Our results also generalize recent results of Anderson, Kunitomo,

and Matsushita (2006) to many weak instruments, who had generalized results from

an earlier version of this paper by relaxing a conditional moment restriction. We also

combine and generalize results of Chao and Swanson (2002, 2003, 2005) and Stock and

Yogo (2004) by relaxing some kurtosis restrictions of Chao and Swanson (2003) and

allowing a wider variety of sequences of instruments and concentration parameter than

Stock and Yogo (2004). Our theoretical results make use of some inequalities in Chao

and Swanson (2004).

Hahn and Hausman (2002) give a test for weak instruments and Hahn, Hausman,

and Kuersteiner (2004) show that FULL performs well under weak instruments. Recently

Andrews and Stock (2006) derive asymptotic power envelopes for tests under several cases

of many weak instrument asymptotics with Gaussian disturbances. We consider cases

where the square root of the number of instruments grows slower than the concentration

parameter. There it turns out that Wald tests using the CSE attain the power envelope.

We also consider a case where the number of instruments grows as fast as the sample

size, which is not covered by Andrews and Stock (2006).

The remainder of the paper is organized as follows. In the next section, we briefly

present the model and estimators that we will consider. We reexamine the Angrist

and Krueger (1991) study of the returns to schooling in Section 3 and give a variety

of simulation results in Section 4. Section 5 contains asymptotic results and Section 6

concludes.
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2 Models and Estimators

The model we consider is given by

y
T×1

= X
T×G

δ0
G×1

+ u
T×1

,

X = Υ+ V,

where T is the number of observations, G the number of right-hand side variables, Υ

is a matrix of observations on the reduced form, and V is the matrix of reduced form

disturbances. For the asymptotic approximations, the elements of Υ will be implicitly

allowed to depend on T , although we suppress dependence of Υ on T for notational

convenience. Estimation of δ0 will be based on a T × K matrix Z of instrumental

variable observations.

This model allows for Υ to be a linear combination of Z, i.e. Υ = Zπ for some K×G

matrix π. Furthermore, columns of X may be exogenous, with the corresponding column

of V being zero. The model also allows for Z to be functions meant to approximate the

reduced form. For example, let Υt and Zt denote the t
th row (observation) for Υ and

Z respectively. We could have Υt = f0(wt) be an unknown function of a vector wt

of underlying instruments and Zt = (p1K(wt), ..., pKK(wt))
0 for approximating functions

pkK(w), such as power series or splines. In this case linear combinations of Zt may

approximate the unknown reduced form, e.g. as in Donald and Newey (2001).

It is well known that variability of Υ relative to V is important for the properties of

instrumental variable estimators. For G = 1 this feature is well described by

μ2T =
TX
t=1

Υ2
t/E[V

2
t ].

This concentration parameter plays a central role in the theory of IV estimators. The

distribution of the estimators depends on μ2T , with the convergence rate being 1/μT and

the accuracy of the usual asymptotic approximation depending crucially on the size of

μ2T .

To describe the estimators, let P = Z(Z 0Z)−Z 0 where A− denotes any symmetric

generalized inverse of a symmetric matrix A, i.e. A− is symmetric and satisfies AA−A =
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A. We consider estimators of the form

δ̂ = (X 0PX − α̂X 0X)−1(X 0Py − α̂X 0y).

for some choice of α̂. This class includes all of the familiar k-class estimators except the

least squares estimator. Special cases of these estimators are two-stage least squares

(2SLS), where α̂ = 0, and LIML, where α̂ = α̃ and α̃ is the smallest eigenvalue of the

matrix (X̄ 0X̄)−1X̄ 0PX̄ for X̄ = [y,X]. FULL is also a member of this class of estimators,

where α̂ = [α̃− (1− α̃)C/T ]/[1− (1− α̃)C/T ] for some constant C. FULL has moments

of all orders, is approximately mean unbiased for C = 1, and is second order admissible

for C ≥ 4 under standard large sample asymptotics.

For inference we consider an extension of the Bekker (1994) standard errors to nonnor-

mality and estimators other then LIML. Let u(δ) = y −Xδ, σ̂2u(δ) = û(δ)0û(δ)/(T −G),

α̃(δ) = u(δ)0Pu(δ)/u(δ)0u(δ), Υ̂ = PX, X̃(δ) = X − û(δ)(û(δ)0X)/û(δ)0û(δ), V̂ (δ) =

(I − P )X̃(δ), κT =
PT

t=1 p
2
tt/K, τT = K/T,

Ĥ(δ) = X 0PZX − α̃(δ)X 0X,

Σ̂B(δ) = σ̂2u(δ){(1− α̃(δ))2X̃(δ)0PX̃(δ) + α̃(δ)2X̃(δ)0(I − P )X̃(δ)},

Σ̂(δ) = Σ̂B(δ) + Â(δ) + Â(δ)0 + B̂(δ), Â(δ) =
TX
t=1

(ptt − τT ) Υ̂t[
TX
t=1

ût(δ)
2V̂t(δ)/T ]

0,

B̂(δ) = K(κT − τT )
TX
t=1

(ut(δ)
2 − σ̂2u(δ))V̂t(δ)V̂t(δ)

0/[T (1− 2τT + κT τT )].

The asymptotic variance estimator is given by

Λ̂ = Ĥ−1Σ̂Ĥ−1, Ĥ = Ĥ(δ̂), Σ̂ = Σ̂(δ̂).

When δ̂ is the LIML estimator, Ĥ−1Σ̂B(δ̂)Ĥ
−1 is identical to the Bekker (1994) variance

estimator. The other terms in Λ̂ account for third and fourth moment terms that are

present with some forms of nonnormality. In general Λ̂ is a ”sandwich” formula, with Ĥ

being a Hessian term.

The variance estimator Λ̂ can be quite different than the usual one σ̂2uĤ
−1 even

when K is small relative to T. This occurs because Ĥ is close to the sum of squares of
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predicted values for the reduced form regressions and Σ̂B(δ) depends on sums of squares

of residuals. When the reduced form r-squared is small, the sum of squared residuals will

tend to be quite large relative to Ĥ, leading to Σ̂B(δ) being larger than Ĥ. In contrast,

the adjustments for nonnormality Â(δ̂) and B̂(δ̂) will tend to be quite small when K is

small relative to T , which is typical in applications. Thus we expect that in applied work

the Bekker (1994) standard errors and CSE will often give very similar results.

As shown by Dufour (1997), if the parameter set is allowed to include values where

Υ = 0 then a correct confidence interval for a structural parameter must be unbounded

with probability one. Hence, confidence intervals formed using the CSE cannot be cor-

rect. Also, under the weak instrument sequence of Staiger and Stock (1997) the CSE

confidence intervals will not be correct, i.e. they are not robust to weak instruments.

These considerations motivate consideration of a statistic that is asymptotically correct

with weak or many instruments.

Such a statistic can be obtained by modifying the Lagrange multiplier statistic of

Kleibergen (2002) and Moreira (2001). For any δ let

LM̂(δ) = u(δ)0PX̃(δ)Σ̂(δ)−1X̃(δ)0Pu(δ).

This statistic differs from previous ones in using Σ̂(δ)−1 in the middle. Its validity

does not depend on correctly specifying the reduced form. The statistic LM̂(δ) will be

asymptotically distributed as χ2(G) when δ = δ0 under both many and weak instruments.

Confidence intervals for δ0 can be formed from LM̂(δ) by inverting it. Specifically, for

the 1−α quantile q of a χ2(G) distribution, an asymptotic 1−α confidence interval is {δ :

LM̂(δ) ≤ q}. As recently shown by Andrews and Stock (2006), the conditional likelihood

ratio test of Moreira (2003) is also correct with weak and many weak instruments, though

apparently not under many instruments, where K grows as fast as T . For brevity we

omit a description of this statistic and the associated asymptotic theory.

We suggest that the CSE are useful despite their lack of robustness to weak instru-

ments. Standard errors provide a simple measure of uncertainty associated with an esti-

mate. The confidence intervals based on LM̂(δ) are more difficult to compute. Also, as
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we discuss below, the t-ratios for FULL based on the CSE provide a good approximation

over a wide range of empirically relevant cases we considered. This observation might

justify viewing the parameter space as being bounded away from Υ = 0, thus overcoming

the strict Dufour (1997) critique. Or, one might simply view that our theoretical and

simulation results are relevant enough for applications to warrant using the CSE.

It does seem wise to check for weak instruments in practice. One could use the Hahn

and Hausman (2004) test. One could also compare a Wald test based on the CSE with

a test based on LM̂(δ). One could also develop versions of the Stock and Yogo (2004)

tests for weak instruments that are based on the CSE.

Because the concentration parameter is important for the properties of the estimators

it is useful to have an estimate of it for the common case with one endogenous right-hand

side variable. For G = 1 let σ̂2V = V̂ 0V̂ /(T −K). An estimator of μ2T is

μ̂2T = X̂ 0X̂/σ̂2V −K = K(F̂ − 1),

where F̂ = (X̂ 0X̂/K)/[V̂ 0V̂ /(T −K)] is the reduced form F-statistic. This estimator is

consistent in the sense that under many instrument asymptotics

μ̂2T
μ2T

p−→ 1.

In the general case with one endogenous right-hand side and other exogenous right-hand

side variables we take

μ̂2T = (K −G+ 1)(F̃ − 1),

where F̃ is the reduced form F-statistic for the variables in Z that are excluded from X.

3 Quarter of Birth and Returns to Schooling

A motivating empirical example is provided by the Angrist and Krueger (1991) study

of the returns to schooling using quarter of birth as an instrument. We consider data

drawn from the 1980 U. S. Census for males born in 1930-1939. The model includes

a constant and year and state dummies. We report results for 3 instruments and for
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180 instruments. Figures 1-4 are graphs of confidence intervals at different significance

levels using several different methods. The confidence intervals we consider are based

on 2SLS with the usual (asymptotic) standard errors, FULL with the usual standard

errors, and FULL with the CSE. We take as a standard of comparison our version of the

Kleibergen (2002) confidence interval (denoted K in the graphs), which is robust to weak

instruments, many instruments, and many weak instruments.

Figure 1 shows that with three excluded instruments (two overidentifying restrictions),

2SLS and K intervals are very similar. The main difference seems to be a slight horizontal

shift. Since the K intervals are centered about the LIML estimator, this shift corresponds

to a slight difference in the LIML and 2SLS estimators. This difference is consistent with

2SLS having slightly higher bias than LIML. Figure 2 shows that with 180 excluded

instruments (179 overidentifying restrictions) the confidence intervals are quite different.

In particular, there is a much more pronounced shift in the 2SLS location, as well as

smaller dispersion. These results are consistent with a larger bias in 2SLS resulting from

many instruments.

Figure 3 compares the confidence interval for FULL based on the usual standard error

formula for 180 instruments with the K interval. Here we find that the K interval is wider

than the usual one. In Figure 4, we compare FULL with CSE to K, finding that the K

interval is nearly identical to the one based on the CSE.

Comparing Figures 1 and 4, we find that the CSE interval with 180 instruments is

substantially narrower than the intervals with 3 instruments. Thus, in this application

we find that using the larger number of instruments leads to more precise inference, as

long as FULL and the CSE are used. These graphs are consistent with direct calculations

of estimates and standard errors. The 2SLS estimator with 3 instruments is .1077 with

standard error .0195 and the FULL estimator with 180 instruments is .1063 with CSE

.0143. A precision gain is evident in the decrease in the CSE obtained with the larger

number of instruments. These results are also consistent with Donald and Newey’s (2001)

finding that using 180 instruments gives smaller estimated asymptotic mean square error

for LIML than using just 3. Furthermore, Cruz and Moreira (2005) also find that 180
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instruments are informative when extra covariates are used.

We also find that the CSE and the standard errors of Bekker (1994) are nearly identical

in this application. Adding significant digits, with 3 instruments the CSE is .0201002

while the Bekker (1994) standard error is .0200981, and with 180 instruments the CSE

.0143316 and the Bekker (1994) standard error is .0143157. They are so close in this

application because even when there are 179 overidentifying restrictions, the number of

instruments is very small relative to the sample size.

These results are interesting because they occur in a widely cited application. However

they provide limited evidence of the accuracy of the CSE because they are only an

example. They result from one realization of the data, and so could have occurred by

chance. Real evidence is provided by a Monte Carlo study.

We based a study on the application to help make it empirically relevant. The design

had the same sample size as the application and instrument observations fixed at the sam-

ple values, e.g. as in Staiger and Stock’s (1997) design for dummy variable instruments.

The data was generated from a two equation triangular simultaneous equations system

with structural equation as in the empirical application and a reduced form consisting

of a regression of schooling on all of the instruments, including the covariates from the

structural equation. The structural parameters were set equal to their LIML estimated

values from the 3 instruments case. The disturbances were homoskedastic Gaussian with

(bivariate) variance matrix for each observation equal to the estimate from the applica-

tion. Because the design has parameters equal to estimates this Monte Carlo study could

be considered a parametric bootstrap.

We carried out two experiments, one with three excluded instruments and one with

179 excluded instruments. In each case the reduced form coefficients were set so that

the concentration parameter for the excluded instruments was equal to the unbiased

estimator from the application. With 3 overidentifying restrictions the concentration

parameter value was set equal to the value of the consistent estimator μ̂2T = 95.6 from

the data and with 179 overidentifying restrictions the value was set to μ̂2T = 257.
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Table 1. Simulation Results
Males born 1930-1939. 1980 IPUMS

n =329,509, β = .0953
Bias/β RMSE Size

A. 3 instruments, μ2T = 95.6
2SLS -0.0021 0.0217 0.056
LIML 0.0052 0.0222 0.056
CSE 0.054
FULL 0.0010 0.0219 0.057
CSE 0.056
Kleibergen 0.059

B. 180 instruments, μ2T = 257
2SLS -0.1440 0.0168 0.318
LIML -0.0042 0.0168 0.133
CSE 0.049
FULL -0.0063 0.0168 0.132
CSE 0.049
Kleibergen 0.051

Table 1 reports the results of this experiment, giving relative bias, mean-square error,

and rejection frequencies for nominal five percent level tests concerning the returns to

schooling coefficient. Similar results hold for the median and interquartile range. We are

primarily interested in accuracy of inference and not in whether confidence intervals are

close to each other, as they are in the application, so we focus on rejection frequencies.

We find that with 3 excluded instruments all of rejection frequencies are quite close to

their nominal values, including those for 2SLS. We also find that with 180 instruments,

the significance levels of the standard 2SLS, LIML, and FULL tests are quite far from

their nominal values, but that with CSE the LIML and FULL confidence intervals have

the right level. Thus, in this Monte Carlo study we find evidence that using CSE takes

care of whatever inference problem might be present in this data.

These results provide a somewhat different view of the Angrist and Krueger (1991)

application than do Bound, Jaeger, and Baker (1996) and Staiger and Stock (1997). They

viewed the 180 instrument case as a weak instrument problem, apparently due to the low

F-statistic, of about 3, for the excluded instruments. In contrast we find that correcting

for many instruments, by using FULL with CSE, fixes the inference problem. We would

not tend to find this result with weak instruments, because CSE do not correct for weak
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instruments as illustrated in the simulation results below. These results are reconciled by

noting that a low F-statistic does not mean that FULL with CSE is a poor approximation.

As we will see, a better criterion for LIML or FULL is the concentration parameter.

In the Angrist and Krueger (1991) application we find estimates of the concentration

parameter that are quite large. With 3 excluded instruments μ̂2T = 95.6 and with 179

excluded instruments μ̂2T = 257. Both of these are well within the range where we find

good performance of FULL and LIML with CSE in the simulations reported below.

4 Simulations

To gain a broader view of the behavior of LIML and FULL with the CSE we consider the

weak instrument limit of the FULL and LIML estimators and t-ratios with CSE under

the Staiger and Stock (1997) asymptotics. This limit is obtained by letting the sample

size go to infinity while holding the concentration parameter fixed. The limits of CSE

and the Bekker (1994) standard errors coincide under this sequence because K/T −→ 0.

As shown in Staiger and Stock (1997), these limits provides excellent approximations to

small sample distributions. Furthermore, it seems very appropriate for microeconometric

settings, where the sample size is often quite large relative to the concentration parameter.

Tables 2-5 give results for the median, interquartile range, and rejection frequencies

for nominal 5 percent level tests based on the CSE and the usual asymptotic standard

error for FULL and LIML, for a range of numbers of instruments K; concentration pa-

rameters μ2T ; and values of the correlation coefficient ρ between ut and Vt. These three

parameters completely determine the weak instrument limiting distribution of t-ratios.

Tables 2-5 give results for ρ = 0, ρ = 0.2, ρ = 0.5, and ρ = 0.8 respectively. Each table

contains results for several different numbers of instruments and values of the concentra-

tion parameter.

Looking across the tables, there are a number of striking results. We find that LIML

is nearly median unbiased for small values of the concentration parameter in all cases.

This bias does increase somewhat in ρ and K, but even in the most extreme case we
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consider, with ρ = .8 and K = 32, the bias is virtually eliminated with a μ2 of 16. Also,

the bias is small when μ2 is 8 in almost every case. When we look at FULL, we see that

it is more biased than LIML but that it is considerably less dispersed. The differences in

dispersion is especially pronounced for low values of the concentration parameter, though

FULL is less dispersed than LIML in all cases.

The results for rejection frequencies are somewhat less clear cut than the results for

size and dispersion. In particular, the rejection frequencies tend to depend much more

heavily on the value of K and ρ than do the results for median bias or dispersion. For

LIML, the rejection frequencies when the CSE are used are quite similar to the rejection

frequencies when the usual asymptotic variance is used for small values of K, but the

CSE perform much better for moderate and large K, indicating that using the CSE with

LIML will generally be preferable. FULL with CSE performs better in some cases and

worse in others than FULL with the conventional standard errors when K is small but

clearly dominates for K large. The results also show that for small values of ρ, the

rejection frequencies for LIML and FULL tend to be smaller than the nominal value,

while the frequencies tend to be larger than the nominal value for large values of ρ.

An interesting and useful result is that both LIML and FULL with the CSE perform

reasonably well for all values of K and ρ in cases where the concentration parameter is

32 or higher. In these cases, the rejection frequency for LIML varies between .035 and

.06, and the rejection frequency for FULL varies between .035 and .070. These results

suggest that the use of LIML or FULL with the CSE and the asymptotically normal

approximation should be adequate in situations where the concentration parameter is

around 32 or greater, even though in many of these cases the F-statistic takes on small

values.

These results are also consistent with recent Monte Carlo work of Davidson and

MacKinnon (2004). From careful examination of their graphs it appears that with few

instruments the bias of LIML is very small once the concentration parameter exceeds 10,

and that the variance of LIML is quite small once the concentration parameter exceeds

20.
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To see which cases might be empirically relevant we summarize values of K and esti-

mates of μ2 and ρ from some empirical studies. We considered all microeconomic studies

that contain sufficient information to allow estimation of these quantities found in the

March 1999 to March 2004 American Economic Review, the February 1999 to June 2004

Journal of Political Economy, and the February 1999 to February 2004 Quarterly Journal

of Economics. We found that 50 percent of the papers had at least one overidentifying

restriction, 25 percent had at least three, and 10 percent had 7 or more. As we have seen,

the CSE can provide a substantial improvement even with small numbers of overidenti-

fying restrictions, so there appears to be wide scope for applying these results. Table 7

summarizes estimates of μ2 and ρ from these studies.

Table 7. Five years of AER, JPE, QJE.
Num Papers Median Q10 Q25 Q75 Q90

μ2 28 23.6 8.95 12.7 105 588
ρ 22 .279 .022 .0735 .466 .555

It is interesting to note that nearly all of the studies had values of ρ that were

quite low, so that the ρ = .8 case considered above is not very relevant for practice.

Also, the concentration parameters were mostly in the range where the many instrument

asymptotics with CSE should work well.

5 Many Instrument Asymptotics

Theoretical justification of the CSE is provided by asymptotic theory where the number

of instruments grows with the sample size and using the CSE in t-ratios leads to a better

asymptotic approximation (by the standard normal) than do the usual standard errors.

This theory is consistent with the empirical and Monte Carlo results where the CSE

improve accuracy of the Gaussian approximation.

Some regularity conditions are important for the results. Let Z 0t, ut, V
0
t , and Υ

0
t denote

the tth row of Z, u, V, and Υ respectively. Here we will consider the case where Z is

constant, leaving the treatment of random Z to future research.
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Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K,PT
t=1(1− ptt)

2/T ≥ C > 0.

The restriction that rank(Z) = K is a normalization that requires excluding redun-

dant columns from Z. It can be verified in particular cases. For instance, whenwt is a con-

tinuously distributed scalar, Zt = pK(wt), and pkK(w) = wk−1 it can be shown that Z 0Z is

nonsingular with probability one forK < T .1 The condition
PT

t=1(1−ptt)2/T ≥ C implies

thatK/T ≤ 1−C, because ptt ≤ 1 implies
PT

t=1(1−ptt)2/T ≤
PT

t=1(1−ptt)/T = 1−K/T.

Assumption 2: There is a G × G matrix ST = S̃T diag (μ1T , ..., μGT ) and zt such

that Υt = STzt/
√
T , S̃T is bounded and the smallest eigenvalue of S̃T S̃

0
T is bounded away

from zero, for each j either μjT =
√
T or μjT/

√
T −→ 0, μT = min

1≤j≤G
μjT −→ ∞, and

√
K/μ2T −→ 0. Also,

PT
t=1 kztk

4 /T 2 −→ 0, and
PT

t=1 ztz
0
t/T is uniformly nonsingular.

Allowing for K to grow and for μT to grow slower than
√
T models having many

instruments without strong identification. Assumption 2 will imply that, when K grows

no faster that μ2T , the convergence rate of δ̂ will be no slower than 1/μT . When K grows

faster than μ2T the convergence rate of δ̂ will be no slower than
√
K/μ2T . This condition

allows for some components of δ to be weakly identified and other components (like the

constant) to be strongly identified.

Assumption 3: (u1, V1), ..., (uT , VT ) are independent with E[ut] = 0, E[Vt] = 0,

E[u8t ] and E[kVtk8] are bounded in t, V ar((ut, V 0
t )
0) = diag(Ω∗, 0), Ω∗ is nonsingular, and

for all j ∈ {1, ..., G} such that Vtj = 0 and the corresponding submatrix S̃T22 of S̃T it is

the case that μjT =
√
T and S̃T22 is uniformly nonsingular.

This hypothesis includes moment existence and homoskedasticity assumptions. The

consistency of the CSE depends on homoskedasticity, as does consistency of the LIML

estimator itself with many instruments; see Bekker and van der Ploeg (2005), Chao and

Swanson (2004), and Hausman, Newey, and Woutersen (2006).

1The observations w1, ..., wT are distinct with probability one and therefore, by K < T, cannot all
be roots of a Kth degree polynomial. It follows that for any nonzero a there must be some t with
a0Zt = a0pK(wt) 6= 0, implying a0Z 0Za > 0.
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Assumption 4: There is πKT such that ∆
2
T =

PT
t=1 kzt − πKTZtk2 /T −→ 0.

This condition allows an unknown reduced form that is approximated by a linear

combination of the instrumental variables. An important example is a model with

Xt =

Ã
π11Z1t + μTf0(wt)/

√
T

Z1t

!
+

Ã
vt
0

!
, Zt =

Ã
Z1t

pK(wt)

!
,

where Z1t is a G2 × 1 vector of included exogenous variables, f0(w) is a G − G2 di-

mensional vector function of a fixed dimensional vector of exogenous variables w and

pK(w)
def
= (p1K(w), ..., pK−G2,K(w))

0. The other variables in Xt other than Z1t are en-

dogenous with reduced form π11Z1t+μTf0(wt)/
√
T . The function f0(w) may be a linear

combination of a subvector of pK(w), in which case ∆T = 0 in Assumption 4 or it may

be an unknown function that can be approximated by a linear combination of pK(w).

For μT =
√
T this example is like the model in Donald and Newey (2001) where Zt

includes approximating functions for the optimal (asymptotic variance minimizing) in-

struments Υt, but the number of instruments can grow as fast as the sample size. When

μ2T/T −→ 0, it is a modified version where the model is more weakly identified.

To see precise conditions under which the assumptions are satisfied, let

zt =

Ã
f0(wt)
Z1t

!
, ST = S̃Tdiag

³
μT , ..., μT ,

√
T , ...,

√
T
´
, S̃T =

Ã
I π11
0 I

!
.

By construction we have Υt = STzt/T. Assumption 2 imposes the requirements that

TX
t=1

kztk4 /T 2 −→ 0,
TX
t=1

ztz
0
t/T is uniformly nonsingular.

The other requirements of Assumption 2 are satsified by construction. Turning to As-

sumption 3, we require that V ar(ut, v
0
t) is nonsingular. Since the submatrix of S̃T corre-

sponding to Vtj = 0 is the same as the submatrix corresponding to the included exoge-

nous variables Z1t, we have S̃T22 = I is uniformly nonsingular. For Assumption 4, let

πKT = [π̃
0
KT , [IG2, 0]

0]0. Then Assumption 4 will be satisfied if for each T there exists π̃KT

with

∆2
T =

TX
t=1

kzt − π0KTZtk2/T =
TX
t=1

kf0(wt)− π̃0KTZtk2/T −→ 0.

[14]



The following is a consistency result.

Theorem 1: If Assumptions 1-4 are satisfied and α̂ = K/T +op(μ
2
T/T ) or δ̂ is LIML

or FULL then μ−1T S0T (δ̂ − δ0)
p−→ 0 and δ̂

p−→ δ0.

This result is more general than Chao and Swanson (2005) in allowing for strongly

identified covariates but is similar to Chao and Swanson (2003). See Chao and Swanson

(2005) for an interpretation of the condition on α̂. This result gives convergence rates

for linear combinations of δ̂. For instance, in the linear model example set up above, it

implies that δ̂1 is consistent and and that π
0
11δ̂1 + δ̂2 = op(μT/

√
T ).

Before stating the asymptotic normality results we describe their form. Let σ2u =

E[u2t ], σ
2
V u = E[Vtut], γ = σV u/σ

2
u, Ṽ = V −uγ0, having tth row Ṽ 0

t . and let Ω̃ = E[ṼtṼ
0
t ].

There will be two cases depending on the speed of growth of K relative to μ2T .

Assumption 5: Either I) K/μ2T is bounded or II) K/μ2T −→∞.

To state a limiting distribution result it is helpful to also assume that certain objects

converge. When considering the behavior of t-ratios we will drop this condition.

Assumption 6: H = lim
T−→∞

(1 − τT )z
0z/T , τ = lim

T−→∞
τT , κ = lim

T−→∞
κT , A =

E[u2t Ṽt] lim
T−→∞

PT
t=1 z

0
t(ptt − K

T
)/
√
KT exist and in case I)

√
KS−1T −→ S0 or in case

II) μTS
−1
T −→ S̄0.

Below we will give results for t-ratios that do not require this condition. Let B =

(κ− τ)E[(u2t − σ2u)ṼtṼ
0
t ]. Then in case I) we will have

S0T (δ̂ − δ0)
d−→ N(0,ΛI), S

0
T Λ̂ST

p−→ ΛI ,ΛI = H−1ΣIH
−1, (5.1)

ΣI = (1− τ)σ2u{H + S0Ω̃S
0
0}+ (1− τ)(S0A+A0S00) + S0BS

0
0.

In case II we will have

(μT/
√
K)S0T (δ̂ − δ0)

d−→ N(0,ΛII), (μ
2
T/K)S

0
T Λ̂ST

p−→ ΛII ,ΛII = H−1ΣIIH
−1,
(5.2)

[15]



ΣII = S̄0[(1− τ)σ2uΩ̃+B]S̄00.

The asymptotic variance expressions allow for the many instrument sequence of Ku-

nitomo (1980), Morimune (1983), and Bekker (1994) and the many weak instrument

sequence of Chao and Swanson (2003, 2005). When K and μ2T grow as fast as T the

variance formula generalizes that of Anderson et. al. (2006) to include the coefficients of

included exogenous variables, which had previously generalized Hansen et. al. (2004) to

allow for E[ut|Ṽt] 6= 0 and E[u2t |Ṽt] 6= σ2u. This formula also extends that of Bekker and

van der Ploeg (1995) to general instruments. The formula also generalizes Anderson et.

al. (2006) to allow for μ2T and K to grow slower than T . Then τ = κ = 0, A = 0, and

B = 0 giving a formula which generalizes Stock and Yogo (1994) to allow for included

exogenous variables and to allow for K to grow faster than μ2T , similarly to Chao and

Swanson (2004). When K does grow faster than μ2T the asymptotic variance of δ̂ may

be singular. This occurs because the many instruments adjustment term is singular with

included exogenous variables and it dominates the nonsingular matrix H when K grows

that fast.

Theorem 2: If Assumptions 1-6 are satisfied, α̂ = α̃ + 0p(1/T ) or δ̂ is LIML or

FULL, then in case I) equation (5.1) is satisfied and in case II) equation (5.2) is satisfied.

Also, in each case if Σ is nonsingular then LM̂(δ0)
d−→ χ2(G).

It is straightforward to show that when the disturbances are Gaussian the Wald

test with the CSE attains the power envelope of Andrews and Stock (1996) under the

conditions given here, where
√
K/μ2T −→ 0. Andrews and Stock (1996) showed that

the LM statistic of Kleibergen (2002) attains this envelope and it is straighforward to

show that the Wald statistic is asymptotically equivalent to the LM statistic under local

alternatives. For brevity we omit this demonstration.

To give results for t-ratios and to understand better the performance of the CSE we

now turn to approximation results. We will give order of approximation results for two

t-ratios involving linear combinations of coefficients, one with the CSE and another with

the usual formula, and compare results.

[16]



We first give stochastic expansions around a normalized sum with remainder rate. To

describe these results we need some additional notation. Define

Ĥ = X 0PX − α̂X 0X, W = [(1− τT )Υ+ PZṼ − τT Ṽ ]S
−10
T ,HT = (1− τT )z

0z/T,

AT =

Ã
TX
t=1

(ptt − τT )zt/
√
T

!
E[u2t Ṽ

0
t ]S

−10
T , BT = (κT − τT )E[(u

2
t − σ2u)ṼtṼ

0
t ],

ΣT = σ2u(1− τT )(HT +KS−1T Ω̃S−10T ) + (1− τT )(AT +A0T ) +KS−1T BTS
−10
T ,

ΛT = H−1
T ΣTH

−1
T .

We will consider t-ratios for a linear combination c0δ̂ of the IV estimator, where c are the

linear combination coefficients, satisfying the following condition:

Assumption 7: There is μcT such that μ
c
T c
0S−10T is bounded and in case I) (μcT )

2c0S−10T ΛTS
−1
T c

and (μcT )
2c0S−10T H−1

T S−1T c are bounded away from zero and in case II) (μcT )
2c0S−10T ΛTS

−1
T cμ2T/K

is bounded away from zero.

Let μ̃T = μT in case I and μ̃T = μ2T/
√
K in case II.

Theorem 3: Suppose that Assumptions 1 - 5 and 7 are satisfied and α̂ = α̃+Op(1/T )

or δ̂ is LIML or FULL. Then, for εT = ∆T + 1/μ̃T in case I) and case II),

c0(δ̂ − δ0)q
c0Λ̂c

d−→ N(0, 1),
c0(δ̂ − δ0)q

c0Λ̂c
=

c0S−10T H−1
T W 0uq

c0S−10T ΛTS
−1
T c

+Op(εT ).

Also, in case II), Pr(
¯̄̄̄
c0(δ̂ − δ0)/

q
σ̂2uc

0Ĥ−1c
¯̄̄̄
≥ C) −→ 1 for all C while in case I),

c0(δ̂ − δ0)q
σ̂2uc

0Ĥ−1c
=

c0S−10T H−1
T W 0uq

σ2uc
0S−10T H−1

T S−1T c
+Op(εT ).

Here we find that the t-ratio based on the linear combination c0δ̂ is equal to a sum

of independent random variables, plus a remainder term that is of order 1/μ̃T +∆T . It

is interesting to note that in case I the rate of approximation is 1/μT + ∆T and 1/μT

is the rate of approximation that would hold for fixed K. For example, when μ2T = T

and ∆T = 0, the rate of approximation is the usual parametric rate 1/
√
T . Thus, even

when K grows as fast as T , the remainder terms in Theorem 3 can have the parametric

[17]



1/
√
T rate. This occurs because the specification ofW accounts for the presence of many

instrumental variables.

The reason that the t-ratio with the usual standard errors is unbounded whenK/μ2T −→

∞ is that the usual variance formula goes to zero relative to the full variance. When

K grows that fast the term that adjusts for many instruments asymptotically dominates

the usual variance formula.

To obtain approximation rates for the distribution of the normalized sums in the

conclusion of Theorem 3, we impose the following restriction on the joint distribution of

ut and Vt.

Assumption 8: E[ut|Ṽt] = 0, E[u2t |Ṽt] = σ2u, E[|ut|4|Ṽt] is bounded, and
PT

t=1 kztk
3 /T 3/2 =

O(1/μT ).

The vector Ṽt consists of residuals from the population regression of Vt on ut and so

satisfies E[Ṽtut] = 0 by construction. Under joint normality of (ut, Vt), ut and Ṽt are

independent, so the first two conditions automatically hold. In general, these two condi-

tions weaken the joint normality restriction to first and second moment independence of

ut from Ṽt. For example, if Vt = γut + Ṽt for any Ṽt that is statistically independent of

ut then Assumption 4 would be satisfied. The asymptotic variance of the estimators are

simpler under these conditions. This condition implies that E[u2t Ṽt] = E[E[u2t |Ṽt]Ṽt] = 0

and E[u2t ṼtṼ
0
t ] = E[E[u2t |Ṽt]ṼtṼ 0

t ] = σ2uE[ṼtṼ
0
t ], so that AT = 0 and BT = 0.

Theorem 4: If Assumptions 1-5, 7 and 8 are satisfied then for case I

Pr(
c0S−10T H−1

T W 0uq
c0S−10T ΛTS

−1
T c

≤ q) = Φ(q) +O(1/μT ),

Pr(
c0S−10T H−1

T W 0uq
σ2uc

0S−10T H−1
T S−1T c

≤ q) = Φ(q) +O(1/μT +K/μ2T ).

When the variance ΛT that adjusts for the presence of many instruments appears in

the denominator the approximation is the fixed K rate 1/μT . In contrast, in case I when

the usual variance formula σ2uH
−1
T appears in the denominator, the rate of approximation

has an additional K/μ2T term. This term will go to zero slower than 1/μT when K grows

[18]



faster than μT . When K grows as fast as μ2T the remainder term does not even go to

zero, which corresponds to the usual standard errors being inconsistent.

We interpret this result as showing a clear advantage for the CSE with many in-

strumental variables. The condition for the usual standard errors to have as good an

approximation rate as the CSE, that K grows slower than μT , may seem not very onerous

when μT =
√
T . However, when μT grows slower than

√
T this condition would put severe

limits on the number of instrumental variables. Thus, if we think of μT growing slowly

as representing a weakly identified model we should expect to find an improvement from

using the CSE even with small numbers of instrumental variables. This interpretation is

consistent with our empirical and Monte Carlo results.

It would be nice to combine Theorems 3 and 4 to obtain a result on the rate of

distributional approximation for the t-ratio. It is well known that this will hold with

additional tail conditions on the remainder in the stochastic expansions of Theorem 3;

see Rothenberg (1984). To do this is beyond the scope of this paper.

We can also show that our modified version of the Kleibergen (2002) statistic is valid

under weak instruments.

Theorem 5: If Assumptions 1 - 3 are satisfied, for each j either μjT = 1 or μjT =
√
T , and S−1T −→ S0, Z

0Z/T −→M, nonsingular, and Z 0z/T −→ R , then LM̂(δ0)
d−→

χ2(G).

6 Conclusion

In this paper, we have given standard errors that correct for many instruments when

disturbances are not Gaussian. We have also shown that the LIML and Fuller (1977)

estimators with Bekker (1994) standard errors provide improved inference relative to the

usual asymptotic approximation in instrumental variable settings across a wide range

of applications. The Angrist and Krueger (1991) study provides an example where the

CSE with 180 instruments is substantially smaller than the CSE with 3 instruments and

confidence intervals closely match those of Kleibergen (2002). Through simulations, we
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confirm that using the CSE leads to more accurate approximations in many cases. We

also provide theoretical results that show the validity of the CSE under many instruments

and under many weak instruments without imposing normality. The theoretical results

also show that the use of the CSE improves the approximation rate relative to when the

usual standard errors are used. Overall, the results support the use of the CSE across a

wide variety of applications.

7 Appendix: Proofs of Theorems.

Throughout, let C denote a generic positive constant that may be different in different

uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz

inequality, and the Triangle inequality respectively. Also, for notational convenience, we

drop the T subscript on μT throughout.

Lemma A1: If (ui, vi, zi) are independent with E[ui|zi] = E[vi|zi] = 0, E[u4i |zi] ≤ C,

E[v4i |zi] ≤ C, zi is K × 1, then for Z = [z1, ..., zT ] and P = Z(Z 0Z)−Z 0,

V ar(u0Pv|Z) ≤ CK,u0Pv −E[u0Pv|Z] = Op(
√
K).

Proof: Let σuvi = E[uivi|zi], μjui = E[(ui)
j|zi], μjvi = E[(vi)

j|zi]. By independent observa-

tions, E[uv0|Z] = diag(σuv1, ..., σuvT ) = Γ. Then E[u0Pv|Z] = tr(PE[vu0|Z]) = tr(PZΓ).

Also, for pij = Pij,

E[(u0Pv)2|Z] (7.3)

=
TX

i,j,k,c=1

pijpkcE[uivjukvc|Z] =
TX
i=1

p2iiE[u
2
i v
2
i |zi] +

TX
i6=j=1

{(piipjj + p2ij)σuviσuvj + p2ijμ
2
uiμ

2
vj}

=
TX
i=1

p2ii{E[u2i v2i |zi]− 2σ2uvi − μ2uiμ
2
vi}+ tr(PZΓ)

2 +
TX

i,j=1

p2ij(σuviσuvj + μ2uiμ
2
vj)

≤ C
TX
i=1

p2ii + C
TX

i,j=1

p2ij + tr(PΓ)2 ≤ 2C
TX

i,j=1

p2ij + tr(PZΓ)
2

We have
PT

j=1 p
2
ij = pii, so that by equation (7.3),

E[(u0Pv − E[u0Pv|Z])2|Z] ≤ C
TX

i,j=1

p2ij ≤ CK.
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The second conclusion follows by M. Q.E.D.

Lemma A2: If i) P is a constant idempotent matrix with rank(P ) = K; ii) (W1T , V1, u1),

..., (W1T , VT , uT ) are independent and DT =
PT

t=1E[WtTW
0
tT ] is bounded; iii) (V

0
t , ut)

has bounded fourth moments, E[Vt] = 0, E[ut] = 0, and E[(V 0
t , ut)

0(V 0
t , ut)] is constant;

iv)
PT

t=1E[kWtTk4] −→ 0; v) K → ∞;then for Σ̄
def
= E[VtV

0
t ]E[u

2
t ] + E[Vtut]E[utV

0
t ],

κT =
PT

t=1 p
2
tt/K, and any sequence of bounded vectors c1T , c2T such that VT = c01TDT c1T+

(1− κT )c
0
2T Σ̄c2T is bounded away from zero it follows that

YT = V
−1/2
T (

TX
t=1

c01TWtT + c02T
X
s 6=t

Vspstut/
√
K)

d−→ N (0, 1) .

Proof: Without changing notation let c1T = c1T/V
−1/2
T and c2T = c2T/V

−1/2
T , and note

that these are bounded in T by VT bounded away from zero. Let wtT = c01TWtT and

vt = c02TVt, where we suppress the T subscript on vt for convenience. Then we have

YT = w1T +
TX
t=2

ytT , ytT = wtT +
X
s<t

(vspstut + vtpstut)/
√
K.

Also, by E[kW1Tk4] ≤
PT

t=1E[kWtTk4] −→ 0, so that E[w21T ] −→ 0 and hence

YT =
TX
t=2

ytT + op(1).

Note that ytT is martingale difference, so that we can apply a martingale central limit

theorem. It follows by P idempotent that
PT

s=1 p
2
st = ptt and

PT
t=1 ptt = K. Then, for

DT =
PT

t=1E[WtTW
0
tT ],

s2T = E

⎡⎣Ã TX
t=2

ytT

!2⎤⎦ = TX
t=1

E[w2tT ] +E

⎡⎢⎣
⎛⎝X
s6=t

vspstut

⎞⎠2
⎤⎥⎦ /K

= c01TDT c1T −E[w21T ] +
X
s6=t

X
q 6=r

pstpqrE[vsutvqur]/q
2
n

= c01TDT c1T +
n
E[v2t ]E[u

2
t ] + (E[vtut])

2
o
(1− κT ) + o(1)

= c01TDT c1T + c02T (1− κT )Σ̄c2T + o(1) −→ 1.

Note that s2T is bounded and bounded away from zero. Also

TX
t=2

E[y4tT ] ≤ C
TX
t=2

E[kWtTk4] + C
TX
t=2

E

⎡⎢⎣
⎛⎝X
j<t

{vtptjuj + vjptjut}
⎞⎠4
⎤⎥⎦ /K2
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By condition iv),
PT

t=2E[kWtTk4] −→ 0. Also, by |pst| ≤ 1 and
PT

j=1 p
2
ts = ptt,

TX
t=2

E

⎡⎢⎣
⎛⎝X
j<t

vtptjuj

⎞⎠4
⎤⎥⎦ /K2 =

1

K2

TX
t=2

X
j,k,c,m<t

ptjptkptcptmE[v
4
t ujukucum]

=
1

K2

TX
t=2

X
j,k,c,m<t

E[v4t ]ptjptkptcptmE[ujukucum] ≤
C

K2

TX
t=2

⎛⎝X
j<t

p4tj +
X
j,k<t

p2tjp
2
tk

⎞⎠
≤ C

K2

⎛⎝ TX
t=1

TX
j=1

p2tj +
TX
t=1

⎛⎝ TX
j=1

p2tj

⎞⎠Ã TX
k=1

p2tk

!⎞⎠ = C

K2

Ã
TX
t=1

ptt +
TX
t=1

p2tt

!
≤ C

K
−→ 0.

Therefore
PT

t=2E[y
4
tT ] −→ 0, so the Lindbergh condition is satisfied. To apply the

martingale central limit theorem it now suffices to show that for Zt = (WtT , Vt, ut),

TX
t=2

E[y2tT | Z1, ..., Zt−1]− s2T
p−→ 0 (7.4)

.Note first that by independence of W1T , ...,WTT ,

TX
t=2

³
E[w2tT | Z1, ..., Zt−1]− E[w2tT ]

´
= 0.

Also

E

⎡⎣wtT

X
j<t

(vtptjuj + vjptjut)

⎤⎦ = 0
and

E

⎡⎣wtT

X
j<t

(vtptjuj + vjptjut)/
√
K | Z1, ..., Zt−1

⎤⎦
= E[wtTvt]

X
j<t

ptjuj/
√
K +E[wtTut]

X
j<t

ptjvj/
√
K.‘

Let δt = E[wtTvt] and consider the first term δt
P

j<t ptjuj/
√
K. Let P̄ be the up-

per triangular matrix with P̄tj = Ptj for j > t and P̄tj = 0, j ≤ t, and let δ =

(δ1, ..., δT ). Then
PT

t=2

P
j<t δtptjuj/

√
K = δ0P̄ 0u/

√
K. By CS δ0δ =

PT
t=1 (E [wtTvt])

2 ≤PT
t=1E[w

2
tT ]E[v

2
t ] ≤ C. By Lemma A3 of Chao and Swanson (2004),

°°°P̄ 0P̄°°° ≤ √K. It

then follows that

E[(δ0P̄ 0u/
√
K)2] ≤ Cδ0P̄ 0P̄ δ/K ≤ kδk2

°°°P̄ 0P̄
°°° /K ≤ C

√
K/K −→ 0,
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so that δ0P̄ 0u/
√
K

p−→ 0 by M. Similarly, we have
PT

t=2E[wtTut]
P

j<t ptjvj/
√
K −→ 0.

Therefore it follows by T that

TX
t=2

E

⎡⎣wtT

X
j<t

(vtptjuj + vjptjut)/
√
K | Zt, ..., Zt−1

⎤⎦ p−→ 0.

To finish showing that eq. (7.4) is satisfied it only remains to show that for ȳtT =P
j<t(vtptjuj + vjptjut)/

√
K,

TX
t=2

E
h
ȳ2tT | Z1, ..., Zt−1

i
−E[ȳ2tT ]

p−→ 0. (7.5)

Note that for σ2u = E[u2t ], σ
2
v = E[v2t ], σuv = E[utvt],

E
h
ȳ2tT | Z1, ..., Zt−1

i
−E[ȳ2tT ]

= σ2v
X
j<t

p2tj(u
2
j − σ2u)/K + 2σ2v

X
j<k<t

ptjptkujuk/K

+σ2u
X
j<t

p2tj(v
2
j − σ2v)/K + 2σ2u

X
j<k<t

ptjptkvjvk/K

+2σuv
X
j<t

p2tj(ujvj − σuv)/K + 4σuv
X

j<k<t

ptjptkujvk/K.

Consider the last two terms. Note that

E

⎡⎢⎣
⎛⎝ TX
t=2

X
j<t

ptj(ujvj − σuv)

⎞⎠2
⎤⎥⎦ /K2 =

X
j<t

X
k<s

p2tjp
2
skE [(ujvj − σuv) (ukvk − σuv)] /K

2

=
X
j<t,s

p2tjp
2
jcE

h
(ujvj − σuv)

2
i
/K2 ≤ C

X
j<t,s

p2tjp
2
sj/K ≤

C

K2

X
t,s,j

p2tjp
2
sj

= C
X
j

ÃX
t

p2jt

!ÃX
s

p2js

!
/K2 = C

X
j

p2jj/K
2 ≤ CK/K2 −→ 0.

Also, we have

E

⎡⎢⎣
⎛⎝ TX
t=2

X
j<k<t

ptptkujvk

⎞⎠2
⎤⎥⎦ /K2 =

X
t,c

X
j<k<t

X
m<q<c

ptjptkpcmpcqE[ujvkumvq]/K
2

=
X
t,c

X
j<k<t

X
j<k<c

ptjptkpcjpckσ
2
uσ

2
v/K

2 = C
X

j<k<t,c

ptjptkpcjpck/K
2

= C
X

j<k<t

p2tjp
2
tk/K

2 + C
X

j<k<t<c

ptjptkpcjpck/K
2

[23]



Note that

X
j<k<t

p2tjp
2
tk/K

2 ≤
X
t

⎛⎝X
j

p2tj

⎞⎠ÃX
k

p2tk

!
/K2 ≤

X
t

p2tt/K
2 −→ 0.

Also by Lemma A2 of Chao and Swanson (2004),

X
j<k<t<c

ptjptkpcjpck/K
2 =

X
t<j<k<c

pktpkjpctpcj/K
2 =

X
i<j<k<c

pikpicpjkpjc/K
2 = 0(K)/K2 −→ 0.

It follows similarly that E
∙³P

t

P
j<k<t ptjptkukvj

´2¸
/K2 −→ 0.Similar arguments can

also be applied to show that each of the other four terms following the equality in eq.

(7.6) converges in probability to zero It then follows by T and M that eq. (7.6) is

satisfied. By T it then follows that eq. (7.4) is satisfied. Thus all the conditions of

the Martingale central limit theorem are satisfied, so that
PT

t=2 ytT
d−→ N(0, 1). Then by

Slutzky theorem the conclusion holds. Q.E.D.

Let z = [z1, ..., zT ]
0, so that Υ = zS0T/

√
T .

Lemma A3: If Assumptions 1-4 are satisfied then S0T (δ̂LIML − δ0)/μT
p−→ 0.

Proof: Let Ῡ = [0,Υ], V̄ = [u, V ], X̄ = [y,X], so that X̄ = (Ῡ+ V̄ )D for

D =

"
1 0
δ0 I

#
.

Let S̄T = diag(0, ST ) and S̄−T = diag(0, S−1T ) where 0 is a scalar, and B̂ = X̄ 0X̄/T . Note

that
°°°ST/√T°°° ≤ C, so that

E[
°°°Ῡ0V̄

°°°2 /T 2] = tr(STz
0zS0T )/T

3 −→ 0,

so that Ῡ0V̄ /T
p−→ 0 by M. Also by M,

V̄ 0V̄ /T
p−→ Ω̄ = E[V̄tV̄

0
t ] = diag(Ω∗, 0) ≥ Cdiag(IG−G2+1, 0),

where G2 is the number of j with Vtj = 0. By uniform nonsingularity of z0z/T we have

for all T large enough,

S̄−T Ῡ
0ῩS̄−0T = diag(0, z0z/T ) ≥ Cdiag(0, IG).
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Also, by μjT =
√
T for j where Vjt = 0 we have, for all T large enough,

Ῡ0Ῡ/T = S̄T S̄
−
T Ῡ

0ῩS̄−0T S̄0T/T ≥ CS̄Tdiag(0, IG)S̄
0
T/T

≥ Cdiag(0, S̃T )diag(0, IG2)diag(0, S̃
0
T ).

Therefore, by D nonsingular and hence D0D positive definite, w.p.a.1 we have

B̂ ≥ C{diag(0, S̃T )diag(0, IG2)diag(0, S̃0T ) + diag(IG−G2+1, 0)}.

It follows by straightforward arguments from uniform nonsingularity of LT22 that the

matrix in brackets is unformly nonsingular, so that minkαk=1 α
0B̂α ≥ C w.p.a.1. Also,

by similar arguments B̂ = Op(1).

Next, note that S̄−0T S̄−T ≤ CI/μ2T , so that

E[
°°°S̄−T Ῡ0V̄ S̄−0T °°°2] ≤ C tr(S̄−T Ῡ

0ῩS̄−0T )/μ
2
T −→ 0.

Then S̄−T Ῡ
0V̄ S̄−0T

p−→ 0. Similarly, we have S̄−T Ῡ
0PV̄ S̄−0T

p−→ 0. Also,

S̄−T Ῡ
0(I − P )ῩS−0T = diag(0, z0(I − P )z/T ) −→ 0.

We also have, by S̄−T = O(1/μT ),

S̄−T (V̄
0PV̄ − K

T
V̄ 0V̄ )S̄−0T = S̄−T (KΩ̄+Op(

√
K)−KΩ̄+Op

³
K/
√
T
´
)S̄−0T

= Op(
√
K/μ2T ) +Op

³
K/μ2T

√
T
´

p−→ 0.

Let Â = μ−2T (X̄
0PX̄ − (K/T )X̄ 0X̄). By Assumption 2 S̄−T Ῡ

0ῩS̄−0T ≥ CĪ for all large

enough T , where Ī = diag(0, IG), so that by T w.p.a.1,

Â = μ−2T D0S̄T S̄
−
T [
µ
1− K

T

¶
Ῡ0Ῡ− Ῡ0(I − P )Ῡ+ Ῡ0PV̄ + V̄ 0P Ῡ

−K
T
V̄ 0Ῡ− K

T
Ῡ0V̄ + V̄ 0PV̄ − K

T
V̄ 0V̄ ]S̄−0T S̄0TD

= μ−2T D0S̄T [
µ
1− K

T

¶
S̄−T Ῡ

0ῩS̄−0T + op(1)]S̄
0
TD ≥ Cμ−2T D0S̄T ĪS̄

0
TD.

Now partition α = (α1, α
0
2)
0 where α1 is a scalar. Since S̄T = diag(0, ST ) we have

α0D0S̄T ĪS̄
0
TDα = [α2 + α1δ0]

0 STS
0
T [α2 + α1δ0]. Then from the previous equation and by

Q positive definite, w.p.a.1 for all kαk = 1,

α0Âα ≥ C (α2 + α1δ0)
0 STS

0
T (α2 + α1δ0) /μ

2
T = C kS0T (α2 + α1δ0) /μTk2 .
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Now, note that for c0 = k(1,−δ00)0k and α0 = (1,−δ00)0/c0 we have X̄α0 = u/c0, so that

α00Âα0 = (u
0Pu− (K/T )u0u) /c20μ

2
T

p−→ 0.

For any α with kαk = 1 let

q̂(α) =
T

μ2

Ã
α0X̄ 0PX̄α

α0X̄ 0X̄α
− K

T

!
= α0Âα/α0B̂α.

By α00B̂α0 ≥ minkαk=1 α0B̂α/T ≥ C w.p.a.1. and α00Âα0
p−→ 0 it follows that q̂(α0) ≤

C−1α00Âα0
p−→ 0. Also, for α̂ = arg minkαk=1 q̂(α), q̂(α̂) ≤ q̂(α0), so q̂(α̂)

p−→ 0. Then by

B̂ = Op(1) we have α̂
0Âα̂ = q̂(α̂)α̂0B̂α̂

p−→ 0, so that

kS0T (α̂2 + α̂1δ0) /μTk2 ≤ Cα̂0Âα̂
p−→ 0.

Since STS
0
T/μ

2
T ≥ CI, we have kα̂2 + α̂1δ0k

p−→ 0. Because α0 is the unique α with kαk =

1 satisfying kα2 + α1δ0k = 0 it follows by a standard argument that α̂
p−→ (1,−δ00)/c0.

In particular, α̂1 ≥ C w.p.a.1 Then w.p.a.1 δ̃ = −α̃2/α̃1 exists and°°°S0T ³δ̃ − δ0
´
/μT

°°°2 = kS0T (α̂2 + α̂1δ0) /μTk2 /α̂21
p−→ 0.

Finally, note that q̂((1,−δ0)0) is a monotonic transformation of the LIML objective

function (y −Xδ)0P (y −Xδ)/(y −Xδ)0(y −Xδ). Further, since α̂1 6= 0 w.p.a.1,

min
kαk=1

q̂(α) = min
δ

q̂((1, δ0)0)

and by invariance to reparameterization, δ̃ = argmin
δ

Â((1, δ0)0). Q.E.D.

Let ᾰ = u0Pu/u0u.

Lemma A4: If Assumptions 1-4 are satisfied then ᾰ = K/T +Op(
√
K/T ).

Proof: By Lemma A1, u0Pu/K = σ2u + Op

³
1/
√
K
´
. Also σ̃2u = u0u/T = σ2u +

Op

³
1/
√
T
´
by M. Then

u0Pu/u0u−K/T =
K

T

Ã
u0Pu/K

σ̃2u
− 1

!
=

K

Tσ̃2u

Ã
u0Pu

K
− σ2u − (σ̃2u − σ2u)

!

= Op(
K

T
)[Op(

1√
K
) +Op(

1√
T
)] = Op(

√
K

T
).Q.E.D.
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Lemma A5: If Assumptions 1-4 are satisfied, α̂ = ᾰ+Op(ε
α
T ), and S

0
T (δ̂− δ0)/μT =

Op(ε
δ
T ) for ε

α
TT/μ

2
T −→ 0, εδT −→ 0 then

S−1T (X 0PX − α̂X 0X)S−10T = HT +Op(∆
2
T + μ̃−1T + εαTT/μ

2
T ),

S−1T (X
0Pû− α̂X 0û)/μT = Op(μ̃

−1
T + εδT + εαTT/μ

2
T ).

Proof: Note that in Case I,
√
K/μ2T ≤ C/μ̃T and in Case II,

√
K/μ2T = 1/μ̃T , so that

√
K/μ2T = O(1/μ̃T ). Also by M, X

0X = Op(T ), X
0û = Op(T ). Therefore,

(α̂− ᾰ)S−1T X 0XS−10T = Op

³
εαTT/μ

2
T

´
, (α̂− ᾰ)S−1T X 0û/μT = Op(ε

α
TT/μ

2
T ).

Also, by Lemma A4,

(ᾰ−K/T )S−1T X 0XS−10T = Op

³√
K/μ2T

´
= Op(μ̃

−1), (ᾰ−K/T )S−1T X 0û/μT = Op(μ̃
−1).

Also, for AT = Υ0(P − I)Υ, BT = Υ0PV − (K/T )Υ0V , and DT = V 0PV − (K/T )V 0V

we have

S−1T [X
0PX − (K/T )X 0X]S−10T = HT + S−1T (AT +BT +B0

T +DT )S
−10
T .

Note that −AT is p.s.d. and by Assumption 4

−S−1T ATS
−10
T = z0(I − P )z/T ≤ (z − Zπ0KT )

0
(z − Zπ0KT )/T = O(∆2

T ).

Also, S−10T S−1T ≤ I/μ2T and E[V V 0] ≤ CI, so that

E
∙°°°S−1T Υ0PV S−10T

°°°2¸ ≤ C tr(z0PPz/T )/μ2T ≤ tr(z0z/T )/μ2T = O(1/μ2T ).

and S−1T Υ0PV S−10T = Op(1/μT ) by CM. Similarly, S
−1
T Υ0V S−10T = Op(1/μT ), so that

S−1T BTS
−10
T = Op(1/μT ) by T. Also, V

0V = TΩ + Op(
√
T ) by M and V 0PV = KΩ +

Op(
√
K) by Lemma A1, so that

S−1T DTS
−10
T = S−1T (KΩ− (K/T )TΩ)S−10T +Op(

√
K/μ2T +K/μ2T

√
T ) = Op(1/μ̃T ).

The first conclusion then follows by T.
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To show the second conclusion, it follows similarly to above that S−1T Υ0Pu/μT =

Op(1/μ̃T ) and S−1T Υ0u/μT = Op(1/μ̃T ). Also by Lemma A1 and M,

S−1T (V
0Pu− K

T
V 0u)/μT = S−1T (KσV u − (K/T )TσV u)/μT +Op(

√
K/μ2T ) = Op(1/μ̃T ).

Then by X = Υ + V and T we have S−1T (X
0Pu − α̂X 0u)/μT = Op(1/μ̃T ). Also, by HT

bounded and the first conclusion, ĤT = S−1T (X 0PX − α̂X 0X)S−10T = Op(1). Then the

last conclusion follows by T and

S−1T (X
0Pû− α̂X 0û)/μT = S−1T (X

0Pu− α̂X 0u)/μT − ĤTS
0
T (δ̂ − δ0)/μT .Q.E.D.

Lemma A6: If Assumptions 1 - 4 are satisfied and S0T (δ̂ − δ0)/μT = Op(εT ) for

εT −→ 0 and εT ≥ 1/μT then û0Pû/û0û = ᾰ+Op(ε
2
Tμ

2
T/T ).

Proof: Let β̂ = S0T (δ̂−δ0)/μT . Also, σ̂2u = û0û/T satisfies 1/σ̂2u = Op(1) by M. There-

fore H̃T = S−1T (X
0PX− ᾰX 0X)S−10T = Op(1) and S

−1
T (X

0Pu− ᾰX 0u)/μT = Op(1/μT ) by

Lemma A5 with α̂ = ᾰ and εαT = εδT = 0 there, so that

û0Pû

û0û
− ᾰ =

1

û0û
(û0Pû− u0Pu− ᾰ (û0û− u0u))

=
μ2T
T

1

σ̂2u

³
β̂0S−1T (X

0PX − ᾰX 0X)S−10T β̂ − 2β̂0S−1T (X
0Pu− ᾰX 0u)/μT

´
= Op(

μ2T
T
ε2T ).Q.E.D.

Proof of Theorem 1: By α̂ = K/T + op(μ
2
T/T ) there exists ζT −→ 0, such that

α̂ = K/T + Op(ζTμ
2
T/T ). Then by Lemma A4 and T, α̂ = ᾰ + Op(

√
K/T+ ζTμ

2
T/T ).

Then by Lemma A5 with εαT =
√
K/T + ζTμ

2
T/T we have

S−1T (X
0PX − α̂X 0X)S−10T = HT +Op(∆

2
T + μ̃−1T + ζT +

√
K/μ2T ) = HT + op(1).

Also S−1T (X
0Pu−α̂X 0u)/μT

p−→ 0 by Lemma A5 with εδT = 0. By uniform nonsingularity

of HT we have (HT + op(1))
−1 = Op(1). Then we have

S0T (δ̂ − δ0)/μT = S0T (X
0PX − α̂X 0X)−1(X 0Pu− α̂X 0u)/μT

= [S−1T (X
0PX − α̂X 0X)S−10T ]−1S−1T (X

0Pu− α̂X 0u)/μT

= (HT + op(1))
−1op(1)

p−→ 0.

[28]



For LIML, the conclusion follows by Lemma A3. For FULL, note S0T (δ̂LIML−δ0)/μT
p−→ 0

implies that there is εT −→ 0 with S0T (δ̂LIML−δ0)/μT = Op(εT ), so by Lemma A6 we have

α̂LIML = û0Pû/û0û = ᾰ+Op(εTμ
2
T/T ) = op(μ

2
T/T ). Also, (T/μ

2
T )(
√
K/T ) =

√
K/μ2T −→

0, so that Op(
√
K/T ) = op(μ

2
T/T ). Then ᾰ = K/T + op(μ

2
T/T ) by Lemma A4 so that

α̂LIML = K/T + op(μ
2
T/T ) by T. Also, (T/μ

2
T )(1/T ) = 1/μ

2
T −→ 0, so by T,

α̂FULL = α̂LIML +Op(1/T ) = α̂LIML + op(μ
2
T/T ) = K/T + op(μ

2
T/T ).Q.E.D.

Let D̂(δ) = ∂[u(δ)0Pu(δ)/2u(δ)0u(δ)]/∂δ = X 0Pu(δ)− α̃(δ)X 0u(δ).

Lemma A7: If Assumptions 1 - 4 are satisfied and S0T (δ̄ − δ0)/μT = Op(εT ) for

εT −→ 0 then

−S−1T [∂D̂(δ̄)/∂δ]S−10T = HT +Op(∆
2
T + μ̃−1T + εT ).

Proof: Let ū = u(δ̄) = y −Xδ̄ and γ̄ = X 0ū/ū0u. Then differentiating gives

−∂D̂
∂δ
(δ̄) = X 0PX − ū0Pū

ū0ū
X 0X −X 0ū

ū0PX

ū0ū
− X 0Pū

ū0ū
ū0X + 2

ūP ū

(ū0ū)2
X 0ūū0X

= X 0PX − ᾱX 0X + γ̄D̂(δ̄)0 + D̂(δ̄)γ̄0, ᾱ = ū0Pū/ū0ū = α̃(δ̄).

By Lemma A6 we have ᾱ = ᾰ + Op(ε
2
Tμ

2
T/T ). Then by Lemma A5 with εαT = ε2Tμ

2
T/T

and εδT = εT we have

S−1T (X 0PX − ᾱX 0X)S−10T = HT +Op(∆
2
T + μ̃−1T + ε2T ),

μ−1T S−1T D̂(δ̄) = S−1T (X
0Pū− ᾱX 0ū)/μT = Op(μ̃

−1
T + εT ).

Note that by standard arguments γ̄ = Op(1), so that μTS
−1
T γ̄ = Op(1), and hence

S−1T D̂(δ̄)γ̄0S−10T = μ−1T S−1T D̂(δ̄)Op(1) = Op(μ̃
−1
T + εT ).

The conclusion then follows by T. Q.E.D.

Next, we give an expansion that is useful for the asymptotic normality results. Let

W = [(1− τT )Υ+ PṼ − τT Ṽ ]S
−10
T as in the text.

Lemma A8: If Assumptions 1-4 are satisfied then

S−1T D̂(δ0) =W 0u+Op(

√
K

μT
√
T
+∆T )

[29]



Proof: Let ᾰ = u0Pu/u0u. By Lemma A4, ᾰ = K/T + Op(
√
K/T ). Also, S−1T Υ0u =

z0u/
√
T = Op(1) and S−1T Ṽ 0u = Op(

√
T/μT ) by M, so that S

−1
T (Υ + Ṽ )0uOp(

√
K/T ) =

Op(
√
K/μT

√
T ). Note also that similarly to the proof of Lemma A5 we have

E[
°°°S−1T Υ0(I − P )u

°°°2] = σ2utr(z
0(I − P )z/T ) = Op(∆

2
T ),

so by M, S−1T Υ0(I − P )u = Op(∆T ). It then follows by T and ᾰ = K/T + Op(
√
K/T )

that

S−1T D̂(δ0) = S−1T [(X − uγ0)0Pu− ᾰ(X − uγ0)0u]

= S−1T {Υ0u+ Ṽ 0Pu− (Υ+ Ṽ )0u[
K

T
+Op(

√
K

T
)]−Υ0(I − P )u}

= W 0u+Op(

√
K

μT
√
T
+∆T ).Q.E.D.

Let μ̃T = μT in Case I and μ̃T = μ2T/
√
K in case II and let V̄ = (I − P )Ṽ .

Lemma A9: If Assumptions 1-4 are satisfied and S0T (δ̂ − δ0)/μT = Op(1/μ̃T ) then°°°V̂ − V̄
°°°2 /T = Op(∆

2
T + μ̃−2T )

p−→ 0, V̄ 0V̄ /T = (1− τT )Ω̃+Op(∆T + 1/μ̃T ).

V̂ 0V̂ /T = (1− τT )Ω̃+Op(∆T + 1/μ̃T ).

Proof: By Lemma A1 we have Ṽ 0PṼ /T = τT Ω̃+Op(
√
K/T ) = τT Ω̃+Op(1/

√
T ). Also,

by CLT Ṽ 0Ṽ /T = Ω̃+Op(1/
√
T ), so that by the CLT,

V̄ 0V̄ /T = Ṽ 0Ṽ /T − Ṽ 0PṼ /T = (1− τT )Ω̃+Op(1/
√
T ).

Note that by construction μ2TS
−1
T S−10T ≤ CI so that

°°°μTS−10T a
°°° ≤ C kak. Therefore,°°°δ̂ − δ0

°°° ≤ °°°μTS−10T S0T (δ̂ − δ0)/μT
°°° ≤ °°°S0T (δ̂ − δ0)/μT

°°° = Op(1/μ̃T ). Then by X 0X =

Op(T ) we have

ku− ûk2 /T ≤ kXk2
°°°δ̂ − δ0

°°°2 /T ≤ (kXk2 /T )Op(μ̃
−2
T ) = Op(μ̃

−2
T ).

It then follows by standard calculations that for γ̂ = X 0û/û0û, kγ̂ − γk2 = Op(μ̃
−2
T ).Note

that V̂ − V̄ = (I − P )(Υ+ uγ0 − ûγ̂0). Also by STS
0
T/T ≤ I we have

tr[Υ0(I − P )Υ/T ] = tr[STz
0(I − P )zS0T/T

2] = Op(∆
2
T ).
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Then it follows that°°°V̂ − V̄
°°°2 /T ≤ C kuγ0 − ûγ̂0k2 /T + Ctr[Υ0(I − P )Υ/T ].

giving the first conclusion. It then follows by standard arguments that

V̂ 0V̂ /T − V̄ 0V̄ /T = Op(∆T + μ̃−1T ).

The final conclusion then follows by T. Q.E.D.

Let â = (û21 − σ2u, ..., û
2
T − σ2u)

0 and a = (u21 − σ2u, ..., u
2
T − σ2u)

0.

Lemma A10: If Assumptions 1-4 are satisfied and S0T (δ̂ − δ0)/μT = Op(1/μ̃T ) then

S−1T Â(δ̂)S−10T = (1− τT )AT +Op((
√
K/μT )(1/μ̃T +∆T )).

Proof: By Z including a constant we have
P

t û
2
t V̂t/T = V̂ 0â/T . Also, kâ− ak2 /T =

Op(μ̃
−2
T ) follows by standard arguments and

°°°V̂ − V̄
°°°2 /T = Op(∆

2
T + μ̃−2T ) by Lemm A9.

By Lemma A9 V̄ 0V̄ /T = Op(1) and a0a/T = Op (1) by M, so by CS,P
t û

2
t V̂

0
t

T
− a0V̄ /T = (â− a)0(V̂ − V̄ )/T + (â− a)0V̄ /T + a0(V̂ − V̄ )/T = Op(1/μ̃T +∆T ).

It also follows by Lemma A1 similarly to the proof of Lemma A9 that a0V̄ /T = (1 −

τT )E[u
2
t Ṽt] +Op(1/

√
T ), so it follows by T that

X
t

û2t V̂t/T = (1− τT )E[u
2
t Ṽt] +Op(1/μ̃T +∆T ).

Let dt = (ptt − τT )/
√
K and d = (d1, ..., dT )

0. Note that kdk2 ≤ 1 and E[kV 0Pdk2] ≤

Cd0d ≤ C, so that V 0Pd = Op(1) and
°°°S−1T Υd

°°° ≤ °°°z/√T°°° kdk ≤ C. Also, S−1T Υ0(I −

P )d = Op(∆T ). Then

TX
t=1

S−1T Υ̂t(ptt − τT )/
√
K = S−1T X 0Pd = S−1T (Υ+ V )P 0d

= z0d/
√
T +Op(∆T + 1/μT ).

Then we have, for εT = ∆T + 1/μT

S−1T Â(δ̂)S−10T =
h
z0d/
√
T +Op(εT )

i
{(1− τT )E[u

2
t Ṽ

0
t ] +Op(εT )}

√
KS−10T

= AT +Op(εT )Op(
√
K/μT ) = AT +Op((

√
K/μT )(1/μ̃T +∆T )).Q.E.D.
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Lemma A11: If Assumptions 1-4 are satisfied then

TX
t=1

(û2t − σ̂2u)V̂tV̂
0
t /T = (1− 2τT + τTκT )E[(u

2
t − σ2u)ṼtṼ

0
t ] +Op(1/μ̃T +∆T )

Proof: Let A = diag(a1, ..., aT ). Let ε and v be columns of Ṽ and ε̄ = (I − P )ε,

v̄ = (I − P )v, so that
P

t atε̄tv̄t/T is an element of
P

t atV̄tV̄
0
t /T . We also have

X
t

atε̄tv̄t/T = ε0(I − P )A(I − P )v/T

By CLT, ε0Av/T =
P

t atεtvt/T = E[atεtvt] + Op

³
1/
√
T
´
. Let e = (1, ..., 1)0 and av =

E[atvt]e. Then

E
h
(ε0Pav)

2
/T 2

i
= av0PE[εε0]Pav/T 2 ≤ Cav0av/T 2 = O (1/T ) ,

so that (ε0Pav) /T =Op(1/
√
T ) by M. Also, by Lemma A1, ε0P (Av−av)/T = τTE[atεtvt]+

Op(
√
K/T ). Then by T it follows that ε0PAv = τTE[atεtvt]+Op

³
1/
√
T
´
. It then follows

similarly that ε0APv = τTE[atεtvt] +Op

³
1/
√
T
´
.

Next, let D = diag(p11, ..., pTT ) and H = P −D. Then for any α with kαk = 1,

1 ≥ α0Pα = α0P 2α = α0H2α+ 2α0HDα+ α0D2α

≥ α0H2α+ α0D2α− 2(α0H2α)
1
2

³
α0D2α

´ 1
2 =

¯̄̄̄³
α0H2α

´ 1
2 −

³
α0D2α

´ 1
2

¯̄̄̄2
.

Note that α0D2α ≤ 1 by p2tt ≤ 1 so that (α0H2α)
1
2 ≤ 2.Then for α = De/

³PT
t=1 p

2
tt

´1/2
,

E
h
(ε0HDav)

2
i
/T 2 ≤ C

e0DH2De

T 2
= α0H2α

PT
t=1 p

2
tt

T 2
≤ C/T,

so that ε0HDav/T = Op

³
1/
√
T
´
by M. Also, for wt = (atvt − E[atvt])ptt we have

E
h
(ε0HADv − ε0HDav)

2
i
/T 2 = E

⎡⎢⎣
⎛⎝X
s6=t

εspstwt

⎞⎠2
⎤⎥⎦ /T 2 =X

t6=s

X
i6=j

pstpijE[εswtεiwj]/T
2

=
X
t6=s

p2st
³
E[ε2s]E[w

2
t ] +E[εsws]E[εtwt]

´
/T 2 ≤ C

X
s,t

p2st/T
2 = C

X
t

ptt/T
2 ≤ C/T,

so that

ε0HADv − ε0HDcav/T = Op

Ã
1√
T

!
.

[32]



Then by T, ε0HADv/T = Op

³
1/
√
T
´
. We also have

E

⎡⎣Ãε0DADv −
X
t

p2ttE[atεtvt]

!2
/T 2

⎤⎦ = TX
t=1

p4tt(E[a
2
t ε
2
tv
2
t ]−E[atεtvt]

2)/T 2 = O(1/T )

so that ε0DADv/T = (
P

t p
2
tt/T )E[atεtvt] +Op

³
1/
√
T
´
= τTκTE[atεtvt] +Op

³
1/
√
T
´
.

Next let L be an upper triangular matrix with zero diagonal such that L + L0 = H.

Consider ε0HAHv/T = ε0(L+ L0)A(L+ L0)v/T. Note that

ε0LAL0v/T =
X
t

at

⎛⎝X
j<t

pjtεj

⎞⎠⎛⎝X
k<t

pktvk

⎞⎠ /T

is an average of a martingale difference. Therefore

E[(ε0LAL0v)2/T 2] =
X
t

E[a2t ]E

⎡⎢⎣
⎛⎝X
j<t

pjtεj

⎞⎠2⎛⎝X
k<t

pktvk

⎞⎠2
⎤⎥⎦ /T 2

≤ C
X
t

X
j,k,c,m<t

pjtpktpctpmtE[εjεkvcvm]/T
2

≤ C
X
t

X
j,k<t

p2jtp
2
kt

³
E[ε2j ]E[v

2
k] + 2E[εjvj]E[εkvt]

´
/T 2

≤ C
X
t

⎛⎝X
j

p2jt

⎞⎠ÃX
k

p2kt

!
/T 2 =

X
t

p2tt/T
2 = O

µ
1

T

¶
.

Thus ε0LAL0v/T = Op

³
1/
√
T
´
by M. It follows similarly that ε0L0ALv/T = Op

³
1/
√
T
´
.

We also have

ε0LALv/T =
X
t

at

⎛⎝X
j<t

pjtεj

⎞⎠⎛⎝X
k>t

pktvk

⎞⎠ = X
j<t<k

pjtpktatεjvk.

Therefore, since for j < t < k, c < s < m, E[atasεjεcvkvm] is nonzero only when

t = s, j = c, k = m,

E
h
(ε0LALv/T )

2
i
=

X
j<t<k

X
c<s<m

pjtpktpcspmsE[atasεjεcvkvm]/T
2 =

X
j<t<k

p2jtp
2
ktE[a

2
t ]E[ε

2
j ]E[v

2
k]/T

2

≤ C
X
t

⎛⎝X
j

p2jt

⎞⎠ÃX
k

p2kt

!
/T 2 = C

X
t

p2tt/T
2 = O

µ
1

T

¶
,

so that ε0TATv/T = Op

³
1/
√
T
´
. It follows similarly that ε0T 0AT 0v/T = Op

³
1/
√
T
´
.

Then by T we have

ε0PAPv/T = τTκTE[atεtvt] +Op

Ã
1√
T

!
.
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Also by CLT ε0Av/T = E[atεtvt] + Op

³
1/
√
T
´
. Then by T , ε0(I − P )A(I − P )v/T =

(1−2τT +κT τT )E[atεtvt]+Op

³
1/
√
T
´
. Applying this result to each component we have

X
t

(u2t − σ2u)V̄tV̄
0
t /T = (1− 2τT + κT τT )E[(u

2
t − σ2u)ṼtṼ

0
t ] +Op

³
1/
√
T
´
.

Now, there is C big enough such that for dt = C(1 + y2t +X 0
tXt), (yt −X 0

tδ)
2 ≤ dt and¯̄̄

(yt −X 0
tδ̃)

2 − (yt −X 0
tδ)

2
¯̄̄
≤ dt

°°°δ̃ − δ
°°° for all δ, δ̃ in some neighborhood of δ0. It also

follows similarly to previous arguments that by the fourth moment of dt bounded in t,P
t dt

°°°V̄t°°°2 /T = Op(1). In particular, for D̃ = diag(d1, ..., dT ).

E
h
ε0PD̃Pε

i
/T =

X
j,k,t

pjtpktE[dtεjεk] =
X
t

p2tt(E[dtε
2
t ]−E[dt]E[ε2t ])/T+

X
j,t

p2jtE[dt]E[ε
2
j ]/T ≤ C

and ε0D̃ε/T =
P

t dtε
2
t/T = Op(1), so that by CS¯̄̄

ε0PD̃v/T
¯̄̄
≤

³
ε0PD̃Pε/T

´ 1
2 (v0D̃v/T )

1
2 = Op(1),¯̄̄

εPD̃Pv/T
¯̄̄
≤

³
ε0PD̃Pε/T

´ 1
2 (vPD̃Pv/T )

1
2 = Op(1).

It then follows that°°°°°X
t

h
û2t − σ̂2u − (u2t − σ2u)

i
V̄tV̄

0
t /T

°°°°° ≤ Op(1)
³°°°δ̂ − δ0

°°°+ °°°σ̂2u − σ2u
°°°´ = Op (1/μ̃T )

We also have by CS and T ,°°°°°X
t

³
û2t − σ̂2u

´
(V̂tV̂

0
t − V̄tV̄t)/T

°°°°° ≤X
t

dt

µ°°°V̂t − V̂t
°°°2 + 2 °°°V̄t°°° °°°V̂t − V̄t

°°°¶ /T
≤

X
t

dt
°°°V̂t − V̄t

°°°2 /T + 2ÃX
t

dt
°°°V̄t°°°2 /T

! 1
2
ÃX

t

dt
°°°V̂t − V̄t

°°°2 /T! 1
2

It follows similarly to previous arguments that

X
t

dt
°°°V̂t − V̄t

°°°2 /T = Op

³
∆2

T + μ̃−2T
´
.

The conclusion then follows by T. Q.E.D.

Lemma A12: If Assumptions 1-4 are satisfied and S0T (δ̂ − δ0)/μT = Op(μ̃
−1
T ) then

S−1T Ĥ(δ̂)S−10T = HT +Op(∆
2
T + 1/μ̃T ).

[34]



Proof: By Lemma A6 with εT = μ̃−1T we have α̃(δ̂) = ᾰ+Op(μ
2
T/T μ̃

2
T ). The conclusion

then follows by Lemma A5 with εαT = μ2T/T μ̃
2
T . Q.E.D.

Lemma A13: If Assumptions 1-4 are satisfied and S0T (δ̂ − δ0)/μT = Op(μ̃
−1
T ) then

S−1T α̃(δ̂)X̃(δ̂)0X̃(δ̂)S−10T = τT (1− τT )
−1HT +KS−1T Ω̃S−10T +Op(μ̃

−1
T ).

Proof: By Lemma A6 with εT = μ̃−1T we have α̂ = α̃(δ̂) = ᾰ + Op(μ
2
T/T μ̃

2
T ). Also,

note that (T/
√
K)μ2T/T μ̃

2
T = μ2T/

√
Kμ̃2T = 1/

√
K in case I and is equal to

√
K/μ2T −→ 0

in case II, so that Op(μ
2
T/T μ̃

2
T ) = op(

√
K/T ). Then by T we have α̂ = τT +Op(

√
K/T ) =

Op(K/T ). Let X̂ = X̃(δ̂) and X̃ = X − uγ0 = Υ+ Ṽ . It follows by standard arguments

that
°°°X̂ − X̃

°°° = Op(
√
T/μ̃T ) and

°°°X̃°°° = Op(
√
T ), so that

°°°X̂ 0X̂ − X̃ 0X̃
°°° = Op(T/μ̃T ).

Therefore we have

°°°S−1T α̂X̂ 0X̂S−10T − S−1T α̂X̃ 0X̃S−10T

°°° = Op(K/T )Op(1/μ
2
T )Op(T/μ̃T ) = Op(

√
K/μ2T μ̃T ) = op(1/μ̃T ).

We also have

°°°(α̂− τT )S
−1
T X̃ 0X̃S−10T

°°° = Op(T
√
K/Tμ2T ) = Op(1/μ̃T ).

Furthermore, by M, τTS
−1
T Υ0Ṽ S−10T = Op(K/TμT ) = Op(1/μ̃T ). Also, K

√
T/Tμ2T =

(
√
K/μ2T )

q
K/T ≤ C/μ̃T so that by M

τTS
−1
T Ṽ 0Ṽ S−10T = τTS

−1
T (T Ω̃)S

−10
T +Op(K

√
T/Tμ2T ) = KS−1T Ω̃S−10T +Op(1/μ̃T ).

It then follows by T that

S−1T α̂X̂ 0X̂S−10T = τTS
−1
T X̃ 0X̃S−10T +Op(μ̃

−1
T )

= τTS
−1
T (Υ+ Ṽ )0(Υ+ Ṽ )S−10T +Op(μ̃

−1
T )

= τTS
−1
T Υ0ΥS−10T +KS−1T Ω̃S−10T +Op(μ̃

−1
T ).Q.E.D.

Lemma A14: If Assumptions 1-4 are satisfied and S0T (δ̂ − δ0)/μT = Op(μ̃
−1
T ) then

S−1T Σ̂(δ̂)S−10T = ΣT +Op((1 +
√
K/μT )(1/μ̃T +∆T )).
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Proof: By standard arguments we have σ̂2u(δ̂) = σ2u + Op(1/μ̃T ) and it follows as in

the proof of Lemma A13 that α̃(δ̂) = τT + Op(
√
K/T ). It also follows similarly to the

proof of Lemma A5 and A9 that

S−1T (X̂
0PX̂−α̂X̂ 0X̂)S−10T = S−1T (X̃

0PX̃−α̂X̃ 0X̃)S−10T +Op(1/μ̃T ) = HT+Op(∆
2
T+1/μ̃T ).

Also, we have Op(
√
K/T )KS−1T Ω̃S−10T = Op((K/T )(

√
K/μ2T )) = Op(1/μ̃T ). Note that

Σ̂B(δ̂) = σ̂2u[(1− 2α̂)(X̂ 0PX̂ − α̂X̂ 0X̂) + α̂(1− α̂)X̂ 0X̂],

Then by Lemma A13 and T it follows that

S−1T Σ̂B(δ̂)S
−10
T = (σ2u +Op(1/μ̃T )){(1− 2τT +Op(

√
K/T ))(HT +Op(∆

2
T + 1/μ̃T ))

+(1− τT +Op(
√
K/T ))(τT (1− τT )

−1HT +KS−1T Ω̃S−10T +Op(1/μ̃T ))

= σ2u{(1− 2τT )HT + τTHT + (1− τT )KS−1T Ω̃S−10T }+Op(∆
2
T + 1/μ̃T )

= σ2u(1− τT )(HT +KS−1T Ω̃S−10T ) +Op(∆
2
T + 1/μ̃T ).

The conclusion now follows by Lemmas A10 and A11 and T. Q.E.D.

Lemma A15: If Assumptions 1-5 are satisfied and S0T (δ̂ − δ0)/μT = Op(μ̃
−1
T ) then

in case I, S0T Λ̂ST − ΛT = Op(1/μ̃T + ∆T ), and in case II, (μ
2
T/K)(S

0
T Λ̂ST − ΛT ) =

Op(1/μ̃T +∆T ).

Proof: Let Ĥ = S−1T Ĥ(δ̂)S−10T . Note that HT is uniformly nonsingular by τT bounded

away from 1 and uniform nonsingularity of z0z/T . Then by Lemma A12 we have, in both

cases,

Ĥ−1 = H−1
T +Op(μ̃

−1
T +∆T ), Ĥ

−1 = Op(1),H
−1
T = O(1).

In case I note that
√
K/μT is bounded, so that by Lemma A14, S

−1
T Σ̂(δ̂)S−10T = ΣT +

Op(1/μ̃T +∆T ) and ΣT = O(1). The conclusion then follows by

S0T Λ̂ST = Ĥ−1S−1T Σ̂(δ̂)S−10T Ĥ−1

= [H−1
T +Op(μ̃

−1
T +∆T )][ΣT +Op(1/μ̃T +∆T )][H

−1
T +Op(μ̃

−1
T +∆T )]

= ΛT +Op(1/μ̃T +∆T ).
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In case II note that by Lemma A14,

(μ2T/K)S
−1
T Σ̂(δ̂)S−10T = (μ2T/K)ΣT +Op(1/μ̃T +∆T ),

and that (μ2T/K)ΣT = O(1). The conclusion then follows from

(μ2T/K)S
0
T Λ̂ST = (μ2T/K)Ĥ

−1S−1T Σ̂(δ̂)S−10T Ĥ−1

= [H−1
T +Op(μ̃

−1
T +∆T )][(μ

2
T/K)ΣT +Op(1/μ̃T +∆T )][H

−1
T +Op(μ̃

−1
T +∆T )]

= (μ2T/K)ΛT +Op(1/μ̃T +∆T ).Q.E.D.

Proof of Theorem 2: Consider first the case where δ̂ is LIML. Then μ−1T S0T (δ̂ −

δ0)
p−→ 0 by Theorem 1, implying δ̂

p−→ δ0. The first-order conditions for LIML are

D̂(δ̂) = 0. Expanding gives

0 = D̂(δ0) +
∂D̂

∂δ

³
δ̄
´
(δ̂ − δ0),

where δ̄ lies on the line joining δ̂ and δ0 and hence β̄ = μ−1T S0T (δ̄−δ0)
p−→ 0. Then there is

εT −→ 0 such that β̄ = Op(εT ), so by Lemma A5, H̄T = S−1T [∂D̂(δ̄)/∂δ]S
−10
T = HT+op(1).

Then ∂D̂(δ̄)/∂δ is nonsingular w.p.a.1 and solving gives

S0T (δ̂ − δ) = −S0T [∂D̂(δ̄)/∂δ]−1D̂(δ0) = −H̄−1
T S−1T D̂(δ0).

Next, apply Lemma A2 with Vt = Ṽt and

WtT =

Ã
S−1T (1− τT )Υtut

K−1/2(ptt − τT )Ṽtut

!
,

By ut having bounded fourth moment,

TX
t=1

E
∙°°°S−1T Υtut

°°°4¸ ≤ C
TX
t=1

kztk4 /T 2 −→ 0.

Also, by ut and Vt having bounded eighth moment and p4tt ≤ K,

TX
t=1

E
∙°°°K−1/2(ptt − τT )Ṽtut

°°°4¸ ≤ C

"
TX
t=1

p4tt + Tτ 4T

#
/K2 ≤ C

K
+ τ 2T/T −→ 0.

By Assumption 3, we have

TX
t=1

E[WtTW
0
tT ] −→

"
σ2u(1− τ)H (1− τ)A0

(1− τ)A (κ− τ)(Ω̃+B)

#
= Ψ̄.
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Let Γ = diag
³
Ψ̄, σ2uΩ̃(1− κ)

´
and

UT =

Ã PT
t=1WtTP
t6=s Ṽtptsus/

√
K

!
.

Consider c such that c0Γc > 0. Then by the conclusion of Lemma A2 we have c0UT
d−→

N(0, c0Γc). Also, if c0Γc = 0 then it is straightforward to show that c0UT
p−→ 0. Then it

follows that

UT =

Ã PT
t=1WtTP
t6=s Ṽtptsus/

√
K

!
d−→ N(0,Γ),Γ = diag

³
Ψ̄, σ2uΩ̃(1− κ)

´
.

Next, we consider the two cases. Case I) has K/μ2T bounded. In this case
√
KS−1T −→

S0, so that

FT
def
= [I,

√
KS−1T ,

√
KS−1T ] −→ F0 = [I, S0, S0], F0ΓF

0
0 = ΛI .

Then by Lemma A8 and S and W 0u = FTUT ,

S−1T D̂(δ0) = W 0u+ op(1) = FTUT + op(1)
d−→ N(0,ΛI),

S0T (δ̂ − δ0) = −H̄−1
T S−1T D̂(δ0)

d−→ N(0,H−1ΛIH
−1)

In case II we have K/μ2T −→∞. Here

(μT/
√
K)FT −→ F̄0 = [0, S̄0, S̄0], F̄0ΓF̄

0
0 = ΛII

and (μT/
√
K)op(1) = op(1). Then by Lemma A8 and S and W 0u = FTUT ,

(μT/
√
K)ST D̂(δ0) = (μT/

√
K)W 0u+ op(1) = (μT/

√
K)FTUT + op(1)

d−→ N(0,ΛII),

(μT/
√
K)S0T (δ̂ − δ0) = −H̄−1

T (μT/
√
K)S−1T D̂(δ0)

d−→ N(0,H−1ΛIIH
−1).

Also, Lemma A15 gives the convergence of the covariance matrix estimators. Finally, if

ΣI is nonsingular then by Lemma A14 we have (S
−1
T Σ̂(δ̂)S−10T )−1 = Σ−1T + op(1), so that

K̂(δ0) = D̂(δ0)
0S−10T (S−1T Σ̂(δ̂)S−10T )−1S−1T D̂(δ0)

= D̂(δ0)
0S−10T Σ−1T S−1T D̂(δ0) + op(1)

d−→ χ2(G).
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The result for case II follows similarly by replacing ST by (μT/
√
K)ST . Q.E.D.

Let t̂ = c0(δ̃ − δ0)/(c
0Λ̂c)1/2.

Proof of Theorem 3: First, consider LIML. Let δ̄ be the mean value as in the

proof of Theorem 2. It follows similarly to the proof of Theorem 2 that S0T (δ̂− δ0)/μT =

Op(μ̃
−1
T ), so that S

0
T (δ̄ − δ0)/μT = Op(μ̃

−1
T ) also holds for the mean value. Then by

Lemma A7 we have S−1T [∂D̂(δ̄)/∂δ]S
−10
T = HT +Op(∆

2
T + μ̃−1T ). Also, by Lemma A8 we

have S−1T D̂(δ0) = W 0u + Op(∆T + μ̃−1T ) = Op(1), so that in case I), by FT = μcT c
0S−10T

bounded,

μcT c
0(δ̃ − δ0) = FT [S

−1
T [∂D̂(δ̄)/∂δ]S

−10
T ]−1S−1T D̂(δ0)

= FT [HT +Op(∆
2
T + μ̃−1T )]

−1[W 0u+Op(∆T + μ̃−1T )]

= FTH
−1
T W 0u+Op(∆T + μ̃−1T ).

Note also that Lemma A15 by FT bounded,

(μcT )
2c0Λ̂c = FTS

0
T Λ̂STF

0
T = FTΛTF

0
T +Op(∆T + μ̃−1T ).

Then by by FTΛTF
0
T bounded and bounded away from zero we also have

³
(μcT )

2c0Λ̂c
´−1/2

= (FTΛTF
0
T )
−1/2

+Op(∆T + μ̃−1T ).

The second conclusion now follows by the delta method and FTH
−1
T W 0u = Op(1), which

gives

t̂ =
μcT c

0(δ̃ − δ0)³
μc2T c

0Λ̂c
´1/2 = FTS

0
T (δ̃ − δ0)³

FTS0T Λ̂STF
0
T

´1/2 = FTH
−1
T W 0u

(FTΛTF 0
T )
1/2
+Op(∆T + μ̃−1T ).

The last conclusion, for case I), follows similarly. In case II we have, by Lemma A15 and

FTH
−1
T W 0uμT/

√
K = Op(1),

t̂ =
μcT c

0(δ̃ − δ0)³
μc2T c

0Λ̂c
´1/2 = FTS

0
T (δ̃ − δ0)μT/

√
K³

FTS0T Λ̂STF
0
Tμ

2
T/K

´1/2
=

FTH
−1
T W 0uμT/

√
K

(FTΛTF 0
Tμ

2
T/K)

1/2
=

FTH
−1
T W 0u

(FTΛTF 0
T )
1/2
+Op(∆T + μ̃−1T ),
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giving the second conclusion in case II). The first conclusion now follows from the second

conclusion and Lemma A2.

For the third conclusion, let t̃ = c0(δ̃−δ0)/
³
σ̂2uc

0Ĥc
´1/2

and ρ̂ =
³
σ̂2uc

0Ĥc
´1/2

(c0Λ̂c)−1/2,

so that t̃ = t̂/ρ̂. In case II, by (S−1T ĤS−10T )−1 and σ̂2u bounded in probability and

FTΛTF
0
Tμ

2
T/K bounded away from zero, we have

ρ̂ =

n
σ̂2uFT (S

−1
T ĤS−10T )−1F 0

Tμ
2
T/K

o1/2
n
FTS0T Λ̂STF

0
Tμ

2
T/K

o1/2 p−→ 0.

Then by the Slutzky Theorem, (t̂, ρ̂)
d−→ (N(0, 1), 0) jointly. Therefore, for any C, ε > 0,

Pr(
¯̄̄
t̃
¯̄̄
≥ C) ≥ Pr(

¯̄̄
t̂
¯̄̄
≥ Cε, |ρ̂| < ε) −→ 1− {Φ(Cε)− Φ(−Cε)}.

For any C the expression on the right can be made arbitrarily close to 1 by choosing ε

small enough. Thus, Pr(
¯̄̄
t̃
¯̄̄
≥ C) −→ 1.

To show the same result for estimators with α̂ = α̃+Op(1/T ), note that

(α̂− α̃)S−1T X 0XS−10T = Op(1/T )Op(T/μ
2
T ) = Op(1/μ

2
T ),

(α̂− α̃)S−1T X 0u = Op(1/T )Op(T/μT ) = Op(1/μT ).

Then it follows from the formula (δ̂ − δ0) = (X
0PX − α̂X 0X)−1(X 0Pu− α̂X 0u) that

μcT c
0(δ̂ − δ̃) = FTS

0
T (δ̂ − δ̃)

= FT [S
−1
T (X

0PX − α̂X 0X)S−10T ]−1ST (X
0Pu− α̂X 0u)

−FT [S
−1
T (X

0PX − α̃X 0X)S−10T ]−1ST (X
0Pu− α̃X 0u)

= Op(1/μT ).

The results then follow as before, with this additional remainder present. Q.E.D.

Lemma A16: If Assumptions 1 - 3 are satisfied then
PT

t=1E[
°°°Ṽ 0Z(Z 0Z)−Zt

°°°3] ≤
CK.

Proof: Consider first the case where Ṽt is a scalar. By the Marcinkiewicz-Zygmund

inequality,

[40]



E
∙¯̄̄
Ṽ 0Z(Z 0Z)−Zt

¯̄̄3¸
= E[|

TX
s=1

Ṽspst|3] ≤ CE[|
TX
s=1

Ṽ 2
s p

2
st|3/2].

By ptt ≤ 1 it follows that p3/2tt ≤ ptt. Also, f(r) = r3/2 is a convex function of r. Then by

Jensen’s inequality and
P

t p
2
st = ptt we have

E[|
TX
s=1

Ṽ 2
s p

2
st|3/2] ≤ p

3/2
tt E[|

TX
s=1

Ṽ 2
s p

2
st/ptt|3/2] ≤ ptt

TX
s=1

E
∙¯̄̄
Ṽs
¯̄̄3¸

p2st/ptt ≤ Cptt.

Combining the last two equations gives E
∙¯̄̄
Ṽ 0Z(Z 0Z)−1Zt

¯̄̄3¸
≤ Cptt. The conclusion

then follows by
PT

t=1 ptt = K and summing up. The conclusion for the vector Ṽt case

follows by T. Q.E.D.

Lemma A17: If Assumptions 1 - 5 and 7 are satisfied then
PT

t=1E[
¯̄̄
μcT c

0S−10T H−1
T WtT

¯̄̄3
] ≤

C/μT in case I.

Proof: By T, CS, and FT = μcT c
0S−10T and HT bounded,

TX
t=1

E[
¯̄̄
FTH

−1
T WtT

¯̄̄3
] ≤ C

TX
t=1

E
µ
kztk3 /T 3/2 +

°°°Ṽ 0Z(Z 0Z)−Zt

°°°3 /μ3T + τ 3T
°°°Ṽt°°°3 /μ3T¶

≤ C
TX
t=1

kztk3 /T 3/2 +K/μ3T + τ 3TT/μ
3
T ≤ C

³
1/μT +K/μ3T

´
.

In case I we have K/μ2T bounded, giving the conclusion. Q.E.D.

Lemma A18: If Assumptions 1 - 5, 7, and 8 are satisfied and bT > 0 are constants

such that bT is bounded and bounded away from zero then in case I,

|Pr(μ
c
T c
0S−10T H−1

T W 0u√
bT

≤ q)− Φ(q)| ≤ C/μT + C|bT − μc2T c
0S−10T ΛTS

−1
T c|.

Proof: Let FT = μcT c
0S−10T as previously. Assumption 7 implies

E[u2t Ṽt] = E[E[u2t |Ṽt]Ṽt] = E[σ2uṼt] = 0,

E[(u2t − σ2u)ṼtṼ
0
t ] = E[E[u2t − σ2u|Ṽt]ṼtṼ

0
t ] = 0.

[41]



Then ΣT = σ2u(1−τT )(HT+KS−1T Ω̃S−10T ).Without changing notation letW =WH−1
T F 0

T ,

ΛT = FTΛTF
0
T , and

Λ̄T = σ2uW
0W = σ2uFTH

−1
T {(1− τT )HT + S−1T Ṽ 0(P − τT I)

2Ṽ S−10T + Ĵ + Ĵ 0}H−1
T F 0

T ,

Ĵ = (1− τT )S
−1
T Υ0(P − τT I)Ṽ S

−10
T .

Note that

E[
°°°Ĵ°°°2] ≤ CE[

°°°z0PṼ °°°2 /T ]/μ2T + CE[
°°°z0Ṽ °°°2 /T ]/μ2T .

= Ctr(z0Pz/T )/μ2T + Ctr(z0z/T )/μ2T = O(1/μ2T ).

Also by Lemma A1 and M we have

E[
°°°Ṽ 0PṼ −KΩ̃

°°°2] = O(K), E[
°°°Ṽ 0Ṽ − T Ω̃

°°°2] = O(T ).

Then by T and by (1− τT )KΩ̃ = (1− 2τT )KΩ̃+ τ 2TT Ω̃,

E[
°°°S−1T (Ṽ 0(P − τT I)

2Ṽ − (1− τT )KΩ̃)S−10T

°°°2]
≤ C(1− 2τT )E[

°°°Ṽ 0PṼ −KΩ̃
°°°2]/μ4T + Cτ 2TE[

°°°Ṽ 0Ṽ − TΩ
°°°2]/μ4T

≤ CK/μ4T ≤ C/μ2T .

Then by T we have E[
¯̄̄
Λ̄T − ΛT

¯̄̄2
] ≤ C/μ2T while by Assumption 7 there is ε > 0 such that

ΛT ≥ ε for all T large enough. Then for AT = {Λ̄T > ε/2}, by Chebyshev’s inequality,

Pr(Ac
T ) ≤ Pr(|Λ̄T − ΛT | > ε/2) ≤ CE[|Λ̄T − ΛT |2] ≤ C/μ2T .

Note that V ar(W 0u|Ṽ ) = Λ̄T and Pr(W
0u/
√
bT ≤ q|Ṽ ) = Pr(W 0u/

q
Λ̄T ≤ q

q
bT/Λ̄T |Ṽ ).

Also, by independent observations u1, ..., uT are independent conditional on Ṽ and have

conditional mean zero and bounded conditional third moment. Then by a standard

approximation result,

1(AT )|Pr(W 0u/
q
bT ≤ q|Ṽ )− Φ(q

q
bT/Λ̄T )| ≤ 1(AT )C

TX
t=1

|WtT |3/Λ̄3/2T ≤ C
TX
t=1

|WtT |3.
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By an expansion of the Gaussian distribution,

1(AT )
¯̄̄̄
Φ
µ
q
q
bT/Λ̄T

¶
− Φ(q)

¯̄̄̄
≤ C

¯̄̄
Λ̄T − bT

¯̄̄
.

It then follows by Lemma A17, T, and CS that

|Pr(W 0u/
q
bT ≤ q)− Φ(q)| = |E[Pr(W 0u/

q
bT ≤ q|Ṽ )− Φ(q)]|

≤ E[|Pr(W 0u/
q
bT ≤ q|Ṽ )− Φ(q)|]

≤ E[{1(Ac
T ) + 1(AT )}|Pr(W 0u/

q
bT ≤ q|Ṽ )− Φ(q)|]

≤ C/μ2T + CE[
TX
t=1

|WtT |3] + CE[
¯̄̄
Λ̄T − ΛT

¯̄̄
]

≤ C/μT + C{E[
¯̄̄
Λ̄T − ΛT

¯̄̄2
]}1/2 + C |ΛT − bT | ≤ C/μT + C |ΛT − bT | .Q.E.D.

Proof of Theorem 4: For the first conclusion apply Lemma A18 with VT = ΛT ,

using the notation from Lemma A18. For the second conclusion, do the same with

bT = σ2uFTH
−1
T F 0

T , so that by the conclusion of Lemma A18 and by τT ≤ K/μ2T ,

|Pr(W
0u√
bT
≤ q)− Φ(q)| ≤ C/μT + |σ2uFTH

−1
T F 0

T − ΛT |

≤ C/μT + C kHT − ΣTk ≤ C(μ−1T +K/μ2T ).

Q.E.D.

Proof of Theorem 5: ST = diag(IG1 ,
√
TIG2). By Lemma A11, when δ̂ = δ0 we

have
PT

t=1(û
2
t − σ̂2n)V̂tV̂

0
t /T = Op(1). Also, as in McFadden (1982), Z

0Z/T converging

implies that maxt≤T ptt −→ 0, so that

X
t

p2tt ≤ max
t≤T

ptt
X
t

ptt = Kmax
t≤T

ptt −→ 0.

Therefore, it follows that¯̄̄
S−1T B̂(δ0)S

−10
T

¯̄̄
≤
ÃX

t

p2tt +K2/T

!
Op(1)

p−→ 0.

Note that by standard calculations, E[V 0PV ] ≤ CK, so that V 0PV = Op(1) by M. Then

by T we have

tr(S−1T Υ̂0Υ̂S−10T ) ≤ Ctr(z0Pz/T ) + Ctr(S−1T V 0PV S−1T ) = Op(1).
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We also have, by
P

t ptt = K,

X
t

(ptt −K/T )2 ≤
X
t

p2tt −→ 0.

Also, it follows by the proof of Lemma A10 that
P

t u
2
t V̂

0
t /T = Op(1), so that

S−1T Â(δ0)S
−10
T ≤

"X
t

(ptt −K/T )2
X
t

°°°S−1T Υ̂t

°°°2#1/2Op(1)
p−→ 0.

Let X̂ = X̃(δ0) = X − uγ̂0, γ̂ = X 0u/u0u, so that X̂ − X̃ = −u(γ̂ − γ)0. Then we have,

by u0Pu = Op(1),

S−1T (X̂ − X̃)0P (X̂ − X̃)S−10T = (u0Pu)S−1T (γ̂ − γ)(γ̂ − γ)0S−10T
p−→ 0.

We also have by the Lindberg-Feller Central Limit Theorem,

[Z 0X̃S−10T /
√
T , Z 0u/

√
T ] = [Z 0z/T + Z 0Ṽ S−10T /

√
T , Z 0u/

√
T ]

d−→ [G̃, Ỹ ],

where vec(G̃) and Ỹ are Gaussian, independent by Ṽt and ut uncorrelated, and V ar(Ỹ ) =

σ2uM. Then by CMT and Slutzky,

S−1T X̃ 0PX̃S−10T = (S−1T X̃ 0Z/
√
T )(Z 0Z/T )−1Z 0X̃S−10T /

√
T

d−→ G̃0M−1G̃.

It follows that S−1T X̃ 0PX̃S−1T = Op(1), so that S
−1
T X̂ 0PX̂S−1T = S−1T X̃ 0PX̃S−1T + op(1). It

follows similarly that

S−1T X̂ 0Pu = S−1T X̃ 0Pu+ op(1)
d−→ G̃0M−1Ỹ ,

where this convergence is joint with that of S−1T X̂ 0PX̂S−1T . Note that by indepen-

dence of G̃ and Ỹ , the conditional variance of G̃0M−1Ỹ given G̃ is σ2uG̃
0M−1G̃. Also,

G̃0M−1G̃ is nonsingular with probability one. Hence, the conditional distribution of

Ỹ 0M−1G̃(G̃0M−1G̃)−1G̃0M−1Ỹ /σ2u is χ
2(G). Since this distribution does not depend on

G̃ it follows that this is also the unconditional distribution. Note also that u0Pu = Op(1)

by K fixed, so α̃(δ0) = Op(1/T ). Also, X̃(δ0)
0X̃(δ0) = Op(T ) by standard arguments, so

that by σ̂2u
p−→ σ2u,

Σ̂B(δ0) = {σ2u + op(1)}{1 +Op(1/T )}X̃(δ0)0PX̃(δ0) +Op(1/T
2)X̃(δ0)

0X̃(δ0)

= σ2uX̃(δ0)
0PX̃(δ0) + op(1)

d−→ G̃0M−1G̃.
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Then by the CMT,

LM̂(δ0)
d−→ Ỹ 0M−1G̃(G̃0M−1G̃)−1G̃0M−1Ỹ /σ2u

d∼ χ2(G).Q.E.D.
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Table 2. Weak Instrument Limit of LIML and Fuller. ρ = 0

LIML Fuller
ρ K μ2 Median IQR Bekker Standard Median IQR Bekker Standard

0.0 1 1 0.001 1.318 0.001 0.001 0.000 0.486 0.001 0.001
0.0 1 2 0.001 1.000 0.001 0.001 0.000 0.502 0.002 0.001
0.0 1 4 0.000 0.708 0.004 0.004 0.000 0.488 0.005 0.003
0.0 1 8 -0.001 0.491 0.010 0.010 -0.001 0.418 0.011 0.009
0.0 1 16 0.000 0.342 0.023 0.023 0.000 0.319 0.024 0.020
0.0 1 32 0.000 0.240 0.035 0.035 0.000 0.232 0.036 0.033
0.0 1 64 0.000 0.169 0.042 0.042 0.000 0.167 0.042 0.041

0.0 2 1 -0.002 1.418 0.001 0.001 -0.001 0.659 0.001 0.001
0.0 2 2 0.000 1.099 0.002 0.002 0.000 0.629 0.002 0.002
0.0 2 4 0.000 0.775 0.004 0.005 0.000 0.560 0.006 0.005
0.0 2 8 0.000 0.525 0.011 0.013 0.000 0.450 0.013 0.012
0.0 2 16 0.000 0.355 0.023 0.026 0.000 0.331 0.024 0.023
0.0 2 32 0.000 0.244 0.036 0.038 0.000 0.236 0.036 0.036
0.0 2 64 0.000 0.171 0.043 0.045 0.000 0.168 0.043 0.043

0.0 4 1 0.002 1.528 0.002 0.003 0.001 0.834 0.003 0.003
0.0 4 2 -0.002 1.227 0.003 0.005 -0.002 0.769 0.004 0.005
0.0 4 4 0.000 0.879 0.006 0.009 0.000 0.656 0.007 0.009
0.0 4 8 -0.001 0.581 0.012 0.018 -0.001 0.500 0.014 0.017
0.0 4 16 0.000 0.377 0.023 0.033 0.000 0.352 0.025 0.030
0.0 4 32 0.000 0.252 0.035 0.044 0.000 0.244 0.036 0.041
0.0 4 64 0.000 0.173 0.043 0.048 0.000 0.171 0.043 0.046

0.0 8 1 -0.001 1.634 0.005 0.012 0.000 1.004 0.006 0.012
0.0 8 2 0.001 1.360 0.006 0.015 0.000 0.917 0.008 0.015
0.0 8 4 0.001 1.011 0.009 0.022 0.001 0.774 0.010 0.021
0.0 8 8 0.001 0.669 0.015 0.034 0.001 0.578 0.017 0.032
0.0 8 16 -0.001 0.419 0.025 0.049 -0.001 0.391 0.026 0.045
0.0 8 32 0.000 0.268 0.036 0.056 0.000 0.260 0.036 0.053
0.0 8 64 0.000 0.179 0.044 0.056 0.000 0.176 0.044 0.054

0.0 16 1 -0.002 1.720 0.010 0.046 -0.002 1.164 0.011 0.047
0.0 16 2 0.000 1.496 0.011 0.051 0.000 1.074 0.013 0.052
0.0 16 4 -0.001 1.170 0.014 0.060 -0.001 0.915 0.015 0.059
0.0 16 8 -0.002 0.793 0.019 0.073 -0.002 0.686 0.020 0.070
0.0 16 16 -0.001 0.486 0.026 0.085 0.000 0.452 0.028 0.080
0.0 16 32 0.000 0.295 0.036 0.082 0.000 0.285 0.036 0.077
0.0 16 64 0.000 0.189 0.043 0.069 0.000 0.186 0.043 0.067

0.0 32 1 0.002 1.795 0.017 0.129 0.001 1.320 0.019 0.134
0.0 32 2 0.001 1.622 0.018 0.134 0.001 1.232 0.020 0.137
0.0 32 4 -0.001 1.334 0.020 0.141 -0.001 1.076 0.022 0.143
0.0 32 8 0.000 0.950 0.023 0.149 0.000 0.826 0.025 0.147
0.0 32 16 0.000 0.590 0.029 0.153 0.000 0.549 0.030 0.149
0.0 32 32 0.000 0.343 0.036 0.133 0.000 0.331 0.037 0.128
0.0 32 64 0.000 0.208 0.043 0.098 0.000 0.204 0.043 0.095
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Table 3. Weak Instrument Limit of LIML and Fuller. ρ = 0.2

LIML Fuller
ρ K μ2 Median IQR Bekker Standard Median IQR Bekker Standard

0.2 1 1 0.084 1.307 0.002 0.002 0.162 0.484 0.048 0.003
0.2 1 2 0.038 0.989 0.004 0.004 0.119 0.498 0.033 0.005
0.2 1 4 0.010 0.706 0.009 0.009 0.065 0.483 0.021 0.009
0.2 1 8 0.000 0.490 0.016 0.016 0.027 0.414 0.021 0.016
0.2 1 16 -0.001 0.343 0.026 0.026 0.012 0.318 0.029 0.025
0.2 1 32 0.000 0.240 0.036 0.036 0.006 0.232 0.038 0.035
0.2 1 64 0.000 0.169 0.044 0.044 0.003 0.166 0.044 0.042

0.2 2 1 0.096 1.402 0.004 0.005 0.146 0.650 0.009 0.005
0.2 2 2 0.054 1.088 0.006 0.007 0.108 0.619 0.011 0.008
0.2 2 4 0.019 0.771 0.010 0.012 0.062 0.551 0.015 0.013
0.2 2 8 0.003 0.524 0.017 0.020 0.028 0.445 0.022 0.020
0.2 2 16 0.000 0.354 0.027 0.030 0.013 0.328 0.030 0.029
0.2 2 32 0.000 0.244 0.036 0.039 0.006 0.236 0.038 0.038
0.2 2 64 0.000 0.170 0.043 0.044 0.003 0.167 0.043 0.043

0.2 4 1 0.117 1.507 0.008 0.012 0.146 0.821 0.012 0.014
0.2 4 2 0.071 1.209 0.010 0.015 0.108 0.756 0.014 0.017
0.2 4 4 0.030 0.869 0.013 0.021 0.064 0.642 0.018 0.022
0.2 4 8 0.005 0.578 0.019 0.028 0.028 0.492 0.023 0.028
0.2 4 16 0.000 0.376 0.028 0.037 0.013 0.349 0.031 0.036
0.2 4 32 0.000 0.251 0.036 0.044 0.006 0.242 0.038 0.043
0.2 4 64 0.000 0.173 0.043 0.048 0.003 0.170 0.044 0.047

0.2 8 1 0.133 1.609 0.014 0.033 0.151 0.987 0.019 0.037
0.2 8 2 0.091 1.346 0.016 0.037 0.117 0.902 0.021 0.040
0.2 8 4 0.047 1.000 0.019 0.042 0.074 0.758 0.023 0.044
0.2 8 8 0.012 0.661 0.023 0.049 0.034 0.565 0.027 0.049
0.2 8 16 0.002 0.415 0.029 0.054 0.014 0.386 0.032 0.053
0.2 8 32 0.000 0.266 0.037 0.056 0.006 0.257 0.038 0.054
0.2 8 64 0.000 0.178 0.044 0.055 0.003 0.175 0.044 0.054

0.2 16 1 0.149 1.692 0.023 0.082 0.160 1.144 0.028 0.090
0.2 16 2 0.110 1.477 0.024 0.084 0.127 1.057 0.029 0.091
0.2 16 4 0.064 1.154 0.025 0.087 0.085 0.898 0.030 0.092
0.2 16 8 0.022 0.784 0.028 0.089 0.041 0.673 0.031 0.091
0.2 16 16 0.004 0.482 0.031 0.088 0.016 0.446 0.034 0.087
0.2 16 32 0.000 0.293 0.037 0.080 0.006 0.282 0.039 0.078
0.2 16 64 0.000 0.188 0.044 0.068 0.003 0.185 0.044 0.066

0.2 32 1 0.161 1.769 0.032 0.161 0.168 1.295 0.036 0.172
0.2 32 2 0.131 1.594 0.033 0.162 0.142 1.211 0.037 0.171
0.2 32 4 0.087 1.313 0.033 0.163 0.101 1.056 0.037 0.170
0.2 32 8 0.041 0.938 0.034 0.161 0.056 0.812 0.037 0.164
0.2 32 16 0.009 0.583 0.034 0.152 0.020 0.540 0.037 0.150
0.2 32 32 0.001 0.341 0.039 0.129 0.007 0.329 0.040 0.125
0.2 32 64 0.000 0.206 0.043 0.096 0.003 0.202 0.044 0.094
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Table 4. Weak Instrument Limit of LIML and Fuller. ρ = 0.5

LIML Fuller
ρ K μ2 Median IQR Bekker Standard Median IQR Bekker Standard

0.5 1 1 0.200 1.221 0.024 0.024 0.380 0.470 0.182 0.032
0.5 1 2 0.091 0.952 0.031 0.031 0.268 0.494 0.132 0.039
0.5 1 4 0.024 0.700 0.038 0.038 0.149 0.463 0.085 0.046
0.5 1 8 0.003 0.493 0.042 0.042 0.068 0.395 0.061 0.050
0.5 1 16 -0.001 0.344 0.043 0.043 0.031 0.311 0.053 0.049
0.5 1 32 0.000 0.240 0.042 0.042 0.016 0.229 0.049 0.046
0.5 1 64 0.000 0.170 0.044 0.044 0.008 0.166 0.047 0.046

0.5 2 1 0.239 1.308 0.036 0.042 0.360 0.601 0.096 0.057
0.5 2 2 0.123 1.028 0.040 0.046 0.260 0.569 0.084 0.059
0.5 2 4 0.040 0.754 0.044 0.051 0.150 0.503 0.072 0.062
0.5 2 8 0.005 0.516 0.045 0.051 0.068 0.413 0.061 0.059
0.5 2 16 0.000 0.351 0.043 0.047 0.031 0.318 0.053 0.053
0.5 2 32 0.000 0.243 0.042 0.044 0.015 0.232 0.048 0.048
0.5 2 64 0.000 0.171 0.045 0.046 0.008 0.167 0.048 0.048

0.5 4 1 0.283 1.392 0.055 0.081 0.361 0.745 0.093 0.105
0.5 4 2 0.167 1.134 0.054 0.080 0.267 0.683 0.085 0.100
0.5 4 4 0.064 0.830 0.052 0.076 0.157 0.572 0.075 0.091
0.5 4 8 0.012 0.564 0.050 0.068 0.073 0.453 0.065 0.078
0.5 4 16 0.001 0.369 0.045 0.055 0.032 0.333 0.054 0.062
0.5 4 32 0.000 0.250 0.043 0.049 0.016 0.238 0.049 0.053
0.5 4 64 0.000 0.173 0.044 0.048 0.008 0.168 0.047 0.049

0.5 8 1 0.325 1.478 0.078 0.146 0.375 0.890 0.109 0.179
0.5 8 2 0.218 1.245 0.073 0.137 0.287 0.813 0.099 0.165
0.5 8 4 0.099 0.937 0.065 0.121 0.175 0.673 0.085 0.141
0.5 8 8 0.024 0.632 0.056 0.097 0.081 0.510 0.070 0.110
0.5 8 16 0.001 0.401 0.048 0.071 0.032 0.362 0.057 0.079
0.5 8 32 0.000 0.261 0.043 0.057 0.016 0.248 0.049 0.061
0.5 8 64 0.000 0.176 0.045 0.053 0.008 0.172 0.048 0.055

0.5 16 1 0.367 1.553 0.097 0.223 0.397 1.035 0.120 0.259
0.5 16 2 0.271 1.365 0.091 0.208 0.316 0.954 0.111 0.240
0.5 16 4 0.147 1.076 0.080 0.183 0.204 0.805 0.097 0.208
0.5 16 8 0.048 0.733 0.065 0.145 0.098 0.599 0.078 0.161
0.5 16 16 0.005 0.457 0.052 0.101 0.035 0.411 0.061 0.111
0.5 16 32 0.000 0.282 0.045 0.074 0.015 0.269 0.050 0.078
0.5 16 64 0.000 0.185 0.045 0.063 0.007 0.180 0.048 0.064

0.5 32 1 0.400 1.603 0.113 0.296 0.417 1.165 0.130 0.331
0.5 32 2 0.316 1.461 0.106 0.281 0.345 1.093 0.122 0.313
0.5 32 4 0.204 1.218 0.094 0.253 0.244 0.955 0.108 0.280
0.5 32 8 0.085 0.871 0.077 0.209 0.127 0.725 0.088 0.228
0.5 32 16 0.016 0.546 0.060 0.152 0.045 0.490 0.067 0.162
0.5 32 32 0.001 0.323 0.047 0.107 0.016 0.307 0.052 0.112
0.5 32 64 0.000 0.199 0.045 0.083 0.008 0.194 0.048 0.084
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Table 5. Weak Instrument Limit of LIML and Fuller. ρ = 0.8

LIML Fuller
ρ K μ2 Median IQR Bekker Standard Median IQR Bekker Standard

0.8 1 1 0.290 1.044 0.113 0.113 0.556 0.429 0.495 0.203
0.8 1 2 0.124 0.891 0.102 0.102 0.390 0.400 0.321 0.164
0.8 1 4 0.027 0.699 0.087 0.087 0.220 0.370 0.175 0.126
0.8 1 8 0.001 0.498 0.074 0.074 0.100 0.355 0.108 0.100
0.8 1 16 -0.001 0.346 0.062 0.062 0.048 0.297 0.082 0.079
0.8 1 32 0.000 0.242 0.053 0.053 0.025 0.225 0.066 0.065
0.8 1 64 0.000 0.170 0.049 0.049 0.012 0.164 0.056 0.055

0.8 2 1 0.347 1.088 0.147 0.166 0.554 0.480 0.397 0.275
0.8 2 2 0.160 0.922 0.118 0.133 0.394 0.434 0.268 0.207
0.8 2 4 0.041 0.723 0.093 0.102 0.225 0.389 0.162 0.146
0.8 2 8 0.003 0.512 0.076 0.080 0.102 0.364 0.108 0.107
0.8 2 16 0.000 0.350 0.063 0.065 0.048 0.301 0.083 0.083
0.8 2 32 0.000 0.243 0.054 0.055 0.025 0.226 0.066 0.066
0.8 2 64 0.000 0.170 0.048 0.049 0.013 0.164 0.055 0.055

0.8 4 1 0.414 1.163 0.183 0.238 0.562 0.574 0.316 0.351
0.8 4 2 0.214 0.970 0.141 0.183 0.405 0.496 0.230 0.265
0.8 4 4 0.062 0.763 0.102 0.127 0.234 0.420 0.152 0.176
0.8 4 8 0.007 0.533 0.079 0.091 0.106 0.378 0.108 0.119
0.8 4 16 0.000 0.358 0.064 0.069 0.048 0.307 0.083 0.087
0.8 4 32 0.000 0.245 0.054 0.056 0.025 0.228 0.066 0.068
0.8 4 64 0.000 0.171 0.048 0.050 0.012 0.165 0.055 0.056

0.8 8 1 0.489 1.213 0.219 0.316 0.586 0.679 0.299 0.422
0.8 8 2 0.286 1.043 0.168 0.248 0.431 0.594 0.230 0.331
0.8 8 4 0.101 0.819 0.119 0.171 0.253 0.475 0.160 0.226
0.8 8 8 0.013 0.572 0.085 0.111 0.111 0.404 0.111 0.142
0.8 8 16 0.000 0.373 0.065 0.078 0.049 0.320 0.084 0.097
0.8 8 32 0.001 0.250 0.055 0.060 0.025 0.232 0.067 0.073
0.8 8 64 0.000 0.173 0.049 0.052 0.012 0.167 0.056 0.059

0.8 16 1 0.561 1.245 0.249 0.390 0.620 0.781 0.305 0.483
0.8 16 2 0.373 1.127 0.201 0.323 0.473 0.713 0.248 0.403
0.8 16 4 0.162 0.900 0.142 0.232 0.287 0.564 0.176 0.291
0.8 16 8 0.029 0.640 0.094 0.146 0.125 0.451 0.118 0.181
0.8 16 16 0.000 0.405 0.069 0.095 0.049 0.346 0.085 0.115
0.8 16 32 0.000 0.262 0.056 0.068 0.024 0.243 0.068 0.081
0.8 16 64 0.000 0.177 0.049 0.056 0.013 0.171 0.056 0.063

0.8 32 1 0.624 1.250 0.277 0.457 0.656 0.873 0.316 0.534
0.8 32 2 0.469 1.201 0.234 0.401 0.530 0.836 0.270 0.473
0.8 32 4 0.248 0.998 0.172 0.309 0.341 0.689 0.201 0.367
0.8 32 8 0.062 0.731 0.111 0.203 0.152 0.523 0.132 0.240
0.8 32 16 0.004 0.458 0.076 0.126 0.053 0.388 0.091 0.148
0.8 32 32 0.001 0.282 0.059 0.084 0.025 0.262 0.069 0.098
0.8 32 64 0.000 0.185 0.049 0.065 0.012 0.178 0.056 0.072
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