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1 Introduction

Empirical applications of instrumental variables estimation often give imprecise results.
Using many valid instrumental variables can improve precision. For example, as we show,
using all 180 instruments in the Angrist and Krueger (1991) schooling application gives
tighter correct confidence intervals than using 3 instruments. An important problem with
using many instrumental variables is that conventional asymptotic approximations may
provide poor approximations to the sampling distributions of the resulting estimators.
Two stage least squares (2SLS) is well known to have large biases when many instruments
are used. The limited information maximum likelihood (LIML henceforth) or Fuller
(1977, FULL henceforth) estimators correct this bias, but the usual standard errors are
too small.

We give corrected standard errors (CSE) that improve upon the usual ones, leading
to a better normal approximation to t-ratios under many instruments. The CSE are
an extension of those of Bekker (1994) that allow for non Gaussian disturbances. We
show that the normal approximation with FULL and CSE is asymptotically correct with
nonnormal disturbances under variety of many instrument asymptotics, including the
many instrument sequence of Kunitomo (1980), Morimune (1983), and Bekker (1994)
and the many weak instruments sequence of Chao and Swanson (2002, 2003, 3004, 2005)
and Stock and Yogo (2004). We also find that there is no penalty for many instruments in
the rate of approximation for t-ratios when the CSE are used and an additional condition
is satisfied. That is, the rate of approximation is the same as with a fixed number of
instruments. In addition, we give a version of the Kleibergen (2002) test statistic that is
valid under many instruments, as well as under weak instruments.

We carry out a wide range of simulations to check the asymptotic approximations. We
find that FULL with the CSE give confidence intervals with actual coverage quite close to
nominal. We also show that LIML with the CSE has identical asymptotic properties to
FULL and performs quite well in our simulations, as in those of Hahn and Inoue (2002).

Our results also demonstrate that the concentration parameter (which can be estimated)
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provides a better measure of accuracy for standard inference with FULL or LIML than
the F-statistic, K2, or other statistics previously considered in the literature.

In relation to previous work, the CSE, the rate of approximation results, and our many
instrument view of the Angrist and Krueger (1991) application appear to be novel. The
limiting distribution results build on previous work. For many instrument asymptotics
we generalize LIML results of Kunitomo (1980), Morimune (1983), Bekker (1994), and
Bekker and van der Ploeg (2005) to FULL, disturbances that are not Gaussian, and
general instruments. Our results also generalize recent results of Anderson, Kunitomo,
and Matsushita (2006) to many weak instruments, who had generalized results from
an earlier version of this paper by relaxing a conditional moment restriction. We also
combine and generalize results of Chao and Swanson (2002, 2003, 2005) and Stock and
Yogo (2004) by relaxing some kurtosis restrictions of Chao and Swanson (2003) and
allowing a wider variety of sequences of instruments and concentration parameter than
Stock and Yogo (2004). Our theoretical results make use of some inequalities in Chao
and Swanson (2004).

Hahn and Hausman (2002) give a test for weak instruments and Hahn, Hausman,
and Kuersteiner (2004) show that FULL performs well under weak instruments. Recently
Andrews and Stock (2006) derive asymptotic power envelopes for tests under several cases
of many weak instrument asymptotics with Gaussian disturbances. We consider cases
where the square root of the number of instruments grows slower than the concentration
parameter. There it turns out that Wald tests using the CSE attain the power envelope.
We also consider a case where the number of instruments grows as fast as the sample
size, which is not covered by Andrews and Stock (2006).

The remainder of the paper is organized as follows. In the next section, we briefly
present the model and estimators that we will consider. We reexamine the Angrist
and Krueger (1991) study of the returns to schooling in Section 3 and give a variety
of simulation results in Section 4. Section 5 contains asymptotic results and Section 6

concludes.



2 Models and Estimators

The model we consider is given by

o T)X(GG531+T%’
X = T4V,

where T' is the number of observations, G the number of right-hand side variables, T
is a matrix of observations on the reduced form, and V' is the matrix of reduced form
disturbances. For the asymptotic approximations, the elements of T will be implicitly
allowed to depend on 7', although we suppress dependence of T on T for notational
convenience. Estimation of §; will be based on a T x K matrix Z of instrumental
variable observations.

This model allows for T to be a linear combination of Z, i.e. T = Zm for some K x G
matrix 7. Furthermore, columns of X may be exogenous, with the corresponding column
of V being zero. The model also allows for Z to be functions meant to approximate the

reduced form. For example, let T; and Z; denote the t**

row (observation) for T and
Z respectively. We could have T; = fo(w;) be an unknown function of a vector wy
of underlying instruments and Z; = (p1x(wy), ..., prx(w;))' for approximating functions
pri(w), such as power series or splines. In this case linear combinations of Z; may
approximate the unknown reduced form, e.g. as in Donald and Newey (2001).

It is well known that variability of T relative to V' is important for the properties of

instrumental variable estimators. For G = 1 this feature is well described by

pr =y Yi/E[V7].

t=1

This concentration parameter plays a central role in the theory of IV estimators. The
distribution of the estimators depends on p2, with the convergence rate being 1/uz and
the accuracy of the usual asymptotic approximation depending crucially on the size of
i

To describe the estimators, let P = Z(Z'Z)~Z" where A~ denotes any symmetric

generalized inverse of a symmetric matrix A, i.e. A~ is symmetric and satisfies AA~A =
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A. We consider estimators of the form
0 = (X'PX —aX'X) Y (X'Py — aX'y).

for some choice of &. This class includes all of the familiar k-class estimators except the
least squares estimator. Special cases of these estimators are two-stage least squares
(2SLS), where & = 0, and LIML, where & = & and & is the smallest eigenvalue of the
matrix (X’ X) 1 X'PX for X = [y, X]. FULL is also a member of this class of estimators,
where & = [@— (1 —&)C/T)/[1 — (1 — &)C/T] for some constant C'. FULL has moments
of all orders, is approximately mean unbiased for C' = 1, and is second order admissible
for C' > 4 under standard large sample asymptotics.

For inference we consider an extension of the Bekker (1994) standard errors to nonnor-
mality and estimators other then LIML. Let u(d) = y — X4, 62(6) = a(8)'a(8) /(T — GQ),
a(8) = u(8) Pu(d)/u(6)u(d),T = PX, X(8) = X — a(8)(a(8)X)/a(6)u(s), V() =
(I —P)X(8), iy =XL p2/K, 70 = K/T,

H(S) = X'PzX —a(0)X'X,
2p(6) = 6u(0){(1—a(9)’X(8) PX(8) +a(d)>X(6)'(I — P)X ()},

u

2(6) = Zp(0) + A(6) + A(8) + B(0), A(9) = ; (Pt — 1) TJZI @ (8)°Vi(8)/ TV,
BO) = K(rr— ) Y (w(6)2 = 62(0)Vi(0)Vi(0) /[T(1 — 2rp + rrrr)).

t=1

The asymptotic variance estimator is given by

A=H'SH H=H(),S =32(05).
When § is the LIML estimator, H'$5(5)H ! is identical to the Bekker (1994) variance
estimator. The other terms in A account for third and fourth moment terms that are
present with some forms of nonnormality. In general A is a ”sandwich” formula, with H
being a Hessian term.
The variance estimator A can be quite different than the usual one 62H ' even

when K is small relative to 7. This occurs because H is close to the sum of squares of
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predicted values for the reduced form regressions and )y 5(0) depends on sums of squares
of residuals. When the reduced form r-squared is small, the sum of squared residuals will
tend to be quite large relative to H, leading to )y 5(9) being larger than H. In contrast,
the adjustments for nonnormality A(d) and B(0) will tend to be quite small when K is
small relative to T', which is typical in applications. Thus we expect that in applied work
the Bekker (1994) standard errors and CSE will often give very similar results.

As shown by Dufour (1997), if the parameter set is allowed to include values where
T = Othen a correct confidence interval for a structural parameter must be unbounded
with probability one. Hence, confidence intervals formed using the CSE cannot be cor-
rect. Also, under the weak instrument sequence of Staiger and Stock (1997) the CSE
confidence intervals will not be correct, i.e. they are not robust to weak instruments.
These considerations motivate consideration of a statistic that is asymptotically correct
with weak or many instruments.

Such a statistic can be obtained by modifying the Lagrange multiplier statistic of

Kleibergen (2002) and Moreira (2001). For any ¢ let

LM(8) = u(8)' PX(8)5(8) 71X (6) Pu(9).

This statistic differs from previous ones in using 2(5)_1 in the middle. Its validity
does not depend on correctly specifying the reduced form. The statistic LM (6) will be
asymptotically distributed as x?(G) when § = &, under both many and weak instruments.
Confidence intervals for &, can be formed from LM (8) by inverting it. Specifically, for
the 1—« quantile ¢ of a x?(G) distribution, an asymptotic 1 —« confidence interval is {4 :
LM(6) < q}. As recently shown by Andrews and Stock (2006), the conditional likelihood
ratio test of Moreira (2003) is also correct with weak and many weak instruments, though
apparently not under many instruments, where K grows as fast as T'. For brevity we
omit a description of this statistic and the associated asymptotic theory.

We suggest that the CSE are useful despite their lack of robustness to weak instru-
ments. Standard errors provide a simple measure of uncertainty associated with an esti-

mate. The confidence intervals based on LM () are more difficult to compute. Also, as

5]



we discuss below, the t-ratios for FULL based on the CSE provide a good approximation
over a wide range of empirically relevant cases we considered. This observation might
justify viewing the parameter space as being bounded away from T = 0, thus overcoming
the strict Dufour (1997) critique. Or, one might simply view that our theoretical and
simulation results are relevant enough for applications to warrant using the CSE.

It does seem wise to check for weak instruments in practice. One could use the Hahn
and Hausman (2004) test. One could also compare a Wald test based on the CSE with
a test based on LM (). One could also develop versions of the Stock and Yogo (2004)
tests for weak instruments that are based on the CSE.

Because the concentration parameter is important for the properties of the estimators
it is useful to have an estimate of it for the common case with one endogenous right-hand

side variable. For G =1 let 62 = V'V /(T — K). An estimator of y2 is
ir = X'X /67 — K = K(F - 1),

where F' = (X'X/K)/[V'V /(T — K)] is the reduced form F-statistic. This estimator is

consistent in the sense that under many instrument asymptotics

In the general case with one endogenous right-hand side and other exogenous right-hand
side variables we take

i = (K =G+ 1)(F - 1),

where I is the reduced form F-statistic for the variables in Z that are excluded from X.

3 Quarter of Birth and Returns to Schooling

A motivating empirical example is provided by the Angrist and Krueger (1991) study
of the returns to schooling using quarter of birth as an instrument. We consider data
drawn from the 1980 U. S. Census for males born in 1930-1939. The model includes

a constant and year and state dummies. We report results for 3 instruments and for
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180 instruments. Figures 1-4 are graphs of confidence intervals at different significance
levels using several different methods. The confidence intervals we consider are based
on 2SLS with the usual (asymptotic) standard errors, FULL with the usual standard
errors, and FULL with the CSE. We take as a standard of comparison our version of the
Kleibergen (2002) confidence interval (denoted K in the graphs), which is robust to weak
instruments, many instruments, and many weak instruments.

Figure 1 shows that with three excluded instruments (two overidentifying restrictions),
2SLS and K intervals are very similar. The main difference seems to be a slight horizontal
shift. Since the K intervals are centered about the LIML estimator, this shift corresponds
to a slight difference in the LIML and 2SLS estimators. This difference is consistent with
2SLS having slightly higher bias than LIML. Figure 2 shows that with 180 excluded
instruments (179 overidentifying restrictions) the confidence intervals are quite different.
In particular, there is a much more pronounced shift in the 2SLS location, as well as
smaller dispersion. These results are consistent with a larger bias in 2SLS resulting from
many instruments.

Figure 3 compares the confidence interval for FULL based on the usual standard error
formula for 180 instruments with the K interval. Here we find that the K interval is wider
than the usual one. In Figure 4, we compare FULL with CSE to K, finding that the K
interval is nearly identical to the one based on the CSE.

Comparing Figures 1 and 4, we find that the CSE interval with 180 instruments is
substantially narrower than the intervals with 3 instruments. Thus, in this application
we find that using the larger number of instruments leads to more precise inference, as
long as FULL and the CSE are used. These graphs are consistent with direct calculations
of estimates and standard errors. The 2SLS estimator with 3 instruments is .1077 with
standard error .0195 and the FULL estimator with 180 instruments is .1063 with CSE
.0143. A precision gain is evident in the decrease in the CSE obtained with the larger
number of instruments. These results are also consistent with Donald and Newey’s (2001)
finding that using 180 instruments gives smaller estimated asymptotic mean square error

for LIML than using just 3. Furthermore, Cruz and Moreira (2005) also find that 180
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instruments are informative when extra covariates are used.

We also find that the CSE and the standard errors of Bekker (1994) are nearly identical
in this application. Adding significant digits, with 3 instruments the CSE is .0201002
while the Bekker (1994) standard error is .0200981, and with 180 instruments the CSE
.0143316 and the Bekker (1994) standard error is .0143157. They are so close in this
application because even when there are 179 overidentifying restrictions, the number of
instruments is very small relative to the sample size.

These results are interesting because they occur in a widely cited application. However
they provide limited evidence of the accuracy of the CSE because they are only an
example. They result from one realization of the data, and so could have occurred by
chance. Real evidence is provided by a Monte Carlo study.

We based a study on the application to help make it empirically relevant. The design
had the same sample size as the application and instrument observations fixed at the sam-
ple values, e.g. as in Staiger and Stock’s (1997) design for dummy variable instruments.
The data was generated from a two equation triangular simultaneous equations system
with structural equation as in the empirical application and a reduced form consisting
of a regression of schooling on all of the instruments, including the covariates from the
structural equation. The structural parameters were set equal to their LIML estimated
values from the 3 instruments case. The disturbances were homoskedastic Gaussian with
(bivariate) variance matrix for each observation equal to the estimate from the applica-
tion. Because the design has parameters equal to estimates this Monte Carlo study could
be considered a parametric bootstrap.

We carried out two experiments, one with three excluded instruments and one with
179 excluded instruments. In each case the reduced form coefficients were set so that
the concentration parameter for the excluded instruments was equal to the unbiased
estimator from the application. With 3 overidentifying restrictions the concentration
parameter value was set equal to the value of the consistent estimator 2. = 95.6 from

the data and with 179 overidentifying restrictions the value was set to i3 = 257.



TABLE 1. Simulation Results
Males born 1930-1939. 1980 IPUMS
n =329,509, 5 = .0953

Bias/f RMSE  Size
A. 3 instruments, p% = 95.6

2SLS -0.0021 0.0217 0.056
LIML 0.0052  0.0222 0.056
CSE 0.054
FULL 0.0010  0.0219 0.057
CSE 0.056
Kleibergen 0.059
B. 180 instruments, p% = 257
2SLS -0.1440 0.0168 0.318
LIML -0.0042 0.0168 0.133
CSE 0.049
FULL -0.0063 0.0168 0.132
CSE 0.049
Kleibergen 0.051

Table 1 reports the results of this experiment, giving relative bias, mean-square error,
and rejection frequencies for nominal five percent level tests concerning the returns to
schooling coefficient. Similar results hold for the median and interquartile range. We are
primarily interested in accuracy of inference and not in whether confidence intervals are
close to each other, as they are in the application, so we focus on rejection frequencies.
We find that with 3 excluded instruments all of rejection frequencies are quite close to
their nominal values, including those for 2SLS. We also find that with 180 instruments,
the significance levels of the standard 2SLS, LIML, and FULL tests are quite far from
their nominal values, but that with CSE the LIML and FULL confidence intervals have
the right level. Thus, in this Monte Carlo study we find evidence that using CSE takes
care of whatever inference problem might be present in this data.

These results provide a somewhat different view of the Angrist and Krueger (1991)
application than do Bound, Jaeger, and Baker (1996) and Staiger and Stock (1997). They
viewed the 180 instrument case as a weak instrument problem, apparently due to the low
F-statistic, of about 3, for the excluded instruments. In contrast we find that correcting
for many instruments, by using FULL with CSE, fixes the inference problem. We would

not tend to find this result with weak instruments, because CSE do not correct for weak
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instruments as illustrated in the simulation results below. These results are reconciled by
noting that a low F-statistic does not mean that FULL with CSE is a poor approximation.
As we will see, a better criterion for LIML or FULL is the concentration parameter.
In the Angrist and Krueger (1991) application we find estimates of the concentration
parameter that are quite large. With 3 excluded instruments 42 = 95.6 and with 179
excluded instruments fi2 = 257. Both of these are well within the range where we find

good performance of FULL and LIML with CSE in the simulations reported below.

4 Simulations

To gain a broader view of the behavior of LIML and FULL with the CSE we consider the
weak instrument limit of the FULL and LIML estimators and t-ratios with CSE under
the Staiger and Stock (1997) asymptotics. This limit is obtained by letting the sample
size go to infinity while holding the concentration parameter fixed. The limits of CSE
and the Bekker (1994) standard errors coincide under this sequence because K /T — 0.
As shown in Staiger and Stock (1997), these limits provides excellent approximations to
small sample distributions. Furthermore, it seems very appropriate for microeconometric
settings, where the sample size is often quite large relative to the concentration parameter.

Tables 2-5 give results for the median, interquartile range, and rejection frequencies
for nominal 5 percent level tests based on the CSE and the usual asymptotic standard
error for FULL and LIML, for a range of numbers of instruments K; concentration pa-
rameters p2; and values of the correlation coefficient p between u; and V;. These three
parameters completely determine the weak instrument limiting distribution of t-ratios.
Tables 2-5 give results for p =0, p = 0.2, p = 0.5, and p = 0.8 respectively. Each table
contains results for several different numbers of instruments and values of the concentra-
tion parameter.

Looking across the tables, there are a number of striking results. We find that LIML
is nearly median unbiased for small values of the concentration parameter in all cases.

This bias does increase somewhat in p and K, but even in the most extreme case we
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consider, with p = .8 and K = 32, the bias is virtually eliminated with a p? of 16. Also,
the bias is small when p? is 8 in almost every case. When we look at FULL, we see that
it is more biased than LIML but that it is considerably less dispersed. The differences in
dispersion is especially pronounced for low values of the concentration parameter, though
FULL is less dispersed than LIML in all cases.

The results for rejection frequencies are somewhat less clear cut than the results for
size and dispersion. In particular, the rejection frequencies tend to depend much more
heavily on the value of K and p than do the results for median bias or dispersion. For
LIML, the rejection frequencies when the CSE are used are quite similar to the rejection
frequencies when the usual asymptotic variance is used for small values of K, but the
CSE perform much better for moderate and large K, indicating that using the CSE with
LIML will generally be preferable. FULL with CSE performs better in some cases and
worse in others than FULL with the conventional standard errors when K is small but
clearly dominates for K large. The results also show that for small values of p, the
rejection frequencies for LIML and FULL tend to be smaller than the nominal value,
while the frequencies tend to be larger than the nominal value for large values of p.

An interesting and useful result is that both LIML and FULL with the CSE perform
reasonably well for all values of K and p in cases where the concentration parameter is
32 or higher. In these cases, the rejection frequency for LIML varies between .035 and
.06, and the rejection frequency for FULL varies between .035 and .070. These results
suggest that the use of LIML or FULL with the CSE and the asymptotically normal
approximation should be adequate in situations where the concentration parameter is
around 32 or greater, even though in many of these cases the F-statistic takes on small
values.

These results are also consistent with recent Monte Carlo work of Davidson and
MacKinnon (2004). From careful examination of their graphs it appears that with few
instruments the bias of LIML is very small once the concentration parameter exceeds 10,

and that the variance of LIML is quite small once the concentration parameter exceeds

20.
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To see which cases might be empirically relevant we summarize values of K and esti-
mates of y? and p from some empirical studies. We considered all microeconomic studies
that contain sufficient information to allow estimation of these quantities found in the
March 1999 to March 2004 American Economic Review, the February 1999 to June 2004
Journal of Political Economy, and the February 1999 to February 2004 Quarterly Journal
of Economics. We found that 50 percent of the papers had at least one overidentifying
restriction, 25 percent had at least three, and 10 percent had 7 or more. As we have seen,
the CSE can provide a substantial improvement even with small numbers of overidenti-
fying restrictions, so there appears to be wide scope for applying these results. Table 7

summarizes estimates of ;2 and p from these studies.

TABLE 7. Five years of AER, JPE, QJE.
Num Papers Median Q10 Q25 Q75 Q90
2 28 23.6 895 127 105 588
p 22 279 022 .0735 466 .555

It is interesting to note that nearly all of the studies had values of p that were
quite low, so that the p = .8 case considered above is not very relevant for practice.
Also, the concentration parameters were mostly in the range where the many instrument

asymptotics with CSE should work well.

5 Many Instrument Asymptotics

Theoretical justification of the CSE is provided by asymptotic theory where the number
of instruments grows with the sample size and using the CSE in t-ratios leads to a better
asymptotic approximation (by the standard normal) than do the usual standard errors.
This theory is consistent with the empirical and Monte Carlo results where the CSE
improve accuracy of the Gaussian approximation.

Some regularity conditions are important for the results. Let Z], u;, V/, and Y} denote
the t"* row of Z,u,V, and YT respectively. Here we will consider the case where Z is

constant, leaving the treatment of random Z to future research.
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Assumption 1: 7 includes among its columns a vector of ones, rank(Z) = K,

SE (1 =pw)?/T>C > 0.

The restriction that rank(Z) = K is a normalization that requires excluding redun-
dant columns from Z. It can be verified in particular cases. For instance, when wy is a con-
tinuously distributed scalar, Z; = p¥ (wy), and prx (w) = w1 it can be shown that Z'7 is
nonsingular with probability one for K < T'.} The condition L, (1—py)?/T > C implies

that K/T < 1—C, because p; < 1implies Sr (1—p;)?/T < S (1—py)/T = 1-K/T.

Assumption 2: There is a G x G matrix Sy = S'T diag (p17, ..., pgr) and z; such
that Ty = Srz/ VT , Sr is bounded and the smallest eigenvalue of S’TS”T is bounded away
from zero, for each j either p;r = VT or ,ujT/\/T — 0, pur = 1£ni<1(1GujT — 00, and

SIS

VK 2 — 0. Also, X7 ||z /T — 0, and L, 22/ /T is uniformly nonsingular.

Allowing for K to grow and for ur to grow slower than v/T models having many
instruments without strong identification. Assumption 2 will imply that, when K grows
no faster that 2., the convergence rate of 6 will be no slower than 1 /pr. When K grows
faster than 12 the convergence rate of § will be no slower than /K /u2. This condition
allows for some components of § to be weakly identified and other components (like the

constant) to be strongly identified.

Assumption 3: (u1, V1), ..., (ur, Vr) are independent with Efw] = 0, E[V}] = 0,
E[uf] and E[||V;||®] are bounded in ¢, Var((u, V;)') = diag(2*,0), Q* is nonsingular, and
for all j € {1, ..., G} such that V;; = 0 and the corresponding submatrix §T22 of §T it is

the case that p;r = VT and Sy, is uniformly nonsingular.

This hypothesis includes moment existence and homoskedasticity assumptions. The
consistency of the CSE depends on homoskedasticity, as does consistency of the LIML
estimator itself with many instruments; see Bekker and van der Ploeg (2005), Chao and

Swanson (2004), and Hausman, Newey, and Woutersen (2006).

!The observations wy, ..., wr are distinct with probability one and therefore, by K < T, cannot all
be roots of a K degree polynomial. It follows that for any nonzero a there must be some ¢ with
a'Zy = a'p® (wy) # 0, implying o/ Z' Za > 0.
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Assumption 4: There is mxp such that A2 = ST ||z, — mgr Zi||° /T — 0.

This condition allows an unknown reduced form that is approximated by a linear
combination of the instrumental variables. An important example is a model with

() (3) - ()

where Zy; is a G x 1 vector of included exogenous variables, fo(w) is a G — Gy di-
mensional vector function of a fixed dimensional vector of exogenous variables w and

def

K(w) = (pig(w),...,px_cyx(w))'. The other variables in X; other than Z;; are en-

p
dogenous with reduced form 1 Z1; + pr fo(we)/ V/T. The function fo(w) may be a linear
combination of a subvector of p®(w), in which case Az = 0 in Assumption 4 or it may
be an unknown function that can be approximated by a linear combination of p% (w).
For i = +/T this example is like the model in Donald and Newey (2001) where Z,
includes approximating functions for the optimal (asymptotic variance minimizing) in-
struments Y, but the number of instruments can grow as fast as the sample size. When
p2 /T — 0, it is a modified version where the model is more weakly identified.
To see precise conditions under which the assumptions are satisfied, let

2t = fO(wt) 7ST = gTd'lag (MT? ey UT \/Ta X3 \/T) 7‘S~’T = [ i .
Z 0 I

By construction we have T; = Sz /T. Assumption 2 imposes the requirements that

T T

> l|2e]|* /T? — 0, > 22, /T is uniformly nonsingular.

t=1 t=1
The other requirements of Assumption 2 are satsified by construction. Turning to As-
sumption 3, we require that Var(u, v;) is nonsingular. Since the submatrix of S corre-
sponding to V;; = 0 is the same as the submatrix corresponding to the included exoge-
nous variables Zq;, we have §T22 = [ is uniformly nonsingular. For Assumption 4, let
Tk = [Ty [y, 0]'). Then Assumption 4 will be satisfied if for each T there exists Txr
with

T T
A7 =z = mr Z?/T = Y | folwi) = Ty Ze||?/T — 0.

t=1 t=1

[14]



The following is a consistency result.

THEOREM 1: If Assumptions 1-4 are satisfied and & = K /T +o0,(12)T) or d is LIML
or FULL then p7'Sy(6 — 6g) =2 0 and § -2 &.

This result is more general than Chao and Swanson (2005) in allowing for strongly
identified covariates but is similar to Chao and Swanson (2003). See Chao and Swanson
(2005) for an interpretation of the condition on &. This result gives convergence rates
for linear combinations of §. For instance, in the linear model example set up above, it
implies that ¢, is consistent and and that 7,01 4 0y = o, (pur/V/T).

Before stating the asymptotic normality results we describe their form. Let 02 =
E[u?], 0%, = E[Viw], v = oyu/02, V =V —uy', having t" row V. and let Q = E[V;V/].

There will be two cases depending on the speed of growth of K relative to p2.
Assumption 5: Either I) K/u2 is bounded or 1) K/u% — co.

To state a limiting distribution result it is helpful to also assume that certain objects

converge. When considering the behavior of t-ratios we will drop this condition.

Assumption 6: H = Tlim (1 —7mp)2'2)T, T = Tlim r, k = lim kp, A =

—00

E[uV)] Tlim Y1 zi(pw — B)/VKT exist and in case I) VKS;' — Sy or in case
[I) ,uTSfl I S@.

Below we will give results for t-ratios that do not require this condition. Let B =

(k — 7)E[(u? — 02)V,V}/]. Then in case I) we will have
Sh(0 = 8) =5 N(0,Ap), SyASy 25 Ay, Ay = H'S, H Y, (5.1)

Y= (1 —7)02{H + SoQSh} + (1 — 7)(SoA + A'S)) + SeBS,.

In case II we will have

(1 / VE)S7(0 = 80) = N (0, Ary), () K)SpASr = Ay App = H 'S HY,
(5.2)

[15]



E[[ == So[(]. - 7')0'3(2 —+ B]S(l)

The asymptotic variance expressions allow for the many instrument sequence of Ku-
nitomo (1980), Morimune (1983), and Bekker (1994) and the many weak instrument
sequence of Chao and Swanson (2003, 2005). When K and p2 grow as fast as T the
variance formula generalizes that of Anderson et. al. (2006) to include the coefficients of
included exogenous variables, which had previously generalized Hansen et. al. (2004) to
allow for Efu,|V;] # 0 and E[u?|V}] # o2. This formula also extends that of Bekker and
van der Ploeg (1995) to general instruments. The formula also generalizes Anderson et.
al. (2006) to allow for p3 and K to grow slower than 7. Then 7 = k = 0, A = 0, and
B = 0 giving a formula which generalizes Stock and Yogo (1994) to allow for included
exogenous variables and to allow for K to grow faster than p32., similarly to Chao and
Swanson (2004). When K does grow faster than u% the asymptotic variance of 5 may
be singular. This occurs because the many instruments adjustment term is singular with
included exogenous variables and it dominates the nonsingular matrix H when K grows

that fast.

THEOREM 2: If Assumptions 1-6 are satisfied, & = & + 0,(1/7T) or & is LIML or
FULL, then in case I) equation (5.1) is satisfied and in case I1) equation (5.2) is satisfied.

Also, in each case if © is nonsingular then LM (8y) — x2(G).

It is straightforward to show that when the disturbances are Gaussian the Wald
test with the CSE attains the power envelope of Andrews and Stock (1996) under the
conditions given here, where v/ K /u% — 0. Andrews and Stock (1996) showed that
the LM statistic of Kleibergen (2002) attains this envelope and it is straighforward to
show that the Wald statistic is asymptotically equivalent to the LM statistic under local
alternatives. For brevity we omit this demonstration.

To give results for t-ratios and to understand better the performance of the CSE we
now turn to approximation results. We will give order of approximation results for two
t-ratios involving linear combinations of coefficients, one with the CSE and another with

the usual formula, and compare results.
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We first give stochastic expansions around a normalized sum with remainder rate. To

describe these results we need some additional notation. Define

~

H = X'PX—aX'X, W =[1—=1p)Y 4 PV — 7 V|S;Y Hp = (1 — 1p)2'2/T,
T

A= (Su— sV ) BRI, Br = (e = rEl( = o))
t=1

Sr = o1 —1p)(Hr + KSF'QS7Y) + (1 — 77)(Ar + Ay) + KS7' BrS;Y,

Ar = H'SpH'

We will consider t-ratios for a linear combination ¢4 of the IV estimator, where c are the

linear combination coefficients, satisfying the following condition:

Assumption 7: There is i such that j$c' Sy is bounded and in case I) (u5)*c SV ArSytc
and (115)%c S+ Hy ' Syt e are bounded away from zero and in case II) (u$)d Sy ArSytep? | K

s bounded away from zero.
Let fip = pp in case I and jip = p2/v/K in case IL
THEOREM 3: Suppose that Assumptions 1 - 5 and 7 are satisfied and & = a&+0,(1/T)

or 0 is LIML or FULL. Then, for ex = Ap + 1/fip in case I) and case II),

C/(g — 50) i} N(O 1) CI(S — 50) . C/SEIIHEIW,U

VAe VAe \/ ¢Sy ArSTte
(6 — o) /\J62¢ H e

(6 — do) _ ¢SV HZ Wy
\/&?Lc’ﬁ—lc \/Ugc’Sfl'HflS:Flc

+ Op(c‘ET).

Also, in case II), Pr( > () — 1 for all C while in case I),

+ Op(ST).

Here we find that the t-ratio based on the linear combination ¢4 is equal to a sum
of independent random variables, plus a remainder term that is of order 1/ + Ap. It
is interesting to note that in case I the rate of approximation is 1/ur + Ap and 1/pur
is the rate of approximation that would hold for fixed K. For example, when p% = T
and Ar = 0, the rate of approximation is the usual parametric rate 1/ VT. Thus, even

when K grows as fast as T, the remainder terms in Theorem 3 can have the parametric

[17]



1/ VT rate. This occurs because the specification of W accounts for the presence of many
instrumental variables.

The reason that the t-ratio with the usual standard errors is unbounded when K/p% —
oo is that the usual variance formula goes to zero relative to the full variance. When
K grows that fast the term that adjusts for many instruments asymptotically dominates
the usual variance formula.

To obtain approximation rates for the distribution of the normalized sums in the
conclusion of Theorem 3, we impose the following restriction on the joint distribution of

u; and V.

Assumption 8: E[u,|V;] = 0, E[u2|V;] = 02, E[|us|*|Vi] is bounded, and L, ||z||* /T3 =
O(1/pr).

The vector V; consists of residuals from the population regression of V; on u; and so
satisfies E[Viu;] = 0 by construction. Under joint normality of (ug,V;), u, and V; are
independent, so the first two conditions automatically hold. In general, these two condi-
tions weaken the joint normality restriction to first and second moment independence of
u; from f/t For example, if V; = vyu; + f/t for any Vt that is statistically independent of
uy then Assumption 4 would be satisfied. The asymptotic variance of the estimators are
simpler under these conditions. This condition implies that E[u?V}] = E[E[u2|V;]V}] =0
and E[u?V,V/] = E[E[u2|V,]V;V/] = 02E[V;V/], so that Ap = 0 and By = 0.

THEOREM 4: If Assumptions 1-5, 7 and 8 are satisfied then for case I
Pr( ISV H W
VSTV ArSye

Pr( ISV H W
Vo2 SFVH Sy e

q) = ®(q) + O(1/pr),

q) = ®(q) + O(1/pr + K/ 7).

When the variance A that adjusts for the presence of many instruments appears in
the denominator the approximation is the fixed K rate 1/up. In contrast, in case I when
the usual variance formula o2 H;' appears in the denominator, the rate of approximation

has an additional K/u2 term. This term will go to zero slower than 1/ when K grows
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faster than puz. When K grows as fast as p2 the remainder term does not even go to
zero, which corresponds to the usual standard errors being inconsistent.

We interpret this result as showing a clear advantage for the CSE with many in-
strumental variables. The condition for the usual standard errors to have as good an
approximation rate as the CSE, that K grows slower than pr, may seem not very onerous
when pp = /T. However, when i grows slower than /7 this condition would put severe
limits on the number of instrumental variables. Thus, if we think of yy growing slowly
as representing a weakly identified model we should expect to find an improvement from
using the CSE even with small numbers of instrumental variables. This interpretation is
consistent with our empirical and Monte Carlo results.

It would be nice to combine Theorems 3 and 4 to obtain a result on the rate of
distributional approximation for the t-ratio. It is well known that this will hold with
additional tail conditions on the remainder in the stochastic expansions of Theorem 3;
see Rothenberg (1984). To do this is beyond the scope of this paper.

We can also show that our modified version of the Kleibergen (2002) statistic is valid
under weak instruments.

THEOREM b: If Assumptions 1 - 3 are satisfied, for each j either pr =1 or pr =
VT, and S;' — Sy, Z'Z)T — M, nonsingular, and Z'z)T — R, then LM (6,) 4,
X (G).

6 Conclusion

In this paper, we have given standard errors that correct for many instruments when
disturbances are not Gaussian. We have also shown that the LIML and Fuller (1977)
estimators with Bekker (1994) standard errors provide improved inference relative to the
usual asymptotic approximation in instrumental variable settings across a wide range
of applications. The Angrist and Krueger (1991) study provides an example where the
CSE with 180 instruments is substantially smaller than the CSE with 3 instruments and

confidence intervals closely match those of Kleibergen (2002). Through simulations, we
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confirm that using the CSE leads to more accurate approximations in many cases. We
also provide theoretical results that show the validity of the CSE under many instruments
and under many weak instruments without imposing normality. The theoretical results
also show that the use of the CSE improves the approximation rate relative to when the
usual standard errors are used. Overall, the results support the use of the CSE across a

wide variety of applications.

7 Appendix: Proofs of Theorems.

Throughout, let C' denote a generic positive constant that may be different in different
uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz
inequality, and the Triangle inequality respectively. Also, for notational convenience, we
drop the T subscript on ur throughout.

LEMMA A1: If (u;,v;, 2;) are independent with Efu;|z;] = Elvi|z] = 0, Elu}|z] < C,
Ev}|z] < C, zis K x 1, then for Z = [z1,..., 27| and P = Z(Z'Z)~ 7',

Var(u'Pv|Z) < CK,u' Pv — E[u'Pv|Z] = O,(VK).

Proof: Let o = Eluwvi|z], i, = E[(w;)?|2), 1i/; = E[(v;)7]]. By independent observa-
tions, Eluv'|Z] = diag(oup, ..., 0wer) = I'. Then E[u'Pv|Z] = tr(PE[vu/|Z]) = tr(P,T).

Also, for p;; = P,

E[(v/ Pv)?|Z] (7.3)

T T T
= > pypeBluvuvd Z) =Y phEuiviz] + D {(piapi; + 05)0witun + D ki

4,5,k ,0=1 i=1 1#j=1
T
= an{E |z$ - Q%M Mimii} + tT(PZF)2 + Z p?j(aumcfuvj + Mii:uij)
ij=1

< C’Zp“ +C Z py; +tr(PT)? < 2C Z py; + tr(PT)?

=1 4,7=1 i,7=1

We have ZT 1 pw Pii, so that by equation (7.3),

T
E[(u'Pv— E'Pv|Z)*|Z) < C ) pi; < CK.

3,j=1
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The second conclusion follows by M. Q.E.D.

LEMMA A2: Ifi) P is a constant idempotent matrix with rank(P) = K ii) (Wir, Vi, u1),

, Wir, Vo, ur) are independent and Dy = Y1, E[WyrW/;] is bounded; ) (V/, u;)
has bounded fourth moments, E[V;] = 0, Elw] = 0, and E[(V/,u)' (V/,u:)] is constant;
iv) S E[|[Wir|lY] — 0; v) K — ocithen for & = E[V,V/|E[u2] + E[Viw] Elu,V{),

T = ZL pft/K, and any sequence of bounded vectors ¢y, cap such that Vi = ¢\ Drcir+
(1 — ky)chypScor is bounded away from zero it follows that

Yo =V 3( chTWtT + CQTngpstut/\/_) — N (0,1).
s#t

Proof: Without changing notation let c;p = ¢17/Vy 2 and cor = Cor [V Y 2, and note
that these are bounded in 7" by Vy bounded away from zero. Let wyr = ¢jWr and
vy = ¢y Vi, where we suppress the T' subscript on v; for convenience. Then we have

T
Y =wir + Y yer, Yir = wer + > (Vspsrtts + vipsrtir) ] VE

t=2 s<t

Also, by E[||[Wir|"] < S, E[|[Wir||'] — 0, so that E[w?;] — 0 and hence

T
Yr = ZytT + Op(l).

t=2

Note that y,r is martingale difference, so that we can apply a martingale central limit

theorem. It follows by P idempotent that Zstl p% = py and Zf:l pw = K. Then, for

Dr =Y E[Wa W],
T
(Z ?JtT)
t=2

= C/1TDTCIT - E{w%T] + Z ZpstquE[Usutvqur]/qg
s#t qFr

= dpDror + {E[vf]E[uf] + (E[vtut])Q} (1 —rr)+o(1)

2

2
S =

2
T
Z (w2 + E (szpstut> /K

=1 s#t

= dypDreir + yp(1 — kr)Sear +0(1) — 1.

Note that s is bounded and bounded away from zero. Also
T

4
T T
> Elyf] <CY E[|Wir| 1+ C Y E (Z{Utptjuj+vjptjut}> JK?
t=2

t=2 t=2 j<t
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By condition iv), 7, E[||Wir||'] — 0. Also, by |ps| < 1 and Zlepfs = Du,

4
Z UtPrjUj
J<t

1

T C T
= 5 Z Z E [UZL ]ptjptkpteptmE [Ujukueum ﬁ Z (Z Dij T+ Z pt]ptk:)
=2

t=2 j kL m<t =2 \j<t 7,k<t

E

M=

1 T
JK? = 2 S pypwpepem Eviusugueny,)
=2 j kbm<t

~+
I
)

gl

~

<

N|Q

5 (;leépfﬁi (in@) (épfk» = (iptt‘f‘ép?t) < % —0.

t=1 \j=1 t=1

Therefore Y-, E[yt] — 0, so the Lindbergh condition is satisfied. To apply the

martingale central limit theorem it now suffices to show that for Z; = (Wir, Vi, uy),

T
ST Bl | Z1, .y Zia] — 57— 0 (7.4)
t=2

.Note first that by independence of Wip, ..., Wrpr,

> (Elw} | Z4, ., Zoa] = Elwir]) = 0.

t=2

Also

E lwr Y (vpgju; + Ujptjut)] =0
i<t

and

E |wer Y (vprju; + vipgue) [N K | Z1, ooy Zoa

j<t
= Elwirv] Y piju;/ VK + Elwiru] > pivs/ VK
j<t J<t

Let 6, = Efwyrvy] and consider the first term ;> prju;/ VK. Let P be the up-
per triangular matrix with Ptj = P, for j > t and Ptj =0,7 <t and let 6 =
(01, .+, 0r). Then -7, 57y diprju; /VE = &' Plu/VK. By CS 66 = X1 (E [wirv])? <
ST E[w?)E[v? < C. By Lemma A3 of Chao and Swanson (2004), PH < VK. It
then follows that

E[(0'P'u/VK)?) < C§' P'PS/K < ||6|*|P'P| /K < CVEK /K — 0,
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so that &' P'u/vK - 0 by M. Similarly, we have S{_, E[wrue] X5 pijv;/VK — 0.
Therefore it follows by T that

T

Z wer > (v +vjptjut)/\/_ | Zyy . Zi1 | 250,

t= <t

To finish showing that eq. (7.4) is satisfied it only remains to show that for g, =
S jct(Vepu; + Ujptjut)/\/ﬁa
T
S B [5 | Zur o Zes] — Elfiy] 20 5)
=2

Note that for 02 = E[u?], 02 = E[v?], 0w = Elusvy),

E [thT | Zla "'aZt—l} - E[@?T]

— 2 Zptj /K + 20’ Z ptjptku]Uk/K
j<t J<k<t
+ou Y p; (i — o) /K 4207 Y pypmvjoe/ K
J<t J<k<t
+200 prj(ujvj — ow) /K + 4oy Z PPt Ui K.
g<t J<k<t

Consider the last two terms. Note that

(Zzptj(uﬂj—%v)> JE? =33 pips B [(ujv; — ow) (ugvr, — o)l /K

t=2 j<t <t k<s

= Z p?jpﬁE {(ujvj - 0“”) } /K2 <C Z thpSJ/K — K2 Zptjpé‘ﬂ

j<t,s Jj<t,s t,8,]
= ) (ZP%) (ZPQ%) JK?=CY p%/K? < CK/K* — 0,
7 t s j

Also, we have

2
T
(Z > ptptkujvk) JE?2 =33 > pipupenmpeElujvpunv] /K

t=2 j<k<t tl j<k<t m<q<l

= >3 > pypwpeipaoior /K> =C > pypwpeipe) K*

0 j<k<t j<k<l j<k<tl

2 2

= C > o/ K2+C > pipwpeipa] K
j<k<t j<k<t<t
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Note that

> piph/K? < Et: (prj) (Zk:p?k> JK? < Zt:p?t/f@ — 0.

j<k<t

Also by Lemma A2 of Chao and Swanson (2004),

S pypwpepe/ K2 = > pupkpape /K2 =Y pupipapi/K* = 0(K)/K* — 0.

j<k<t<t t<j<k<l i<j<k<l

It follows similarly that F {(Zt > jeket ptjptkukvj)2:| /K? — 0.Similar arguments can
also be applied to show that each of the other four terms following the equality in eq.
(7.6) converges in probability to zero It then follows by 7" and M that eq. (7.6) is
satisfied. By T it then follows that eq. (7.4) is satisfied. Thus all the conditions of
the Martingale central limit theorem are satisfied, so that >°7_, v N (0,1). Then by
Slutzky theorem the conclusion holds. Q.E.D.

Let z = [21, ..., 27)', so that T = 285./\/T.
LEMMA A3: If Assumptions 1-4 are satisfied then S’T(gLIML — &)/ pur —= 0.
Proof: Let Y =[0,71], V = [u,V], X = [y, X], so that X = (T + V)D for

1 0
D= [ L ] |
Let Sy = diag(0, Sp) and S5 = diag(0, S3') where 0 is a scalar, and B = X'X /T. Note
that HST/\/TH < (), so that

BTV /12 = tr(Sr2'8)/T° — 0,

so that YV /T -2 0 by M. Also by M,
V'VIT -+ Q = E[VV/] = diag(€¥*,0) > Cdiag(Ig-c,+1,0),

where G5 is the number of j with V;; = 0. By uniform nonsingularity of 2’z/T we have

for all T" large enough,

SrY'YS; = diag(0, 2'2/T) > Cdiag(0, I).
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Also, by pjr = VT for j where Vit = 0 we have, for all 7" large enough,
YY/T = SpSyY'YS;'Sy/T > CSrdiag(0, 1g)Sy/T
> Cdiag(0, Sr)diag(0, Ig,)diag(0, S7).
Therefore, by D nonsingular and hence D’D positive definite, w.p.a.1 we have
B > C{diag(0, S)diag(0, I, diag(0, S%) + diag(Ig_c,+1,0)}.

It follows by straightforward arguments from uniform nonsingularity of Lr9s that the
matrix in brackets is unformly nonsingular, so that minjq—; o/ Ba > C w.p.a.l. Also,
by similar arguments B = O,(1).

Next, note that S7'Sy < CI/u2, so that

E|5: TV 8] < 0 ue(Sp T8 /g — o.

Then S YV S -5 0. Similarly, we have S; Y/ PV S -2 0. Also,
SyY/(I — P)YS;' = diag(0,2'(I — P)z)T) — 0.
We also have, by S; = O(1/ur),
Sp(V'PV — 28 = 8p(KQ+ O,(VE) ~ KO+ 0, (K/VT))5;'
— O,(VE/i) + 0, (K/iin/T) 20,

Let A = py73(X'PX — (K/T)X'X). By Assumption 2 S;T'TS;" > CI for all large

enough T, where I = diag(0, I), so that by T w.p.a.1,

A:Mﬁn&ﬁﬂ@_g)vr_wu—Pn+r?v+vwr

K_,- K- - -, - K-, -, -
V't - =7 'PV — =V'V155'S..D
T T V+V'PV T 157" ST
_ KN - _ o
_ u;QD’ST[<1 - ?) YS!+ 0,(1)]S4D > Cuz?D'Sy IS, D.
Now partition @ = (ay,a})’ where a; is a scalar. Since Sy = diag(0,Sr) we have

o/ D'SpISyDa = [ag + a1o]’ S7S% [oa + a1p]. Then from the previous equation and by
Q) positive definite, w.p.a.1 for all ||af| =1,

O/AOJ Z C (Oéz —+ 061(50), STS% (042 -+ Oél(so) //JJ% = C HS} (062 + 041(50) /,U,TH2 .
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Now, note that for ¢ = ||(1, —&3)'|| and cg = (1, —55)"/co we have Xy = u/co, so that
ahAog = (' Pu— (K/T)u'v) /c2p2 - 0.
For any o with [|a|| =1 let

R T (X' PXa K
(o) =

A I
2 mv) = a’Aa/a’Ba.
By a}Bagy > min|jq)=1 o’Ba/T > C wpal. and ofAag == 0 it follows that G(ag) <
CahAag = 0. Also, for & = arg min o =1 ¢(@), §(&) < G(ap), so (&) = 0. Then by

B = 0,(1) we have &’ Ad = §(a)&’ Ba -2 0, so that
1S5, (6 + 616o) /pr|* < C&/Ad - 0.
Since Sp.S5 /3 > CI, we have ||da + @100|| -~ 0. Because ay is the unique o with ||| =

1 satisfying ||as 4 a1d|| = 0 it follows by a standard argument that & —— (1, —8})/co.

In particular, &; > C w.p.a.1 Then w.p.a.1 d = —@s /a4y exists and

Finally, note that ¢((1, —d")’) is a monotonic transformation of the LIML objective
function (y — X0)'P(y — X6)/(y — X6)'(y — X0). Further, since &; # 0 w.p.a.l,

S (3= 00) /|| = 1St (2 + éado) /e /a3 = 0.

min §(or) = ming((1, d')’)

and by invariance to reparameterization, § = argmin A((1,4')). Q.E.D.
5
Let & = v Pu/u'u.

LEMMA Ad4: If Assumptions 1-4 are satisfied then & = K/T + O,(vVK /T).
Proof: By Lemma Al, v'Pu/K = ¢+ O, (1/\/?) Also 62 = v'u/T = o2 +
0, (1/VT) by M. Then

, , K (v'Pu/K K (u'Pu 9 .o o
uPufu'v— K/T = T( 5 -1 _T@i( e —au—(au—au)>
K 1 1 VK
= Ol )[Op(ﬁ) + Op(—T)] = 0p(—)-Q-E.D.



LEMMA Ab: If Assumptions 1-4 are satisfied, & = &+ O,(%), and Sh(6 — 80)/ pr =

O,(g%) for e¥T/u2 — 0,&% — 0 then

Sy (X'PX —aX'X)SpY = Hp+ Oy(A% + jipt + 5T/ i3),

S (X'Pi—aX'a)/ur = Oplfiy" + ey + 5T/ 7).

Proof: Note that in Case I, VK /u3 < C/fir and in Case II, VK /u% = 1/fir, so that
VK /13 = O(1/fir). Also by M, X'X = O,(T), X't = O,(T). Therefore,

(6— &) ST XXS7Y = 0, (5T/12) , (& — &) S7 X't/ i = Op(4T/43).
Also, by Lemma A4,
(&= K/T) S X' XS5 = 0, (VE/13) = Op(i™). (6 = K/T) Sg X'atfur = O,(i ™).

Also, for Ay = Y'(P — I)Y, By = Y'PV — (K/T)Y'V, and Dy = V'PV — (K/T)V'V

we have

SAHX'PX — (K/T)X'X)S7Y = Hy + S;'(Ar + By + By + Dp) Sy,
Note that —Ar is p.s.d. and by Assumption 4

— S ApS;Y = 21 — P)2)T < (2 — Ziher) (2 — Znher) )T = O(AZ).
Also, S7YSpt < 1/p% and E[VV'] < C1I, so that

E Hs;lT'PVS;l’

| < Cul PP i < (2T 1 = 0113,

and S;'Y'PVS:Y = O,(1/ur) by CM. Similarly, S7'Y'VS;Y = O,(1/ur), so that
S BrSyY = O,(1/ur) by T. Also, V'V = TQ + O,(v/T) by M and V'PV = KQ +
0,(vV/K) by Lemma A1, so that

S' DSz = S (KQ — (K/T)TQ)St" + O,(VE /g + K/ 1igV'T) = Op(1/fir).

The first conclusion then follows by T.
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To show the second conclusion, it follows similarly to above that S7'Y'Pu/ur =

0,(1/fir) and Sz'Y'u/pr = O,(1/jir). Also by Lemma Al and M,

Sp'(V'Pu— %V'u)/MT = Sp' (Kov, — (K/T)Tov.)/ur + Op)(VK /u7) = Oy(1/fir).

Then by X = T + V and T we have S;'(X'Pu — aX'u)/ur = O,(1/jir). Also, by Hr
bounded and the first conclusion, Hy = S3! (X'PX — &X'X)S7Y = O,(1). Then the

last conclusion follows by T and
STHX P — aX'0) /pr = S7HX'Pu — aX'v) [ pir — HpSp(8 — 80)/pir.Q.E.D.

LEMMA A6: If Assumptions 1 - 4 are satisfied and S{F(S — 0o)/pr = Opler) for
er — 0 and er > 1/ug then @/ Pi/d't = & + Op(edu3./T).

Proof: Let = S5(6 — o)/ pr. Also, 62 = @'a/T satisfies 1/62 = O,(1) by M. There-
fore Hy = S7Y(X'PX —aX'X)S:Y = 0,(1) and S;H(X' Pu— &X"u)/pur = O,(1/pur) by

Lemma A5 with & = & and &% = €} = 0 there, so that

i’ P 1
ua/ﬁu_& = ﬁa(ﬁP U —u' Pu— & (t't — u'u))
2
1 /4 A .
_ “_7?; (8'S7H(X'PX — aX'X)S;VB - 23" (X' Pu — a.X"u) /)
_ 1 2
= Op(Fer)Q-E.D.

Proof of Theorem 1: By & = K/T + o0,(u%/T) there exists (z — 0, such that
& = K/T 4 O,(Crp?/T). Then by Lemma A4 and T, & = & + O,(VK T+ (rp3)T).
Then by Lemma A5 with ¢§ = /K /T + Cpp? /T we have
STHX'PX — aX'X)S;Y = Hp + O,(A2 + izt + ¢ + VK /1i2) = Hy + 0,(1).
Also S7Y (X' Pu—aX'u)/ur -2 0 by Lemma A5 with €}, = 0. By uniform nonsingularity
of Hr we have (Hr + 0,(1))™' = O,(1). Then we have
Sh(6—60)/ur = SHX'PX —aX'X)H(X'Pu—aX'u)/ur
= [SPHX'PX — aX'X) SV LS (X Pu — aX'u) /ur
= (Hr+0y(1))"0,(1) = 0.
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For LIML, the conclusion follows by Lemma A3. For FULL, note S/T(SLIML—CSU)/MT 2,0
implies that there is e — 0 with S{F(&IML—&))/MT = Oy(er), so by Lemma A6 we have
aprvp = WP/t = a+Oy(erpi/T) = 0,(u7/T). Also, (T/p3)(VEK/T) = VK [uf —
0, so that O,(vVK/T) = o0,(i%/T). Then & = K/T + 0,(u2/T) by Lemma A4 so that
arivr = K/T + o0,(p3/T) by T. Also, (T/u%)(1/T) = 1/p3 — 0, so by T,

drurr = arvr + Op(1/T) = apinz + 0,(1%/T) = KT + 0,(p>/T).Q.E.D.

Let D(8) = O[u(8)' Pu(8)/2u(5)u(8)] /05 = X' Pu(8) — &(8)X u(5).
LEMMA AT7: If Assumptions 1 - 4 are satisfied and Sy(6 — &)/pr = Oyer) for
ep — 0 then
—S7HOD(5)/96)S7Y = Hyp + Op(AZ + izt + 7).
Proof: Let i = u(d) =y — X6 and 4 = X'u/t'u. Then differentiating gives

- u' Pu uPX X'Pu uPu
——() = X'PX — X'X - X'u — X +2
85( ) w'u u'u aa i (w'u)?

= X'PX —aX'X +7D(6) + D(0)Y,a = @ Pu/u'u = &(5).

By Lemma A6 we have & = & + O,(¢%4%/T). Then by Lemma A5 with £ = e3.u%/T

and €% = 7 we have

StH(X'PX —aX'X) StV = Hr+Oy(A% + i +€7),

pr'Sr' D) = Syl (X'Pu—aX'u)/ur = Oyjiz" +er).
Note that by standard arguments 5 = O,(1), so that urS7'4y = O,(1), and hence
Sp'D(8)Y Sp" = pr'Sp' D(8)0,(1) = Oplfiz" + ex).

The conclusion then follows by T. Q.E.D.

Next, we give an expansion that is useful for the asymptotic normality results. Let
W =[(1-7p)Y + PV —7pV]S;" as in the text.

LEMMA AS8: If Assumptions 1-4 are satisfied then

JE

STiD(60) = W'u+ O,
7 D(do) </m/_

+ AT)
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Proof: Let & = ' Pu/u'u. By Lemma A4, & = K/T + O,(VK/T). Also, Sz'Y'u =
Zu/T = 0,(1) and S;'V'u = O,(vT/ur) by M, so that Sz'(T + V)uO,(VK/T) =
O,(VK /urV/T). Note also that similarly to the proof of Lemma A5 we have

E| S 11 — Pyul'] = 02tr(2/(1 — P)2/T) = O,(A3).

so by M, S7T/(I — P)u = O,(Ar). Tt then follows by T and & = K/T + O,(vV'K/T)
that

S7'D(%) = S7'[(X —wy)Pu—&(X —uy)u]

= S u+V'Pu—(T+ V)’u[% + op(g)] —Y'(I — P)u}
- VK
= Wu+0, (MT\/_+AT)QED

Let jip = pr in Case I and jip = p2./v/K in case IT and let V = (I — P)V.

LEMMA A9: If Assumptions 1-4 are satisfied and Si(6 — 0o)/pr = O,(1/fir) then

<

V—

‘ 2

JT = O,(A2 +i7?) 25 0,V'V/T = (1 — 70)Q 4 O,(Ar + 1/ iy).

<

VIT = (1—710)Q+ O,(Ar+1/fir).

Proof: By Lemma Al we have V'PV /T = 7:Q + O,(VK/T) = 7rQ + 0,(1/V/T). Also,
by CLT V'V /T = Q + O,(1/+/T), so that by the CLT,

V'VT =V'V/T —V'PV/T = (1 —1)Q+ 0,(1/VT).

Note that by construction p2S;'S;Y < CI so that HMTSf“a < C'lal|. Therefore,
| < [rSr S8 = d0)/pr|| < |[S5(5 = do)/pr|| = Op(1/fir). Then by X'X =
O,(T) we have

lu—al? /T < 1XI2 |6 = & /T < (IXIP /T)OL7i2) = Ouliiz?).

It then follows by standard calculations that for 4 = X"i/d'd, |§ — ~||> = O,(jiz?).Note
that V —V = (I — P)(T +uy — @4’). Also by Sp.Sh/T < I we have

tr[X(I — P)Y/T] = tr[S2/(I — P)zSy/T? = O,(A2).
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Then it follows that
|V =V /7 < Clluy — a1 /T + CorX'(1 — PYY/T).
giving the first conclusion. It then follows by standard arguments that
V'V/T —V'V|T = Op(Ar + jizh).
The final conclusion then follows by T. Q.E.D.

2 ~2

Let a = (42 — 02,...,0% —0%) and a= (v} -0

LEMMA A10: If Assumptions 1-4 are satisfied and Siy(0 — &)/ ur = O,(1/fir) then
St A(0)S7" = (1 = m0)Ar + O)(VE [r)(1/ fir + Ar).

Proof: By Z including a constant we have Y, 42V;/T = V'a/T. Also, ||a —a|® /T =

O,(fiz?) follows by standard arguments and HV — ‘_/H2 /T = O,(A% + fi7?) by Lemm A9.

By Lemma A9 V'V /T = O,(1) and ¢’a/T = O, (1) by M, so by CS,

LA/ dV|T = (a—a)(V-=V)/T+ (a—a)V/T+d(V—-V)/T=0,1/fir+ Ar).
T

It also follows by Lemma Al similarly to the proof of Lemma A9 that o'V /T = (1 —

mr)E[u?V)] + O,(1/V/T), so it follows by T that

Zﬁfvt/T = (1= 70)E[u;Vi] + Op(1/fir + Ar).
t

Let d; = (p — 77)/VK and d = (dy, ..., dr)'. Note that ||d||*> < 1 and E[|V'Pd|]*] <
Cd'd < C, so that V'Pd = 0,(1) and | S;'Td| < ||z/v/T]| |d]| < C. Also, S;'1"(I —
P)d = O,(Ar). Then

T
N S Yu(py — ) /VEK = S7X'Pd = SiH (Y +V)P'd

. = 2d/NT + Op)(Ar + 1/ pr).
Then we have, for ep = Ap + 1/ 7
SprA0)STY = [ZAVT + Oylen)| {1 = 7r) E[wiV/] + Op(er) WK S
= Ar+Oy(er)O,(VEK [pir) = Az + Op(VK ur) (1 fir + Ar)).Q.E.D.
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LEMMA A11: If Assumptions 1-4 are satisfied then

T
So(af — 62)VV, /T = (1 = 27p + 1rr) E|(uf — o2)ViV/] + Op(1/fir + A7)
t=1

Proof: Let A = diag(ay,...,ar). Let ¢ and v be columns of V and & = (I — P)e,
v = (I — P)v, so that ¥, ;5,9 /T is an element of 3, a;V;V//T. We also have

> agw )T =¢'(I — P)A(I — P)v/T

By CLT, €' Av/T = Y, ayeve /T = Elaeivy] + O, (1/\/T> . Let e =(1,...,1) and av =
Elasv]e. Then

E|(¢'Pav)* /T?| = @' PE[e<'| Paw/T* < Cav'aw/T* = O (1/T),

so that (¢'Paw) /T = O,(1/+/T) by M. Also, by Lemma A1, &' P(Av—av) /T = 70 E[asv:]+
O,(v/K/T). Then by T it follows that &’ PAv = 77 E[asev,] +0, (1 JNT ) It then follows
similarly that &’ APv = mpElaev] + O, (1/\/7) .

Next, let D = diag(p11, ..., prr) and H = P — D. Then for any o with ||| = 1,

o' Pa = o' P?’a = o H*a + 20’ HDa + o/ D*a

—_
v

> o H?a+ o/ Do — 2(d/ H?)? (aD2 —‘ aH2 )% (aD2 ) 2

Note that o/ D2a < 1 by p% < 1 so that (o’ H2«)? < 2.Then for o = De/ (Zt 1ptt) 1/2,

¢’ DH?De

T 2
T o a/HQOéth:—éptt S C/T,

E|(¢HD@w)*] /T* < C

so that ¢’ HDav/T = O, (l/ﬁ) by M. Also, for w, = (a;v; — E|a;vy])py we have

2
E [(E’HADU — g/HDm)z] JT? = (Z €spstwt> JT? =3 papii Eleswigiw;] /T?
s#t t#s i#£j
= > 0 ( Elw}] + Elesw,] E [5twt]) /T <CY py/T? =CY pu/T* < CJT,
t#s st t
so that

eHADv —'HDaw /T = O, (%) :
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Then by T, & HADv/T = O, (1/\/7) . We also have

- prt(E[a?&T?th] — Elaev]?) /T = O(1/T)

t=1

2
E (€'DAD1) — prtE[atstvtO /T?
t

so that & DADv/T = (3, p3/T) Elarvi] + Oy (1/VT) = mrrrElagw] + 0, (1/VT) .
Next let L be an upper triangular matrix with zero diagonal such that L + L' = H.
Consider e HAHv/T = ¢'(L + L')A(L + L')v/T. Note that

eLAL')T = Z a; (Z p]tsj) (Z pktvk) /T

J<t k<t
is an average of a martingale difference. Therefore

2 2
ijtgj Zpkt’Uk
j<t k<t

E[(eLAL')?/T? = ;E[af]E /T?

< C> > pupupapmElejervevy)/T?
t jklm<t

< CZ Z p]tpk:t ( E[Uk:] + QE[‘EJUJ]E[gkUt]) /T?
t gk<t

< ox(£3) (ga) m-xnm-o(p)

Thus ¢’LAL'v/T = O, (1/V/T) by M. It follows similarly that &'L'ALv/T = O, (1/VT).

We also have

e'LALv/T = Z“t Y ovici | | Doprve | = D DjtPkiaic vk
j<t k>t j<t<k

Therefore, since for j < t < k, ¢ < s < m, Elaiase;evpvy] is nonzero only when

t=s,j=40k=m,

E[(€LAL/TY| = 3 > pipupestms Blasasejeovpvn]/T? = Y. i} Elaf] B[ E[})/T°

j<t<k l<s<m j<t<k

IN

1
CZ (ZP?t) (ZP%t) /T2 = Czpft/jﬂ =0 (f) )
t J k 3
so that ¢'TATv/T = O, (l/ﬁ) . It follows similarly that ¢ I"AT'v/T = O, (1/\/7)

Then by T we have

1
' PAPv/T = trkr Elaevy] + O, (ﬁ) .
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Also by CLT ¢'Av/T = Elaevy] + O, (1/\/T> . Then by T, ¢'(I — P)A(I — P)v/T =
(1—=27p + kprr) Elaev] + O, (1 /NT ) Applying this result to each component we have

S = o) ViV /T = (1= 27p + kp7r) E[(u} — a2)ViV/] + O, (1/VT).

t

Now, there is C' big enough such that for d; = C(1 + y? + X, X;), (v — X}6)? < d; and

)(yt — X10)% — (y, — X{(F)Q) < d; Hg — 5” for all 4,6 in some neighborhood of d,. It also

follows similarly to previous arguments that by the fourth moment of d; bounded in t,

>y dy HVtHQ /T = 0,(1). In particular, for D = diag(d, ..., dr).

E|ePDPe| /T = Y pipwEldicser] = Z pi(Eldiel)-E|d)E[£}]) /T+Y_ p4Eld|Ele%)/T < C
7.kt J,t

and ¢'De/T = Y, die? /T = O,(1), so that by CS

£PDv/T| < (S’PDPs/T)%(U’Dv/T)%:Op(l),

ePDPu/T| < (5’PDP5/T>%(UPDPU/T)% 0,(1).
It then follows that
> lat - 67— (uf = o2)] V;V/TH < 0,(1) (||0 = 9| —o2|) =0, (1/fir)
t

We also have by CS and T,

> (a2 - 62) (97 oy 7| < S (|9 - G+ 2
t

t

i) /e
e 2 \? 2 \?
< Sl ez (Salel ) (- )
t t t
It follows similarly to previous arguments that
S ||V - V| /7 = 0, (8% + 772
t

The conclusion then follows by T. Q.E.D.

LEMMA A12: If Assumptions 1-4 are satisfied and Sy(6 — 0o)/pr = Op(fipt) then
Sy H(8)S7" = Hp + Oy(A% +1/fir).
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Proof: By Lemma A6 with e = jiz* we have a(0) = &+0,(u2/Tji%). The conclusion
then follows by Lemma A5 with £ = p%/Ti3. Q.E.D.

LEMMA A13: If Assumptions 1-4 are satisfied and Sy(6 — 0o)/pr = Op(fipt) then
Sp'a(0)X ()X (0)Sp" = 7r(1 — )" Hy + KS7' QS5 " + O,(fiz).

Proof: By Lemma A6 with er = fiz' we have & = &(8) = & + O, (u2/Tji%). Also,
note that (T/vEK)u2 /T3 = p2./vVKji2 = 1/VK in case I and is equal to VK /p2 — 0
in case 11, so that O, (u2/Tji%) = 0,(v/K/T). Then by T we have & = 77+ 0,(VK /T) =

O,(K/T). Let X = X(8) and X = X — uv' =71+ ‘7 It follows by standard arguments
that || X — X| = 0,(VT/fir) and | X| = 50 that | X'X — X'X|| = O,(T/jir).

Therefore we have

|S7!aX X SpY — 8t aX X S

= O,(K/T)0,(1/17)0p(T/ fir) = Op(VK [ pigjir) = 0,(1/ i)
We also have

(@ = 70)Sp' XX S| = OJ(TVE /Tiiz) = Oy(1/fir).

Furthermore, by M, 7pS7 ' Y'VS;:Y = O,(K/Tur) = O,(1/fir). Also, K\T /T3 =
(VK /13)\/K/T < C/fir so that by M

SV VSTY = pSTHTQ)STY + O, (KT /T2) = KS7QSTY + 0,(1/ ).
It then follows by T that
STaX'XSTY = mpSTIX'X STV + 0,(iarh)

= SIHY + V(T + V)S;l’ + O, (jip")

LEMMA A14: If Assumptions 1-4 are satisfied and Si(6 — 0o)/ur = Op(fipt) then

A

SpE(0)Sp" = Tr + Oy (1 + VK /pr) (1 fir + Ar)).
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Proof: By standard arguments we have 62(8) = o2 + O,(1/jir) and it follows as in
the proof of Lemma A13 that &(8) = 77 + O,(vK/T). It also follows similarly to the
proof of Lemma A5 and A9 that

STHX'PX —aX'X)S7Y = STHX'PX —aX'X)S7Y 4+0,(1/fir) = Hr+O0,(A2+1/fir).

Also, we have O,(VK /T)KS;'QS;:" = O,((K/T)(VK /12)) = O,(1/fir). Note that

A~

S5(8) = 62[(1 - 2a)(X'PX —aX'X) + a1 — a) X' X],
Then by Lemma A13 and T it follows that

Sp'Ep(0)SY = (02 4 Op(1/fir)){(1 = 271 + O, (VK /T))(Hr + Op(A7 + 1/jir))
+(1 = 7r + Op(VE/T))(rr(1 = 70) " Hy + K S7 QST + O0,(1/fir))
= 02{(1 = 2rp)Hy + mpHyp + (1 — 70) KSFIQSTYY + O, (A% + 1/ fir)
= 02(1 —77)(Hy + KST'QSTY) + O, (A% + 1/fir).

The conclusion now follows by Lemmas A10 and A1l and T. Q.E.D.

LEMMA A15: If Assumptions 1-5 are satisfied and Sp(5 — 6o)/pr = O,(fip") then
in case I, SpASy — Ap = O,(1/fir + Ag), and in case II, (u2/K)(SyASy — Ap) =
Op(1/fir + Ar).

Proof: Let H = S;'H(6)S;Y. Note that Hy is uniformly nonsingular by 7 bounded
away from 1 and uniform nonsingularity of 2’z /7. Then by Lemma A12 we have, in both

cases,

H™' = Hy' + O,(jiz' + Ar), H™' = Oy(1), Hy' = O(1).
In case I note that vK /ur is bounded, so that by Lemma Al4, S;'5(6)S:Y = S +
O,(1/fir + Ar) and X7 = O(1). The conclusion then follows by
StASy = H'S;'S(0)SyVH!
= [Hyp' + Op(fiz' + Ar)|[Sr + Op(1/fir + Aq)|[Hy ' + Op(fiz' + Ar)]
Ao+ 0,1+ Ar).

[36]



In case II note that by Lemma A14,

(17/K)ST'E(0) S0 = (17 / K)Er + Op(1/fir + Ar),
and that (u2/K)Xr = O(1). The conclusion then follows from
(u3/K)SpASr = (u3/K)H ' Sp'8(8) S A

= [H' + Op(fiz" + An)[(13/K) S + Op(1/ fir + Ar)[[HF' + Op(fiz' + Ar)]
= (42/K)Ar +O,(1/fir + Ar).Q.E.D.

Proof of Theorem 2: Consider first the case where ¢ is LIML. Then putS5 (5 —
60) — 0 by Theorem 1, implying 6 -5 6y. The first-order conditions for LIML are

A A

D(6) = 0. Expanding gives

where § lies on the line joining ¢ and &y and hence 3 = p7'S5(6 — o) —2= 0. Then there is
er — Osuch that 5 = O,(er), so by Lemma A5, Hy = S31[0D(6)/98]S7Y = Hy+o,(1).
Then &D(8)/86 is nonsingular w.p.a.1 and solving gives

Sp(6 — 0) = =530D(8)/98] " D(80) = —Hz ' S7' D(%0).

Next, apply Lemma A2 with V; = V; and

W . Sr]_ﬂl(]. — TT)TtELt
TN KV (py — )V )

By u; having bounded fourth moment,
T ) A T -
t=1 t=1
Also, by u; and V; having bounded eighth moment and pj, < K,

iE [HKl/Q@tt - TT)‘;;&UtH4:| <C
t=1

T
C

Y vy +Trr| /K? < —+73/T — 0.

t=1 K

By Assumption 3, we have

T
Z E [WtT VVt,T] -

t=1



Let I' = diag (\il, o2Q(1 — li)) and

Zt;és V;fptsus/\/F '

Consider ¢ such that ¢T'c > 0. Then by the conclusion of Lemma A2 we have ¢'Ur 4,
N(0,cTc). Also, if ¢T'c = 0 then it is straightforward to show that ¢/Up -2 0. Then it
follows that

_ Z?:l Ii[/tT d L 3 )e -
vr= ( Yis Vibrsus VK — N(0,I),I" = diag (\If, a2Q(1 K)) ‘

Next, we consider the two cases. Case I) has K/u% bounded. In this case vKS;' —
So, so that

Fr 1, VKS;  VKSp'] — Fy = [I, So, So), FoTF) = A
Then by Lemma A8 and S and W'u = FrUr,

SD(6) = W'u+ o0,(1) = FrUp + 0,(1) -5 N(0,A;),

Sp(0—00) = —Hyp'Sp'D(6) == N(O, H A H ™)
In case II we have K/u% — oo. Here
(ur/VK)Fr — Fy = 0,50, 5], FoT Fy = Ay
and (pr/vK)oy(1) = 0,(1). Then by Lemma A8 and S and W'u = FrUr,

(pr/VE)SrD(So) = (pr/VE)W'u+ 0,(1) = (ur/VEK)FrUr + 0,(1) == N(0, Ay),
(e /VE)Sp(6 = b0) = —Hy'(ur/VE)Sz'D(60) = N(0,H A H ).

Also, Lemma A15 gives the convergence of the covariance matrix estimators. Finally, if

%, is nonsingular then by Lemma A14 we have (S7'3(8)S7Y) ! = 57! + 0,(1), so that

K(6) = D()Sz"(S7'2(8)S7") 1S+ D(%)
= D(8)'STVEFIST D) + 0,(1) —5 Q).
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The result for case II follows similarly by replacing Sy by (ur/vK)Sy. Q.E.D.

Let £ = /(6 — &) /(¢ Ae)V/2.

Proof of Theorem 3: First, consider LIML. Let § be the mean value as in the
proof of Theorem 2. It follows similarly to the proof of Theorem 2 that S4.(5 — &)/ =
O,(fiz"), so that Sh(0 — &)/ur = O,(fiz") also holds for the mean value. Then by
Lemma A7 we have S7'[0D(6)/88]S7Y = Hp + O, (A% + jiz!). Also, by Lemma A8 we
have S31D(8)) = W'u + O,(Ar + fizt) = O,(1), so that in case 1), by Fr = uéd SpY
bounded,

ped (6 —0) = Fr[Sp'0D(6)/05]5:") " Sp D(6)
= Fr[Hr + Op(A% + fiz")] 7 {W'u + Op(Ar + fiz )]

= FrH7'W'u+ O,(Ar + figt).
Note also that Lemma A15 by Fr bounded,
(us)2d Ae = FrSypASpFy = FrApFy + Op(Ag + fizh).

Then by by FrArF; bounded and bounded away from zero we also have

/2

(52 Ae) " = (FrArFp) 2 4+ Oy(Ar + fig!).

The second conclusion now follows by the delta method and FrHy'W'u = O,(1), which

gives

15 (5 — &) B FrSh(6 — 8) _ FPrHi'W'u
~N1/2 T A 1/2 Foo A ! 1/2

(M?C’Ac) (FTS’TASTFf) (FrArFr)

t= +OP(AT+/]%1)'

The last conclusion, for case I), follows similarly. In case II we have, by Lemma A15 and

FrHZ Wupr/VE = 0,(1),

i i (0 =) _ FrSp(d — do)pr/VE
2 JANY2 /A /2 1/2
FrH'"W'uur/VK  FrHp'W'u

= = + Op(Ar + fig'),
(FrApF2/K)'? (FrApF))'? PO + A7)
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giving the second conclusion in case II). The first conclusion now follows from the second
conclusion and Lemma A2.
, , - < o e N 1/2 e e N1/2 2

For the third conclusion, let t = ¢/(d—dy)/ (aic’HC) and p = (aic’Hc) (dAc)=1/2,
so that ¢ = i/p. In case II, by (S HS7Y)™' and 62 bounded in probability and
FrArFlp%/ K bounded away from zero, we have

R 1 fro—1n— 1/2
{62Fp(Sp HST) " Frud /K ),

p= — 0.

{FrSypASr P K}

Then by the Slutzky Theorem, (£, p) —= (N(0,1),0) jointly. Therefore, for any C, & > 0,

Pr(

f| > C) > Pr(lf| > Ce, |5 <) — 1 - {®(Ce) — B(~Ce)}.

For any C' the expression on the right can be made arbitrarily close to 1 by choosing ¢
small enough. Thus, Pr(‘f‘ >(C)— 1.
To show the same result for estimators with & = & + O,(1/T), note that
(& —a&)Sp X' XSp" = Oy(1/T)0y(T/ ) = Op(1/ 1),
(6= &)ST'Xu = 0,(1/T)O,(T/pzr) = 0,1/ pur).
Then it follows from the formula (§ — &) = (X'PX — aX'X) Y X'Pu — &X'u) that
pod (6 —0) = FrSu(0—6)
= Fr[S;H(X'PX — aX'X) SV Sr (X Pu — aX'u)
—Fr[SPHX'PX — aX' X)S:Y 1S (X Pu — aX'u)
= Op(1/pr).

The results then follow as before, with this additional remainder present. Q.E.D.

LEMMA A16: If Assumptions 1 - 3 are satisfied then ZLE[HV’Z(Z’Z)_ZtHS] <
CK.

Proof: Consider first the case where V, is a scalar. By the Marcinkiewicz-Zygmund

inequality,

[40]



E [)V’Z(Z/Z)Zt\ ] IZVSPSA ] < CE|ZV2P #2].

By pu < 1 it follows that pi/* < py. Also, f (r) = r3/? is a convex function of r. Then by

Jensen’s inequality and Y, p%, = py we have

T - 13
ZV2p3t|3/2 <p’E ZVQp /Pt ) ptZE[ g ]pit/ptté(fptt.
s=1

- 3
Combining the last two equations gives F “V’ AVA Z)_th‘ ] < Cpy. The conclusion
then follows by 7, p;, = K and summing up. The conclusion for the vector V, case

follows by T. Q.E.D.

LEMMA A17: If Assumptions 1 - 5 and 7 are satisfied then Y1, B[

3
T‘thT) ] <
C/ur in case I.

Proof: By T, CS, and Fr = u5.¢'S;Y and Hy bounded,
d 1 |? d 3 /n3/2 St (ot o= |13 37|12 /3
> El|FrH: W] < CZE(nztn T2+ |V 2(2'2) 24| Jii + 73 ||V /MT)
t=1 t=1
T
S CZ”Zt||3/T3/2+K/MT+TTT/MT<C(1/MT+K/MT)

t=1

In case I we have K/u2 bounded, giving the conclusion. Q.E.D.

LEMMA A18: If Assumptions 1 - 5, 7, and 8 are satisfied and by > 0 are constants

such that by is bounded and bounded away from zero then in case I,

c Q=1 rr—1yx/7
wsc'Sy Hy Wugq)_
Vbr

Proof: Let Fr = u$c' S;" as previously. Assumption 7 implies

| Pr( ®(q)| < C/ur + Clop — pFd SV ArSy'e|.

Eu}Vi] = EBlE[|V]V] = E[oiVi] =0,
El(uf —op)ViV,] = E[E[u} — o2 |V]ViV;] = 0.
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Then Y7 = 02(1—77)(Hp+ K S71QS5Y). Without changing notation let W = W Hy ' Fy.,
AT = FTATFj,v, and

Ar = 2W'W = 2FrH:- (1 — 1p)Hy + Sp V(P — 70 1)V SEY + J + J Y HZ ',
J = (1—7p)S;M (P —mp )V S5V,

Note that

2

] < CE|

A

ElllJ S PV|" 1+ CE(|V| /71

= Ctr('Pz/T)/ur + Ctr(2'z/T) /iy = O(1/ 7).

Also by Lemma Al and M we have

B[PV - KO ) = o(5), B[V — T[] = O(T).
Then by T and by (1 — 77)KQ = (1 — 27p)KQ + 7279,
]
C(1 —2m)E[|[V' PV — KQ|[ )i+ CR2E([V'V — T /14

E[HSF(VI(P —7pI)’V = (1= 7) KQ)Sp"

IN

IN

CK/uy < Cfpi.

Then by T we have £ [‘/_\T - AT‘Q] < C'/p3 while by Assumption 7 there is € > 0 such that
Ar > ¢ for all T large enough. Then for Ay = {Ar > ¢/2}, by Chebyshev’s inequality,

Pr(A7) < Pr(|Ar — Ar| > /2) < CE[|Ar — Ar|’] < O/ i

Note that Var(W'u|V) = Ap and Pr(W'u/\/br < q|V) = Pr(W'u/\/Ap < q\/br/Ar|V).
Also, by independent observations uy, ..., ur are independent conditional on V and have
conditional mean zero and bounded conditional third moment. Then by a standard

approximation result,

(A7) Pr(Wu/\/br < q|V) — ®(qy/br/Ar)| < H(AD)C S WP /A% < O3 (Wi

t=1 t=1

[42]



By an expansion of the Gaussian distribution,

o <q\/bT/AT> _ CI)(q)’ < C|Ar bl

It then follows by Lemma A17, T, and CS that

1(A7r)

[Pr(W'u/\Jbr < g) = ®(q)| = |EPr(Wu/\[br < qlV) — B(q))
< E[|Pr(W'u/\/or < q|V) — &(q)]]
< E[{1(A5) + 1<AT>}| Pr(W'u/\/br < q[V) — &(q)]]
< Clud+ CE[Z Werl®] + CE[|Ar — Az ]
< CJpr+ C{E[|Ar - AT\ W2 4 C|Ar — byl < Cur + C|Ar — br| .Q.E.D.

Proof of Theorem 4: For the first conclusion apply Lemma A18 with V = Arp,
using the notation from Lemma A18. For the second conclusion, do the same with

by = o2FpHy ' )., so that by the conclusion of Lemma A18 and by 7 < K/p?.,

W' .
|Pr(ﬁ < q) = ®(q)| < C/pr + |osFrHy Fr — Ag|
< Ofpr +C|Hr = 3r|| < Cuz' + K/p7).

Q.E.D.

Proof of Theorem 5: S; = diag(Ig,,/TIg,). By Lemma All, when § = &, we
have L, (42 — 62)V;V//T = O,(1). Also, as in McFadden (1982), Z'Z/T converging

implies that max,<r py — 0, so that
2 _
;ptt < I%ajz(ptt;ptt = Kfl{lg%ziptt — 0.
Therefore, it follows that

|57 B(60) S| <

(Zptt K2/T> 0,(1) 2 0.

Note that by standard calculations, E[V'PV] < CK, so that V'PV = O,(1) by M. Then

by T we have
tr(SAY'TS;Y) < Otr(2'Pz/T) + Ctr(S3 V' PV S7Y) = 0,(1).
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We also have, by >, py = K,
Z(ptt - K/T)2 < Zpgt > 0.
t t

Also, it follows by the proof of Lemma A10 that Y, u?V//T = O,(1), so that
1/2
- 12
SPAGST < [l - KPS s 0, 20
t t

Let X = X(8) = X —u¥,% = X'u/u'u, so that X — X = —u(§ — 7). Then we have,
by u'Pu = O,(1),

STH X = X)P(X = X)S7" = (W' Pu)St' (5 =) (3 = )'S7" == 0.
We also have by the Lindberg-Feller Central Limit Theorem,
(Z'XS;Y INT, Z'u/NT) = [Z'2)T + ZVS: Y INT, Z'u/VT| - |G, Y,

where vec(G) and Y are Gaussian, independent by V; and u, uncorrelated, and Var(Y) =

02M. Then by CMT and Slutzky,
SPIX'PXSTY = (S7 X' Z/NTNZ' Z)T) " 2/ X S7V INT -4 G'M~'G.

It follows that S3'X'PX Szt = 0,(1), so that S7* X’ PXS3! = S7 X' PX Syt +0,(1). Tt

follows similarly that
S7'X'Pu = S;' X' Pu+ 0,(1) -5 G'M7'Y,

where this convergence is joint with that of Sle’PX Szt Note that by indepen-
dence of G and Y, the conditional variance of G'M~'Y given G is 02G'M~'G. Also,
G'M~'G is nonsingular with probability one. Hence, the conditional distribution of
Y'MG(G'MG)'G"M~1Y Jo? is x*(G). Since this distribution does not depend on
G it follows that this is also the unconditional distribution. Note also that u'Pu = O,(1)
by K fixed, so &(8y) = O,(1/T). Also, X(8)' X (6) = O,(T) by standard arguments, so

2

that by 62 2 o2,

Sp(0) = {0+ 0p()H1 + Op(1/T)}X (80) PX (8) + Op(1/T?) X (60)' X (0)
— 02X (8)' PX(80) + 0,(1) - G'M'G.
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Then by the CMT,

LM (50) -5 Y'M'\G(G'M'G) ' &' MY Jo? £ \*(G).Q.E.D.
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TABLE 2. Weak Instrument Limit of LIML and Fuller. p =0

LIML Fuller
p K p? Median IQR Bekker Standard Median IQR  Bekker Standard
00 1 1 0.001  1.318 0.001 0.001 0.000  0.48  0.001 0.001
00 1 2 0.001 1.000 0.001 0.001 0.000  0.502  0.002 0.001
00 1 4 0.000 0.708 0.004 0.004 0.000  0.488  0.005 0.003
00 1 8 -0.001 0.491 0.010 0.010 -0.001  0.418 0.011 0.009
00 1 16 0.000 0.342 0.023 0.023 0.000 0.319 0.024 0.020
00 1 32 0.000 0.240 0.035 0.035 0.000 0.232  0.036 0.033
00 1 64 0.000 0.169 0.042 0.042 0.000  0.167 0.042 0.041
00 2 1 -0.002 1418 0.001 0.001 -0.001  0.659 0.001 0.001
00 2 2 0.000 1.099 0.002 0.002 0.000  0.629  0.002 0.002
00 2 4 0.000 0.775 0.004 0.005 0.000  0.560 0.006 0.005
00 2 8 0.000 0.525 0.011 0.013 0.000  0.450 0.013 0.012
00 2 16 0.000 0.355 0.023 0.026 0.000 0.331 0.024 0.023
00 2 32 0.000 0.244 0.036 0.038 0.000 0.236  0.036 0.036
00 2 64 0.000 0.171 0.043 0.045 0.000  0.168 0.043 0.043
00 4 1 0.002  1.528  0.002 0.003 0.001  0.834 0.003 0.003
00 4 2 -0.002 1.227 0.003 0.005 -0.002  0.769  0.004 0.005
00 4 4 0.000 0.879 0.006 0.009 0.000  0.656  0.007 0.009
00 4 8 -0.001 0.581 0.012 0.018 -0.001  0.500 0.014 0.017
00 4 16 0.000 0.377 0.023 0.033 0.000 0.352  0.025 0.030
00 4 32 0.000 0.252 0.035 0.044 0.000  0.244 0.036 0.041
00 4 64 0.000 0.173 0.043 0.048 0.000  0.171  0.043 0.046
00 8 1 -0.001 1.634 0.005 0.012 0.000  1.004 0.006 0.012
00 8 2 0.001 1360 0.006 0.015 0.000 0917  0.008 0.015
00 8 4 0.001 1011 0.009 0.022 0.001  0.774 0.010 0.021
00 8 8 0.001 0669 0.015 0.034 0.001  0.578 0.017 0.032
00 8 16 -0.001 0.419 0.025 0.049 -0.001  0.391  0.026 0.045
00 8 32 0.000 0.268 0.036 0.056 0.000  0.260 0.036 0.053
0.0 8 64 0.000 0.179 0.044 0.056 0.000 0.176  0.044 0.054
00 16 1 -0.002 1.720 0.010 0.046 -0.002 1.164 0.011 0.047
00 16 2 0.000 1496 0.011 0.051 0.000 1.074 0.013 0.052
00 16 4 -0.001 1170 0.014 0.060 -0.001 0915 0.015 0.059
00 16 8 -0.002 0.793 0.019 0.073 -0.002  0.686  0.020 0.070
00 16 16 -0.001 0.486 0.026 0.085 0.000 0.452 0.028 0.080
0.0 16 32 0.000 0.295 0.036 0.082 0.000  0.285  0.036 0.077
00 16 64 0.000 0.189 0.043 0.069 0.000 0.186  0.043 0.067
00 32 1 0.002  1.795 0.017 0.129 0.001  1.320 0.019 0.134
00 32 2 0.001 1.622  0.018 0.134 0.001 1.232  0.020 0.137
00 32 4 -0.001 1.334 0.020 0.141 -0.001  1.076  0.022 0.143
0.0 32 8 0.000 0.950 0.023 0.149 0.000 0.826 0.025 0.147
0.0 32 16 0.000 0.590 0.029 0.153 0.000  0.549  0.030 0.149
0.0 32 32 0.000 0.343 0.036 0.133 0.000 0.331 0.037 0.128
0.0 32 64 0.000 0.208 0.043 0.098 0.000 0.204 0.043 0.095
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TABLE 3. Weak Instrument Limit of LIML and Fuller. p = 0.2

LIML Fuller
p K p? Median IQR Bekker Standard Median IQR  Bekker Standard
02 1 1 0.084 1.307 0.002 0.002 0.162  0.484 0.048 0.003
02 1 2 0.038 0.989 0.004 0.004 0.119 0.498 0.033 0.005
02 1 4 0.010 0.706 0.009 0.009 0.065 0.483 0.021 0.009
02 1 8 0.000 0.490 0.016 0.016 0.027 0.414 0.021 0.016
02 1 16 -0.001 0.343 0.026 0.026 0.012 0.318 0.029 0.025
02 1 32 0.000 0.240 0.036 0.036 0.006 0.232 0.038 0.035
02 1 64 0.000 0.169 0.044 0.044 0.003 0.166  0.044 0.042
02 2 1 0.096  1.402 0.004 0.005 0.146  0.650 0.009 0.005
02 2 2 0.064 1.088 0.006 0.007 0.108  0.619 0.011 0.008
02 2 4 0.019 0771 0.010 0.012 0.062  0.551 0.015 0.013
02 2 8 0.003 0524 0.017 0.020 0.028  0.445 0.022 0.020
0.2 2 16 0.000 0.354 0.027 0.030 0.013  0.328 0.030 0.029
0.2 2 32 0.000 0.244 0.036 0.039 0.006 0.236  0.038 0.038
02 2 64 0.000 0.170 0.043 0.044 0.003  0.167 0.043 0.043
0.2 4 1 0.117  1.507  0.008 0.012 0.146  0.821 0.012 0.014
02 4 2 0.071 1209 0.010 0.015 0.108 0.756 0.014 0.017
02 4 4 0.030 0.869 0.013 0.021 0.064 0.642 0.018 0.022
02 4 8 0.005 0578 0.019 0.028 0.028 0.492 0.023 0.028
02 4 16 0.000 0.376 0.028 0.037 0.013  0.349 0.031 0.036
02 4 32 0.000 0.251 0.036 0.044 0.006  0.242  0.038 0.043
02 4 64 0.000 0.173 0.043 0.048 0.003  0.170 0.044 0.047
02 8 1 0.133 1.609 0.014 0.033 0.151  0.987 0.019 0.037
02 8 2 0.091 1346 0.016 0.037 0.117  0.902 0.021 0.040
02 8 4 0.047 1.000 0.019 0.042 0.074  0.758 0.023 0.044
02 8 8 0.012 0.661 0.023 0.049 0.034  0.565 0.027 0.049
02 8 16 0.002 0415 0.029 0.054 0.014 0.386 0.032 0.053
02 8 32 0.000 0.266 0.037 0.056 0.006  0.257  0.038 0.054
02 8 64 0.000 0.178 0.044 0.055 0.003 0.175 0.044 0.054
02 16 1 0.149  1.692 0.023 0.082 0.160  1.144 0.028 0.090
02 16 2 0.110 1477 0.024 0.084 0.127  1.057  0.029 0.091
02 16 4 0.064 1.154 0.025 0.087 0.085  0.898 0.030 0.092
02 16 8 0.022 0.784 0.028 0.089 0.041 0.673 0.031 0.091
0.2 16 16 0.004 0.482 0.031 0.088 0.016 0.446 0.034 0.087
0.2 16 32 0.000 0.293 0.037 0.080 0.006  0.282  0.039 0.078
0.2 16 64 0.000 0.188 0.044 0.068 0.003  0.185 0.044 0.066
02 32 1 0.161  1.769 0.032 0.161 0.168  1.295 0.036 0.172
02 32 2 0.131 1.594  0.033 0.162 0.142 1.211  0.037 0.171
02 32 4 0.087 1313 0.033 0.163 0.101  1.056  0.037 0.170
0.2 32 8 0.041 0938 0.034 0.161 0.056  0.812 0.037 0.164
0.2 32 16 0.009 0.583 0.034 0.152 0.020  0.540 0.037 0.150
0.2 32 32 0.001 0.341 0.039 0.129 0.007  0.329 0.040 0.125
0.2 32 64 0.000 0.206 0.043 0.096 0.003  0.202 0.044 0.094
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TABLE 4. Weak Instrument Limit of LIML and Fuller. p = 0.5

LIML Fuller
p K p? Median IQR Bekker Standard Median IQR  Bekker Standard
05 1 1 0.200 1.221 0.024 0.024 0.380  0.470 0.182 0.032
05 1 2 0.091 0952 0.031 0.031 0.268 0.494 0.132 0.039
05 1 4 0.024 0.700 0.038 0.038 0.149 0.463  0.085 0.046
05 1 8 0.003 0493 0.042 0.042 0.068  0.395 0.061 0.050
05 1 16 -0.001 0.344 0.043 0.043 0.031  0.311  0.053 0.049
05 1 32 0.000 0.240 0.042 0.042 0.016  0.229  0.049 0.046
05 1 64 0.000 0.170 0.044 0.044 0.008 0.166  0.047 0.046
05 2 1 0.239 1.308 0.036 0.042 0.360  0.601  0.096 0.057
05 2 2 0.123 1.028 0.040 0.046 0.260  0.569  0.084 0.059
05 2 4 0.040 0.754 0.044 0.051 0.150  0.503  0.072 0.062
05 2 8 0.005 0.516 0.045 0.051 0.068  0.413 0.061 0.059
05 2 16 0.000 0.351 0.043 0.047 0.031  0.318 0.053 0.053
0.5 2 32 0.000 0.243 0.042 0.044 0.015 0.232  0.048 0.048
05 2 64 0.000 0.171 0.045 0.046 0.008  0.167 0.048 0.048
05 4 1 0.283 1.392 0.055 0.081 0.361  0.745  0.093 0.105
05 4 2 0.167 1134 0.054 0.080 0.267  0.683  0.085 0.100
05 4 4 0.064 0830 0.052 0.076 0.157  0.572  0.075 0.091
05 4 8 0.012 0.564 0.050 0.068 0.073  0.453  0.065 0.078
05 4 16 0.001 0.369 0.045 0.055 0.032  0.333 0.054 0.062
0.5 4 32 0.000 0.250 0.043 0.049 0.016 0.238 0.049 0.053
05 4 64 0.000 0.173 0.044 0.048 0.008  0.168 0.047 0.049
05 8 1 0.325  1.478 0.078 0.146 0.375 0.890 0.109 0.179
05 8 2 0218 1245 0.073 0.137 0.287  0.813  0.099 0.165
05 8 4 0.09 0937 0.065 0.121 0.175  0.673  0.085 0.141
05 8 8 0.024 0.632 0.056 0.097 0.081  0.510 0.070 0.110
05 8 16 0.001 0401 0.048 0.071 0.032  0.362 0.057 0.079
05 8 32 0.000 0.261 0.043 0.057 0.016  0.248 0.049 0.061
05 8 64 0.000 0.176 0.045 0.053 0.008 0.172  0.048 0.055
05 16 1 0.367  1.553  0.097 0.223 0.397  1.035 0.120 0.259
05 16 2 0271 1365 0.091 0.208 0.316 0.954 0.111 0.240
05 16 4  0.147 1.076 0.080 0.183 0.204  0.805 0.097 0.208
05 16 8 0.048 0.733 0.065 0.145 0.098  0.599 0.078 0.161
0.5 16 16 0.005 0.457 0.052 0.101 0.035 0.411 0.061 0.111
0.5 16 32 0.000 0.282 0.045 0.074 0.015 0.269  0.050 0.078
0.5 16 64 0.000 0.185 0.045 0.063 0.007  0.180 0.048 0.064
05 32 1 0.400 1.603 0.113 0.296 0.417  1.165 0.130 0.331
0.5 32 2 0.316 1.461 0.106 0.281 0.345 1.093 0.122 0.313
05 32 4 0.204 1.218 0.094 0.253 0.244  0.955 0.108 0.280
05 32 8 0.08 0.871 0.077 0.209 0.127  0.725 0.088 0.228
0.5 32 16 0.016 0.546 0.060 0.152 0.045 0.490 0.067 0.162
0.5 32 32 0.001 0.323 0.047 0.107 0.016  0.307 0.052 0.112
0.5 32 64 0.000 0.199 0.045 0.083 0.008  0.194 0.048 0.084
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TABLE 5. Weak Instrument Limit of LIML and Fuller. p = 0.8

LIML Fuller
p K p? Median IQR Bekker Standard Median IQR  Bekker Standard
08 1 1 0.290 1.044 0.113 0.113 0.556  0.429  0.495 0.203
08 1 2 0124 0891 0.102 0.102 0.390  0.400 0.321 0.164
08 1 4 0.027 0.699 0.087 0.087 0.220 0.370 0.175 0.126
08 1 8 0.001 0498 0.074 0.074 0.100  0.355 0.108 0.100
08 1 16 -0.001 0.346 0.062 0.062 0.048  0.297  0.082 0.079
0.8 1 32 0.000 0.242 0.053 0.053 0.025 0.225 0.066 0.065
08 1 64 0.000 0.170 0.049 0.049 0.012 0.164 0.056 0.055
08 2 1 0.347  1.088 0.147 0.166 0.554  0.480 0.397 0.275
08 2 2 0.160 0922 0.118 0.133 0.394 0.434 0.268 0.207
08 2 4 0.041 0.723 0.093 0.102 0.225 0.389 0.162 0.146
08 2 8 0.003 0.512 0.076 0.080 0.102 0.364 0.108 0.107
0.8 2 16 0.000 0.350 0.063 0.065 0.048 0.301 0.083 0.083
0.8 2 32 0.000 0.243 0.054 0.055 0.025 0.226  0.066 0.066
08 2 64 0.000 0.170 0.048 0.049 0.013 0.164 0.055 0.055
08 4 1 0414 1.163 0.183 0.238 0.562  0.574 0.316 0.351
08 4 2 0214 0970 0.141 0.183 0.405 0.496 0.230 0.265
08 4 4 0.062 0.763 0.102 0.127 0.234 0.420 0.152 0.176
08 4 8 0.007 0.533 0.079 0.091 0.106 0.378  0.108 0.119
08 4 16 0.000 0.358 0.064 0.069 0.048  0.307 0.083 0.087
0.8 4 32 0.000 0.245 0.054 0.056 0.025 0.228  0.066 0.068
08 4 64 0.000 0.171 0.048 0.050 0.012  0.165 0.055 0.056
08 8 1 0.489 1.213 0.219 0.316 0.586  0.679  0.299 0.422
08 8 2 0.286 1.043 0.168 0.248 0.431 0.594 0.230 0.331
08 8 4 0.101 0.819 0.119 0.171 0.253  0.475 0.160 0.226
08 8 8 0.013 0572 0.085 0.111 0.111  0.404 0.111 0.142
08 8 16 0.000 0.373 0.065 0.078 0.049 0.320 0.084 0.097
0.8 8 32 0.001 0.250 0.055 0.060 0.025 0.232  0.067 0.073
08 8 64 0.000 0.173 0.049 0.052 0.012  0.167  0.056 0.059
08 16 1 0.561  1.245 0.249 0.390 0.620 0.781  0.305 0.483
08 16 2 0373 1.127 0.201 0.323 0.473  0.713 0.248 0.403
08 16 4 0.162 0.900 0.142 0.232 0.287 0.564 0.176 0.291
08 16 8 0.029 0.640 0.094 0.146 0.125 0.451 0.118 0.181
0.8 16 16 0.000 0.405 0.069 0.095 0.049 0.346  0.085 0.115
0.8 16 32 0.000 0.262 0.056 0.068 0.024  0.243  0.068 0.081
0.8 16 64 0.000 0.177 0.049 0.056 0.013  0.171  0.056 0.063
08 32 1 0.624 1.250 0.277 0.457 0.656  0.873  0.316 0.534
08 32 2 0469 1.201 0.234 0.401 0.530 0.836 0.270 0.473
0.8 32 4 0.248 0998 0.172 0.309 0.341  0.689 0.201 0.367
08 32 8 0.062 0.731 0.111 0.203 0.152  0.523 0.132 0.240
0.8 32 16 0.004 0.458 0.076 0.126 0.053  0.388 0.091 0.148
0.8 32 32 0.001 0.282 0.059 0.084 0.025 0.262 0.069 0.098
0.8 32 64 0.000 0.185 0.049 0.065 0.012  0.178  0.056 0.072
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