A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Bun, Maurice; Windmeijer, Frank

Working Paper

The weak instrument problem of the system GMM
estimator in dynamic panel data models

cemmap working paper, No. CWP08/07

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Bun, Maurice; Windmeijer, Frank (2007) : The weak instrument problem of the
system GMM estimator in dynamic panel data models, cemmap working paper, No. CWP08/07,
Centre for Microdata Methods and Practice (cemmap), London,

https://doi.org/10.1920/wp.cem.2007.0807

This Version is available at:
https://hdl.handle.net/10419/79275

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2007.0807%0A
https://hdl.handle.net/10419/79275
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

cemmap
cantre for microdata
methods and practice

THE WEAK INSTRUMENT PROBLEM OF THE
SYSTEM GMM ESTIMATOR IN DYNAMIC PANEL
DATA MODELS

Maurice Bun
Frank Windmeijer

THE INSTITUTE FOR FISCAL STUDIES
DEPARTMENT OF ECONOMICS, UCL

cemmayp working paper CWP08/07



The Weak Instrument Problem of the System GMM
Estimator in Dynamic Panel Data Models*

Maurice J.G. Bun Frank Windmeijer
Dept. of Quantitative Economics Dept. of Economics
University of Amsterdam University of Bristol
M.J.G.Bun@uva.nl and cemmap/IFS
f.windmeijer@bristol.ac.uk
March, 2007
Abstract

The system GMM estimator for dynamic panel data models combines moment
conditions for the model in first differences with moment conditions for the model in
levels. It has been shown to improve on the GMM estimator in the first differenced
model in terms of bias and root mean squared error. However, we show in this paper
that in the covariance stationary panel data AR(1) model the expected values of
the concentration parameters in the differenced and levels equations for the cross-
section at time t are the same when the variances of the individual heterogeneity
and idiosyncratic errors are the same. This indicates a weak instrument problem
also for the equation in levels. We show that the 2SLS biases relative to that of the
OLS biases are then similar for the equations in differences and levels, as are the
size distortions of the Wald tests. These results are shown in a Monte Carlo study
to extend to the panel data system GMM estimator.
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1 Introduction

A commonly employed estimation procedure to estimate the parameters in a dynamic
panel data model with unobserved individual specific heterogeneity is to transform the
model into first differences. Sequential moment conditions are then used where lagged
levels of the variables are instruments for the endogenous differences and the parameters
estimated by GMM, see Arellano and Bond (1991). It has been well documented (see
e.g. Blundell and Bond (1998)) that this GMM estimator in the first differenced (DIF)
model can have very poor finite sample properties in terms of bias and precision when
the series are persistent, as the instruments are then weak predictors of the endogenous
changes. Blundell and Bond (1998) proposed the use of extra moment conditions that
rely on certain stationarity conditions of the initial observation. When these conditions
are satisfied, the resulting system (SYS) GMM estimator has been shown in Monte Carlo
studies by e.g. Blundell and Bond (1998) and Blundell, Bond and Windmeijer (2000) to
have much better finite sample properties in terms of bias and root mean squared error
than that of the DIF GMM estimator.

The additional moment conditions of the SYS estimator can be shown to correspond
to the model in levels (LEV), with lagged differences of the endogenous variables as
instruments. Blundell and Bond (1998) argued that the SYS GMM estimator performs
better than the DIF GMM estimator because the instruments in the LEV model remain
good predictors for the endogenous variables in this model even when the series are very
persistent. They showed for an AR(1) panel data model that the reduced form parameters
in the LEV model do not approach 0 when the autoregressive parameter approaches 1,
whereas the reduced form parameters in the DIF model do.

Because of the good performance of the SYS GMM estimator relative to the DIF
GMM estimator in terms of finite sample bias and rmse, it has become the estimator

of choice in many applied panel data settings. Among the many examples where the



SYS GMM estimator has been used are the estimation of production functions and
technological spillovers using firm level panel data (see e.g. Levinsohn and Petrin (2003)
and Griffith, Harrison and Van Reenen (2006)), the estimation of demand for addictive
goods using consumer level panel data (see e.g. Picone, Sloan and Trogdon (2004)) and
the estimation of growth models using country level panel data (see e.g. Levine, Loayza
and Beck (2000) and Bond, Hoeffler and Temple (2001)). The country level panel data
in particular are characterised by highly persistent series (e.g. output or financial data)
and a relatively small number of countries and time periods. The variance of the country
effects is furthermore often expected to be quite high relative to the variance of the
transitory shocks. As we show here, these characteristics combined may lead to a weak
instrument problem also for the SYS GMM estimator.

For a simple cross-section linear IV model, a measure of the information content of
the instruments is the so-called concentration parameter (see e.g. Rothenberg (1984)).
In this paper we calculate the expected concentration parameters for the LEV and DIF
reduced form models in a covariance stationary AR(1) panel data model. We do this
per time period, i.e. we consider the estimation of the parameter using the moment
conditions for a single cross-section only for any given time period. We show that the

expected concentration parameters are equal in the LEV and DIF models when the
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- is equal to

variance of the unobserved heterogeneity term that is constant over time (o
the variance of the idiosyncratic shocks (02). This is exactly the environment under which
most Monte Carlo results were obtained that showed the superiority of the SYS GMM
estimator relative to the DIF GMM estimator. However, the equality in expectation of
the concentration parameters indicates that there is also a weak instrument problem in
the LEV model when the series are persistent.

If the expected concentration parameters are the same, why is it that the extra

information from the LEV moment conditions results in an estimator that has such



superior finite sample properties in terms of bias and rmse? We first of all show that
the bias of the OLS estimators in the DIF and LEV structural models are very different.
The (absolute) bias of the LEV OLS estimator is much smaller than that of the OLS
estimator in the DIF model when the series are very persistent. Using the results of Stock
and Yogo (2005), we argue and show in Monte Carlo simulations that the biases of the
LEV and DIF cross-sectional 2SLS estimators, relative to the biases of their respective
OLS estimators, are the same. Therefore the absolute bias of the LEV 2SLS estimator
is smaller than that of the DIF 2SLS estimator when the series are persistent.

Results in Stock and Yogo (2005) further indicate that we expect the size distortions
of the Wald tests to be similar in the cross-sectional 2SLS DIF and LEV models when
the expected concentration parameters are the same. This is confirmed by a Monte Carlo
analysis. When the expected concentration parameters are small, which happens when
the series are very persistent, the size distortions of the Wald tests can become substantial.
As the SYS 2SLS estimator is a weighted average of the DIF and LEV 2SLS estimators,
with the weight on the LEV moment conditions increasing with increasing persistence
of the series, the results for the SYS estimator mimic that of the LEV estimator quite
closely.

The expectation of the LEV concentration parameter is larger than that of the DIF
model when ¢ is smaller than o7, and the relative biases of LEV and SYS 2SLS es-
timators are smaller and the associated Wald tests perform better than those of DIF.
The reverse is the case when 0,27 is larger than 2. Also, unlike for DIF, the LEV OLS
bias increases with increasing o2 /o7 and therefore the performances of the LEV and SYS
2SLS estimators deteriorate with increasing 037. These results are shown to extend to the
panel data setting when estimating the model by GMM and are in line with the finite
sample bias approximation results of Bun and Kiviet (2006) and Hayakawa (2005), and

explain the poor performance of the SYS GMM Wald test when data are persistent, as



found by Bond and Windmeijer (2005).

For the covariance stationary AR(1) panel data model our results therefore show that
the SYS GMM estimator has indeed a smaller bias and rmse than DIF GMM when the
series are persistent, but that this bias increases with increasing af, /o2 and can become
substantial. The Wald test can be severely size distorted for both DIF and SYS GMM
with persistent data, but the SYS Wald test size properties deteriorate further with
increasing o7 /o7. These results follow from the weak instrument problem that is also
present in the LEV moment conditions.

The setup of the paper is as follows. Section 2 introduces the AR(1) panel data
model, the moment conditions and GMM estimators. Section 3 briefly discusses the con-
centration parameter in a simple cross-section setting. Section 4 calculates the expected
concentration parameters for the DIF and LEF models for cross-section analysis of the
AR(1) panel data model, presents the OLS biases and some Monte Carlo results on (rel-
ative) biases and Wald tests size distortions for the 2SLS estimators. Section 5 presents

Monte Carlo results for the GMM panel data estimators. Section 6 concludes.

2 Model and GMM Estimators

We consider the first-order autoregressive panel data model
Yie = QUit—1 + Ui, i=1,..,.N; t=2,...,T, (1)
Uip = T); + Vi
where it is assumed that 7, and v; have an error components structure with
E(n;) =0, E(vy) =0, E(vyn,;) =0, t=1,.,N; t=2..,T (2)
E (vivis) = 0, i=1,..,N and t # s, (3)
and the initial condition satisfies
E (yavi) =0, i=1,.,N; t=2,..T. (4)
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Under these assumptions the following (7" — 1) (T" — 2) /2 linear moment conditions are

valid

E (yi?Auy) =0, t=3,..,T, (5)

where yf‘Q = (Yi1, Yi2, -, yit_g)/ and Auy = uyp — U1 = Ay — @Ay —1.

Defining
Zdi — 0 Yi1 Y2 - 0 0 : AUZ — ' 4 7
0 0 0 - wyi - Yiro N

moment conditions (5) can be more compactly written as
E (ZhAu;) =0, (6)

and the GMM estimator for « is given by (see e.g. Arellano and Bond (1991))

AN ZWN 2 Ay
CAY L ZWRZ Ay

Qg

where Ay = (Ay}, Avh..Ayy)', Ay; = (Ayiz, Ayia, ..., Ayir)', Ay_; the lagged version
of Ay, Zg = (Z)y, Z), ..., Zhy) and Wy is a weight matrix determining the efficiency
properties of the GMM estimator. Clearly, ay is a GMM estimator in the differenced
model and we refer to it as the DIF-GMM estimator, and moment conditions (5) or (6)
as the DIF moment conditions.

Blundell and Bond (1998) exploit additional moment conditions from the assumption

on the initial condition (see Arellano and Bover (1995)) that
which holds when the process is mean stationary:

1;
Yl = 1_a + €5, (8)



with E (¢;) = E (g;m;) = 0. If (2), (3), (4) and (7) hold then the following (T'—1)(T'—2)/2

moment conditions are valid
E (uitAyf_l) =0, t=3,..1T,

where Ayl = (Ayi, Ayis, ..., Ayi_1)". Defining

Z) — 0 Ay Ay 0 0 - u.¢4 7
0 0 0 - Ay -+ Ayr Wi

moment conditions (9) can be written as

with the GMM estimator based on these moment conditions given by

al _ y/—lzlw]glzl/y
YA ZWN Zly—y

(9)

where we will refer to a; as the LEV-GMM estimator, and (9) or (10) as the LEV moment

conditions.

The full set of linear moment conditions under assumptions (2), (3), (4) and (7) is

given by
E (yf_zAuit) =0 t=3,..,T;
E (uitAyi,t—l) =0 l= 3a ) T7
or
E (Z;Zpl) =0,
where
Zg 0 - 0
0 Ayp 0 A,
0 0 - Ay

(11)

(12)



The GMM estimator based on these moment conditions is

q1ZWy'Zlq
¢ Z W Zq

~

s

with ¢; = (Ay/,9})'. This estimator is called the system or SYS-GMM estimator, see
Blundell and Bond (1998), and we refer to moment conditions (11) or (12) as the SYS
moment conditions.

In most derivations below, we further assume that the initial observation is drawn

from the covariance stationary distribution, implying that E (¢?) = 1%2; in (8).

3 Concentration Parameter

Consider the simple linear cross section model with one endogenous regressor x and k,

instruments z

yi = TP+ (13)

/
T = 4T+,

fori =1,..., N, where the (u;,¢;) are independent draws from a bivariate normal distrib-

ution with zero means, variances o2 and o2, and correlation coefficient p. The parameter

B is estimated by 2SLS:

E: ZE'/PZy

o' Pyx’
where P, = Z (2'2)"" Z.

It is well known that when instruments are weak, i.e. when they are only weakly
correlated with the endogenous regressor, the 2SLS estimator can perform poorly in finite
samples, see e.g. Bound, Jaeger and Baker (1995), Staiger and Stock (1997) and Stock,
Wright and Yogo (2002). With weak instruments, the 2SLS estimator is biased in the
direction of the OLS estimator, and its distribution non-normal which affects inference

using the Wald testing procedure.



A measure of the strength of the instruments is the concentration parameter, which

is defined as
B AV A
= 2
O¢

When it is evaluated at the OLS, first stage, estimated parameters

it is clear that 1 is equal to the Wald test for testing the hypothesis Hy : m = 0, and
1/ k, equal to the F-test statistic. Bound, Jaeger and Baker (1995) and Staiger and Stock
(1997) advocate use of the first-stage F-test to investigate the strength of the instruments.

Rothenberg (1984) shows how the concentration parameter relates to the distribution

of the IV estimator by means of the following expansion

~ 7 7'+ &' Pyu
— 14
f=0+ T2 7w + 21 Z0E 4 £ Py’ (14)
and so
A4+ =
~ Ou
Vi(B-8) =2 T
%1+2<ﬁ>+§
Vi M
where

' Z'u B ' Z'E

A= ——; =
o NT' 2 T oV 2 Zm
' Pyu ' P¢
5= ;S ==
00y oF:

(A, B) is bivariate normal with zero means, unit variances and correlation coefficient p.
s has mean k.p and variance k. (1 + p?) and S has mean k. and variance 2k.. It is clear
that when p is large, /1 <E — ﬁ) behaves like the N (0, 1) random variable B.

Using weak instrument asymptotics, Stock and Yogo (2005) tabulate critical values
for the first-stage F-statistic to test whether given instruments are weak. They do this
separately for the maximum bias of the IV estimator, relative to the bias of the OLS

estimator, and for the maximum Wald test size distortion.



4 Cross section results for the AR(1) panel data
model

Although the data are not generated as in the cross-section model (13), we can write the
structural equation and the reduced form model for the AR(1) panel data model in first

differences for the cross-section at time ¢ as

Ay = aAyii1 + Augy

t—21 t
Ayipr =y “Tart+diy g

For the general expression of the expected value of the concentration parameter divided

by N we get

1 7 B (v 2y
5 (Nudt) B (v v ) ar
Ot
For the model in levels we have for the cross-section at time ¢
Yie = QYip1+0;+ Uy

t—17 t
Yierr = Ay mu+

and the expected concentration parameter is given by

() - SO

= 2
N oy,

In the Appendix we show that, under covariance stationarity of the initial observation,

1 B (1—a)’ (02 + (t —3)02)
E(N’udt) N (1-a?)o2+(t-1)—(t=3)a)(1+a)o?

and

LN (t—2)(1—a)o?
E(N““) TR () (- 3)a) (I ra)ed

from which it follows that

E(hia)  (3+(=3)0)
E (%Nlt) (t—2)o2

1 o2
= (1+@¢-32).
t_2(+(t 3)02)

v
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Therefore

and for ¢ > 3

d
d
d

1
N Kt

1
N Kt

1
N gt

)
)
)

V

<

if t =3,

e 2 2
if o5, > o,

2

. 2
if o}, = o,

e 2 2
if o3, < 0.

Figure 1 graphs the values of (% udt) and K (% ,udl) as a function of o for ¢ = 6 and

: o2
various values of —}
v

= {%, 1, 4}. The values of the concentration parameters decrease with

increasing «. The concentration parameter for the LEV model is much more sensitive to

2

. . O
the value of the variance ratio —
v

1.0
T

than the concentration parameter of the DIF model.

00 02 04 06 08
- —

-y 0.25 | |
O - u 0.25

— Mg, | 7
A= g 4 ]
L oy 4 T

. . 0'2
Figure 1. F (%,u) as a function of o, t = 6 and =% = {i, 1,4}.

4.1 Discussion

oy

The fact that the concentration parameters are the same for the IV estimators based on

the DIF or LEV moment conditions for ¢t = 3 and for ¢ > 3 when 0727 = 02 seems contrary

to the findings in Monte Carlo studies, see e.g. Blundell and Bond (1998) and Blundell,

Bond and Windmeijer (2000) who use a covariance stationary design with af, =02 =1,
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and where a; outperforms ay in terms of bias and rmse, especially when the series become
more persistent, i.e. when « gets larger. The identification problem is apparent in the
DIF model, where the reduced form parameters approach zero when « approaches 1. This
is in sharp contrast to the reduced form parameters in the LEV model that approach %
when « approaches 1. This was the argument used by Blundell and Bond (1998) to assert
the strength of the LEV moment conditions for the estimation of « for larger values of
a.

There are two questions to be addressed. Firstly, why are the behaviours of the two
estimators so different in terms of bias and rmse when they have the same expected
concentration parameter? Secondly, how does the weak instrument problem in the LEV
model manifest itself?

To answer the first question one has to realise that the structural models are different
for DIF and LEV, with different endogeneity problems and therefore different biases of

the OLS estimator in the two equations. For the DIF model
Ay = aAy; 11 + Ay,

the OLS estimator for the cross-section at time ¢ is given by

N N Ay, Auy
QgoLs = X T
Ay, 1Ay

and the limiting bias of the OLS estimator is, again assuming covariance stationarity,

PR 14+«
plim (agors — @) = — 5

For the LEV model
Yit = QYit—1 + 1; + Vi,
the OLS estimator is given by

/
Yp Ut

aoLs = o+ — )
Yi1Yt—1

12



and the limiting bias of the OLS estimator is given by

SRV

plim (Qjors — @) = (1 — a) =

1= N
+ 33
< N

11—«
14+«

QY

which reduces to plim (Gjors — @) = (1 — @) /2 when o7 = o7.

The asymptotic absolute bias of ;o1 is therefore (much) smaller than that of agors
for high values of a. Stock and Yogo (2005) relate the value of the concentration para-
meter to the absolute bias of the 2SLS estimator, relative to the absolute bias of the OLS
estimator. When the concentration parameters are the same, we expect therefore that the
relative biases are the same for the DIF and LEV 2SLS estimators. But the absolute bias
of the LEV 2SLS estimator will then be smaller than that of the DIF estimator. From
the results of Stock and Yogo (2005) we further expect the Wald test statistics to behave
similarly when testing parameter restrictions. When the concentration parameters are

small there will be significant size distortions.

4.2 System Estimator

For the cross-section at time ¢ the SYS estimator combines the moment conditions of the

DIF and LEV estimators. The OLS estimator in the SYS "model"
( Ayt ) _ O./( Ayt—l ) + ( Aut ) (15>
Yt Yt—1 Uy

Gsors = (AYAY + Y 1y1) (AY_1 Ay + Yi_1t)

is given by

and is clearly a weighted average of the DIF and LEV OLS estimators

asors = YdoLs + (1 —7) QioLs

where
5= Ay Ay,
Ay Ay + yi 1Y

13



and

lim & 11—«
1m =
Ty g

The bias of the OLS estimator will therefore behave like the bias of the LEV OLS
estimator when @ — 1 and/or 0,27 /o2 — o0, as ¥ — 0 in these cases. The asymptotic
bias of a,ors is given by

(1—a?) (a—1+z—§)

(3-20)(1—a)+ % (1+a)

plim (@sors — @) =

Figure 2 shows the asymptotic biases of the DIF, LEV and SYS OLS estimators as a
function of « for different values of 0727 Jo? = {%, 1, 4}. It is clear from this picture that
the LEV and SYS OLS biases are much smaller than the DIF OLS bias for higher values

of a.

bias
.2 -0.0 02 04 06 0.8
T T T T
/
/
\
m

—0.2
T
|
|
|
m
\
|
\
|
|
|
o}
\
\

— — DIF
-- - LEV0.25
— - LEVI
- LEV4
- a- - 5Y50.25 |

—0.4
T

.8 0.6
[

—0.8
/
/
/
%]
P
kN

-1.0
/
/

L L L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

alpha

Figure 2. Asymptotic biases of OLS estimators, 02 /02 = {§,1,4}.

The SYS 2SLS estimator for cross section t is also a weighted average of the DIF and

LEV cross sectional 2SLS estimators
4. = da, + (1 —5) a,
where

~/ ’ ~

’g . WdZdZdﬂ'd
-~/ ! ~ ~/ !/ -~
WdZdZdﬂ'd + WlZlZﬂTl

14



see also Blundell, Bond and Windmeijer (2000), with

E (F#q)
0.2
E (5Ha) + 22 E (5m)

plimg =

and again 0= 0ifa — 1 and /or 037 /o2 — oo. Clearly, the absolute bias of the SYS
2SLS estimator will be smaller than the maximum of the absolute biases of the DIF and
LEV 2SLS estimators.

Combining the results of the OLS biases, values of the concentration parameters in
the DIF and LEV models and relative weights on the DIF and LEV moment conditions in
the SYS 2SLS estimator, we expect the absolute bias of the SYS estimator to be small for
large values of «, but that this bias is an increasing function of %;L This happens because
the bias of the LEV OLS estimator is an increasing function of Z—g, the LEV concentration
parameter a decreasing function of Z—Z’, and the weight (1 — 5) an increasing function in
%;1, implying that more weight will be given to the LEV moment conditions.

Clearly, the SYS 2SLS estimator is not efficient as there is heteroskedasticity and
correlation between the errors in model (15). We will focus on the 2SLS estimator here

in the cross-section analysis and consider the efficient 2-step GMM estimator below when

considering the full panel data analysis.

4.3 Some Monte Carlo Results

To investigate the finite sample behaviour of the estimators and Wald test statistics
we conduct the following Monte Carlo experiment. We compute the OLS and 2SLS

estimators for LEV, DIF and SYS for the cross section t = 6 for the model specification

;
11—«

Yil + €55

Yie = QY1+ 1; + Vi
2

,1‘_“&2); B~ N (0.0%) 5 v~ N (0,02)

15



for sample size N = 200; o7 = 1, and different values of a = {0.4,0.8} and 02 = {,1,4}.
There are 4 instruments for the DIF and LEV 2SLS estimators, whereas the SYS 2SLS
estimator is in this cross-sectional case based on the 8 combined moment conditions.
Tables 1 and 2 present the estimation results for 10,000 Monte Carlo replications for
a = 0.4 and o = 0.8 respectively.

The results in Tables 1 and 2 confirm the findings and conjectures stated in the
previous sections. The DIF OLS (absolute) bias is larger than the LEV OLS bias in all
cases, especially when the series are more persistent with o = 0.8. The relative biases of
the DIF 2SLS and LEV estimators are, however, the same when 03, = 2. These relative
biases are equal to 0.052 and 0.057 respectively when o = 0.4, in which case the expected
concentration parameters are equal to 46.75. The relative biases are larger, 0.310 and
0.312 respectively when o = 0.8. For this case the expected concentration parameters
are much smaller and equal to 6.35, which corresponds to a first-stage F-statistic of
6.35/4 = 1.58.

The relative bias of the DIF 2SLS estimator does not vary much with the different
values of 0,27 when a = 0.4, whereas that of the LEV 2SLS estimator does. It is only
0.029 when 03, = i, but increases to 0.169 when 037 = 4. These are exactly in line with
the larger variation in the values of the expected concentration parameter for the LEV
model. They are 132.7 when o = ; and 13.0 when o7 = 4, compared to 58.1 and 42.3
respectively for the DIF model. The absolute bias of the DIF 2SLS estimator is smaller
than that of the LEV 2SLS one when 0,27 = 4, but larger in the other cases.

When a = 0.8, there is a similar pattern to the results of the relative biases. For the
LEV 2SLS model it now decreases to 0.11 when af, = i, with the expected concentration
parameter equal to 20.9. It increases to 0.68 when 0,27 = 4 and the expected concentration

parameter is only 1.68. As explained before, we see that the weak instrument problem

for the LEV moment conditions, given o, becomes more severe with increasing af, /o2, As

16



both the OLS bias and the relative bias increase with increasing 037, so does the absolute
bias of the 2SLS estimator. When o = 0.8, the absolute bias of the LEV 2SLS estimator
ranges from 0.015 when o2 = § to 0.132 when o7 = 4.

The SYS 2SLS estimator has a slightly smaller relative bias than the DIF and LEV
ones when o7 = o7. It is 0.03 when a = 0.4 and 0.24 when o = 0.8. Unlike the results
for the LEV 2SLS estimator, the relative bias actually increases when 0727 = i, although
the absolute bias is quite small, especially when o = 0.8. The relative bias is quite large
in that case because the bias of the SYS OLS estimator is very small. When 0727 =4 the
relative and absolute biases of the SYS 2SLS estimator are similar to that of the LEV

2SLS estimator, albeit slightly smaller.

Table 1. Cross Section Estimation Results for a = 0.4, N = 200, t = 6 and 02 = 1

DIF LEV SYS
Coeff StDev RelBias| Coeff StDev RelBias| Coeff StDev RelBias
2 _ 1
99 =1
OLS -0.3005 0.0670 0.6208 0.0555 0.2243 0.0566
2SLS 0.3698 0.1734 0.0431 | 0.4064 0.0915 0.0289 | 0.3890 0.0810  0.0627
E (n) 58.06 132.7
o2 =
OLS -0.3005 0.0670 0.8196 0.0407 0.5230 0.0491
2SLS 0.3637 0.1892 0.0518 | 0.4240 0.1131 0.0572 | 0.4038 0.0953  0.0306
E (u) 46.75 46.75
0727 =
OLS -0.3005 0.0670 0.9416 0.0239 0.8118 0.0292
2SLS 0.3604 0.1973  0.0566 | 0.4917 0.1565 0.1694 | 0.4622 0.1223 0.1511
E(n) 42.31 13.02
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Table 2. Cross Section Estimation Results for a = 0.8, N =200, t = 6 and 02 = 1

DIF LEV SYS

Coeff StDev RelBias | Coeff StDev RelBias| Coeff StDev RelBias
o2 = 1
OnLS ! -0.1003  0.0699 0.9382 0.0246 0.8239 0.0281
2SLS 0.5973 0.4041  0.2251 | 0.8150 0.0841  0.1088 | 0.7925 0.0825  0.3136
E (1) 9.15 20.92
03, =1
OLS -0.1003  0.0699 0.9798 0.0142 0.9380 0.0153
2SLS 0.5210 0.4636  0.3100 | 0.8562 0.0920  0.3123 | 0.8336 0.0901  0.2433
E (u) 6.35 6.35
ol =
OLS -0.1003  0.0699 0.9945 0.0074 0.9827 0.0074
2SLS 0.4844 0.4852  0.3505 | 0.9324 0.0852  0.6808 | 0.9169 0.0785  0.6396
E (n) 5.45 1.68

Figures 3 and 4 display p-value plots for the Wald test for testing Hy : @ = oy with
« the true parameter value. When 037 = 02 = 1, the size properties of the Wald tests
based on the DIF and LEV 2SLS estimates are virtually identical, which is as expected
as the concentration parameters are equal in expectation. It is also clear that when
a = 0.8, the size properties of the Wald tests are very poor, with a large overrejection of
the null reflecting the low value of the concentration parameters. The size properties of
the Wald test based on the SYS 2SLS estimation results are better than those based on
the DIF and LEV 2SLS results, but again very poor when o« = 0.8. When 0727 = i the
size properties of the Wald tests based on the LEV and SYS 2SLS estimation results are
quite good, even when o = 0.8, whereas they are very poor when 037 = 4. The Wald test
results based on the DIF 2SLS estimates are not very sensitive to the value of 0727. These

results are again in line with expectation given the results of the previous section.
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Figure 3. P-value plots, Wald test Hy : o = 0.4.
o o o
g : : : : : : : s : : —g : : g : . : : : : :
.
o / s s o /
3 s s / L 3 /
o / © / e © /
S / ] S AN . S / .
<~ .7 <+ i e <~ e
: / et /. g1 I
/ e /o, . / .
o PP o e o -
5 / Lo 5 /- e 5 / L
LR / L’ -
° / s o /o P oy P
S / o sl /o - s/ 7
of / L0LP ol /) e wof 1 e
< P < e < e
sl / Ll s/ - sl -
of 2 -4 of |/ - -o- 45 ol - -4
8 Ll St L 8 L
L 5 = Vo e e = Wor el P - Vo
e 2 N S -7 N e -7 N
Sl P Wiey ah - Wiev sy - Wiey
ol "o’ O Wsys o I O Wsys o e O Wsys
oL 27 9 e e L L "
sl s © e ° -7
olf” of .7 ol .7
S000 002 004 006 008 010 012 014 016 5000 002 004 006 008 010 012 014 016 ©000 002 004 006 008 010 012 014 0.6
n 4 n n

Figure 4. P-value plots, Wald test Hy : oo = 0.8.

4.4 Mean Stationarity Only

In all the derivations so far we assumed covariance stationarity of the initial condition.

When we assume mean stationarity only, i.e.

with E (e2) = o2

£

E

Yi1 = d
il 1—a

1
E Nﬂd:s

1

< E o Has
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we show in the Appendix that for ¢t = 3

if 02 <

if o2 >
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so that, when ¢ = 3, the expected concentration parameter for the LEV model is larger
than that of the DIF model when the variance of the initial condition is smaller than the

covariance stationary level and vice versa.

5 Panel Data Analysis

The concept of the concentration parameter and its relationship to relative bias and size
distortion of the Wald test does not readily extend itself to general GMM estimation,
see e.g. Stock and Wright (2000) and Han and Phillips (2006). Estimation of the panel
AR(1) model by 2SLS, using all available time periods and the full set of sequential
moment conditions for the DIF and SYS models (6) and (12) will result in a weighted
average of the period specific 2SLS estimates. Weighting by the efficient weight matrix
will lead to different results, but we expect the weak instrument issues as documented in
the previous section for the DIF and LEV cross-sectional estimates to carry over to the
linear GMM estimation. This is indeed confirmed by our Monte Carlo results presented
here.

Table 3 presents Monte Carlo estimation results for the AR(1) model with normally
distributed 7; and v;, with N' = 200, T'= 6, o = 0.8 and o = 1, varying o7 = {1,1,4}.
We present 2SLS and 1-step and 2-step GMM estimation results. We use for the initial
weight matrix for the 1-step GMM DIF estimator Wy = Zfil 74 AZ g where A is a
(T' — 2) square matrix that has 2s on the main diagonal, —1s on the first subdiagonals,
and zeros elsewhere. This is the efficient weight matrix for the DIF moment conditions
when the v;; are homoskedastic and not serially correlated, as is the case here. For the
1-step GMM SYS estimator we use the commonly used initial weight matrix Wy =
SN Z.HZ,; where H is a 2 (T — 2) square matrix

il )

where I_5 is the identity matrix of order T — 2.
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The pattern of results for the 2SLS estimates is quite similar to that found for the
t = 6 cross-section as reported in Table 2. The DIF 2SLS estimator displays somewhat
larger relative biases, whereas the LEV 2SLS estimator has smaller relative biases than
in the cross-section. SYS has smaller relative and absolute biases at af, =1 and 037 =4,
but the direction of the biases remain the same.

Use of the efficient initial weight matrix reduces the bias of the 1-step GMM DIF
estimator significantly. This is due to the fact that the comparison bias is now no longer
the OLS bias in the first differenced model, but the bias of the within groups estimator,
which is smaller. There is no clear pattern to the bias of the SYS one- and two-step

GMM estimators in comparison to the 2SLS estimator.

Table 3. Panel Data Estimation Results, N =200, T =6, a = 0.8 and 02 = 1

DIF LEV SYS
Coeff StDev RelBias | Coeff StDev RelBias| Coeff StDev RelBias
o2 =1
OnLS ! -0.0999 0.0327 0.9382 0.0114 0.8238 0.0182
2SLS 0.5807 0.1624  0.2437 | 0.8119 0.0561  0.0858 | 0.7789 0.0736  0.8866
1-step | 0.7338 0.1306 0.7983 0.0672
2-step | 0.7336 0.1403 0.8117 0.0598 0.7973 0.0596
o2 =1
OnLS -0.0999 0.0327 0.9799 0.0063 0.9381 0.0086
2SLS 0.4692 0.2122 0.3675 | 0.8502 0.0679  0.2792 | 0.8129 0.0792  0.0932
l-step | 0.6721 0.1814 0.8299 0.0730
2-step | 0.6639 0.2009 0.8438 0.0424 0.8182 0.0684
o2 =4
OnLS -0.0999 0.0327 0.9946 0.0032 0.9828 0.0036
2SLS 0.4012 0.2395  0.4431 | 0.9239 0.0635 0.6369 | 0.8891 0.0751  0.4875
1-step | 0.6175 0.2131 0.8997 0.0700
2-step | 0.6007 0.2410 0.9133 0.0792 0.8841 0.0789

Figure 5 displays the p-value plots of the Wald tests for testing Hy : @ = 0.8 based
on the DIF and SYS GMM estimation results, where the Wald tests based on the 2-
step GMM results use the Windmeijer (2005) corrected variance estimates. The pattern

of size properties is very similar to that for the cross-section analysis. The Wald test
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based on the SYS GMM estimation results has better size properties than that based

on the DIF GMM estimation results when af, = %,

especially for the 1-step SYS GMM

estimator. The size behaviours are very similar when 0727 = 1, but the SYS Wald tests

size properties are much worse than that of the DIF Wald tests when af, =4.
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Figure 5. P-value plots, Wald test Hy : o« = 0.8.

6 Conclusions

We have shown that the concentration parameters in the reduced forms of the DIF
and LEV cross-sectional models are the same in expectation when the variances of the
unobserved heterogeneity (a%) and idiosyncratic errors (02) are the same in the covariance
stationary AR(1) model. The LEV concentration parameter is smaller than the DIF one
if 07 > 02 and it is larger if 07 < o2. Therefore, the well-understood weak instrument
problem in the DIF model also applies to the LEV model, especially when af, > o2,
with both concentration parameters decreasing in value with increasing persistence of
the data series. The weak instrument problem does manifest itself in the magnitude of
the bias of 2SLS relative to that of OLS, which we show are equal for DIF and LEV

2 2

when o = o

b 2. The LEV 2SLS estimator has a smaller finite sample performance in

terms of bias though, because the OLS bias of the LEV structural equation is smaller
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than that of DIF, especially when the series are persistent. The weak instrument problem
further manifests itself in poor performances of the Wald tests, which we show to have
the same size distortions in the DIF and LEV models when 0727 = 2. We show that these
properties generalise to the system GMM estimator.

Having established this potential weak instrument problem for the system GMM
estimator, for inference one should therefore consider use of testing procedures that are
robust to the weak instruments problem. The Kleibergen (2005) Lagrange Multiplier test
and his GMM extension of the Conditional Likelihood Ratio test of Moreira (2003) are
possible candidates, as is the Stock and Wright (2000) GMM version of the Anderson-
Rubin statistic. Newey and Windmeijer (2007) show that the behaviours of these test
statistics are not only robust to weak instrument asymptotics, they are also robust to
many weak instrument asymptotics, where the number of instruments grow with the
sample size, but with the model bounded away from non-identification. Newey and
Windmeijer (2007) also propose use of the continuous updated GMM estimator (CUE,
Hansen, Heaton and Yaron (1996)) with a new variance estimator that is valid under
many weak instrument asymptotics. They show that the Wald test using the CUE
estimation results and their proposed variance estimator performs well in a static panel
data model estimated in first differences. As the number of potential instruments in this
panel data setting grow quite rapidly with the time dimension of the panel, this may be
a sensible approach also for the system moment conditions.

As a final remark, the direction of the biases of the DIF (downward) and LEV (up-
ward) GMM estimators in the AR(1) panel data model are quite specific to this model
specification. In different models these biases may be different and the SYS GMM esti-

mator may have a larger absolute bias than the DIF GMM estimator. For example in
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the static panel data model

Yir = T+ 1; + Vit

Typ = PTip_1 +YN; + vy + wy

the DIFF GMM estimator may have a smaller finite sample bias than the SYS GMM
estimator when the x;; series are persistent, but |d| is small and |v| is large, as then the
endogeneity problem and OLS bias in the DIF model may be less than that of the LEV

model.
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7 Appendix

7.1 Concentration parameters in cross-section analysis

The model in first differences for the cross-section at time t is given by

Ay = oAy + Auy

t—21 t
Ayir1 =y Tar + diyq.

For the general expression of the expected value of the concentration parameter divided

by N we get o
()-8
but as
ma = [E (42 )]) B (v 2 Ayie)
and
o3 = B ((Ayiar — 4 27a)’)

we get

B (i Wt) _ (E (4 *Ayi)) [B (yffyf‘”)}_l E (yf_‘fAyu—l) |

N E(Ay2o) = (B (52 Ayi)) [B (0200 )] 7 B (v Agia)
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Under covariance stationarity

o o2
b (yf_zyf_w) = (177704)2%—2%—2 + 1 _v zGt—z
where

1 a a3

1 )
Gra=1|

: o
Oét73 “ e o 1

The inverse of E (y; *y!~?) is given by (see e.g. Ridder and Wansbeek (1990))

t—2 t—an1-1 _ i / _ U%ht%h:‘,fz
e 02+ 02 (t -3+ 1)

where

Ry 5= s he o= (1—a)y o+ aler+e2)

1 -
0 0 \/1—a2_

and e; is the j-th unit vector of order t — 2.

We further have that

t—2 o %
E (y@ Ayz’,t—l) = - 1r a9t72
where
ot—3
gi—2 = :
«
1
As
0
Ry 292 = 0 s hy 5gi 0 =14«
V1—a?
and so

(B (v Ay 1)) [E (v 20 2)] 7 E (Y2 Ayiy )

= 7072’ 1—a?— 03,(1+a)2 .
(1+a)? 02402 (t—3+ 19




Further

Combining these results in

o2 9 o2 (14a)?
5 (1 ) (1+a)? (1 o ag+a$7(t—3+}+§))

NHat | =
N 202 o 2 o2(1+a)?
s (1-a2 -
o (14a) 02402 (t—3+112)
1—a2— J%(1+oz)2

o2+o2 (t-3+1E2)

02 (14a)?
2(1+a) - (1 —a? - ag+a$7(t—3+1i—a))

11—«

(1—a?) (ag+03,(t—3+}f—g))—

2
g
U
1+ a)? (02402 (t-3+12)) o2

(1—a)(oZ+(t—3)a7)

(1+a) (02 +02 (t—2+12))
(1—a) (24 (t—3) 037)
(1—042)012)—0—(@—1)—(t—3)oz)(1—0—04)037'

For the model in levels we have for the cross-section at time ¢

Yt = QY1 +M; + Va

t—1s t
Vi1 = Ay, 7Tlt+li,t—1

and the expected concentration parameter is given by

)

N i

Again, under covariance stationarity, we have that

i 2 a—1 ala=1) - o™ (a—=1)]
) a—1 2 a—1 e (a—1)
E(Ay Ay V) = 12’@ ala—1) a-—1 P '
.. Oé—l
ot (a-1) -+ ala—1) a-—1 2
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and

at—3
i—1 o 12; :
E (yir—1Ay! )—1+a ;
1

It then follows that

(t=2)oy
I+a)((t—1)—(t—3)a)

E (yiga Dy [B (Ayi 7 Ay 7 B (i Ayl =

As
2 2
g o)
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7.2 Mean stationarity only

We now relax the assumption of covariance stationarity, while maintaining mean station-

arity, i.e. we specify the initial condition as

_
Yi1 1—OZ+EZ

with E [¢?] = o2.

€

For t = 3, we get in this case

E (11Ay2) (1 —a)o? (1-a)a?
a3 = = — = —

E(y3) (1ii)2 + 02 75
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0% = E(Ay)? —2mE (11 Ays) + 73 E (47)
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For the levels model we get

_ E(ypAy)
T3 = a2y
L ((Ayz) )
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02 + (1 — @)’ o2

and
o = E(43) — msE (y2Ayo)
2 2
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The concentration parameter is therefore given by
= T Ays Ay,
13 0123
(a’%a(la)a’z>2
o2+(1—a)’02
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and so
(O’% —a(l —a)ag)z

1 02+(1—a)?02
E (—,ulg) = — = — 7.
o 02 —a(l—a)o?
N (1—7074)2 0-% Oé20'g ( ;g+((1—a))2;§)

Calculating these expectations shows that E (%um) > K (%udg,) if 02 < 13?12 and
E (%,ulg) < F (%,udg) if 02 > fiﬁ, i.e. the expected concentration parameter in the
levels model is larger than that of the differenced model if the variance of the initial

condition is smaller than the covariance stationary level and vice versa.
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