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Abstract
This paper concerns the identification and estimation of a shape-invariant Engel
curve system with endogenous total expenditure. The shape-invariant specifica-
tion involves a common shift parameter for each demographic group in a pooled
system of Engel curves. Our focus is on the identification and estimation of both
the nonparametric shape of the Engel curve and the parametric specification of the
demographic scaling parameters. We present a new identification condition, closely
related to the concept of bounded completeness in statistics. The estimation proce-
dure applies the sieve minimum distance estimation of conditional moment restric-
tions allowing for endogeneity. We establish a new root mean squared convergence
rate for the nonparametric IV regression when the endogenous regressor has un-
bounded support. Root-n asymptotic normality and semiparametric efficiency of
the parametric components are also given under a set of ‘low-level’ sufficient condi-
tions. Monte Carlo simulations shed lights on the choice of smoothing parameters
and demonstrate that the sieve IV estimator performs well. An application is made
to the estimation of Engel curves using the UK Family Expenditure Survey and
shows the importance of adjusting for endogeneity in terms of both the curvature
and demographic parameters of systems of Engel curves.
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1. Introduction

Consumer demand presents an important area for application of semi- and nonparamet-

ric methods. Nonparametric analysis of the Engel curve relationship is now common

place (see, for example, Bierens and Pott-Butter (1990), Härdle and Jerison (1988) and

Blundell and Duncan (1998)). There are many reasons why it is important to recover

an accurate and flexible specification of the Engel curve relationship. Most obviously so

as to guide the appropriate form of preferences to use in modelling consumer responses

to policy reforms and in the nonparametric measurement of the welfare impact of such

reforms. The Engel curve plays a key role in the analysis of revealed preference on micro

data (see, for example, Blundell, Browning and Crawford (2003)). In estimating the

impact of demographic change and equivalence scales, the shape of Engel curves is also

critical (see Blackorby and Donaldson (1994), for example).

When pooling across households of different demographic specifications it is typi-

cal to adopt some semiparametric specification - nonparametric with regard to total

expenditure and parametric with regard to demographic variables. Restrictions from

consumer theory are not innocuous on the form in which demographics enter. In a

nonparametric budget share specification, demographics cannot in general enter ad-

ditively into each Engel curve equation while retaining consistency with optimisation

theory. Blundell, Browning and Crawford (2003) show that they must also enter so as

to scale the total expenditure variable inside the nonparametric Engel curve for each

commodity. Consequently the simple partially linear semiparametric specification of

Robinson (1988) has to be generalized. The generalisation we adopt corresponds to

the ‘base - independent’ (or ‘equivalence scale exactness’) method of introducing de-

mographics in demand analysis (see Blackorby and Donaldson (1994)). Interestingly

this has the same form considered in the pooling of ‘shape-similar’ or ‘shape-invariant’

nonparametric regression curves of Härdle and Marron (1990) and Pinkse and Robinson

(1995), explored further in the context of the demographic adjustment of Engel curves

by Blundell, Duncan and Pendakur (1998).

The aim of the present paper is to extend this work to the case of endogenous

regressors, in particular when the total expenditure variable is considered endogenous

for individual commodity demands. The focus of attention is on semi-nonparametric

estimation, that is on both the nonparametric estimation of the Engel curve shape

and the estimation of the parametric specification of the demographic variables. The

1



attraction of the shape-invariant specification is that demographics simply shift and scale

the function without altering its overall shape. If total expenditure is endogenous for

individual commodity demands, then the conditional mean estimated by nonparametric

least squares (LS) regression will not identify the economically meaningful ‘structural’

Engel curve relationship. That is the ‘statistical’ Engel curve will not recover the shape

necessary for the analysis of consumer preferences, equivalences scales or expansion

paths. In a semi-nonparametric regression framework of the type adopted here, there

are two alternative approaches to estimation under endogeneity - the ‘instrumental

variables’ (IV) and ‘control function’ approaches. Our aim in this paper is to develop

the IV approach for this semi-nonparametric Engel curve case.1

The instrumental variable approach is investigated in Newey and Powell (2003),

Darolles, Florens and Renault (2002) and Hall and Horowitz (2003) for the purely non-

parametric regression model. Ai and Chen (2003) have considered the IV approach

in the context of semiparametric efficient estimation of models with conditional mo-

ment restrictions containing unknown functions. In this paper we apply the sieve IV

estimation methods of Newey and Powell (2003) and Ai and Chen (2003) to the semi-

/nonparametric Engel curve application. We focus on the sieve IV method because

we argue that it is an attractive alternative to kernel based methods for the semi-

nonparametric IV case that we consider. Most existing papers on Engel curve models

assume exogenous total expenditure and consider kernel-based methods. In this paper,

given the shape-invariant semi-nonparametric specification, we argue that the sieve-

based methods are easier to implement numerically. Moreover, this semi-nonparametric

form is common in economic applications and will therefore be more generally applica-

ble.

It is well-known that a purely nonparametric IV regression is a difficult ill-posed

inverse problem, and has not been implemented in empirical research prior to the study

reported in this paper. Although this paper applies the general sieve IV estimation

method of Newey and Powell (2003) and Ai and Chen (2003), our theoretical justifi-

cation is highly nontrivial. While Newey and Powell (2003) provide consistency of the

nonparametric sieve IV estimators, and Ai and Chen (2003) obtain root-n asymptotic

1Blundell, Duncan and Pendakur (1998) allow for endogeneity of total expenditure using a parametric
additive control function approach within the context of a kernel regression framework. See Newey,
Powell and Vella (1999) for the development of the control function apporach and also the reviews by
Blundell and Powell (2003), Florens (2003) and Florens, Heckman, Meghir and Vytlacil (2002).
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normality and semiparametric efficiency of estimators of the parametric components,

their results are established under sets of relatively “high-level” sufficient conditions

since they aim at very general models of conditional moment restrictions containing un-

known functions. In our application to the shape-invariant semi-/nonparametric Engel

curve models, we first provide identification under a “bounded completeness” condition,

which is natural since Engel curves are all bounded between zero and one, and which is

also much weaker than the “completeness” condition stated in Newey and Powell (2003)

and Darolles, Florens and Renault (2002). Moreover, we are able to provide a set of

“low-level” sufficient conditions for consistency of the sieve IV estimator of Engel curves,

and for the root-n asymptotic normality and efficiency of the estimator of the paramet-

ric demographic effects. In addition, we obtain the nonparametric convergence rate in

root mean squared metric when the endogenous log-total expenditure has unbounded

support, which is a new contribution even in the literature on ill-posed inverse problems.

The only other results on convergence rates of nonparametric IV regression are those

by Darolles, Florens and Renault (2002) and Hall and Horowitz (2003).2 We note that

their estimation procedures and sufficient conditions for their convergence rate results

are different from ours. In particular they assume that the endogenous regressor has

bounded support, while we allow that the endogenous regressor to have unbounded sup-

port, which is natural in the shape-invariant Engel curve application with endogenous

total expenditure.3 In our convergence rate study, we introduce a “sieve measure of ill-

posedness”, which directly affects the variance part hence the mean squared convergence

rate of the sieve nonparametric IV estimator. The “sieve measure of ill-posedness” is

identically one for the standard nonparametric LS regression, but is always greater than

one and increases with sample size for the nonparametric IV regression. The greater

the “sieve measure of ill-posedness” is, the bigger is the variance and the slower is the

mean squared convergence rate of the sieve IV estimator.

The application of the sieve IV system estimator is to the estimation of a system

of Engel curves describing the allocation of total non-durable consumption expenditure

2 In mathematics and statistics literature, there are plenty results on convergence rates for linear
ill-posed inverse problems of the form Th = g, where T is a known compact operator and g is known up
to a small additive perturbation δ, see e.g. Kress (1999) and Korostelev and Tsybakov (1993). However,
the nonparametric IV regression in econometrics corresponds to an ill-posed inverse problem with both
the conditional expectation operator T and the g being unknown.

3Although one could transform an engodenous regressor with unbounded support into another one
with bounded support in a purely nonparametric IV regression, it is difficult to do so in the semi-
nonparametric engel curve application without destroying the shape invariant specification.
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across eight groups of non-durables and services for a sample of families with and with-

out children in the UK Family Expenditure Survey (FES). The FES records detailed

information on expenditures, incomes and family composition and has been a central

data source for many applications of consumer behavior. In the application we select

only working age families in which the head is in employment. Total expenditure is

allowed to be endogenous and we use the gross earnings of the household head as an

instrument for total expenditure. The idea is that consumption and savings are jointly

endogenous, so that total expenditure may be endogenous for the individual consump-

tion shares. We find the estimated curves and demographic parameters to be plausible

and we document a significant impact of accounting for the endogeneity of total expen-

diture. Adjusting for endogeneity increases the common demographic shift parameter

and produces a much more plausible estimate of the income equivalence scale.

A Monte Carlo study is included to assess the performance of the sieve IV estimator,

where the simulation is designed to mimic the subsample of household without children

from the FES data. The estimated “sieve measure of ill-posedness” is relatively large

for the subsample of couple without children, which translates into a slow mean squared

convergence rate of the sieve IV estimator given a typical sample size and given a finite

smoothness of the true unknown Engel curve function. Nevertheless, the Monte Carlo

results indicate that the slow convergence rate is mainly due to the large variance and

not due to the bias. In contrast, the inconsistent sieve LS estimator has a small variance

but large bias. We find that there are choices of smoothing parameters which reduce

the variance hence make the mean squared errors of the sieve IV estimators small,

while there is no choice of smoothing parameters which can reduce the large bias of the

inconsistent sieve LS estimator in the simulation. All these findings are consistent with

our theoretical result on the convergence rate of sieve IV estimator.

The structure of the remaining paper is as follows. Section 2 sets up the semi-

/nonparametric Engel curve model specification, and discusses the issue of endogenous

total non-durable expenditure. Section 3 considers the identification and estimation of

the system of shape invariant semi-/nonparametric Engel curves. Section 4 provides

consistency and nonparametric convergence rates of the sieve IV estimators of Engel

curves, and Section 5 obtains root-n asymptotic normality and efficiency of the esti-

mators of the parametric parts. Section 6 discusses the actual implementation of the

sieve estimation procedure for the system of shape invariant Engel curves, and presents

a small Monte Carlo study to assess the performance of the nonparametric IV estima-

4



tor. Section 7 reports the empirical performance of the sieve semi-nonparametric IV

estimators. Section 8 briefly concludes. All proofs and some lemmas are collected into

the Appendix.

2. Model Specification

As a baseline Engel curve specification for our empirical application we adopt the stan-

dard Working-Leser (Working (1943) and Leser (1963)) or Piglog specification in which

budget shares are expressed in terms of log total expenditure. Indeed, the empirical

investigations by Working and Leser established the Piglog form, in which the budget

share for each commodity is a linear function of log total budget, as a reasonable spec-

ification for certain goods - in particular the budget share of food. This form for the

Engel curve relationship also underlies the popular Almost Ideal and Translog demand

models of Deaton and Muellbauer (1980) and Jorgenson, Lau and Stoker (1982).

Subsequent models of consumer behaviour have typically followed this specification

for Engel curves, although many have pointed out the restrictive nature of this specifi-

cation for many commonly used commodities (see Banks, Blundell and Lewbel (1997),

for example). Recent attention has focused on Engel curves which have more variety

of curvature than is permitted by the Piglog. This reflects growing evidence from a

series of empirical studies that suggest higher order logarithmic expenditure terms are

required for certain expenditure share equations (see, for example, Hausman, Newey,

Ichimura and Powell (1991), Lewbel (1991) and Banks, Blundell and Lewbel (1997).)

Let {(Y2i, Y1il)}ni=1 represent a sequence of n household observations on the log of
total expenditure Y2i and on the l−th budget share Y1il, for each household i facing the
same relative prices. For each commodity l, budget shares and total outlay are related

by the stochastic Engel curve

Y1il = gl(Y2i) + εil (2.1)

where we assume that, for each household i, the unobservable term εil satisfies

E(εil|Y2i) = 0 and V ar(εil|Y2i) = σ2l (Y2i) ∀ goods l = 1, ..L+ 1 (2.2)

so that the nonparametric regression of budget shares on log total expenditure estimates

gl(Y2i). This model generalises standard Engel curve specifications implied by popular

demand models.
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2.1. Demographic Composition and Semiparametric Specification

Household expenditures typically display a large variation with demographic composi-

tion. Let X1 represent a vector of household composition variables. A general Engel

curve specification might have the form

Y1il = Gl(Y2i,X1i) + εil (2.3)

with

E(εil|Y2i,X1i) = 0 and V ar(εil|Y2i,X1i) = σ2l (Y2i,X1i). (2.4)

When X1 is discrete, one approach to estimation would be to stratify by each distinct

discrete outcome of X1 and estimate by nonparametric regression within each cell.

Alternatively we may wish to pool Engel curves across household demographic types and

allow the X1 to enter semiparametrically in each Engel curve. A simple semiparametric

specification would be to assume additivity of Gl

Y1il = Gl(Y2i,X1i) + εil = hl(Y2i) +X 0
1iγl + εil (2.5)

in which γl represents a finite parameter vector of household composition effects for

commodity l and hl(Y2i) is some unknown function as in (2.1). This is the partially

linear model of Robinson (1988). Although the partially linear model (2.5) motivates

the approach taken in this paper, consideration of the integrability conditions indicates

that some modification is required. Blundell, Browning and Crawford (2003) show that

the additive structure underlying (2.5) together with the Slutsky symmetry conditions

requires that hl(Y2) is linear in Y2 for all l.

An alternative specification for pooling across demographic types, and one that we

adopt, is the following extension of the partially linear model

Y1il = hl(Y2i − φ(X 0
1iθ1)) +X 0

1iθ2l + εil (2.6)

in which φ(X 0
1iθ1) is some known function up to a finite set of unknown parameters

θ1 and can be interpreted as the log of a general equivalence scale for household i,

see e.g. Pendakur (1998).4 For example, we may choose φ(X 0
1iθ1) = X 0

1iθ1 where X1i

is a vector of demographic variables representing different household types and θ1 is
4This is nested within the fully nonparametric specification (2.3). Blundell, Duncan and Pendekar

(1998) compare the specification used here with this more general alternative and find that it provides
a good representation of demand behavior for households in the FES.
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the vector of corresponding equivalence scales. Interestingly, the extended partially

linear model (2.6) is precisely the shape invariant restricted specification considered

in the work on pooling nonparametric regression curves by Härdle and Marron (1990)

and Pinkse and Robinson (1995). Notice that (2.6) reduces to an additive form for

functions of the demographic variables X1i only when hl is linear. This corresponds to

the Translog or Almost Ideal model. For nonlinear specifications of hl, including the

QUAIDS specification, the theoretical consistency result tells us that the demographic

terms must also enter in the function hl as is the case for (2.6).

Two important assumptions will be required in estimation. First, the density of

Y2i − φ(X 0
1iθ1) is bounded away from zero at the true parameter value for θ1. The

second critical assumption is that there is at least one good for which h is nonlinear.5

2.2. Endogeneity of Total Expenditure

There are both theoretical and empirical reasons why the total expenditure is likely to

be endogenous in the sense that E[εil|Y2i] 6= 0. Notice that the log of total expendi-

ture Y2i reflects savings and other consumption decisions made at the same time as the

budget shares Y1il are chosen. In fact the system of budget shares can be thought of as

the second stage in a two-stage budgeting model in which total expenditure and savings

are first determined and then, conditional on total expenditure, individual commodity

shares are chosen at the second stage (see Blundell (1988), for example). In our ap-

plication we use gross earnings of the head of household as an instrument X2i. The

gross earnings of the household head will be exogenous for consumption expenditures

under the assumption that heterogeneity in earnings is not correlated with households’

preferences over consumption.

A central objective of this paper is to relax the exogeneity assumption on Y2i in the

estimation of the semi-nonparametric budget share system (2.6). Blundell, Duncan and

Pendakur (1998) have analyzed the parametric control function approach. In this paper,

we consider the alternative nonparametric instrumental variables approach to solve the

endogeneity problem. In particular, we consider semi-nonparametric IV estimation

where hl() is a unknown function and θ1, θ2l are unknown finite-dimensional parameters.

5Nonlinear behavior in the Engel curve relationship is commonplace for many goods - see Banks,
Blundell and Lewbel (1997), for example.

7



Functions ofX2i are then used as instrumental variables. More precisely we shall assume:

E[εil|X1i,X2i] = 0, l = 1, ..., L. (2.7)

Next we examine the identification and estimation under this condition (2.7). This is

followed by sections on the large sample properties of the estimator.

3. Identification and Estimation

3.1. Notation

Here we first lay out the notations which will be adopted throughout the remaining

discussion. Let {(Y1il, Y2i,X1i,X2i)}ni=1 represent an i.i.d. sequence of n household ob-
servations on the budget share Y1il of good l = 1, ..., L ≥ 1,6 the log of total expenditure
Y2i, a vector of discrete household composition variables X1i, and a vector of continuous

instrumental variables X2i. Denote Y1i = (Y1i1, ..., Y1iL)
0 ∈ RL, Xi = (X 0

1i,X
0
2i)
0 ∈ X

with dim(X1),dim(X2) ≥ 1 and Zi = (Y
0
1i, Y2i,X

0
i)
0. Also denote ρ = (ρ1, ..., ρL)0 ∈ RL,

where for l = 1, ..., L,

ρl(Zi, θ1, θ2l, hl) ≡ Y1il − hl(Y2i − φ(X 0
1iθ1))−X 0

1iθ2l .

For each household i facing the same relative prices and for goods l = 1, .., L, the

Engel curve model satisfies (2.6) and (2.7) which we rewrite as:

E [ρl(Zi, θo1, θo2l, hol)|Xi] = 0, l = 1, ..., L (3.1)

where φ is a known function, hol(·), l = 1, ..., L are true unknown real-valued functions,
θo1, θo2l, l = 1, ..., L are true unknown vector-valued finite-dimensional parameters. For

policy analysis, we would like to estimate θo1, θo2l, the Engel curve function hol and other

smooth functional of hol(.) such as the average derivative E [∇hol(Y2i − φ(X 0
1iθo1))].

Finally we denote α = (θ, h), θ = (θ01, θ
0
21, ..., θ

0
2L)

0 ∈ Θ, a compact subset of Rb with

b = (1 + L) dim(X1), and h = (h1, ..., hL)
0 ∈ H, a subset of space of functions that are

square integrable against the probability measure associated with Y2 (to be specified

later). Let αo = (θo, ho) ∈ Θ×H denote the true parameters of interest. Then we can

rewrite (3.1) as:

E [ρ(Zi, αo)|Xi] = 0 (3.2)
6Since budget shares should add up to one, total number of goods is actually L + 1. Provided the

same basis functions are chosen to approximate hl(Y2i−φ(X0
1iθ1)), l = 1, ..., L, the estimators we derive

will be invariant to the commodity omitted.
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3.2. Identification

The first assumption is about identification of αo = (θo, ho).

Condition I (Identification):

E[Y1il − hl(Y2i − φ(X 0
1iθ1))−X 0

1iθ2l|X1i,X2i] = 0 for l = 1, ..., L,

implies θ1 = θo1, θ2l = θo2l and hl = hol a.s. for l = 1, ..., L.

We provide the following set of sufficient conditions, which might not be a minimal set

of conditions but appear quite sensible for our Engel curve system application:

Theorem 1. Suppose (3.1) and the followings hold: (1) for all bounded measurable
functions δ(Y2,X1), E[δ(Y2,X1)|X1,X2] = 0 implies δ(Y2,X1) ≡ 0 almost surely; (2)
the conditional distribution of Y2 given (X1,X2) is absolutely continuous with respect to

the Lebesgue measure on (−∞,+∞); (3) hl, l = 1, ..., L, and φ are bounded, differen-

tiable, and cannot be simultaneously linear; (4) X1 is a vector of linearly independent,

discrete random variables which only takes finite many values and does not contain con-

stant one; (5) if X1 is a scalar dummy variable, then at least one hl is not linear and

φ is not periodic. Then Condition I is satisfied.

Remark 1: Condition (1) is equivalent to the bounded completeness in X2 of the con-

ditional distribution of Y2 given X = (X1,X2). Note that this is a weaker concept

than the completeness in X2 of the conditional distribution of Y2 given X = (X1,X2)

[which is equivalent to for all measurable functions δ(Y2,X1) with finite expectations,

E[δ(Y2,X1)|X1,X2] = 0 implies δ(Y2,X1) ≡ 0 almost surely ]. By definition, complete-
ness automatically implies bounded completeness. However there are examples in statis-

tics literature showing that bounded completeness does not imply completeness, see e.g.

Lehmann (1986, page 173), Hoeffding (1977) and Mattner (1993). There are not many

known families of distributions beyond the exponential family are complete, while there

are larger families of distributions are bounded complete. For instance, within the loca-

tion family of absolutely continuous distributions (with respect to Lebesgue measure),

they are bounded complete iff the characteristic functions are zero-free; while within

its subclass of very thin tailed densities, the only complete class is either a Gaussian

or a Dirac measure, see Mattner (1993). As an example, a family of nontrivial finite

scale mixtures of the standard Gaussian N(0,1)-distribution is bounded complete but
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not complete. For the identification of h in a purely nonparametric IV regression model

E[Y1 − h(Y2,X1)|X1,X2] = 0, Newey and Powell (2003) and Darolles, Florens and Re-

nault (2002) impose the “completeness” condition. Here, since Engel curves should be

all bounded below by zero and above by one, it suffices to impose the weaker “bounded

completeness” condition for the Engel curve application.

In the empirical application (Section 7), we take X1i = 1 or 0 to indicate if the

i − th family has kids or not, while X2i is a one-to-one transformation of log gross

earnings of the household head. In our data set and in many other empirical Engel curve

analyses, the estimated joint density of log-total expenditure and log-gross earnings is

approximately bivariate normal with high correlation coefficient.

3.3. Estimation Procedure

Our estimation method is similar to that in Newey and Powell (2003) for nonparamet-

ric IV regression, and in Ai and Chen (2003) for semiparametric conditional moment

restrictions. First we approximate the unknown functions h ∈ H ≡ H1 × · · · × HL

by hn ∈ Hn, where Hn ≡ H1,n × · · · × HL,n is some sieve space, that is, some finite-

dimensional approximation spaces (e.g. Fourier series, orthogonal polynomials, splines,

power series, wavelets, etc.) which become dense in H as sample size n → ∞. Then
for arbitrarily fixed candidate value α = (θ, hn) ∈ An ≡ Θ×Hn, we estimate the pop-

ulation conditional moment function m(x, α) ≡ E [ρ(Zi, α)|Xi = x] nonparametrically

by bm(x, α). Finally we estimate the θ and the unknown sieve coefficients jointly by a
generalized version of minimal distance estimation procedure:

min
α∈An

1

n

nX
i=1

bm(Xi, α)
0[bΣ(Xi)]

−1 bm(Xi, α), (3.3)

where bΣ is some consistent estimator of some positive definite weighting matrix Σ. We
denote the resulting estimator as bαn = (bθn,bhn) ∈ An.

To obtain semiparametric efficient estimator of θo, we may follow a three-step pro-

cedure proposed in the first version of Ai and Chen (2003):

Step 1. Obtain an initial consistent estimator bαn as the solution to:
min
α∈An

1

n

nX
i=1

bm(Xi, α)
0 bm(Xi, α), (3.4)
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where bm(Xi, α) is a nonparametric consistent estimator of m(Xi, α) uniformly over

(Xi, α) ∈ X ×An.

Step 2. Obtain a consistent estimator bΣo(X) of the optimal weighting matrix Σo(X) ≡
V ar [ρ(Z,αo)|X] using bαn and any nonparametric regression procedures (such as kernel,
nearest-neighbor or linear sieves).

Step 3. Obtain the optimally weighted estimator eαn = (eθn,ehn) by solving
min
α∈An

1

n

nX
i=1

bm(Xi, α)
0[bΣo(Xi)]

−1 bm(Xi, α). (3.5)

Remark 2: If total expenditure Y2 is assumed to be exogenous, then Y2 should be

the “perfect IV” and we have E[ρ(Zi, θo, ho)|X1i,Y2i] = 0. In this case, we do not need

to estimate αo = (θo, ho) via (3.3). Instead a simpler estimation method will be the

following sieve generalized Least Squares (LS) method:

min
α∈An

1

n

nX
i=1

ρ(Zi, α)
0bΣ(Xi)

−1ρ(Zi, α). (3.6)

Again the semiparametric efficient estimator of θo can be obtained by the above three-

step procedure except with bm(Xi, α) replaced by ρ(Zi, α).

Remark 3: An alternative estimation procedure is the sieve profile approach. For each
fixed θ ∈ Θ, we denote h∗(θ; .) as the solution to

min
h∈H

E
£
m(X, θ, h)0Σ(X)−1m(X, θ, h)

¤
.

Clearly ho(.) = h∗(θo; .). We can apply the following profile estimation procedure: First
for each fixed θ ∈ Θ, we estimate h∗(θ; .) by bhn(θ; .), the solution to

min
h∈Hn

1

n

nX
i=1

bm(Xi, θ, h)
0[bΣ(Xi)]

−1 bm(Xi, θ, h). (3.7)

Second we estimate θo by bθn which solves
min
θ∈Θ

1

n

nX
i=1

bm(Xi, θ,bhn(θ; .))0[bΣ(Xi)]
−1 bm(Xi, θ,bhn(θ; .)), (3.8)

and estimate ho(.) = h∗(θo; .) by bhn = bhn(bθn; .).
11



If total expenditure Y2 is assumed to be exogenous, then we can again estimate

αo = (θo, ho) via the following profile sieve generalized Least Squares (LS):

bhn(θ; .) = arg min
h∈Hn

1

n

nX
i=1

ρ(Zi, θ, h)
0bΣ(Xi)

−1ρ(Zi, θ, h),

bθn = argmin
θ∈Θ

1

n

nX
i=1

ρ(Zi, θ,bhn(θ; .))0bΣ(Xi)
−1ρ(Zi, θ,bhn(θ; .)).

3.4. Possible Sieve Bases for h

There are many sieve spaces which can approximate H well. Since hol, l = 1, ..., L have

the same argument Y2 − φ(X 0
1θ1) and similar smoothness, they may be approximated

by the same kind of sieve bases. In our empirical application Y2 is log total expenditure,

and a simple nonparametric estimation of the density of Y2 using our data set shows

that it could be closely approximated by a normal density. Therefore we assume that

the support of Y2−φ(X 0
1θ1) is the entire real line R. Then the choice of sieve bases are

partially suggested by what kind of smoothness we want to impose on ho ∈ H.
Since consumer demand theory and many empirical studies suggest that hol, l =

1, ..., L are sup-norm bounded (actually 0 ≤ hol ≤ 1 and 0 ≤
PL

l=1 hol ≤ 1), and are
reasonably smooth curves, one possible assumption is that hol ∈ Hl for all l = 1, ..., L,

where

Hl =
n
hol ∈W r

∞(R) : 0 ≤ hol ≤ 1, kholkW r∞
≤ c <∞

o
, (3.9)

where c is a known constant (say 1.5), W r∞(R) denotes the Sobolev space of smoothness
r ≥ 1. When r is an integer, the norm ||g||W r∞ is equivalent to ||g||∞ + ||∇rg||∞, here
|| · ||∞ denotes the sup-norm ||g||∞ ≡ supy |g(y)| and ∇rg denotes the r−th derivative of
g. An attractive property of W r

p (R), 1 ≤ p ≤ ∞ is that any function g in this space can

be represented as linear combinations of a frame basis {ψkj} such that the norm ||g||W r
p

is equivalent to the sum of cp -norms on the level and on the r−th order difference of
the coefficients sequences, (see e.g. Meyer, 1990).

For the space (3.9), we may consider the following sieve:

Hl,n =

½
hl,n(Y2 − φ(X 0

1θ1)) =
PKn

k=0

P
j∈Kn π

l
kjψkj(Y2 − φ(X 0

1θ1)) :

0 ≤ hl,n(.) ≤ 1, ||∇rhl,n||∞ ≤ c

¾
(3.10)

where

ψkj(Y2 − φ(X 0
1θ1)) = 2

k/2Bγ(2
k[Y2 − φ(X 0

1θ1)]− j),

12



and Bγ(·) denotes the cardinal B-spline of order γ = [r] + 1:7

Bγ(y) =
1

(γ − 1)!
γX
i=0

(−1)i
µ

γ
i

¶
[max (0, y − i)]γ−1 , (3.11)

which is a piecewise polynomial of highest degree γ − 1. Obviously Bγ(·) is γ − 1 times
differentiable, has support on [0, γ] and is symmetric about the center of its support. In

addition, it satisfies

Bγ(·) ≥ 0,
+∞X

j=−∞
Bγ(y − j) = 1 for all y, (3.12)

which is crucial to preserve the shape of the approximated unknown functions, see Chui

(1992, Chapter 4) and Anastassiou and Yu (1992) for details. Moreover, the compact

support [0, γ] of Bγ(·) makes the summation
PKn

k=0

P
j∈Kn in (3.10) becomes effectively

summation over finite many terms for any fixed Kn.8 The approximation accuracy of

this sieve can be found in Chen, Hansen and Scheinkman (1997) when the support of

the function is the entire real line.

3.5. Possible Sieve Bases for m

There are many nonparametric procedures such as kernel, local linear regression, nearest

neighbor and various sieve methods that can be used to estimate m(x, α) and Σo(x).

Here we again consider the sieve estimator as illustration. For each fixed (Xi, α), we

approximate E [ρ(Zi, α)|Xi] = m(Xi, α) by m(Xi, α) ≈
P

j∈Jn aj(α)poj(Xi), where poj
some known fixed basis functions, and Jn ≡ #(Jn) → ∞ slowly as n → ∞. We then

estimate the sieve coefficients {aj} simply by LS regression:

min
{aj}

1

n

nX
i=1

[ρ(Zi, α)−
X
j∈Jn

ajpoj(Xi)]
0[ρ(Zi, α)−

X
j∈Jn

ajpoj(Xi)],

and the resulting estimator is denoted as: bm(X,α) =
P

j∈Jn baj(α)poj(X). In the fol-
lowing we denote: pJn(x) = (po1(x), ..., poJn(x))

0 and P = (pJn(X1), ..., p
Jn(Xn))

0, then:

bm(X,α) =
nX
i=1

ρ(Zi, α)p
Jn(Xi)

0(P 0P )−pJn(X). (3.13)

7The notation [r] means the integer part of r, where r ≥ 1 denotes the smoothness of the engel curve
function hl.

8See Chen and Conley (2001) for an application of this sieve to estimate a spatial panel time series
model.
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Again many known sieve bases could be used as {poj}. In our empirical application to
Engel curve estimation, we take X1 to be the set of discrete random variables which has

finite support X1, while X2 is the normal transformation of the log of gross earnings9
X2 = Φ(log-gross earnings) ∈ [0, 1]. We have taken pJn(x) to be Fourier series and

B-splines. The empirical findings are not sensitive to the different choice of sieve bases.

4. Consistency and Convergence Rate of Nonparametric Parts

In this section we focus on the properties of the sieve IV estimators of the unknown

Engel curve hol, l = 1, ..., L. We first provide the consistency of bhl under a strong
norm, then establish the convergence rate of bhl under the mean squared error metric:
||bh− ho||2Y2 = maxl=1,...,L ||bhl − hol||2Y2 with

||bhl − hol||2Y2 = E

·nbhl(Y2 − φ(X 0
1θo1))− hol(Y2 − φ(X 0

1θo1))
o2¸

.

In this section we take bΣ(X) = IL without loss of generality. We denote kn ≡ 2Kn =

dim(Hl,n), and assume:

Assumption 1. (i) The data {Zi = (Y
0
i ,X

0
i)
0 : i = 1, 2, ..., n} are i.i.d.; (ii) 0 ≤ Y1il ≤ 1

for l = 1, ..., L; (iii) conditions of theorem 1 hold.

Assumption 2. (i) θo = (θ0o1, θ
0
o21, ..., θ

0
o2L)

0 ∈ Θ, a compact subset of Rb with b =

(1+L) dim(X1); (ii) ho = (ho1, ..., hoL)0 ∈ H with hol ∈W r∞(R), r > 1, and 0 ≤ hol ≤ 1
and 0 ≤PL

l=1 hol ≤ 1,
PL

l=1 kholkW r∞
≤ c <∞.

Assumption 3. For any x1 in the support of X1, (i) pJn(x) = (po1(x), ..., poJn(x))
0 is

either a Fourier series or a B-spline basis of order [rm]+1 for functions inW rm∞ (X2), rm >

1/2; (ii) the smallest and the largest eigenvalues of E{pJn(X)pJn(X)0} are bounded and
bounded away from zero for each Jn; (iii) the density of X2 is bounded and bounded

away from zero over its support X2, which is a compact interval with non-empty interior.
Assumption 4. (i) For any x1 in the support ofX1, E[Y1l|X1 = x1,X2], l = 1, ..., L, and

E[ψkj(Y2 − φ(X 0
1θ1))|X1 = x1,X2], k = 0, ...,Kn, j ∈ Kn all belong to W rm∞ (X2), rm >

1/2.

Assumption 5. (i) kn ≡ 2Kn →∞, Jn/n→ 0, Jn ≥ (1 + L−1) dim(X1) + kn.

9Of course any bounded monotone one-to-one transformation will be fine. However, the empirical
distribution of the log-gross wage is known to be well approximated by a normal cdf Φ, we take this
transformation so that the resulting X2i is approximatedly uniformly distributed over [0, 1].
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The following consistency result is obtained by applying Theorem 4.1 in Newey and

Powell (2003).

Proposition 1. Let Y2 be endogenous and E{|Y2|2a | X} be bounded for some a > 0.

Suppose Assumptions 1 - 3, 4(i) and 5(i) are satisfied. Let bα be the sieve MD estimator
(3.4) with the sieve space given by (3.10). Then: ||(bh− ho)(1 + y2)−a/2||W r1∞ (R) = op(1)

for any r1 ∈ [0, r), hence ||bh− ho||Y2 = op(1).

In order to obtain the rate of convergence for ||bh − ho||Y2 , we impose the following
additional conditions:

Assumption 4. (ii) There is a finite constant c such that for any x1 in the support of
X1, ||E[Y1l|X1 = x1,X2 = ·]||W rm∞ ≤ c for l = 1, ..., L, and ||E[ψkj(Y2 − φ(X 0

1θ1))|X1 =
x1,X2 = ·]||W rm∞ ≤ c for k = 0, ...,Kn, j ∈ Kn.

Assumption 5. (ii) limn→∞ (Jn/kn) = c0 ≥ 1; limn→∞
¡
k2n/n

¢
= 0;

Assumption 6. (i) Conditioning on X1 = 0, the joint probability measure of (X2, Y2)

is absolutely continuous with respect to the product probability measure of X2 and Y2;

We define τn as a sieve measure of ill-posedness:

τn ≡ sup
hn∈Hn:hn 6=0

p
E{hn(Y2)}2p

E{E[hn(Y2)|X1 = 0,X2]}2
, (4.1)

which is well defined under the conditions for identification. Obviously τn ≥ 1, and

τn = 1 if and only if Y2 is measurable with respect to the sigma-field generated by

{X1 = 0,X2} (then E[hn(Y2)|X1 = 0,X2] = hn(Y2) for all hn ∈ Hn). For example

τn = 1 when Y2 is exogenous (and we take Y2 = X2). We note that the τn measure of

ill-posedness, as given in (4.1), depends on the choice of sieve space Hn. This is why we

call it a “sieve measure of ill-posedness”.10

Under Assumption 6(i), τn is closely related to the kn−th singular number associated
with the conditional expectation operator (Th)(X2) ≡ E[h(Y2)|X2,X1 = 0].

10The sieve measure of ill-posedness, τn, can be estimated from the data by

bτn ≡ sup
hn∈Hn:hn 6=0

q
1
n

Pn
i=1{hn(Y2i)}2q

1
n

Pn
i=1{ bE[hn(Y2)|X1i = 0,X2i]}2

, (4.2)

where for any fixed hn ∈ Hn, bE[hn(Y2)|X1 = 0,X2] is a nonparametric estimate of the conditional
expectation E[hn(Y2)|X1 = 0, X2] such as a sieve LS estimator using the sieve basis function pJn(X2),
see Section 6 for more details.
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In the following we let f0,X2,Y2 , f0,X2 , f0,Y2 denote respectively the joint density of

(X2, Y2), marginal densities of X2 and Y2, all conditioning on X1 = 0. Let T :W r∞(R)∩
L2(R, f0,Y2) → W rm∞ (X2) ∩ L2(X2, f0,X2) denote the conditional expectation operator

that maps a square integrable function of Y2 inW r∞(R) into a square integrable function
ofX2 inW rm∞ (X2), and let T ∗ :W rm∞ (X2)∩L2(X2, f0,X2)→W r∞(R)∩L2(R, f0,Y2) denote
the adjoint operator of T , which is the conditional expectation operator mapping a

square integrable function of X2 into a square integrable function of Y2, i.e., (T ∗g)(Y2) ≡
E[g(X2)|Y2,X1 = 0].

Under Assumption 6(i), it is well-known that the self-adjoint operators T ∗T and TT ∗

share the same eigenvalue sequence
©
µ2k
ª
with µ21 = 1 ≥ µ22 ≥ µ23 ≥ .... The non-negative

value of
q
µ2k is called the k−th singular number of T and T ∗, which will be denoted

as µk to save notation in this paper. Moreover, the corresponding eigenfunctions of the

operators T ∗T and TT ∗ are also orthonormal bases {φ1k : k = 1, ...,∞} (for W r∞(R)
and L2(R, f0,Y2)), {φ0k : k = 1, ...,∞} (for W rm∞ (X2) and L2(X2, f0,X2)), such that

f0,X2,Y2(x2, y2)

f0,X2(x2)f0,Y2(y2)
=

∞X
k=1

µkφ0k(x2)φ1k(y2),
∞X
k=1

µ2k <∞,

and for all k ≥ 1,

Tφ1k = µkφ0k, T
∗φ0k = µkφ1k; T ∗Tφ1k = µ2kφ1k, TT

∗φ0k = µ2kφ0k.

Denote ||g||X2 ≡
p
E{g(X2)}2 and ||h||Y2 ≡

p
E{h(Y2)}2. In the Appendix A, we

establish that

τn ≡ sup
hn∈Hn:hn 6=0

||hn||Y2
||Thn||X2

≤ 1

µkn
. (4.3)

Theorem 2. Let Y2 be endogenous with E[|Y2|2a|X] < ∞, E[|Y2|pa] < ∞ for some

a > r and p ≥ 4. Suppose Assumptions 1 - 4, 5(i)(ii) and 6(i) are satisfied. Let bα be
the sieve MD estimator (3.4) with the sieve space given by (3.10). Then

||bhnl − hol||Y2 = Op

(
(kn)

−r + τn ×
"r

kn
n
+ (kn)

−rm
#)

for all l = 1, ..., L;

Under kn = O(n1/(2rm+1)), we have

||bhnl − hol||Y2 = Op

(
(kn)

−r + τn

r
kn
n

)
= Op

n
[(kn)

rm−r + τn]× n−
rm

2rm+1

o
.
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Remark 4: (i) For exogenous total expenditure Y2, under Assumptions 1 and 2 and

some mild additional ones, we have ||bhnl−hol||Y2 = Op

½
(kn)

−r +
q

kn
n

¾
.11 Comparing

this rate to that in Theorem 2 (the endogenous Y2 case), we note that the bias part

(kn)
−r is of the same order, however, the standard deviation part blows up from

q
kn
n

in the exogenous case to τn
q

kn
n in the endogenous case.

(ii) Under Assumptions 1 - 4, 5(ii) and Jn = O(n1/(2rm+1)), Claim 2 in Appendix A

shows that q
E{ bE[hol|X2]−E[hol|X2]}2 = Op

n
n−

rm
2rm+1

o
.

Therefore we have

||bhnl − hol||Y2 = Op

½¡
(kn)

rm−r + τn
¢q

E{ bE[hol|X2]−E[hol|X2]}2
¾
.

Recall that hol has r−smoothness and E[hol(Y2−φ(0))|X1 = 0,X2] = E[Y1l|X1 = 0,X2]

has rm−smoothness, and that rm > r, τn > 1 for endogenous Y2. The convergence rate

of ||bhnl − hol||Y2 is always slower than that of
q
E{ bE[hol|X2]−E[hol|X2]}2 by a factor

(kn)
rm−r + τn. Hence the difference “rm − r” can be regarded as a measure of the

exponent degree of ill-posedness. Obviously ||bhnl − hol||Y2 will go to zero very slowly
when rm − r is very big.

The inequality (4.3) is very useful, since there exist many approximation results on

the behavior of singular value µkn in terms of smoothness and integrability of the kernel

function
f0,X2,Y2(x2,y2)

f0,X2 (x2)f0,Y2 (y2)
of the conditional expectation operator T , see e.g. Birman and

Solomyak (1977) and Chen, Hansen and Scheinkman (2000). We now make one of such

sufficient conditions.

Assumption 6. (ii) for each fixed y2,
f0,X2,Y2(·,y2)

f0,X2 (·)f0,Y2(y2)
belongs to W

γ0∞ (X2), 0 < γ0 =

rm − r − 1
2 , and Z

R

"°°°° f0,X2,Y2(·, y2)
f0,X2(·)f0,Y2(y2)

°°°°
W

γ0∞ (X2)

#2
f0,Y2(y2)dy2 <∞.

Assumption 6(ii) implies

c1k
−(γ0+ 1

2
)[L(k)]−1 ≤ µk ≤ ck−(γ0+

1
2
) ≡ ck−(rm−r),

11The convergence rate under exogenous Y2 can be obtained from Theorem 1 in Newey (1997) or
Theorem 1 in Chen and Shen (1998).
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for some slow varying function L(k) that goes to ∞ slower than any polynomial order,

see e.g. Birman and Solomjak (1977). Assumption 6, the inequality (4.3) and Theorem

2 imply the following corollary.

Corollary 1. Suppose all the conditions of Theorem 2 and Assumption 6(ii) hold.

Let bα be the sieve MD estimator (3.4) with the sieve space given by (3.10). Let kn =

O(n1/(2rm+1)). Then for all l = 1, ..., L,

||bhl − hol||Y2 = Op(n
−r/(2rm+1)L(n1/(2rm+1)))

for some function L(k) goes to ∞ slowly such that L(k)/k� → 0 for all � > 0.

Remark 5: If we assume that Y2 has bounded interval support say [0, 1], then conditions
very similar to Assumption 6(ii) will provide a precise order of singular value decay rate.

For example, suppose Assumption 6(ii) is replaced by Assumption 6(ii)’:

Assumption 6(ii)’: Y2 has support [0, 1], and for each fixed y2 ∈ [0, 1], f0,X2,Y2 (·,y2)
f0,X2(·)f0,Y2 (y2)

belongs to Cγ0(X2), γ0 = rm − r − 1
2 ∈ (0, 1], and

sup
y2∈[0,1]

°°°° f0,X2,Y2(·, y2)
f0,X2(·)f0,Y2(y2)

°°°°
Cγ0(X2)

<∞.

Then we have:

c1k
−(γ0+1

2
) ≤ µk ≤ ck−(γ0+

1
2
) ≡ ck−(rm−r),

see e.g. Heinrich and Kuhn (1985, corollary). This, the inequality (4.3) and Theorem 2

together imply

||bhl − hol||Y2 = Op(n
−r/(2rm+1))

which coincides with the optimal rate established in Hall and Horowitz (2003) when Y2

has support [0, 1].

5.
√
n Asymptotic Normality and Efficiency of bθ

This section specializes the general theory of Ai and Chen (2003) to our system of shape

invariant Engel curve models by providing relatively low-level sufficient conditions. We

first establish a faster than n−1/4 rate of convergence under a weaker metric kα− αok,
which is crucial to establish

√
n -asymptotic normality of estimates of θo. We then

provide sufficient conditions for
√
n−asymptotic normality and efficiency of bθ.
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5.1. Nonparametric Convergence Rate under a Weaker Metric

We define the following metric:

kα− αok2 = E

·
E{dρ(Z,αo)

dα
[α− αo]|X}0Σ(X)−1E{dρ(Z,αo)

dα
[α− αo]|X}

¸
,

where dρ(Z,α)
dα [v] denotes the directional derivatives of ρ at the direction v = (vθ, vh)

evaluated at α:

dρ(Z,α)

dα
[v] =

µ
dρ1(Z,α)

dα
[v], ...,

dρL(Z,α)

dα
[v]

¶0
=

dρ(Z,α)

dθ0
(vθ) +

dρ(Z,α)

dh
[vh],

here dρ(Z,α)
dθ0 is the ordinary derivative with respect to θ0 = (θ01, θ

0
21, ..., θ

0
2L) evaluated at

α, dρ(Z,α)dh [vh] is the directional derivative with respect to h at direction vh evaluated at

α. Notice that in this paper, for all l = 1, ..., L,

dρl(Z,αo)

dα
[v] = ∇hol(Y2−φ(X 0

1θo1))×∇φ(X 0
1θo1)×X 0

1[vθ1 ]−X 0
1[vθ2l ]−

£
vhl(Y2 − φ(X 0

1θo1))
¤
.

We impose the following conditions:

Assumption 5. (iii) (kn)
2 ln(n)√
n

→ 0; (iv) (kn)
−r = O

¡
n−1/4

¢
; (kn)

−rm = o
¡
n−1/4

¢
.

Assumption 7. uniformly over X ∈ X , (i) bΣ(X) = Σ(X) + op(n
−1/4); (ii) Σ(X) is

finite positive definite.

The next result can be obtained by applying Theorem 3.1 in Ai and Chen (2003).

Proposition 2. Let Y2 be endogenous with E[|Y2|4a] < ∞ for some a > r. Suppose

Assumptions 1 - 5, 6(i) and 7 are satisfied. Let bα be the sieve MD estimator (3.3) with
the sieve space given by (3.10). Then ||bα− αo|| = op

¡
n−1/4

¢
.

5.2.
√
n Asymptotic Normality

Before we state the result on asymptotic normality, we need to introduce additional

notations. Let

Dw1(X,αo) = E
¡∇ho(Y2 − φ(X 0

1θo1))∇φ(X 0
1θo1)X

0
1 + w1(Y2 − φ(X 0

1θo1)) | X
¢

where

∇ho(Y2 − φ(X 0
1θo1)) ≡

 ∇ho1(Y2 − φ(X 0
1θo1))

...
∇hoL(Y2 − φ(X 0

1θo1))

 L× 1 vector;
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for l = 1, ..., L,

Dw2l(X,αo) = E
³
−elX 0

1 + w2l(Y2 − φ(X 0
1θo1)) | X

´
,

where el denotes the L×1-vector with 0’s everywhere except 1 in the l-th element. And
denote

Dw(X,αo) = (Dw1(X,αo),Dw21(X,αo), ...,Dw2L(X,αo)) .

Since θ ∈ Θ ⊂ Rb with b ≡ (1+L) dim(X1), obviouslyDw(X,α) is a L×b−matrix valued
function, whereDwj (X,αo) is a L×dim(X1) -matrix valued function for j = 1, 21, ..., 2L.

Define the spaces

L2(X ,Σ) = {f : X → RL×dim(X1) : E[f(X)0Σ(X)−1f(X)] <∞}

S =
½

s ∈ L2(X ,Σ) : s(X) = E[g(Y2 − φ(X 0
1θo1))|X]

for some g such that E[|g(Y2 − φ(X 0
1θo1))| | X] <∞

¾
and S the closure of S in L2(X ,Σ). Let ProjS (·) denote the orthogonal projection onto
S, and S⊥ denote the subspace of L2(X ,Σ) that is orthogonal to S.

We also denote E[w∗j(Y2 − φ(X 0
1θo1))|X], j = 1, 21, ..., 2l, ..., 2L, as the solution to

inf
E[wj(·)|X]∈S

E
£
Dwj (X,αo)

0Σ(X)−1Dwj (X,αo)
¤
, (5.1)

or equivalently,

E
£
Dw∗j (X,αo)

0Σ(X)−1{E[wj(Y2 − φ(X 0
1θo1))− w∗j(Y2 − φ(X 0

1θo1)) | X]}
¤
= 0

for all E[wj(Y2 − φ(X 0
1θo1))|X] ∈ S, j = 1, 21, ..., 2l, ..., 2L.

LetE[w∗(·)|X] = E[(w∗1(·), w∗21(·), ....., w∗2L(·))|X], thenE[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)]

is simply a b × b− variance-covariance matrix with the (j, k)-th element given by

E[Dw∗j (X,αo)
0Σ(X)−1Dw∗k(X,αo)] for j, k = 1, 21, ..., 2L. Lemma 1 in the Appen-

dix shows that E[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)] is finite, positive-definite under the

following Assumption N1:

Assumption N1. (i) E[∇ho(Y2 − φ(X 0
1θo1))|X]∇φ(X 0

1θo1) is not a constant;

(ii) E[∇ho(Y2 − φ(X 0
1θo1))|X]∇φ(X 0

1θo1)X
0
1a−

ProjS (E[∇ho(Y2 − φ(X 0
1θo1))|X]∇φ(X 0

1θo1)X
0
1a) = 0 a.s. if and only if a ≡ 0;

(iii) X 0
1a− ProjS (X 0

1a) = 0 a.s. if and only if a ≡ 0.
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Assumption N2. (i) θo ∈ int(Θ); (ii) Σo(X) ≡ V ar[ρ(Z,αo)|X] is positive definite for
all X ∈ X .
Proposition 3. Suppose all conditions of Proposition 2, Assumptions N1-N2 and N3
(in the Appendix) are satisfied. Then:

√
n(bθn − θo) =⇒ N (0, V −1), where

V ≡
 E{Dw∗(X,αo)

0Σ(X)−1Dw∗(X,αo)}×¡
E{Dw∗(X,αo)

0Σ(X)−1Σo(X)Σ(X)−1Dw∗(X,αo)}
¢−1×

E{Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)}

 . (5.2)

Lemma 2 in the Appendix provides simpler expression of Dw∗(X,αo); and shows

that Assumption N1 is implied by the following Assumption N1’:

Assumption N1’. the conditional distribution of Y2 given X depends on X only

through X2 − φ(X 0
1θo1); further,

(i) E[∇ho(Y2 − φ(X 0
1θo1))|X2 − φ(X 0

1θo1)]∇φ(X 0
1θo1) is not a constant;

(ii) E[∇ho(Y2 − φ(X 0
1θo1))|X2 − φ(X 0

1θo1)]{∇φ(X 0
1θo1)X

0
1a − E[∇φ(X 0

1θo1)X
0
1a | X2 −

φ(X 0
1θo1)]} = 0 a.s. iff a ≡ 0;

(iii) X 0
1a−E[X 0

1a | X2 − φ(X 0
1θo1)] = 0 a.s. iff a ≡ 0.

Remark 6: (i) Assumption N1’ includes the exogenous Y2 = X2 as a special case.

(ii) When X1 ∈ {0, 1} and Y2,X2 are scalar continuous random variables, the

assumption that the conditional density of Y2 given X depends on X only through

X2 −X 0
1θo1 is reasonable. In particular, we need such an assumption in the identifica-

tion theorem 1.

5.3. Semiparametric Efficiency

To obtain semiparametric efficient estimator of θo, we may follow the three-step pro-

cedure described in subsection 3.3. In particular we can estimate Σo(X) in Step
2 by regressing ρ(Z, bαn)ρ(Z, bαn)0 on pJn(X). Let Σo(X) = [σolk(X)]l,k=1,...,L, where

σolk(X) = E[ρl(Z, hol, θ1, θo2l)ρk(Z, hok, θ1, θo2k)|X] denotes the (l, k)-th element. Then
Σo(X) is estimated by bΣo(X, bαn), where bΣo(X,α) denotes the L × L -matrix with its

(l, k)-th element given by bσolk(X,α) :

bσolk(X,α) ≡ pJn(X)0(P 0P )−
nX
i=1

pJn(Xi)ρl(Zi, α)ρk(Zi, α).

Proposition 4. Let eαn = (eθn,ehn) be the three-step estimator (3.5). Suppose all

conditions of Proposition 3 are satisfied with Σ = Σo. Then eθn is asymptotic efficient,
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and
√
n(eθn − θo) =⇒ N (0, V −1o ), where

Vo = inf
E[wj(·)|X]∈So,j=1,21,...,2L

E
£
Dw(X,αo)

0[Σo(X)]−1Dw(X,αo)
¤
,

and So is defined the same way as S except with Σ = Σo.

5.4. Covariance Estimator

To conduct any statistical inference using the semiparametric efficient estimator eθ, we
need a consistent estimator eVo of Vo. Let bDw(x, eα) = ³ bDw1(x, eα), bDw21(x, eα), ..., bDw2L(x, eα)´
denote a consistent estimator of Dw(x, αo) = (Dw1(x,αo),Dw21(x, αo), ...,Dw2L(x, αo)).

Then eVo can be computed as
eVo = inf

wj(·)∈Wn,j=1,21,...,2L

1

n

nX
i=1

bDw(Xi, eα)0[bΣo(Xi)]
−1 bDw(Xi, eα),

where Wn denote the linear completion of Hn − {Πnho}, and Hn could be the same

sieve space (3.10) used to compute h. That is, each wj(Y2i− φ(X 0
1i
eθ1)), j = 1, 21, ..., 2L

can be approximated by the same basis for h before:

wj(Y2 − φ(X 0
1θ1)) ≈

KnX
k=0

X
t∈Kn

πjkt2
k/2Bγ(2

k[Y2 − φ(X 0
1θ1)]− t).

In this paper we use

bDwj (x, eα) = pJn(x)0(P 0P )−
nX
i=1

pJn(Xi)

µ
dρ(Zi, eα)

dθj
− dρ(Zi, eα)

dh
[wj(Y2i − φ(X 0

1i
eθ1))]¶ ,

and

dρ(Zi, eα)
dθ1

− dρ(Zi, eα)
dh

[w1(Y2i − φ(X 0
1i
eθ1))]

= ∇eh(Y2i − φ(X 0
1i
eθ1))∇φ(X 0

1i
eθ1)X 0

1i + w1(Y2i − φ(X 0
1i
eθ1))

where

∇eh(Y2i − φ(X 0
1i
eθ1)) =

 ∇eh1(Y2i − φ(X 0
1i
eθ1))

...

∇ehL(Y2i − φ(X 0
1i
eθ1))

 L× 1 vector,
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and for l = 1, ..., L,

dρ(Zi, eα)
dθ2l

− dρ(Zi, eα)
dh

[w2l(Y2i − φ(X 0
1i
eθ1))] = −elX 0

1i + w2l(Y2i − φ(X 0
1i
eθ1)).

That is, our estimate eVo is the simple weighted LS residuals:
eVo = inf

{πjkt},j=1,21,...,2L
1

n

nX
i=1

bDw(Xi, eα)0[bΣo(Xi)]
−1 bDw(Xi, eα)

Proposition 5. Under the same conditions as that for Proposition 4, we have: eVo =
Vo + op(1).

6. Implementation and Simulation

In this section, we first describe how the general sieve minimum distance procedure can

be easily implemented in our application to a system of shape invariant Engel curves.

We then present a Monte Carlo study to evaluate the performance of nonparametric IV

regression.

6.1. Implementation

We only discuss the implementation of the sieve minimum distance for the case when

Y2 is endogenous; the exogenous case follows along the same lines.

In the empirical application we have φ(X 0
1θ1) = X 0

1θ1. The unknown function hl is

approximated by hnl(Y2−X 0
1θ1) = Bkn (Y2 −X 0

1θ1)
0Πl, whereBkn (y) = (B1(y), ..., Bkn(y))

0

is the set of basis functions and kn is the number of unknown sieve coefficient in ap-

proximating hl.12 In the empirical section we have implemented two kinds of sieve basis

functions for hl: (1) the cardinal B-spline sieve (3.10) of order γ (with γ ≥ 3),

Bkn(Y2 −X 0
1θ1)

0Πl =
KnX
k=0

X
j∈Kn

πlkj2
k/2Bγ(2

k[Y2 −X 0
1θ1]− j);

and (2) the polynomial spline sieve of order qn with rn number of knots,

Bkn(Y2 −X 0
1θ1)

0Πl =
qnX
j=0

πlj
¡
Y2 −X 0

1θ1
¢j
+

rnX
k=1

πlqn+k
¡
Y2 −X 0

1θ1 − νk
¢qn
+
,

12Recall that we use the same basis functions and the same number of sieve terms for all goods
l = 1, ..., L.

23



where (y − ν)q+ = max {(y − ν)q , 0} while {νk}k=1,...,rn are the knots. For any given
value of rn, the knots {νk} are simply chosen as the empirical quantiles of Y2, i.e.,
νk =

k
rn+1

th quantile of Y2. In this case we have kn = qn + rn + 1.

In the empirical section, the unknown conditional mean functionml(X,α) = E[Y1l−
Bkn (Y2 −X 0

1θ1)
0Πl − X 0

1θ2l | X] is approximated by mnl(X,α) = pJn(X)0Al, where

pJn(x) = (po1(x), ..., poJn(x))
0 is the set of basis functions and Jn is the number of

unknown sieve coefficient in approximating ml.13 Let P = (pJn(X1), ..., pJn(Xn))
0, then

the linear sieve estimator bml given in (3.13) is now

bml(X,α) =
nX
i=1

[Y1il −X 0
1iθ2l −Bkn

¡
Y2i −X 0

1iθ1
¢0
Πl]pJn(Xi)

0(P 0P )−pJn(X).

We can easily compute the sieve profile estimator (c.f. Remark 3) for α = (θ,Π). In

the following we ignore the budget share constraints 0 ≤ hol ≤ 1 and 0 ≤
PL

l=1 hol ≤ 1,
and we first compute the sieve profile estimator for hl with bΣ(Xi) = IL. For any fixed

θ ∈ Θ, we estimate Πl by minimizing Pn
i=1{bml(Xi, α)}2 subject to the smoothness

constraints imposed on the function hl:

min
Πl:
R |∇rhnl(y)|2dy≤D

[Y1l(θ2l)− B(θ1)Πl]0P (P 0P )−P 0[Y1l(θ2l)− B(θ1)Πl] (6.1)

for some given upper bound D > 0, where

Y1l(θ2l) = (Y11l −X 0
11θ2l, ..., Y1nl −X 0

1nθ2l)
0, (n× 1) (6.2)

B(θ1) = (Bkn(Y21 −X 0
11θ1), ..., B

kn(Y2n −X 0
1nθ1))

0 (n× kn) . (6.3)

Let C = (Ckj) be the kn×kn−matrix given by Ckj =
R
[∇rBk (y)] [∇rBj (y)] dy, 14 and

λ ≥ 0 the Lagrange multiplier. Then an equivalent representation of (6.1) for a given
known D is:

min
Πl,λ

³
Y1l(θ2l)− B(θ1)Πl

´0
P (P 0P )−P 0

³
Y1l(θ2l)− B(θ1)Πl

´
+ λ{Πl0CΠl −D}. (6.4)

In practice we often take C to be either first or second order derivative matrix, although

we know that Engel curve hl itself is bounded between zero and one, but we do not know

the bound D on its derivatives. Hence we could solve (6.4) by either letting the bound

13We also use the same basis functions and the same number of sieve terms for all conditional means
ml, l = 1, ..., L.
14One may also choose C as the self-adjoint difference (Gram) matrix, c.f. Schumaker (1993, p. 203).
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D grow slowly with the sample size (say D = log logn or logn),15 or simply letting the

bound D take a few possible values (such as 1.5, 2, 3).16 The latter method is equivalent

to solve the following problem for a few possible values of λ ≥ 0:

min
Πl

³
Y1l(θ2l)− B(θ1)Πl

´0
P (P 0P )−P 0

³
Y1l(θ2l)− B(θ1)Πl

´
+ λΠl0CΠl. (6.5)

The minimization problem (6.5) has a simple close form solution:

bΠlλ(θ) = ¡B(θ1)0P (P 0P )−P 0B(θ1) + λC
¢− B(θ1)0P (P 0P )−P 0Y1l(θ2l),

and the corresponding sieve profile estimator of hl for any given value of θ is bhnl(θ; ·) =
Bn(·)0bΠlλ(θ).17 We note that when λ = 0 (i.e. without smoothness constraints), the

above solution is simply the well known IV/2SLS estimator.

Next, we plug bhn(θ; ·) = (bhn1(θ; ·), ...,bhnL(θ; ·))0 into the problem (3.8) with bΣ(Xi) =

IL, and end up with a low-dimensional optimization problem for θ:

min
θ∈Θ

Ã
nX
i=1

ρ(Zi, θ,bhn(θ; ·))⊗ pJn(Xi)

!0 ¡
I ⊗ (P 0P )¢−1Ã nX

i=1

ρ(Zi, θ,bhn(θ; ·))⊗ pJn(Xi)

!
.

(6.6)

The solution bθ to the problem (6.6) will be a root-n consistent estimator for θo, and

the corresponding sieve estimator for hol is bhnl(bθ; ·) = Bn(·)0bΠlλ(bθ), l = 1, ..., L. To

solve the last problem (6.6), one needs to run a numerical routine since θ enters non-

linearly, but it is relatively easily performed compared to optimizing over both Π and θ

simultaneously18.

The above sieve profile estimate of α = (θ,Π) with bΣ(Xi) = IL can then be used

as starting point for the numerical routine required to run the optimally weighted es-

timation procedure where we optimize over both Π and θ simultaneously. This extra

step saves one a considerable amount of computation time, since the profile estimator

in general is close to the simultaneous one.

In our application we shall also present fully nonparametric estimates of the model

of the Engel curves as given in (2.3): Y1l = Gl(Y2,X1) + εl for l = 1, ..., L; this is
15This is the approach taken in Chen and Shen (1998) and in the old version of Ai and Chen (2003).
16This is the approach taken in Newey and Powell (2003) in their Monte Carlo simulations.
17 In a similar fashion, one can obtain closed form (albeit more complicated) expressions for profile

estimates of Πl
λ in the case where bΣ(Xi) = bΣo(Xi) is a consistent estimator of the conditional covariance

matrix.
18 In fact, since θ2 also enters linearly a closed form expression for the estimator of this can also be

derived such that only θ̂1 has to be found numerically.
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done both for Y2 assumed exogenous E[εl|Y2,X1] = 0, and for Y2 assumed endogenous

E[εl|X2,X1] = 0. We estimate Gl using the same sieve minimum distance procedure

as for the semiparametric model. First, approximate Gl (·) by Gnl(·) = Bkn (·)0Πl, and
then obtain an estimator of Πl by solving

min
Πl

nX
i=1

bml(Xi, Gnl)bml(Xi,Gnl) + λ
³
Πl
´0
CΠl (6.7)

= min
Πl
[Y1l − BΠl]0P (P 0P )−P 0[Y1l − BΠl] + λ

³
Πl
´0
CΠl,

where Y1l = (Y11l, ..., Y1nl)
0, B = (Bkn(Y21,X11), ..., B

kn(Y2n,X1n))
0, P is given as be-

fore, and the smoothness penalization matrix C is as before except that the r − th

partial derivatives of Bj(y2, x1) are only with respect to the y2 argument. Again the

minimization problem (6.7) has a simple closed form solutionbΠlλ = ¡B0P (P 0P )−P 0B + λC
¢− B0P (P 0P )−P 0Y1l, (6.8)

such that bGl (y2, x1) = Bkn (y2, x1)
0 bΠlλ for l = 1, ..., L.

In the actual implementation of the above procedures, one has to specify {poj (·)}j≥1,
{Bk (·)}k≥1, Jn, kn, λ and r. We set the smoothness r = 2 which includes the popular

QUAIDS Engle curve specification as a special case. There is a wide range of various

basis functions which one can choose for poj (·) and Bk (·), e.g. Hermite polynomials,
wavelet cardinal B-splines, polynomial splines and Fourier series. Our empirical findings

below are not sensitive to the choice of basis functions. The theoretical results obtained

in Sections 4 and 5 give us certain guidelines about how to choose Jn and kn. For

purely nonparametric IV regression, one should choose Jn ≥ kn to ensure identification

and the requirement of limn(Jn/kn) = c0 ≥ 1 in Theorem 2, but then the choice of Jn
will be mainly related to the invertibility of the matrix P 0P , and the “quality” of the
instruments pJn(X) for the endogenous regressors Bkn(Y2), see the empirical section

for details. In our application we have found that Jn = c0kn, c0 ≈ 2 or 3 works

fine. When one imposes smoothness restrictions, λ also has to be chosen. There is a

certain interdependence between kn and λ; a high number kn could potentially lead

to overfitting (i.e. the estimated Engel curve hl, l = 1, ..., L becomes wiggly and the

variance gets big), but this can be controlled for with a slightly bigger penalisation

weight λ. For a given choice of kn, one may try out different values of λ and choose

the one which appears most plausible; an alternative method would be to use a data-

driven procedure such as the generalized cross-validation (GCV) to choose λ ∈ [0, 1],
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see e.g. Eubank (1988) for a discussion of this procedure in a standard nonparametric

least squares regression setting. However, there is no theoretical justification for such

a procedure in the endogenous case.19 In fact, how to optimally choose kn and λ

simultaneously is still an open problem even in the standard sieve nonparametric LS

regressions. Finally, for the semiparametric efficient estimation of θ, one can choose

slightly bigger Jn, kn (or smaller λ) than those values for the purely nonparametric IV

estimation of h, however, the choices of Jn, kn (with Jn = c0kn, c0 > 1) have to satisfy

Assumption 5 to ensure the
√
n−normality of θ.

6.2. A Monte Carlo Study

Before applying the sieve minimum distance estimators of the shape-invariant Engel

curves to the British FES data set, we assess the performance of the purely nonpara-

metric IV estimator in a small simulation study, where the Monte Carlo design will

mimic the specific FES data set. In particular we are concerned with the quality of our

chosen instrument X2 (gross earnings) for the endogenous variable Y2 (total expendi-

ture), as well as the impacts of the choice of sieve basis functions and various smoothing

parameters. The simulation results suggest that our chosen instrument X2 is a reason-

able one in the sense that our sieve IV estimator performs well for the FES data set

in consideration. Moreover, our sieve IV estimator is found to be relatively insensitive

to the choice of sieve basis functions, while many different combinations of smoothing

parameters Jn, kn and λ will lead to similar estimated functions which are all consistent

estimates of the true unknown function.

For a detailed description of the data set, we refer the readers to the empirical section.

All we need to know here is that the data set consists of two sub-samples of households:

one consisting of families with no children and one of families with 1-2 children, hence

X1 ∈ {0, 1}. In this simulation study, we shall only use the data from the group of

households with no children (i.e. X1 = 0), which has sample size n = 628. For each

household in this group, we observe an endogenous regressor Y2 (log-total expenditure),

and an instrument X2 (normal transformation of log-gross earnings, which takes values

in [0, 1]). We may then estimate the joint density of (Y2,X2) using kernel methods, and

denote the resulting nonparametric estimator as f̂ (y2, x2), from which the data will be

19Another approach would be to specify D (the constraint parameter in equation (6.5)), and then
leave λ as a free variable. We would then have to estimate α and λ simultaneously; see Newey and
Powell (2003) for the this approach.
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drawn in our simulation study. The model we simulate is given by

Y1 = ho (Y2) + ε, ε = E [ho (Y2) |X2]− h (Y2) + v, (6.9)

where v ∼ N (0, 0.01) and is independent of (Y2,X2) ∼ f̂ (y2, x2). We draw an i.i.d.

sample from (v, Y2,X2) with sample size n = 628, and use these to calculate Y1 via (6.9)

for two choices of ho, one is linear and the other is nonlinear:

(1) linear ho (y2) = −0.1095y2 + 0.7229,

which closely mimics the estimate obtained for food-in expenditure in the empirical

application;

(2) nonlinear ho (y2) = Φ ((y2 − 5.5) /0.3) ,
where Φ denotes the standard normal cdf. and where the mean (5.5) and variance

(0.32) have been chosen such that ho (y2) ≈ 0 for y2 = mini {Y2i} and ho (y2) ≈ 1 for
y2 = maxi {Y2i}.

For each choice of ho, we simulate 100 data sets {(Y2i,X2i, Y1i)}n=628i=1 , and for each

simulated data set we estimate ho using the sieve nonparametric IV-estimator. We

tried various basis functions {poj (X2)}Jnj=1 and {Bk (Y2)}knk=1 for the conditional mean
m(X2, h) = E[Y1 − h (Y2) |X2] and h respectively, all yielding similar results as long

as the sieve approximating terms Jn and kn and the penalization weight λ are similar.

However, due to the length of the paper, here we only report the simulation results for

a few combinations: h is approximated by either a 3nd order polynomial spline with

kn = 4, 5, 6, 7, 8, 9, or a 3rd order B-spline with kn = 9, 14; m is approximated by either

a cos-sin basis with Jn ≈ 3kn,27, or a 4th order B-spline with Jn = 15, 25. To check

for the robustness of the sieve IV estimators towards the choice of penalisation, we

also present the results for penalizing the integrated squared norm of the second order

derivatives of h with different weights λ = 0.8, 0.1, 0.01, 0.001 and 0.0.

Tables B.1 and B.2 report the integrated squared bias, variance, and MSE based on

the 100 simulations for the sieve IV estimators of nonlinear h,20 where h was estimated

20Let ĥi be the estimate of ho from the ith simulated data set, and h(y) =
P100

i=1 ĥi(y)/100 be the
pointwise average across 100 simulations. We calculate the pointwise squared bias as [h(y) − ho(y)]

2,
and the pointwise variance as 100−1

P100
i=1[ĥi(y) − h(y)]2. The integrated squared bias is calcuated by

numerically integrating the pointwise squared bias from y to y which are respectively the 2.5th and
97.5th emprical percentiles of Y2 from the no-kids subsample of the FES data set our simulations are
based on; The integrated variance and the integrated MSE are computed in a similar way.
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using different sieves with different smoothing parameters kn, Jn and λ. In all the

cases, the sieve IV estimator behaves well for λ ≥ 0.01; the integrated bias of the

sieve IV estimators is relatively small and is quite insensitive towards the choice of the

penalisation weight λ; however the variance increases as λ decreases; and λ = 0.8 yields

the best performance in terms of the integrated MSE for large kn ≥ 8. We obtain

similar results for the integrated squared bias, variance and MSE of sieve IV estimators

of linear h, but we do not tabulate them here due to the length of the paper. The sieve

IV estimates for the linear and the nonlinear h are plotted in Figures C.1 and C.2 for

kn = 9, Jn = 25, λ = 0.8 and 0.0, where the - - lines denote the true h and the – lines

denote the estimates. Figures C.3 and C.4 present the corresponding plots for kn = 5,

Jn = 15. These plots are similar to the kn = 9 case and suggest little sensitivity to these

choices for kn and Jn. Since the kn = 5 case satisfies Assumption 5 for root-n normality

and efficiency of θ, the similarity of the plots is important for our empirical application

in the next section.

From these results it is apparent that imposing smoothness constraints (i.e., λ > 0)

improves the quality of the sieve IV estimators, both in terms of the variance and

the smoothness of the estimated functions. However, the overall shape of the estimated

functions and their relative positions to the true h are not strongly affected by the choice

of λ, which again indicates that for a given value kn of sieve terms in approximating

h, the penalization weight λ does not have a great influence on the bias of the sieve IV

estimator.

In the empirical section below we note that for the group of families with no children,

the Stock-Yogo (2002) test for weak instruments in the parametric linear 2SLS regression

problem, suggests the presence of weak instruments under the specification λ = 0.0,

Jn = 15 or 25, and kn ≥ 4. For the sample with children and for the pooled sample this
turns out not to be the case. So again our focus here on the sample without children

is relevant. However, a consequence of weak instruments is that if one wrongly treats

the sieve IV estimation as a parametric 2SLS regression, then each estimated sieve

coefficients will be heavily biased towards their LS estimates. Hence, the corresponding

sieve IV curve should be biased towards the inconsistent sieve LS estimator of h. Figures

C.1 and C.2 show no indication of any bias towards LS. This is also confirmed by Table

B.2 where with λ = 0.0, the bias of sieve IV generally decreases as Jn increases from 15

to 25. Finally Tables B.3 and B.4 report the integrated squared bias, variance and MSE

of the sieve IV and the inconsistent sieve LS estimators of both the linear and nonlinear
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h with kn = 6, 9. These tables show that the sieve LS estimator is not sensitive toward

the choice of λ, while consistently its variance is small but its bias is big compared to

the sieve IV estimator.

To summarize, we have the following Monte Carlo findings for the sieve estimators

of the linear and the nonlinear h:

(1) The choices of basis functions for h [3rd order poly-spline vs 3rd order B-spline],

and m [cos-sin vs 4th order B-spline] are not very important.

(2) For any fixed λ ∈ [0, 1], the choice Jn = c0kn with c0 ≈ 2, 3 works well for sieve
IV estimator.

(3) For any fixed λ ∈ [0, 1], increasing kn will slightly reduce squared bias but

increase variance of the sieve IV estimator; In particular for fixed small λ ∈ [0.0, 0.001],
kn has to be small (4 or 5) to get a small variance (hence a small MSE) of the sieve IV

estimator.

(4) For any fixed kn, increasing λ towards 1 reduces variance hence makes the MSE

of a sieve IV small. In particular, a large kn (7, 8, 9, 14) can be balanced by a high

λ ∈ [0.01, 0.8] that still keeps the variance and the MSE of a sieve IV estimator small.
(5) There are many combinations of smoothing parameters Jn, kn, λ which can reduce

the variance part and lead to a small MSE of the consistent sieve IV estimator.

(6) There is no combination of smoothing parameters Jn, kn, λ which can reduce

the bias part of the inconsistent sieve LS estimator, hence the inconsistent sieve LS

estimator has a big MSE.

(7) For any fixed λ ∈ [0.1, 1] and fixed kn, increasing Jn = c0kn with a bigger c0 ≥ 2
still leads to small MSE of sieve IV estimator, and the sieve IV estimator is not biased

towards the inconsistent LS estimator.

We note that the findings (1) - (3) are consistent with our theoretical results in

Sections 4 and 5. In the empirical application with sample size n = 1655, the set of

smoothing parameters kn = 4, 5, 6, Jn ≈ 3kn and λ ∈ [0.0, 0.001] will satisfy Assumption
5 (with r = 2 say) for

√
n−normality and efficiency of θ estimates. The findings (4) -

(5) should be related to the smoothing spline literature, although there is no theoretical

justification yet. The finding (6) is not too surprising since, given the Monte Carlo

design, the sieve LS estimators of the linear and the nonlinear h are inconsistent. The

finding (7) seems in contradiction to the results in the parametric weak IV literature. It

could be interesting to study the relation between the sieve IV estimation and parametric

weak IV regression in the future.
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Before we conclude this Monte Carlo section, we want to make sure that the Monte

Carlo design does mimic the actual FES data well, so that the insights we learnt about

the smoothing parameters kn, Jn, λ from the Monte Carlo can be applied to the empirical

estimation in the next section. From the discussion of the sieve measure of ill-posedness

and from the proof of Theorem 2, we know that what is crucial for nonparametric IV

regression is the behavior of the singular values {µk} associated with the conditional ex-
pectation operator T (h) (·) = E [h (Y2) |X2 = ·]. Therefore, to make sure the simulated
data sets do mimic the real FES data set with no children subsample we estimate the

singular values {µk} associated with the conditional expectation operator. We restrict h
to h (Y2) = Π0Bkn (Y2) and impose smoothness constraints on it via the aforementioned

penalisation matrix C and Lagrange multiplier λ, while the operator T is approximated

using pJn . Then for each simulated data set, we estimate 1 = µ21 ≥ µ22 ≥ ... ≥ µ2kn by

the solutions to the eigenvalue problem¯̄̄
µ2
¡BB0 + λC

¢− BP 0 ¡PP 0¢−1 PB0 ¯̄̄ = 0,
where Bkn (Y2) is 3rd order B-spline basis with dimension kn = 14 and pJn(X2) is the

4th order B-spline basis with dimension Jn = 25. We repeat this 100 times. The

average estimated kn = 14 singular values are: µ̂1 =0.9999, µ̂2 =0.5391, µ̂3 =0.3943,

µ̂4 =0.2890, µ̂5 =0.1691, µ̂6 =0.1278, µ̂7 =0.0836, µ̂8 =0.0412, µ̂9 =0.0197, µ̂10 =0.0099,

µ̂11 =0.0024, µ̂12 =0.0002, µ̂13 =1.0584e-005, µ̂14 =1.3881e-006. These estimates us-

ing simulated data match well with the ones estimated using the real FES data of

no kids subsample, where the estimated singular values are: µ̂1 =0.9999, µ̂2 =0.5586,

µ̂3 =0.4141, µ̂4 =0.2406, µ̂5 =0.1711, µ̂6 =0.1143, µ̂7 =0.0680, µ̂8 =0.0315, µ̂9 =0.0128,

µ̂10 =0.0079, µ̂11 =0.0013, µ̂12 =0.0004, µ̂13 =4.1161e-006, µ̂14 =6.4036e-007. It is

interesting to note that the corresponding singular values for the pooled sample de-

cay less rapidly: the first 14 take the values µ̂1 =1.0000, µ̂2 =0.5560, µ̂3 =0.4073,

µ̂4 =0.3373, µ̂5 =0.2595, µ̂6 =0.1713, µ̂7 =0.1478, µ̂8 =0.1095, µ̂9 =0.0910, µ̂10 =0.0385,

µ̂11 =0.0235, µ̂12 =0.0047, µ̂13 =0.0028, µ̂14 =7.3967e-006. Consequently we expect our

estimator to be better behaved on the pooled sample.

7. An Empirical Investigation

In this section we apply the model and the estimation procedure developed in the pre-

vious sections. We start out with a data description and examining the quality of the
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gross earnings, X2, as an instrument. We then present semi-nonparametric estimates

of Engel curves under the two following assumptions: (i) Y2 is exogenous and (ii) Y2
is endogenous. We assess the importance of allowing for endogeneity both on the non-

parametric shape of the Engel curve and on the parametric components which represent

the demographic parameters.

7.1. Data Descriptives

In our application we consider L = 7 broad categories of non-durables and services:

alcohol, fares, food-in, food-out, fuel, leisure goods and services, and travel (motor).

The data set is drawn from the British Family Expenditure Survey (FES). For the

purposes of this discussion we select a single year (1995).21 In order to preserve a degree

of demographic homogeneity, we select from the FES a subset of married or cohabiting

couples with and without children. We select those where the head of household is

aged between 20 and 55 and we exclude all those with three or more children. So our

demographic variable, X1, will simply be a binary dummy variable reflecting whether

the couple have 1-2 children (X1 = 1) or no children (X1 = 0) and we may write

φ(X 0
1iθ1) as X1iθ1. The log of total expenditure on non-durables and services is our

measure of the continuous endogenous explanatory variable Y2. We exclude households

where the head of the household is unemployed to be able to use log gross earnings as

the instrumental variable, X2, for Y2. The earnings variable is the amount that the

male of the household earned in the chosen year before taxes. This leaves us with 1655

observations, including 1027 couples with one or two children.

Table 7.1 gives some brief descriptive statistics for the main variables used in the

empirical analysis. It shows the smaller share of alcohol, fares, food-out, leisure goods

and travel expenditure for households with children while on the other hand the com-

parably larger expenditure share of food-in and fuel. This indicates strong differences

in the spending patterns between the two demographic groups, and we should expect

the parameter θ in our semiparametric model to reflect these.

Figure C.5 presents the kernel density estimate of the log transformation of total

expenditure. Total consumers expenditure is often supposed to have a lognormal cross

section distribution which seems plausible judging from the figure. Figure C.6 shows

the kernel density estimate for log-earnings. From this we see that the log-earnings

21 It is worth noting that we have applied our IV-estimator on data from the survey for other years
as well; which gave slightly different numerical results, but the qualitative conclusions were the same.
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Table 7.1: Data Descriptives

couples w/o children couples w/ children
mean std. mean std.

budget shares:
alcohol 0.0712 0.0719 0.0496 0.0543
fares 0.0216 0.0499 0.0137 0.0399
food-in 0.1776 0.0950 0.2256 0.0938
food-out 0.0829 0.0591 0.0790 0.0555
fuel 0.0612 0.0385 0.0675 0.0364
leisure goods 0.1357 0.1456 0.1261 0.1268
travel 0.1488 0.0985 0.1324 0.0857
expenditure and income:
log non-durable expenditure 5.3744 0.4864 5.4503 0.4229
log gross earnings 5.7712 0.5389 5.9112 0.5309

sample size 628 1027

variable is not as close to a normal distribution but still reasonably close. The two

variables show a strong positive correlation; for the sample with children the correlation

is 0.5095 and for those without children 0.5111. Figure C.7-C.8 present plots of the

bivariate kernel density estimates for these two variables together with a series estimator

of E [Y2|X2 = x2]. We see that the joint distribution is also smooth, and the shape of it

together with the conditional mean confirms our beliefs that the gross earnings variable

should be a good choice for our instrumental variable.22

7.2. Quality of the Instrument

Since our sieve IV estimator is similar to the parametric linear IV regression once after

the basis functions {poj (X)}Jnj=1 and {Bk (Y2)}knk=1, and the smoothing parameters Jn, kn
and λ are chosen, and since the presence of weak instruments can ruin the finite and

large sample properties of the classical parametric IV estimators,23 we further examine

the quality of our instrument by considering the following regression,

Bkn−1 (Y2) = ApJn(X) + e, E [e|X] = 0, (7.1)
22We have also tried disposable income as an instrument. Disposable income is arguably less likely to

be exogenous as it includes savings and is measured net of taxes and benefits. However, it gave similar
results and the estimated joint density of log-total expenditure and log-disposable income is closer to a
bi-variate normal density.
23 see e.g. Stock et al (2002).
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where Bkn−1 (Y2) is a vector of endogenous regressors of dimension kn − 1 (excluding
the constant one from the original sieve basis Bkn (Y2)) and pJn(X) is a vector of instru-

mental variables with dimension Jn. Here we take a 3rd order B-spline basis as Bkn (Y2)

with kn = 9 (and λ = 0.4), and let pJn (X)
0 = [BJn (X2)

0 ,X1B
Jn (X2)

0] where BJn (X2)

is a 4th order B-spline basis for functions of X2 with the number of sieve terms Jn = 15,

hence the length of the vector pJn (X) is actually 2Jn = 30 for the full sample including

both types of households. Throughout the empirical application, pJn (X2) = BJn (X2)

will denote the vector of the sieve basis for conditional mean function for each subgroup

of the households. We then performed two informal tests for the quality of instruments.

First, we test the hypothesis H0 : rank(A) = r∗ by applying the result in Robin and
Smith (2000). We easily reject H0 for r∗ = 0, ..., 8 as can be seen in Table 7.2. We

note that the Robin-Smith (2000) test is based on the assumptions that the model (7.1)

is correctly specified with both kn and Jn being fixed and finite known numbers, and

that A will be estimated root-n consistently with asymptotically normal distribution.

However, our basic setup of unknown h() implies that the model (7.1) with finite fixed

kn and Jn are misspecified, and that A could only be estimated at a slower than root-n

rate. Nevertheless, this test could be seen as a parametric approximation of the test for

E [ho (Y2) |X] = 0.

Table 7.2: Test of instrument

r∗ 0 2 4 6 8

T 2.2× 1014 6.1× 1012 6.1× 1011 9.3× 1011 9.4× 108
Critical value 137.70 119.87 101.88 83.68 65.17

Second, we performed the Stock and Yogo’s (2002) test of the null hypothesis

H0 : p
Jn (X2) are weak instruments for Bkn−1 (Y2). This is done with Bkn−1 (Y2) =¡

Y2, Y
2
2 , Y

3
2

¢
for simplicity since they only report critical values for number of endoge-

nous regressors less than or equal to 3.24 The test statistic was 4.5647 for households

without children, and 10.9535 for those with children. With number of instruments

Jn = 15, the 5% critical values are given by 10.33 and 4.37 (for a 10% and 30 % max-

24M. Yogo has been kind enough to send us their Gauss program which could generate critical values
for number of endogenous regressors greater than 3. However, we suspect that the conclusions will be
similar. The test statistics reported are computed under the additive form for the Stock-Yogo test on
the pooled sample.
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imal bias relative to OLS respectively). When pooling the two household groups with

number of instruments becoming 2Jn = 30, the test statistic equals 14.0615 while the

5% critical value is 10.77 (for a 10% maximal bias relative to OLS). This indicates that

the basis pJn(X2) might not be a terribly good instrument for families with no children,

but that for the pooled data and for the subsample of households with kids, it does a

good job.

We note that the Stock and Yogo’s (2002) test is conservative, and is based on

the parametric 2SLS estimator under the assumption that the model (7.1) is correctly

specified with kn being fixed and finite known numbers. Again our basic setup of

unknown h() implies that the model (7.1) with finite fixed kn is misspecified, and our

sieve IV estimator is a penalized version of 2SLS. Therefore this parametric test result

should be interpreted with great care. For example, considering the sample of no kids,

and the vector of endogenous regressors Bkn−1 (Y2) with fixed kn, the result based on

the Stock and Yogo (2002) test statistic will indicate that the instruments pJn(X2) with

Jn = 15 are all weak and the 2SLS estimate of Π for the model:

Y1 = Bkn (Y2)
0Π+ ε, Bkn−1 (Y2) = ApJn(X2) + e, E [e|X2] = 0,

will be heavily biased towards its OLS estimated values. This was not what we found

in the Monte Carlo section on the sieve IV estimate of unknown h(·). There the un-
known h(Y2) is approximated by Bkn (Y2)

0Π while the unknown E[Bkn−1 (Y2)0Π|X2] is
approximated by pJn(X2)0AΠ, and the sieve IV estimate bh = Bkn (·)0 bΠiv is much closer
to the true h(·) instead of bias towards the sieve OLS estimate, see Figures C.1, C.2,
C.3 and C.4. Finally, recall that the estimated singular values were larger for the pooled

sample.

Altogether these results suggest that we may wish to be cautious in our interpretation

of the nonparametric IV results for the sub-sample of families without children. But the

results should be reliable for the pooled sample which is used for the semi-nonparametric

IV estimator of the shape invariant Engel curve model developed in this paper.

7.3. Estimation Results

In both the case where Y2 is assumed exogenous, and the case where it is treated as

endogenous, we have approximated h by several different sieve bases such as Hermite

polynomials, wavelet cardinal B-splines and polynomial splines. For the endogenous

case, we have also approximated the conditional mean m by several sieve bases such as
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power series, cos-sin series, wavelet cardinal B-splines (withX2 = normal transformation

of log-earnings), and Hermite polynomials (with X2 = log earnings). As a general rule,

the number of sieve terms Jn for m is chosen to be larger than the number of sieve terms

kn for h and such that the P 0P in (3.13) is invertible. As discussed earlier this should

ensure identification of our model. To examine the robustness of the sieve estimator of

the conditional mean, we also employed kernel regression methods to estimate m;25 this

gave very similar results, which therefore are not reported here.

The shapes of the estimated Engel curves based on different bases all look similar

as long as the number of effective sieve terms in approximating h is kn = 5 to 9, and

the number of sieve terms in approximating m is Jn = 15 to 27, excluding X1. The

smoothness parameter λ should increase as kn grows; we tried out different values of λ

for each value of kn in the range 5 to 9; the shape of the Engel curves proved to be fairly

robust towards the choice of λ in the range 0.05 to 0.8 with only the level of smoothness

changing as we also saw in the Monte Carlo study.26 For the estimation of θ alone,

smaller values of λ might be preferable. The estimation of the system was performed as

described in section 6: First we obtained a profile estimator of α = (θ,Π) using the closed

form sieve IV solution of bΠ(θ). We then used this estimator as a starting point for the
numerical optimisation procedure employed to obtain simultaneous estimates of θ and

Π. In most cases however, the simultaneous estimates proved to be practically identical

to the initial profile ones. Also observe that we did not restrict h to 0 ≤ hl ≤ 1 and
0 ≤PL

l=1 hl ≤ 1 in the estimation procedure; as we shall see, imposing this restriction
would have no effect on our estimates anyway, since the resulting unrestricted estimates

all satisfy these constraints for y2 in the domain of our sample of Y2.

In order to obtain efficient estimates of θ, we ran the 3-step procedure described in

Section 3.3. In the 2nd step, the conditional covariance matrix, Σo (X) , is estimated.

One can either use the sieve estimator described in Section 3.5 or use standard kernel

methods. The results reported here are based on kernel estimates, but θ̂ proved to be

fairly robust to the choice of estimator for Σo (X). To improve the estimates we ran

an iterative procedure, repeating Step 2 and 3 until θ̂ converged towards a stable level.

25See Härdle and Linton (1994) for a review of the kernel method.
26 In general, a smaller penalization was needed in the semiparametric estimation compared to the

fully nonparametric one. This owes to the fact that in the semiparametric specification the same h-
function is used for both household groups, while in the non-parametric estimation a different h is used
for each group. This allows us to pool the two groups of households in the semiparametric estimation,
while in the nonparametric setting we treat the two groups separately.
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In our case, we required that ||θ̂(i+1) − θ̂
(i)|| < 0.005 where θ̂

(i)
denotes the estimate

obtained in the ith iteration; as a rule, the convergence criterion was satisfied after 7-10

iterations.

Together with the estimated Engel curves, we also report 95% pointwise confidence

bands of these. The bands were obtained using the nonparametric bootstrap based on

1000 resamples. In each resample, n = 1655 observations were drawn from the original

data set with replacement, and then h was reestimated. We did this with θ = bθ fixed
at its efficient estimated value, since bθ is √n-consistent while bh has a slower than √n-
convergence rate; hence, this will have no effect asymptotically. For simplicity, we

used the same Jn and kn in the estimation of h using the bootstrap sample, however,

to control for the asymptotic bias in bh − ho, we slightly decreased λ in the bootstrap

sample so in effect we were overfitting (or undersmoothing in kernel literature),27 see e.g.

Hall (1992, Section 4.5) for theoretical justification of this undersmoothing procedure

for kernel least squares regression. In the exogenous case, we know that bh(y2) has a
pointwise asymptotic normal distribution, see e.g. Theorem 2 in Newey (1997). So

in this case the bootstrap yields consistent estimates of the true confidence bands, see

e.g. Theorem 1.2.1 in Politis, Romano and Wolf (1999). In the endogenous case, we

have no theoretical justification for the bootstrap since we have not derived a pointwise

asymptotic distribution of bh(y2), but we conjecture that one exists. From Theorem 2

on the convergence rate of the nonparametric IV regression, we know that compared to

the exogenous case, the endogenous estimates have similar asymptotic bias but a bigger

variance, The reported confidence bands in the endogenous case are wider compared to

those for the exogenous case, which is consistent with the theory.28

Figure C.9 to C.15 illustrate the estimation of our system of Engel curves. The

plots offer a comparison of the fully nonparametric estimates vs. the semiparametric

ones, and the endogenous case vs. the exogenous one. For these plots, we used a 3rd

order B-spline sieve for h with number of sieve terms kn = 9, and a 4th order B-spline

27Alternatively we could fix λ value but slightly increase the number of sieve terms kn in the estimation
of h using the bootstrap sample. We have tried this as well and the results are similar.
28Newey (1997) also supplies us with an estimator of the asymptotic variance of bh(y2) in the exogenous

case which can be used to construct alternative confidence bands. Since the endogenous case with
identity weighting is simply a penalized 2SLS regression, we can easily compute an estimate of the
asymptotic variance of bh(y2) in the endogenous case, still assuming that it is asymptotically normal.
This gave confidence bands very similar to the ones obtained by the bootstrap, both in the exogenous
and endogenous case.
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of dimension Jn = 15 for m. We penalised both the level and the 2nd order derivative

of h, each with penalisation weight λ = 0.4. All plots are with identity weighting,bΣ(Xi) = IL.29 As noted earlier, the nonparametric IV estimates using the subsample

of households without children should be interpreted with care. However, the plots of

the estimated curves seem to be consistent with the Monte Carlo findings and appear

reasonably well behaved, even for the subsample without children. Our main focus is on

the lower rhs plot in each panel which represent the sieve IV estimates under the shape

invariant restrictions. Several interesting features are present in the plots. As may be

expected the estimated shares of alcohol and food-out for households with children are

everywhere below those for households without children. As family size increases, for

any given total outlay, the shares going to alcohol and food-out fall; at the same time,

the share going to food-in increases. So there is a shift in expenditure shares from one

set of non-durables to another when families have children. The curvature also changes

significantly as we allow for endogeneity. So neglecting potential endogeneity in the

estimation can lead to incorrect estimates of the Engel curve shape. The Engel curve

for food-in, for example, showing a much more pronounced reverse ‘S’ shape under

endogeneity with a more dramatic shift to the right in the curve resulting from the

presence of children.

The semiparametric efficient estimates of θ are given in Table 7.3. These estimates

have been obtained using the same functional bases and the same Jn = 15 and kn = 9 as

used to obtain the Engel curves h estimates, except with a smaller λ. The estimates of θ

are plausibly signed in both the endogenous and the exogenous case. The differences can

be assessed more formally. Let bθLS and bθIV denote the semiparametric efficient estimate
of θ under H0: Y2 exogenous and H1: Y2 endogenous respectively. Furthermore, letbVLS and bVIV denote the estimates of their respective variances. we then have that T ≡
n
³bθLS − bθIV ´0 ³bVLS − bVIV ´−1 ³bθLS − bθIV ´ asy.∼ χ2L+1 under the null. This Hausman

test for the exogeneity of Y2 produces a statistic of 880.06 with critical value χ28 (95) =

15.5, and we reject the null-hypothesis. That is, the data supports the hypothesis that

29We also obtained estimates for h with bΣ(Xi) = bΣo(Xi), these however were relatively wiggly since it
was obtained with lower penalization λ value. Since the optimal weighted procedure is only theoretically
justified for efficient estimation of θ, we have no theoretical justification for these type of estimates of
h, while economic theory suggests that engel curves h should be relatively smooth, we only present the
estimated h with identity weighting. Furthermore, the identity weights allows for a fast implementation
of the nonparametric bootstrap employed here.
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Y2 is endogenous.30 The results show a strong impact on θ1 of allowing for endogeneity.

This parameter measures the general log equivalence scale for the presence of children

with a couple normalised to unity. The LS estimate is implausibly low whereas the IV

estimate is very plausible and represents an equivalence scale of about .45, normalised

to unity for a couple without children. This is also seen in the more dramatic shift in

the plotted curves between the two groups as commented on above. One can also give

interpretations to the estimates of θ2; e.g. the negative value of θ2 for alcohol shows

the decline in the overall alcohol budget share, given total equalised expenditure, that

occurs for larger households.

Table 7.3: Efficient estimates of θ in the exog. and endog. case

Semiparametric IV Semiparametric LS
coefficient std. (10−3×) coefficient std. (10−3×)

θ1 0.3698 57.4712 0.1058 34.3810
θ2 - alcohol -0.0216 4.5047 -0.0239 2.5322
θ2 - fares -0.0023 2.5089 -0.0092 1.4027
θ2 - food-in 0.0213 6.5406 0.0461 4.8861
θ2 - food-out 0.0006 3.6744 -0.0046 2.4182
θ2 - fuel -0.0035 2.7611 0.0054 1.9069
θ2 - leisure 0.0388 10.9148 -0.0016 6.2392
θ2 - travel -0.0384 5.9912 -0.0226 3.9748

To check the robustness of our estimates with respect to the choices of sieve basis

functions Bkn and pJn , we also tried to approximate h with a 2nd and a 3rd order

polynomial spline of dimension kn = 5 to 14, and to approximate m with Fourier series

and 4th order B-splines with Jn = 15 to 27. The estimates bθ are very similar to the
ones reported in Table 7.3, and are also stable as the number of spline sieve terms kn
increased in both the exogenous and the endogenous cases. Inspection of the associated

plots for the Engel curves h also showed that the overall shape and turning points were

maintained for these alternative sieve approximations. These findings are consistent

with our Monte Carlo results. To conserve space, here we only report a small sensitivity

check in terms of θ estimates under the endogeneity. Although the θ estimates reported

30Observe that the above test statistic is not optimal in the sense that it might have a higher than
acceptable probability of accepting H0 when the hypothesis is not true; this owes to the fact that we
only use θ in the test statistics, not using the information contained in h. This however is not a problem
here given that we reject H0.
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in Table 7.4 are obtained using smaller penalization λ than those reported in Table 7.3,

the estimated values are virtually the same.

Table 7.4: Estimates of θ: Sensitivity Analysis
Semiparametric IV

θ estimates
kn, Jn Alcohol Fares Food-in Food-out Fuel Leisure Travel θ1

B-spl 9, B-spl 15 -0.0210 -0.0019 0.0207 0.0003 -0.0038 0.0422 -0.0393 0.3834
B-spl 9, B-spl 25 -0.0233 -0.0005 0.0171 -0.0005 -0.0027 0.0489 -0.0419 0.4113
B-spl 8, Cos 20 -0.0248 -0.0009 0.0204 -0.0005 -0.0029 0.0458 -0.0387 0.3989
P-spl 8, B-spl 15 -0.0222 -0.0004 0.0209 -0.0019 -0.0029 0.0429 -0.0359 0.3981
P-spl 5, B-spl 25 -0.0285 -0.0011 0.0191 0.0002 -0.0038 0.0496 -0.0399 0.4088

Finally, we note the results of a number of further comparisons that we carried

out. The first implemented the control-function approach of Newey, Powell and Vella

(1999). As one might expect, this gave estimates that lay between our sieve IV-estimates

and the exogenous estimates. Second, we compared our semi-nonparametric model

with a parametric quadratic model of the QUAIDS-class proposed in Banks, Blundell

and Lewbel (1997). A test on θ rejected the QUAIDS-model in favour of the semi-

nonparametric model. It is not too surprising that the QUAIDS model does not fit data

as well as our more flexible model. Finally, we implemented the sieve minimum distance

procedure using three different years of FES data sets, and have tried both gross earnings

and disposable income as the instrument. We have also considered different sieve basis

functions and different number of sieve terms to approximate unknown Engel curves, the

unknown conditional means and the optimal weighting matrix. The empirical findings

in these final comparisons are surprisingly robust to those presented in the paper in the

sense of being qualitatively similar and are available from the authors on request.

8. Conclusions

Endogeneity of explanatory variables in regression analysis is a central feature of eco-

nomic relationships. With the development of semiparametric and nonparametric esti-

mation methods there is an increasing demand for generalizations that allow for endo-

geneity. In this paper we have considered the sieve semi- /nonparametric IV estimation

of the shape-invariant Engel curves with endogenous total expenditure. In this paper

we have provided identification and established the nonparametric convergence rate and

semiparametric efficiency properties of our estimators under relatively “low-level” suf-
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ficient conditions. We have also presented Monte Carlo simulation results which shed

some lights on the choice of smoothing parameters and the performance of the sieve

nonparametric IV estimator. The simulation results indicate it is the variance part (not

the bias part) that behaves poorly in the sieve nonparametric IV regression, which is on

the contrary to the poor bias problem in the classical parametric IV regression under

weak instruments.

In our application to the UK Family Expenditure Survey (FES) we have shown the

importance of allowing for endogeneity and documented the relatively simple steps in-

volved in implementing the sieve semi-nonparametric IV approach. The shape-invariant

system of Engel curve specification, that pools across demographic groups, has enabled

us to estimate the parametric effects of equivalence scales and the demographic impacts

accurately and efficiently. We found the estimated curves and demographic parame-

ters to be plausible and we have documented a significant impact of accounting for the

enodgeneity of total expenditure. Adjusting for endogeneity increases the common de-

mographic shift parameter and produces a much more plausible estimate of the income

equivalence scale. We have also contrasted our estimator with that which assumes ex-

ogenous total expenditure. It appears that the nonlinear behavior in the share Engel

curve is systematically different under the exogeneity assumption. Our application illus-

trates the importance of utilizing the semi-nonparametric restrictions and suggests that

it would be worthwhile to further investigate the imposition of restrictions derived from

economic theory in identification and estimation of econometric models, see Matzkin

(1994) for example.
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A. Proofs and Technical Lemmas

Proof. (Theorem 1) Without loss of generality and given assumption (4), we can as-
sume that X1i is a scalar dummy random variable (i.e., X1i ∈ {0, 1}). First conditioning
on X1i = 0, we have:

E[Y1il − hl(Y2i − φ(0)) |X1i = 0,X2i] = 0 for l = 1, ..., L,

since φ is known, assumptions (1) and (2) imply:

hl = hol almost surely, for l = 1, ..., L.

Now hol(·) is identified. This together with conditional moment restriction (3.2) and
assumptions (3) and (4) identify θo1 and θo2l. Since for all l = 1, ..., L,

E[Y1il − hol(Y2i − φ(X1iθ1))−X1iθ2l |X1i = 1,X2i] = 0,

this and (3.2) imply:

E[hol(Y2i − φ(θo1))− hol(Y2i − φ(θ1)) + (θo2l − θ2l) |X1i = 1,X2i] = 0 (A.1)

Since there is a l∗ with hol∗() nonlinear and differentiable, we have

E[∇hol∗(Y2i − φ(θo1)) |X1i = 1,X2i]× (φ(θ1)− φ(θo1)) + (θo2l∗ − θ2l∗) = 0

where θo1 is some value between θo1 and θ1. Again by (1) and (2) and ∇hol∗(Y2i −
φ(θo1)) 6= const (in particular 6= 0) imply that E[∇hol∗(Y2i − φ(θo1)) |X1i = 1,X2i] 6=
const (in particular 6= 0), hence

φ(θ1)− φ(θo1) = 0 and θo2l∗ − θ2l∗ = 0

by (5) we have θ1−θo1 = 0, this together with (A.1) implies θo2l−θ2l = 0 for l = 1, ..., L.

Proof. (Proposition 1) Notice that our estimation method (3.3) for endogenous
expenditure (Y2) case is the same as that in Newey and Powell (2003) for nonparametric
IV regression. We can apply their theorem 4.1 to establish the consistency of bh to ho in
other metrics, (for simplicity we set L = 1, φ(.) = 0 and θ2l = 0 and consider the purely
nonparametric IV regression model). Their assumption 1 is implied by our assumption
1(iii). Their assumption 2 is satisfied with our assumptions 3, 4(i) and 5(i). For their
assumption 4 of compact parameter space H, we notice that by the weighted compact
embedding result in Chen, Hansen and Scheinkman (1997), a bounded ball in W r∞(R)
is compact under the norm

khkW r1∞ ,ω = khωkW r1∞ for ω(y) ≡ (1 + y2)−a/2, a > 0, r1 < r.
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For instance,
khkW 0∞,ω = sup

y

¯̄̄
h(y)(1 + y2)−a/2

¯̄̄
≡ khk∞,ω .

Hence their assumption 4 is satisfied given our assumption 2 and our parameter space
H in (3.9) with the metric k·kW r1∞ ,ω for 0 ≤ r1 < r. For their assumption 3 of ρ(Z,α)
being Holder continuous in h ∈ H, noting that ρl(Z,α) = Y1l−hl(Y2−φ(X 0

1θ1))−X 0
1θ2l,

we have E[|ρl(Z,αo)|2|X] is bounded given our assumptions 1(ii) and 2. Also for any
fixed a > 0, 0 ≤ r1 < r, and for any h,eh ∈ H,

|ρl(Z, h)− ρl(Z,
eh)| = |hl(Y2)− ehl(Y2)|

≤ [1 + (Y2)
2]a/2 × sup

y

¯̄̄
[hl(y)− ehl(y)](1 + y2)−a/2

¯̄̄
≤ [1 + (Y2)

2]a/2 ×
°°°hl − ehl°°°

W
r1∞ ,ω

,

assuming E{[1 + (Y2)2]a|X} is bounded, then their assumption 3 is satisfied. Finally
their assumption 5 is satisfied with our sieve space Hn (3.10) and assumption 5(i). Now

we can apply Newey and Powell’s (2003) theorem 4.1 to obtain
°°°bhl − hol

°°°
W

r1∞ ,ω
= op(1)

for any r1 ∈ [0, r). Finally, since
°°°bhl − hol

°°°
Y2
≤
·
sup
y

¯̄̄
[bhl(y)− hol(y)](1 + y2)−a/2

¯̄̄¸sZ
(1 + y2)afY2(y)dy,

hence
°°°bhl − hol

°°°
Y2
= op(1).

Proof. (Theorem 2): It suffices to establish the result for the purely nonpara-
metric IV regression model E[hol(Y2 − φ(0))|X1 = 0,X2] = E[Y1l|X1 = 0,X2] for
an arbitrarily fixed l = 1, ..., L. To simplify notations further, we assume φ(0) = 0
and suppress the conditioning variable X1 = 0 and drop the subscript l. We denotebh = argminh∈Hn

1
n

Pn
i=1{bm(X2i, h)}2 where

Hn =

h(Y2) =
KnX
k=0

X
j∈Kn

πkjψkj(Y2) : 0 ≤ h ≤ 1, ||∇rh||∞ ≤ c

 ,
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and

bm(X2i, h) =
nX
t=1

{Y1t − h(Y2t)}pJn(X2t)
0(P 0P )−pJn(X2i)

=
nX
t=1

{Y1t −
KnX
k=0

X
j∈Kn

πkjψkj(Y2t)}pJn(X2t)
0(P 0P )−pJn(X2i)

= bE[Y1|X2i]−
KnX
k=0

X
j∈Kn

πkj bE[ψkj(Y2)|X2i] = bE[Y1|X2i]− bE[h(Y2)|X2i].

In the following we denoteEn,X2{f} ≡ 1
n

Pn
i=1{f(X2i)}, hg, fin,X2

= En,X2{g(X2i)f(X2i)},
||f ||n,X2 =

q
hf, fin,X2

and ||f ||X2 =
p
E{f(X2)}2. Also let go(X2) ≡ E[Y1|X2]. Then

Tho = go by our theorem 1. Let bg(X2i) ≡ bE[Y1|X2i] and (bTh)(X2i) ≡ bE[h(Y2)|X2i].
Then bh = argminh∈Hn ||bTh− bg||2n,X2

, which is the solution to

find bh ∈ Hn such that
DbTbh, bThE

n,X2

=
Dbg, bThE

n,X2

for all h ∈ Hn.

Let G ≡ {g ∈ W rm∞ (X2) : ||g||W rm∞ ≤ const}. Then by Assumptions 1(iii) and 4, we
have Tho = go ∈ G. Also by the definition of Hn and Assumption 4, we have Th ∈ G
for all h ∈ Hn. We shall establish the following four claims later:
Claim 1: (i) under assumption 2(ii) and E[|Y2|2a] < ∞ for some a > r > 0, and the
sieve space Hn (3.10), we have: there is a finite c > 0 such that for any h ∈ H, there is
a Πnh ∈ Hn satisfying kh−ΠnhkY2 ≤ c(kn)

−r;
(ii) under assumptions 3 and 4, we have: there is a finite c > 0 such that for any

g ∈ G, there is a pJn(X2)
0A such that

°°g − pJn(X2)
0A
°°
X2
≤ c(Jn)

−rm .
Claim 2: under assumptions 1, 2(ii), 3, 4 and 5(ii), we have:

(i) ||go − bg||X2 = Op

Ã
J−rmn +

r
Jn
n

!
;

(ii) sup
h∈Hn

||{bT − T}h||X2 = Op

Ã
J−rmn +

r
Jn
n

!
;

(iii) sup
h∈Hn

||bm(·, h)−m(·, h)||X2 = Op

Ã
J−rmn +

r
Jn
n

!
.

Claim 3: under assumptions 1, 2(ii), 3, 4 and 5(ii), we have: there exist constants
c1, c2 > 0 such that

c1||bm(·, h)||2X2
≤ ||bm(·, h)||2n,X2

≤ c2||bm(·, h)||2X2
,
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uniformly over h ∈ Hn, except on an event whose probability tends to zero as n→∞.
Claim 4: under assumptions 1, 2(ii) and 6(i) and the sieve space Hn (3.10), we have:

(i) ||T{Πnho − ho}||X2 ≤ const.× µkn × ||Πnho − ho||Y2 ;
(ii) τn ≤ 1/µkn .
We defer the proofs of these four claims later. Now denote ||h||Y2 ≡

p
E{h(Y2)}2.

Then by the triangular inequality and assumption 2,

||bh− ho||Y2 ≤ ||ho −Πnho||Y2 + ||bh−Πnho||Y2 .
Next by the definition of τn and the triangular inequality,

||bh−Πnho||Y2 ≤ τn × ||T{bh−Πnho}||X2

≤ τn × {||Tbh− bg||X2 + ||bg − go||X2 + ||Tho − TΠnho||X2}
≤ τn × {||{T − bT}bh||X2 + ||bTbh− bg||X2 + ||bg − go||X2 + ||T{ho −Πnho}||X2}.

Under Claim 3 and by the definition of bh, we have:
||bTbh− bg||X2{1 + op(1)} = ||bTbh− bg||n,X2

≤ ||bTΠnho − bg||n,X2 = ||bTΠnho − bg||X2{1 + op(1)}.
Now by the definitions of bm and m, and the triangular inequality, we have:

||bTΠnho − bg||X2 = ||bm(·,Πnho)||X2

≤ ||bm(·,Πnho)−m(·,Πnho)||X2 + ||m(·,Πnho)−m(·, ho)||X2

= ||bm(·,Πnho)−m(·,Πnho)||X2 + ||T{ho −Πnho}||X2 .

These and Claim 2 imply

||bh−Πnho||Y2 ≤ τn ×
(
Op

Ã
J−rmn +

r
Jn
n

!
+ ||T{ho −Πnho}||X2 × {2 + op(1)}

)
.

This and Claim 4 imply

||bh− ho||Y2 ≤ ||ho −Πnho||Y2 + τn ×Op

(
J−rmn +

r
Jn
n

)
+ τn ×O

©
µkn ||ho −Πnho||Y2

ª
≤ O

(
||ho −Πnho||Y2 + τn × [J−rmn +

r
Jn
n
]

)
.

This, assumptions 2 and 5, and Claim 1(i) imply:

||bh− ho||Y2 ≤ const.(kn)
−r + τn ×Op

(r
kn
n
+ (kn)

−rm
)
.
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We now finish the proof of Theorem 2 by establishing the four claims.

Proof of Claim 1: (i) Under Assumption 2(ii) and given the sieve space Hn, we have
for any h ∈ H, there exists Πnh ∈ Hn such that for any fixed a > r > 0, and c > 0,

sup
y

¯̄̄
[h(y)−Πnh(y)](1 + y2)−a/2

¯̄̄
≤ c(kn)

−r,

see e.g. Chen, Hansen and Scheinkman (1997). Now let fY2(y) denote the density of
Y2, then: Z

[h(y)−Πnh(y)]2fY2(y)dy

=

Z
[h(y)−Πnh(y)]2(1 + y2)−a

£
(1 + y2)afY2(y)

¤
dy

≤
·
sup
y

¯̄̄
[h(y)−Πnh(y)](1 + y2)−a/2

¯̄̄¸2 Z
(1 + y2)afY2(y)dy

hence

kh−ΠnhkY2 ≈
sZ

[h(y)−Πnh(y)]2fY2(y)dy

≤ C sup
y

¯̄̄
[h(y)−Πnh(y)](1 + y2)−a/2

¯̄̄
≤ C 0(kn)−r.

(ii) See Timan (1963) for Fourier series and Schumaker (1981) for spline sieve.
Proof of Claim 2: (i) By our assumption 1, 2 and 4, go = Tho ∈ G, this, assumptions 3
and 5(ii) imply that all the conditions of Theorem 1 in Newey (1997, p.150) are satisfied
with his d = 0, his K = our Jn, his ζ0(K) = our

√
Jn, and his K−α = our J−rmn , hence

we obtain result (i).
(ii) By the definition of Hn and Assumption 4, we have Th ∈ G for all h ∈ Hn.

Moreover, since 0 ≤ h ≤ 1 for all h ∈ Hn, we have that V ar{h(Y2)|X1 = 0,X2} ≤ 1
for all h ∈ Hn. Note that bTh is simply the sieve LS regression of h(Y2) on pJn(X2).
We now go through the proof of Theorem 1 in Newey (1997, p.161-163), and see that
Newey’s result (with his d = 0) actually holds uniformly over h ∈ Hn, hence we obtain
result (i).

(iii) Directly follows from (i) and (ii).
Proof of Claim 3: By the definition of Hn and Assumptions 1(iii), 2(ii) and 4, we
have m(·, h) ∈ G for all h ∈ Hn. Moreover, since 0 ≤ Y1 ≤ 1 and 0 ≤ h ≤ 1 for all
h ∈ Hn, we have that V ar{Y1−h(Y2)|X1 = 0,X2} ≤ 1 for all h ∈ Hn. Note that bm(·, h)
is simply the sieve LS regression of Y1− h(Y2) on pJn(X2), hence bm(·, h) belongs to the
closed linear span of pJn(X2) with probability approaching to one. Now we go through
the proof of Lemma 4 in Huang (1998) with his An = our

√
Jn and his Nn = our Jn.
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Under our Assumptions 1, 2(ii), 3, 4 and 5(ii), we notice that Huang’s result actually
holds uniformly over h ∈ Hn, hence we obtain Claim 3.
Proof of Claim 4: By assumption 6(i), there are orthonormal bases {φ0k : k = 1, ...,∞}
(for W rm∞ (X2) and L2(X2, f0,X2)), {φ1k : k = 1, ...,∞} (for W r∞(R) and L2(R, f0,Y2)),
and corresponding singular numbers {µk} with µ1 = 1 ≥ µ2 ≥ µ3 ≥ ... such that

f0,X2,Y2(x2, y2)

f0,X2(x2)f0,Y2(y2)
=

∞X
k=1

µkφ0k(x2)φ1k(y2).

Next, under Assumption 2, the sieve space Hn (3.10) for h is a Riesz (or a frame)
basis for L2(R, f0,Y2) i.e., which is equivalent to an orthogonal basis for L2(R, f0,Y2),
see e.g. Chui (1992) and Meyer (1992). In particular, with kn ≡ 2Kn , the sieve space
Hn (3.10) is equivalent to the linear span of the orthonormal basis {φ1k : k = 1, ..., kn}.
Thus we have the alternative representation:

h(y2) =
knX
k=1

hh, φ1kiY2 φ1k(y2) for any h ∈ Hn.

(i) Since

ho(y2)−Πnho(y2) =
∞X

k=kn+1

hho, φ1kiY2 φ1k(y2).

Hence

T{ho −Πnho}(x2) ≡ E[ho(Y2)−Πnho(Y2)|X2 = x2]

=

Z
(ho(y2)−Πnho(y2)) f0,X2,Y2(x2, y2)

f0,X2(x2)f0,Y2(y2)
f0,Y2(y2)dy2

=
∞X

k=kn+1

hho, φ1kiY2 × µkφ0k(x2),

and

||T{Πnho − ho}||2X2
=

∞X
k=kn+1

{hho, φ1kiY2}2 × µ2k

≤ {µkn}2 ×
∞X

k=kn+1

{hho, φ1kiY2}2

= {µkn}2 × ||ho −Πnho||2Y2 .
Therefore,

||T{Πnho − ho}||X2 ≤ µkn × ||ho −Πnho||Y2 .

47



(ii) For any h ∈ Hn with h 6= 0,

T{h}(X2) = E{h(Y2)|X2} =
knX
j=1

µj

h, φ1j

®
Y2
φ0j(X2)

||Th||2X2
=

knX
j=1

µ2j{

h, φ1j

®
Y2
}2

≥ (µkn)
2

knX
j=1

{h, φ1j®Y2}2 = (µkn)2 khk2Y2
Hence

τn ≡ sup
h∈Hn:h6=0

||h||Y2
||Th||X2

≤ 1

µkn
.

Proof. (Proposition 2): Under Assumption 7(ii), it suffices to consider one good
l and identity weighting matrix Σ = I. Moreover given our identification theorem
1, it suffices to study the convergence rate of bhl() to hol() conditioning on X1 = 0.
We obtain the result by verifying assumptions 3.1 - 3.9 of theorem 3.1 in Ai and Chen
(2003). Their assumptions 3.1, 3.3 and 3.4 are respectively satisfied by our Assumptions
1(i), 3(iii), 1(iii) and 7. Their assumption 3.2 is satisfied by our Assumptions 3, 4 and
5. Note that our Assumptions 2, 5(iv) and 6(i), the sieve space (3.10), the Claims
1(i) and 4(i) imply kα−Πnαk ≤ µkn kα−ΠnαkY2 = O{µkn(kn)−r} = o(n−1/4) since
µkn = o(1) and kn ≡ 2Kn . hence Ai-Chen’s assumption 3.5 is satisfied. For Ai-Chen’s
assumption 3.6(ii), since |ρl(Y, 0,X2, α)| ≤ |Y1l| + |hl(Y2 − φ(0))| ≤ C a.s., we have
that ρl(Zi, α) satisfies the envelope condition 3.6(ii) with c1(Z) = const. and p = ∞.
Notice that for any h1l, h2l ∈ Hl,n with Hl,n given in (3.10), ω(y) = (1 + y2)−a/2 and
supy |h(y)ω(y)| ≡ khk∞,ω,

|h1l(Y2)− h2l(Y2)| ≤ [ω(Y2)]−1 kh1l − h2lk∞,ω ,

hence their Hölder condition 3.6(i) is satisfied. Next Ai-Chen’s assumption 3.6(iii) is
satisfied by our Assumption 4.

Ai-Chen’s assumption 3.7 is satisfied with our Assumption 5 with their kn = our Jn,
their k1n = our 2Kn and ξ0n =

√
Jn. Ai-Chen’s assumption 3.8 is satisfied with the sieve

space (3.10), their κ = 1, ||·||s = k·k∞,ω, and lnN(ε
1/κ,An, k.k∞,ω) ≤ const×k1n ln(ε−1)

and their k1n = our 2Kn . Finally, conditioning on X1 = 0, and under our Assumption
1(iii), we have:

ml(0,X2, α) = E[hol(Y2 − φ(0))− hl(Y2 − φ(0))|X1 = 0,X2],
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kα− αok2 = E

·
E

·
dρl(Z,αo)

dα
[α− αo] |X1 = 0,X2

¸0
E

·
dρl(Z,αo)

dα
[α− αo] |X1 = 0,X2

¸¸
,

E{dρl(Z,αo)
dα

[α− αo]|X1 = 0,X2} = −E [hl(Y2 − φ(0))− hol(Y2 − φ(0))|X1 = 0,X2] .

Hence kα− αok2 and E{ml(0,X2, α)
0ml(0,X2, α)} are equivalent, and Ai-Chen’s as-

sumption 3.9 is satisfied. Now by theorem 3.1 of Ai and Chen (2003), we obtain the
convergence rates ||bα− αo|| = op(n

−1/4).

Lemma 1. Suppose that Σ(X) is positive definite for all X; that X 0
1 and {E[∇ho(Y2−

φ(X 0
1θo1))|X]∇φ(X 0

1θo1)X
0
1} belong to L2(X ,Σ). Then: (i)

E[w∗1(Y2 − φ(X 0
1θo1))|X] = −ProjS

¡
E[∇ho(Y2 − φ(X 0

1θo1))|X]∇φ(X 0
1θo1)X

0
1

¢
, (A.2)

and
E[w∗2l(Y2 − φ(X 0

1θo1))|X] = ProjS
¡
elX

0
1

¢
, l = 1, ..., L, (A.3)

belong to S, and solve the variational problem (5.1). Moreover,

Dw∗1(X,αo) = E[∇ho(Y2 − φ(X 0
1θo1))|X]∇φ(X 0

1θo1)X
0
1 +E[w∗1(Y2 − φ(X 0

1θo1))|X],
(A.4)

and
Dw∗2l(X,αo) = −elX 0

1 +E[w∗2l(Y2 − φ(X 0
1θo1)) | X], l = 1, ..., L, (A.5)

belong to S⊥, and E[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)] is finite.

(ii) Suppose further Assumption N1 holds. Then E[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)] is

positive-definite.
Proof. For (i), it is easy to verify that for all j = 1, 21, ..., 2L and any wj with
E[wj(·)|X] ∈ S,

E
£
Dwj (X,αo)

0Σ(X)−1Dwj (X,αo)
¤−E[Dw∗j (X,αo)

0Σ(X)−1Dw∗j (X,αo)]

= E
£
(Dwj (X,αo)−Dw∗j (X,αo))

0Σ(X)−1 (Dwj (X,αo)−Dw∗j (X,αo))
¤ ≥ 0

This is because by definition, E[w∗j(Y2 − φ(X 0
1θo1))|X] ∈ S and Dw∗j (X,αo) ∈ S⊥ and

Dwj (X,αo)−Dw∗j (X,αo) = E[wj(Y2 − φ(X 0
1θo1))|X]−E[w∗j(Y2 − φ(X 0

1θo1))|X] ∈ S

hence
E
£
Dw∗j (X,αo)

0Σ(X)−1 (Dwj (X,αo)−Dw∗j (X,αo))
¤
= 0.

The finiteness of E[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)] immediately follows from that

X 0
1 and {E[∇ho(Y2 − φ(X 0

1θo1))|X]∇φ(X 0
1θo1)X

0
1} belong to L2(X ,Σ), and that the

expressions for Dw∗(X,αo) given in (A.4) and (A.5).
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For (ii), since Σ(X) is finite, positive definite for allX, we haveE[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)]

is singular if and only if there is a non-zero β = (β01, β
0
21, ..., β

0
2L)

0 ∈ Rb with

Dw∗(X,αo)β ≡ Dw∗1(X,αo)β1 +Dw∗21(X,αo)β21 + ...+Dw∗2L(X,αo)β2L = 0 a.s.

Given the expressions for Dw∗(X,αo) in (A.4) and (A.5), condition (1) implies that
Dw∗1(X,αo) cannot be expressed as a linear combination of Dw∗2l(X,αo), l = 1, ..., L
almost surely; condition (2) implies that Dw∗1(X,αo)β1 = 0 a.s. only when β1 ≡ 0;
condition (3) implies that Dw∗21(X,αo)β21 + ...+Dw∗2L(X,αo)β2L = 0 a.s. only when
β2l ≡ 0, l = 1, ..., L. Hence E[Dw∗(X,αo)

0Σ(X)−1Dw∗(X,αo)] is positive-definite.

Lemma 2. Let the conditional distribution of Y2 given X depends on X only through
X2 − φ(X 0

1θo1). Suppose that Σ(X) is positive definite for all X; and

E[E[∇ho(Y2−φ(X 0
1θo1))|X]∇φ(X 0

1θo1)X
0
1
0Σ(X)−1E[∇ho(Y2−φ(X 0

1θo1))|X]∇φ(X 0
1θo1)X

0
1] <∞,

E[X1Σ(X)
−1X 0

1] <∞.

Then (i) E[w∗(Y2 − φ(X 0
1θo1))|X] = E[(w∗1(·), w∗21(·), ....., w∗2L(·))|X] given in (A.2)

and (A.3) can be solved from:

E[Σ(X)−1 | X2 − φ(X 0
1θo1)]×E[w∗1(Y2 − φ(X 0

1θo1))|X] (A.6)

= −E[Σ(X)−1E{∇ho(Y2 − φ(X 0
1θo1))|X2 − φ(X 0

1θo1)}∇φ(X 0
1θo1)X

0
1 | X2 − φ(X 0

1θo1)]

and

E[Σ(X)−1 | X2−φ(X 0
1θo1)]×E[w∗2l(Y2−φ(X 0

1θo1))|X] = E[Σ(X)−1elX 0
1 | X2−φ(X 0

1θo1)]
(A.7)

(ii) If Assumption N1’ (ii)-(iv) hold, then E[Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)] is finite

and positive definite.
Proof. Directly follows from Lemma 1. When the conditional distribution of Y2 given
X depends on X only though X2 − φ(X 0

1θo1), we have:

S = {s ∈ sigma−field(X2−φ(X 0
1θo1)) : E[s(X2−φ(X 0

1θo1))
0Σ(X)−1s(X2−φ(X 0

1θo1))] <∞}.

Hence w∗1(Y2 − φ(X 0
1θo1)) given in (A.6) and w∗2l(Y2 − φ(X 0

1θo1)) given in (A.7), l =
1, ..., L, belong to S.

Moreover Dw∗j (X,αo) ∈ S⊥, since for any s(X2 − φ(X 0
1θo1)) ∈ S,

E[Dw∗j (X,αo)
0Σ(X)−1s(X2 − φ(X 0

1θo1))]

= E[E{Dw∗j (X,αo)
0Σ(X)−1|X2 − φ(X 0

1θo1)}s(X2 − φ(X 0
1θo1))] = 0
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where the last equality is due to

E{Dw∗1(X,αo)
0Σ(X)−1|X2 − φ(X 0

1θo1)}
= E{(E[∇ho(Y2 − φ(X 0

1θo1))|X]∇φ(X 0
1θo1)X

0
1

+E[w∗1(Y2 − φ(X 0
1θo1))|X])0Σ(X)−1|X2 − φ(X 0

1θo1)}
= E{(E[∇ho(Y2 − φ(X 0

1θo1))|X2 − φ(X 0
1θo1)]∇φ(X 0

1θo1)X
0
1)
0Σ(X)−1|X2 − φ(X 0

1θo1)}
+E[w∗1(Y2 − φ(X 0

1θo1))|X2 − φ(X 0
1θo1)]

0E{Σ(X)−1|X2 − φ(X 0
1θo1)}

= 0

and for all l = 1, ..., L,

E{Dw∗2l(X,αo)
0Σ(X)−1|X2 − φ(X 0

1θo1)}
= E{(−elX 0

1 +E[w∗2l(Y2 − φ(X 0
1θo1)) | X])0Σ(X)−1|X2 − φ(X 0

1θo1)}
= E{(−elX 0

1)
0Σ(X)−1|X2 − φ(X 0

1θo1)}
+E[w∗1(Y2 − φ(X 0

1θo1))|X2 − φ(X 0
1θo1)]

0E{Σ(X)−1|X2 − φ(X 0
1θo1)}

= 0

for w∗(Y2 − φ(X 0
1θo1)) given in (A.6) and (A.7).

Assumption N3. There is a finite constant c such that for all θ1 within o(n−1/4)
shrinking neighborhood of θo1 and for x1 = 0, 1, (i) ||E{w∗l (Y2−φ(X 0

1θ1))|X1 = x1,X2 =
·}||W rm∞ ≤ c for l = 1, ..., L; (ii) ∇{Πnw∗l (Y2 − φ(X 0

1θ1))} is continuous in θ1 for l =
1, ..., L; (iii) ||E[∇ψkj(Y2−φ(X 0

1θ1))|X1 = x1,X2 = ·]||W rm∞ ≤ c for k = 0, ...,Kn, j ∈ Kn.

Proof. (Proposition 3): We obtain the limiting distribution of bθ by verifying that
Assumptions 4.1 - 4.6 of Theorem 4.1 in Ai and Chen (2003) are satisfied. Their Assump-
tion 4.1(i) is implied by our Lemma 1, their Assumption 4.1(ii)(iii) is our assumption
N2. For their Assumptions 4.2 - 4.5, we recall that the directional derivative dρ(Z,α)

dα [v]
at the direction v = (vθ, vh) is:

dρ(Z,α)

dα
[v] =

µ
dρ1(Z,α)

dα
[v], ...,

dρL(Z,α)

dα
[v]

¶0
=

dρ(Z,α)

dθ0
(vθ) +

dρ(Z,α)

dh
[vh].

Notice that in this paper, for all l = 1, ..., L,

dρl(Z,α)

dα
[v] = ∇hl(Y2−φ(X 0

1θ1))×∇φ(X 0
1θ1)×X 0

1[vθ1 ]−X 0
1[vθ2l ]−

£
vhl(Y2 − φ(X 0

1θ1))
¤
.

Denote dm(X,α)
dα [v] ≡ E

h
dρ(Z,α)

dα [v] | X
i
then in this paper for all l = 1, ..., L,

dml(X,α)

dα
[v]

= E[∇hl(Y2 − φ(X 0
1θ1))|X]∇φ(X 0

1θ1)X
0
1[vθ1 ]−X 0

1[vθ2l ]−E[vhl(Y2 − φ(X 0
1θ1))|X].
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Then

kvk2 = E

·
{dm(X,αo)

dα
[v]}0Σ(X)−1{dm(X,αo)

dα
[v]}

¸
= v0θE

£
Dw(X,αo)

0Σ(X)−1Dw(X,αo)
¤
vθ when vθ 6= 0,

where vh(·) = −w(·)vθ with w(·) ≡ (w1(·), w21(·), ..., w2L(·)). Also for any fixed λ ∈ Rb

with λ 6= 0, we have v∗ ≡ (v∗θ , v∗h) with

v∗θ = (E{Dw∗(X,αo)
0Σ(X)−1Dw∗(X,αo)})−1λ, v∗h = −w∗ × v∗θ .

Hence given our Lemma 1 and Assumptions 5(iii)(iv), 7(ii) and N3(i),

||Πnv∗ − v∗||2
= v∗0θ E[E{Πnw∗(Y2 − φ(X 0

1θo1))−w∗(Y2 − φ(X 0
1θo1))|X}0Σ(X)−1E{Πnw∗()− w∗()|X}]v∗θ

= o(n−1/2),

and Ai-Chen’s assumption 4.2 is satisfied.
Since for all l = 1, ..., L,

dρl(Z,α)

dα
[Πnv

∗] = ∇hl(Y2−φ(X 0
1θ1))∇φ(X 0

1θ1)X
0
1v
∗
θ1−X 0

1v
∗
θ2l
+Πnw

∗
l (Y2−φ(X 0

1θ1))v
∗
θ

dml(X,α)

dα
[Πnv

∗]

= E{∇hl(Y2 − φ(X 0
1θ1))|X}∇φ(X 0

1θ1)X
0
1v
∗
θ1 −X 0

1v
∗
θ2l
+E{Πnw∗l (Y2 − φ(X 0

1θ1))|X}v∗θ
and for all α = ταo + (1 − τ)α with τ ∈ [0, 1], α ∈ An within a shrinking o(n−1/4)-
neighborhood of αo,

E{∇hl(Y2−φ(X 0
1θ1))|X} = τE{∇hol(Y2−φ(X 0

1θ1))|X}+(1−τ)E{∇hl(Y2−φ(X 0
1θ1))|X}

hl ∈ Hl,n given in (3.10) implies

E{∇hl(Y2 − φ(X 0
1θ1))|X} =

KnX
k=0

X
j∈Kn

πlkjE{∇ψkj(Y2 − φ(X 0
1θ1))|X}

Hence Ai-Chen’s assumption 4.3 is satisfied given our Assumptions 2 and N3.
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For Ai-Chen’s assumption 4.4, we note that for α ∈ An within a shrinking o(n−1/4)-
neighborhood of αo,

dml(X,α)

dα
[Πnv

∗]− dml(X,αo)

dα
[Πnv

∗]

=
¡
E{∇hl(Y2 − φ(X 0

1θ1))|X}∇φ(X 0
1θ1)−E{∇hol(Y2 − φ(X 0

1θo1))|X}∇φ(X 0
1θo1)

¢
X 0
1v
∗
θ1

+
¡
E{Πnw∗l (Y2 − φ(X 0

1θ1))|X}−E{Πnw∗l (Y2 − φ(X 0
1θo1))|X}

¢
v∗θ

=
¡
E{∇hl(Y2 − φ(X 0

1θ1))|X}−E{∇hol(Y2 − φ(X 0
1θ1))|X}

¢∇φ(X 0
1θ1)X

0
1v
∗
θ1

+
¡
E{∇hol(Y2 − φ(X 0

1θ1))|X}−E{∇hol(Y2 − φ(X 0
1θo1))|X}

¢∇φ(X 0
1θ1)X

0
1v
∗
θ1

+E{∇hol(Y2 − φ(X 0
1θo1))|X}

¡∇φ(X 0
1θ1)−∇φ(X 0

1θo1)
¢
X 0
1v
∗
θ1

+
¡
E{Πnw∗l (Y2 − φ(X 0

1θ1))|X}−E{Πnw∗l (Y2 − φ(X 0
1θo1))|X}

¢
v∗θ

Under our assumption 2, we have

∇hol(Y2 − φ(X 0
1θ1)) =

∞X
k=0

X
j∈Kn

πolkj∇ψkj(Y2 − φ(X 0
1θ1))

hl ∈ Hl,n given in (3.10) implies

∇hl(Y2 − φ(X 0
1θ1)) =

KnX
k=0

X
j∈Kn

πlkj∇ψkj(Y2 − φ(X 0
1θ1))

hence

∇hl(Y2 − φ(X 0
1θ1))−∇hol(Y2 − φ(X 0

1θ1))

=
KnX
k=0

X
j∈Kn

{πlkj − πolkj}∇ψkj(Y2 − φ(X 0
1θ1)) + {Πn∇hol(Y2 − φ(X 0

1θ1))−∇hol(Y2 − φ(X 0
1θ1))}

Thus Ai-Chen’s assumption 4.4 is satisfied under our assumptions 2, 5, 7(ii) and N3.
For Ai-Chen’s assumption 4.5, we note that for α ∈ An within a shrinking o(n−1/4)-

neighborhood of αo, and for α = ταo + (1− τ)α for all τ ∈ [0, 1],
dml(X,α)

dα
[α− αo]− dml(X,αo)

dα
[α− αo]

=
¡
E{∇hl(Y2 − φ(X 0

1θ1))|X}−E{∇hol(Y2 − φ(X 0
1θ1))|X}

¢∇φ(X 0
1θ1)X

0
1[θ1 − θo1]

+
¡
E{∇hol(Y2 − φ(X 0

1θ1))|X}−E{∇hol(Y2 − φ(X 0
1θo1))|X}

¢∇φ(X 0
1θ1)X

0
1[θ1 − θo1]

+E{∇hol(Y2 − φ(X 0
1θo1))|X}

¡∇φ(X 0
1θ1)−∇φ(X 0

1θo1)
¢
X 0
1[θ1 − θo1]

−(E{hl(Y2 − φ(X 0
1θ1))− hol(Y2 − φ(X 0

1θ1))|X})
−(E{hl(Y2 − φ(X 0

1θo1))− hol(Y2 − φ(X 0
1θo1))|X})
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Thus uniformly over α ∈ An within a shrinking o(n−1/4)-neighborhood of αo, and for
α = ταo + (1− τ)α for all τ ∈ [0, 1],

E

µ
{dm(X,α)

dα
[α− αo]− dm(X,αo)

dα
[α− αo]}0{dm(X,α)

dα
[α− αo]− dm(X,αo)

dα
[α− αo]}

¶
= o(n−1/2)

this and our assumptions N1 and 7(ii) imply that Ai-Chen’s assumption 4.5 is satisfied
by applying Cauchy-Schwartz inequality.

For Ai-Chen’s assumption 4.6, we note that for all α ∈ An within a shrinking
o(n−1/4)-neighborhood of αo, and for all τ ∈ [0, 1], and for any l = 1, ..., L,

ρl(Z,α+ τΠnv
∗)

= Y1l −
£
hl(Y2 − φ(X 0

1{θ1 + τv∗θ1)) + τΠnw
∗
l (Y2 − φ(X 0

1{θ1 + τv∗θ1}))v∗θ
¤−X 0

1{θ2l + τv∗θ2l}

hence

d2ρl(Z,α+ τΠnv
∗)

dτ2
|τ=0

= −∇2hl(Y2 − φ(X 0
1θ1))[∇φ(X 0

1θ1)X
0
1v
∗
θ1 ]
2 +∇hl(Y2 − φ(X 0

1θ1))∇2φ(X 0
1θ1)[X

0
1v
∗
θ1 ]
2

−∇Πnw∗l (Y2 − φ(X 0
1θ1))v

∗
θ [∇φ(X 0

1θ1)X
0
1v
∗
θ1 ]

and Ai-Chen’s assumption 4.6 is automatically satisfied under our assumptions 2 and
N3(ii) and hl ∈ Hl,n given in (3.10).

Proof. (Proposition 4): Applying Theorems 6.1 and 6.2 of Ai and Chen (1999,
2003), the verification is very similar to that of Proposition 3, hence omitted.

Proof. (Proposition 5): Directly follows from Theorem 5.1 of Ai and Chen (2003).
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B. Tables

Table B.1: MC-study: MSE of sieve IV-estimator of nonlinear h

P-spline, kn = 4 mn=cos-sin, Jn = 13 mn=cos-sin, Jn = 27
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 2.28 2.48 2.27 2.06 2.02 2.24 2.28 1.94 1.75 1.71
Var. (10−2×) 0.35 0.71 1.12 1.57 1.72 0.33 0.66 1.06 1.45 1.55
MSE (10−2×) 2.63 3.19 3.39 3.63 3.74 2.57 2.94 3.00 3.20 3.26

P-spline, kn = 5 mn=cos-sin, Jn = 17 mn=cos-sin, Jn = 27
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 2.15 2.29 1.90 1.62 1.56 2.12 2.16 1.71 1.48 1.46
Var. (10−2×) 0.41 0.78 1.21 2.38 3.63 0.40 0.74 1.21 2.34 3.14
MSE (10−2×) 2.56 3.07 3.11 4.00 5.19 2.52 2.90 2.92 3.82 4.60

P-spline, kn = 6 mn=cos-sin, Jn = 19 mn=cos-sin, Jn = 27
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.87 1.84 1.58 1.82 3.55 1.83 1.68 1.38 1.63 2.77
Var. (10−2×) 0.41 0.89 1.66 3.31 10.35 0.41 0.87 1.66 3.23 7.82
MSE (10−2×) 2.28 2.74 3.24 5.13 13.90 2.24 2.55 3.04 4.86 10.59

P-spline, kn = 7 mn=cos-sin, Jn = 23 mn=cos-sin, Jn = 27
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.78 1.64 1.40 1.99 4.06 1.76 1.57 1.32 1.91 3.90
Var. (10−2×) 0.41 0.90 1.94 4.18 20.21 0.41 0.89 1.93 4.13 15.79
MSE (10−2×) 2.19 2.54 3.34 6.17 24.27 2.17 2.46 3.25 6.04 19.69

P-spline, kn = 8 mn=cos-sin, Jn = 25 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.75 1.58 1.37 2.01 3.71 1.66 1.17 0.83 1.00 1.19
1Var. (10−2×) 0.41 0.91 2.07 4.85 56.69 0.37 0.77 1.60 3.13 7.19
MSE (10−2×) 2.16 2.49 3.44 6.86 60.40 2.03 1.94 2.43 4.13 8.38

P-spline, kn = 9 mn=cos-sin, Jn = 29 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.72 1.50 1.30 1.91 3.51 1.65 1.16 0.84 1.00 1.22
Var. (10−2×) 0.40 0.90 2.18 5.77 56.36 0.37 0.78 1.70 3.47 10.36
MSE (10−2×) 2.12 2.40 3.48 7.68 59.87 2.02 1.94 2.54 4.48 11.58
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Table B.2: MC-study: MSE of sieve IV-estimator of nonlinear h

P-spline, kn = 4 mn=B-spline, Jn = 15 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 2.24 2.31 1,20 1.78 1.75 2.20 2.01 1.52 1.32 1.29
Var. (10−2×) 0.33 0.64 1.02 1.38 1.46 0.30 0.56 0.86 1.06 1.10
MSE (10−2×) 2.56 2.95 3.00 3.16 3.21 2.50 2.57 2.38 2.38 2.39

P-spline, kn = 5 mn=B-spline, Jn = 15 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 2.13 2.20 1.75 1.48 1.45 2.08 1.88 1.32 1.13 1.11
Var. (10−2×) 0.40 0.73 1.18 2.23 2.93 0.36 0.63 1.01 1.65 1.90
MSE (10−2×) 2.52 2.93 2.93 3.71 4.39 2.44 2.51 2.33 2.78 3.01

P-spline, kn = 6 mn=B-spline, Jn = 15 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.84 1.72 1.43 1.66 2.86 1.76 1.31 0.95 0.98 1.04
Var. (10−2×) 0.40 0.85 1.59 3.11 7.52 0.36 0.73 1.27 2.18 3.04
MSE (10−2×) 2.23 2.57 3.01 4.77 10.38 2.12 2.04 2.22 3.16 4.08

P-spline, kn = 7 mn=B-spline, Jn = 15 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.77 1.62 1.37 1.93 3.50 1.68 1.19 0.84 1.00 1.19
Var. (10−2×) 0.39 0.86 1.88 4.12 15.68 0.37 0.75 1.49 2.76 5.07
MSE (10−2×) 2.16 2.48 3.25 6.05 19.18 2.05 1.94 2.33 3.76 6.26

B-spline, kn = 9 mn=B-spline, Jn = 15 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 0.47 1.10 1.51 1.47 0.70 0.50 0.78 0.89 0.93 0.86
Var. (10−2×) 0.61 1.88 5.58 11.83 39.19 0.58 0.19 3.16 4.18 5.39
MSE (10−2×) 1.09 2.98 7.09 13.30 39.89 1.08 2.37 4.05 5.11 6.25

B-spline, kn = 14 mn=B-spline, Jn = 15 mn=B-spline, Jn = 25
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.75 1.62 1.50 2.13 6.45 0.54 0.85 1.02 1.16 2.14
Var. (10−2×) 0.40 0.90 2.29 6.79 265.54 0.63 1.73 3.85 5.99 27.16
MSE (10−2×) 2.15 2.52 3.79 8.92 271.99 1.17 2.58 4.87 7.15 29.30
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Table B.3: MC-study: MSE of sieve estimators of linear h.

B-spline, kn = 9 IV-estimator, Jn = 25 LS-estimator
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 0.07 0.03 0.03 0.03 0.04 0.48 0.47 0.47 0.47 0.47
Var. (10−2×) 0.07 0.20 0.50 0.81 1.18 0.02 0.03 0.03 0.03 0.03
MSE (10−2×) 0.14 0.23 0.53 0.84 1.22 0.50 0.50 0.51 0.50 0.50

P-spline, kn = 6 IV-estimator, Jn = 25 LS-estimator
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 0.03 0.03 0.03 0.03 0.04 0.50 0.49 0.48 0.48 0.48
Var. (10−2×) 0.04 0.08 0.14 0.29 0.47 0.01 0.02 0.02 0.02 0.02
MSE (10−2×) 0.07 0.10 0.17 0.33 0.51 0.51 0.51 0.50 0.50 0.50

Table B.4: MC-study: MSE of sieve estimators of nonlinear h.

B-spline,kn = 9 IV-estimator, Jn = 25 LS-estimator
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 0.50 0.78 0.90 0.94 0.86 18.77 18.42 18.48 18.39 18.37
Var. (10−2×) 0.58 1.59 3.16 4.18 5.39 0.09 0.11 0.11 0.12 0.12
MSE (10−2×) 1.08 2.37 4.06 5.12 6.25 18.86 18.54 18.50 18.51 18.49

P-spline,kn = 6 IV-estimator,Jn = 25 LS-estimator
λ 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00

Bias2 (10−2×) 1.76 1.31 0.95 0.98 1.04 19.50 18.82 18.53 18.49 18.48
Var. (10−2×) 0.36 0.73 1.27 2.19 3.04 0.06 0.07 0.09 0.09 0.09
MSE (10−2×) 2.12 2.04 2.22 3.17 4.08 19.56 18.89 18.62 18.58 18.57

C. Figures
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Figure C.1: MC-study: LS- and IV-estimator of non-linear h, λ = 0.8, 0.0
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Figure C.2: MC-study: LS- and IV-estimator of linear h, λ = 0.8, 0.0
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Figure C.3: MC-study: LS- and IV-estimator of non-linear h, λ = 0.8, 0.0; kn = 5
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Figure C.4: MC-study: LS- and IV-estimator of linear h, λ = 0.8, 0.0; k = 5
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Figure C.5: Kernel estimate of density for Y2.
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Figure C.6: Kernel estimate of density for X2.
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Figure C.7: Kernel estimate of density for (X2, Y2); series estimate of E [Y2|X2]
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Figure C.8: Kernel estimate of density for (X2, Y2); series estimate of E [Y2|X2]
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Figure C.9: Engel curve for alcohol. - - w/ children, – w/o children, ++ 95%-confidence
bands
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Figure C.10: Engel curve for fares. - - w/ children, – w/o children, ++ 95%-confidence
bands
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Figure C.11: Engel curve for food-in. - - w/ children, – w/o children, ++ 95%-confidence
bands
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Figure C.12: Engel curve for food-out. - - w/ children, – w/o children, ++ 95%-confidence
bands
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Figure C.13: Engel curve for fuel. - - w/ children, – w/o children, ++ 95%-confidence bands
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Figure C.14: Engel curve for leisure. - - w/ children, – w/o children, ++ 95%-confidence
bands
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Figure C.15: Engel curve for motor. - - w/ children, – w/o children, ++ 95%-confidence
bands
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