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1 Introduction

Consider a random vector process which may be parameter dependent and may display

serial dependence and conditional heteroskedasticity. Heteroskedastic and autocorrela-

tion consistent (HAC) estimation of the long run covariance matrix of such processes has

received considerable attention in the econometrics literature over the last two decades.

The standard estimation method employs lag kernel smoothing whereby autocovariance

estimators are weighted by some suitably chosen kernel function and which also incorpo-

rates a bandwidth parameter. Early seminal contributions in the statistics literature to

the theoretical study of such HAC estimators include Parzen (1957) and Priestley (1962).

More recently, Andrews (1991) analyzes the properties of a number of HAC estimators

and prescribes suitable choices of the bandwidth parameter given a particular choice

of kernel function. In addition, the quadratic spectral kernel is shown to be optimal

according to an asymptotic truncated mean squared error criterion. The bibliography

in Andrews (1991) also provides some previous contributions to the econometrics liter-

ature on HAC covariance matrix estimation. In particular, the method of Newey and

West (1987a) based on the Bartlett kernel function is now commonly adopted in many

econometrics packages. A related lag kernel-based approach is discussed in Andrews and

Monahan (1992) which initially prewhitens the random vector process.

This paper suggests a novel alternative class of HAC covariance matrix estimators.

Rather than weight the estimated autocovariances as in the standard lag kernel method,

we initially smooth the data observations on the random vector process itself using an

appropriately chosen kernel function as weights. The HAC covariance matrix estimator

is then defined as the normalised outer product of the smoothed random vectors. The

resultant class of HAC covariance estimators belongs to the general class of quadratic

estimators described in Grenander and Rosenblatt (1984, Section 4.1). Standard lag ker-

nel estimators are also quadratic estimators but their weight matrix has Toeplitz form.

As shown by Grenander and Rosenblatt (1984, Section 4.2), for any linear random vec-

tor process, a standard lag kernel estimator may be found which has asymptotic mean
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squared error no larger than that of any given asymptotically unbiased quadratic esti-

mator with non-Toeplitz weight matrix. Interestingly, however, the weight matrices for

members of the class of HAC covariance matrix estimators proposed here asymptotically

take Toeplitz form. Therefore, each HAC estimator corresponds implicitly to an asymp-

totically equivalent lag kernel estimator. Although this paper does not formally address

their limiting distributional and asymptotic mean squared error properties, one might

therefore suppose that members of this class of HAC covariance matrix estimators might

inherit the properties of the corresponding lag kernel estimator.

The re-weighting scheme adopted here may be viewed as a form of multitaper. Recall

that the long run covariance matrix of a stationary vector process is its (second order)

spectrum at frequency zero. Brillinger (1981, Theorem 5.6.4, p.150) details the large

sample properties of a lag kernel estimator for the spectrum where the data observations

have initially been smoothed using a single taper which has bandwidth parameter equal

to sample size. Brillinger (1981, p.151) notes that lag kernel estimators with tapered data

may have desirable asymptotic bias properties relative to standard lag kernel estimators;

see also Brillinger (1981, Sections 3.3 and 4.6).1 Thomson (1982) proposes a spectrum

estimator using multitapers which is the average of a sequence of periodogram estimators

each of which uses a different taper. In a more recent development, Walden (2000) defines

a general class of multitaper spectrum estimators employing orthogonal tapers which

may regarded as being defined in terms of the eigenvectors and eigenvalues of the weight

matrix of some quadratic estimator. The number of tapers comprising the average is

allowed to increase with sample size but generally at a slower rate; see Walden (2000,

Section 4.9, p.785). Our approach, however, displays a number of important differences

with these multitaper methods. In particular, the estimator is a standard outer product

and, thus, the number of tapers equals the sample size. Also a bandwidth parameter is

incorporated which is defined similarly to that used in the standard lag kernel method.

Another recent innovation is that of Phillips (2004) which proposes a new class of

1An example of the application of tapers in econometrics is the nonparametric cointegration analysis
of Bierens (1997).
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HAC covariance matrix estimators obtained as the explained sum of squares from a

regression of the data observations on a sequence of basis trend functions. Estimators

in this class are members of the general quadratic class where the weight matrix is the

orthogonal projection matrix formed from the trend function sequence. These estimators

may also be regarded as multitaper estimators where the tapers are the eigenvectors of

the trend function projection matrix. Like the class proposed in this paper, Phillips’

(2004) estimators also correspond implicitly to an asymptotically equivalent lag kernel

estimator. Interestingly, this approach has the advantage of avoiding a choice of kernel

function and bandwidth (which equals the sample size) but does, however, require a

choice of the number and the sequence of basis trend functions to be included in the

regression. Phillips (2004, (8)) provides an automated rule, obtained via an asymptotic

mean squared error analysis, for the determination of the number of trend function terms

to include.

The class of HAC covariance estimators proposed here is automatically positive semi-

definite as are the estimators proposed in Phillips (2004). This property is a particular

advantage if a consistent estimator is required for the asymptotic covariance matrix of the

limiting normal distribution of some parameter estimator. For example, the asymptotic

covariance matrix estimator may then be used in the computation of t- or F -type test

statistics based on the parameter estimator. Furthermore, the inverse of the HAC covari-

ance estimator may be employed as an estimator for the efficient metric in generalized

method of moments (GMM) estimation.

The standard construction of t- and F -type statistics incorporating a HAC covariance

matrix estimator has been subject to some severe criticism in the literature because of

their poor finite sample properties relative to the nominal normal or chi-square asymp-

totic reference distributions. In the regression context, Kiefer et al. (2000) suggest an

alternative approach to inference which completely avoids the use of a HAC estimator

and appears to possess better properties in small samples than that based on standard t-

and F -type statistics. For a more recent contribution, see Phillips et al. (2003). A major

disadvantage of these approaches, however, from which t- and F -type statistics do not
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suffer, is that they seem to be restricted to just-identified models only in the non-linear

GMM context; see Kiefer et al. (2000, Section 4, p.702).

An efficient GMM criterion may also be formulated as a quadratic form in the

smoothed moment indicators whose normalised minimand provides a test statistic for

the over-identifying moment conditions similar in structure to that of Hansen (1982).

Being based solely on the smoothed moment indicators this GMM criterion is similar

in structure to that for observations obtained from a random sample and thus does

not require separate estimation of the efficient metric for GMM estimation which would

normally be the case, merely evaluation of the outer product of the smoothed moment

indicators at an initially consistent estimator for the parameters of interest is necessary.

A continuous updating estimator [Hansen, Heaton and Yaron (1996)] may also be defined

based on the revised GMM criterion.

Section 2 introduces the time series set-up and briefly discusses the standard method

of HAC covariance matrix estimation. The class of HAC covariance matrix estimators

which is the subject of this paper is then defined. Consistency for this class of covariance

matrix estimators is demonstrated. An alternative GMM criterion appropriate for serially

dependent and conditionally heteroskedastic time series moment conditions is given in

Section 3. Consistency, asymptotic normality and efficiency of the GMM estimator is

shown together with the limiting distribution of the normalised minimand. Section 4

concludes. Proofs of the results are given in the Appendix.

The following abbreviations are used throughout the paper: w.p.a.1: with probability

approaching one;
p→: converges in probability to; d→: converges in distribution to; k.k is

the matrix norm defined by kAk =
q
λmax(A0A) where λmax(·) is the maximum eigenvalue

of ·; p.d.: positive definite; p.s.d.: positive semi-definite.

2 HAC Covariance Matrix Estimation

Let zt, (t = 1, ..., T ), denote observations on a finite dimensional stationary and strongly

mixing process {zt}∞t=1. The particular focus is the random vector g(zt, β), an m-vector
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of known functions of the data observation zt and the p-vector β of unknown parameters,

where it is assumed that m ≥ p.
Let gt(β) ≡ g(zt, β), (t = 1, ..., T ), and ĝ(β) ≡ PT

t=1 gt(β)/T .

We further assume that there exists a true value β0 of the parameter vector β at which

the vector gt(β) has unconditional mean zero, i.e. E[gt(β0)] = 0. In the generalized

method of moments (GMM) estimation context [Hansen (1982)], gt(β) would denote

a vector of moment indicators and β0 would be of some inferential interest. In many

circumstances, the moment restrictions E[gt(β0)] = 0 will often arise from a conditional

moment restriction. For such cases, zt would also need to include lagged endogenous and

current and lagged values of exogenous variables.

The following assumption describes the basic properties of the observation process

{zt}∞t=1.

Assumption 2.1 The observation process {zt}∞t=1 is a stationary and α-mixing sequence

such that
P∞
j=1 j

2α(j)(ν−1)/ν <∞ for some ν > 1.

Our next assumption details some restrictions on the random process {g(zt, β)}∞t=1.

Assumption 2.2 (a) E[g(zt, β0)] = 0; (b) E[supβ∈B kg(zt, β)k4ν] <∞.

These assumptions are quite standard, see Kitamura and Stutzer (1997), albeit somewhat

stronger than Assumption A, p.823, and the hypotheses in Lemma 1, p.824, of Andrews

(1991).

2.1 Some Preliminaries

The particular concern of this section is HAC estimation of the long run covariance matrix

of the random process {g(zt,β0)}∞t=1 which is defined by

Ω ≡
∞X

s=−∞
Γ(s), (2.1)

where Γ(s) = E[gt+s(β0)gt(β0)
0], Γ(−s) = Γ(s)0, is the sth autocovariance of the process

{g(zt, β0)}∞t=1, (s = 0,±1, ...).
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A HAC covariance matrix estimator is often required when estimating the asymptotic

covariance matrix of the limiting normal distribution of a root-T consistent estimator for

β0. Furthermore, in a time series setting with unknown serial dependence and condi-

tional heteroskedasticity, the inverse of a HAC estimator for Ω provides a consistent

estimator for the metric required for the implementation of efficient GMM. In both of

these examples, the particular requirement would be a consistent estimator for the limit-

ing variance matrix limT→∞ var[T 1/2ĝ(β0)] of the normalised sample average T
1/2ĝ(β0),

that is, the long run covariance matrix Ω as var[T 1/2ĝ(β0)] =
PT−1
s=1−T ΓT (s), where

ΓT (s) ≡ Pmin[T,T−s]
t=max[1,1−s]E[gt+s(β0)gt(β0)

0]/T , ΓT (−s) = ΓT (s)
0, (s = 0,±1, ...). See (2.2)

and (2.3) of Andrews (1991, pp.819-820).

The standard method for estimation of Ω (2.1) is based on smoothing consistent sam-

ple autocovariance estimators ĈT (s) ≡ T−1 Pmin[T,T−s]
t=max[1,1−s] gt+s(β̃)gt(β̃)

0, ĈT (−s) = ĈT (s)0,
(s = 1− T, ..., T − 1), where β̃ is a preliminary consistent estimator for β0. Let k

∗(·) be
some real-valued kernel function belonging to the class of symmetric kernels K1 defined

by

K1 = {k∗(·) : R→ [−1, 1]|k∗(0) = 1, k∗(−x) = k∗(x)∀x ∈ R,
Z

[0,∞)
k̄∗(x)dx <∞,

k∗(·) continuous at 0 and almost everywhere}. (2.2)

where k̄∗(x) = supy≥x |k∗(y)|; see, for example, Andrews (1991) and Andrews and Mon-
ahan (1992).2 The standard class of feasible HAC estimators for the limiting covariance

matrix Ω (2.1) is then given by

Ω̂(β̃) ≡ T

T − p
T−1X
s=1−T

k∗
µ
s

ST

¶
ĈT (s), (2.3)

[Andrews (1991), (2.5), p.820], where ST is a bandwidth parameter and T/(T − p) is a
finite sample adjustment which takes into account estimation of β0.

2Jansson (2002) notes that neither the square integrability condition
R∞
−∞ k∗(x)2dx < ∞ in Andrews

(1991, (2.6), p.821) nor the stronger absolute integrability condition
R∞
−∞ |k∗(x)| dx < ∞ in Andrews

and Monahan (1992, (2.5), p.955) is sufficient for the consistency results claimed in those papers. The
condition

R
[0,∞) k̄∗(x)dx < ∞ is required to rule out certain pathological cases and to ensure that

particular summations used in those papers converge appropriately; see Lemma 1 of Jansson (2002).
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2.2 Positive Semi-Definite HAC Covariance Matrix Estimation

In contradistinction to the standard approach, we initially re-weight the vectors gt(β),

(t = 1, ..., T ), themselves to yield their smoothed counterparts

gtT (β) ≡
t−1X

s=t−T
k
µ
s

ST

¶
gt−s(β), (t = 1, ..., T ), (2.4)

where, as above, k(·) is some kernel and ST a bandwidth parameter, both of whose prop-
erties are defined in Assumption 2.3 below. The redefinition (2.4) of the random vectors

{g(zt, β)}∞t=1 was suggested in Smith (2001) as a means of achieving an asymptotic first or-

der equivalence between generalized empirical likelihood and efficient GMM estimators in

the moment condition framework with serially dependent and conditionally heteroskedas-

tic moment indicators {g(zt, β)}∞t=1. See also Smith (1997) and Kitamura and Stutzer

(1997), which employ related and special cases of the class of kernels k(·) and particular
choices for the bandwidth parameter ST .

The class of HAC covariance matrix estimators for Ω (2.1) proposed in this paper is

formed directly as the normalised outer product of the smoothed random vectors gtT (β),

(t = 1, ..., T ), (2.4), also evaluated at a preliminary consistent estimator β̃; viz.

Ω̂T (β̃) ≡
 T−1X
s=1−T

k
µ
s

ST

¶2
−1

TX
t=1

gtT (β̃)gtT (β̃)
0/T, (2.5)

with the divisor
PT−1
s=1−T k

³
s
ST

´2
as a necessary normalisation factor. Clearly Ω̂T (β̃) (2.5)

is p.s.d. and is a member of the general class of quadratic estimators [Grenander and

Rosenblatt (1984, Section 4.1)]. Restriction to consideration of p.s.d. HAC covariance

estimators is particularly desirable as the estimator Ω̂T (β̃) (2.5) would often form a

component of a consistent estimator for the covariance matrix of the limiting normal

distribution of a parameter estimator which may then be required for the construction

of t- or F -type test statistics. Moreover, the property that a HAC covariance matrix

estimator is p.s.d. is important if its inverse is to be used as the metric for efficient

GMM estimation; see section 3.

The next assumption introduces standard conditions on the kernel k(·) and bandwidth
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parameter ST . Let kj ≡ R∞
−∞ k(a)

jda, j = 1, 2, and

k̄(x) =

(
supy≥x |k(y)| if x ≥ 0
supy≤x |k(y)| if x < 0 .

Assumption 2.3 (a) ST → ∞ and ST/T
2 → 0; (b) k(·) : R → [−kmax, kmax], kmax <

∞, k(0) 6= 0, k1 6= 0, and is continuous at 0 and almost everywhere; (c)
R∞
−∞ k̄(x)dx <∞.

The bandwidth parameter therefore obeys the conditions described in Andrews (1991,

Theorem 1(a), p.827). Assumption 2.3(c) is required to ensure that certain normalised

sums defined in terms of the kernel k(·) converge appropriately to their integral repre-
sentation counterparts; see Jansson (2002) and footnote 2 above.

To gain some intuition about the suitability of Ω̂T (β̃) (2.5) as an estimator for Ω (2.1),

consider the infeasible HAC covariance estimator Ω̂T (β0). In the generalized empirical

likelihood context, Smith (2001) discusses the asymptotic equivalence of Ω̂T (β0) with

the estimator ΩT (β0) =
PT−1
s=1−T k

∗
T

³
s
ST

´
CT (s), where the infeasible sample covariances

CT (s) ≡ T−1 Pmin[T,T−s]
t=max[1,1−s] gt+s(β0)gt(β0)

0, CT (−s) = CT (s)0, (s = 1−T, ..., T−1), and the
implicit kernel k∗T (·) is given by k∗T

³
s
ST

´
≡ Pmin[T−1,T−1+s]

t=max[1−T,1−T+s] k
³
t−s
ST

´
k
³
t
ST

´
/
PT−1
t=1−T k

³
t
ST

´2
.

The estimator ΩT (β0) also belongs the general quadratic class but has Toeplitz weight

matrix. Therefore, we might expect that the estimator Ω̂T (β0) would inherit the desirable

asymptotic mean squared error properties of standard lag kernel estimators [Grenander

and Rosenblatt (1984, Section 4.2)]. The implicit kernel k∗T (·) approximates the kernel
k∗(·) defined by k∗(a) = R∞

−∞ k(b − a)k(b)db/k2. Smith (2001) establishes that if As-

sumptions 2.3(b)(c) hold then the induced k∗(·) belongs to the p.s.d. class K2 defined in

Andrews (1991, p.822), that is,

K2 = {k∗(·) ∈ K1 : K
∗(λ) ≥ 0 for all λ ∈ R}, (2.6)

where the class K1 is given in (2.2) and K
∗(λ) = (2π)−1

R
k∗(x) exp(−ιxλ)dx is the

spectral window generator of the kernel k∗(·).
Given a choice of k∗(·), the corresponding kernel k(·) may be obtained from the

relation K∗(λ) = 2π |K(λ)|2, where K(·) is the spectral window generator of k(·). Smith
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(2001) provides examples of kernels k(·) which satisfy Assumption 2.3 and the consequent
implicit kernels k∗(·).
Initially we consider the infeasible covariance matrix estimator Ω̂T (β0) and state a

preliminary result.3

Lemma 2.1 (Consistency of Ω̂T (β0).) If Assumptions 2.1-2.3 hold, then Ω̂T (β0)−Ω p→
0.

This Lemma parallels Proposition 1(a), p.825, of Andrews (1991).

Let N denote some convex neighbourhood of β0. The next assumption states the

root-T consistency of the preliminary estimator β̃ for β0 and bounds the expectation of

the derivative matrix of the vector g(zt, β) on N .

Assumption 2.4 (a)
√
T (β̃ − β0) = Op(1); (b) E[supβ∈N k∂g(zt, β)/∂β 0k2] <∞.

Assumption 2.4(a) mimics Assumption B(i) of Andrews (1991) and Assumption 2.4(b)

is Assumption B(iii), p.825, of Andrews (1991) rewritten for our context.

The consistency of the feasible HAC covariance matrix estimator Ω̂T (β̃) then follows.

Cf. Theorem 1(a), p.827, of Andrews (1991).

Theorem 2.1 (Consistency of Ω̂T (β̃) for Ω.) If Assumptions 2.1-2.4 are satisfied, then

Ω̂T (β̃)− Ω p→ 0.

3 Efficient GMM Estimation

The next assumption is standard and states regularity conditions for the consistency of

GMM estimators.

Assumption 3.1 (a) β0 ∈ B is the unique solution to E[g(zt,β)] = 0; (b) B is compact;

(c) g(zt, β) is continuous at each β ∈ B with probability one; (d) Ω is p.d..

3A referee pointed out that the original proof of Lemma 2.1 abstracted from that of Lemma A.3 in
Smith (2001) was incomplete. The revision of Smith (2001), currently in preparation, will address this
deficiency.
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Let ĝT (β) ≡ PT
t=1 gtT (β)/T . Then, if Assumptions 2.1-2.3 and 3.1 hold, from Smith

(2001, Lemma A.1), ĝT (β)/(STk1)
p→ E[g(zt, β)] uniformly β ∈ B. Therefore, given a

preliminary consistent estimator β̃, a HAC covariance estimator Ω̂T (β̃) may be defined by

either (2.5) as in section 2 or as the centred version
µPT−1

s=1−T k
³
s
ST

´2
¶−1 PT

t=1[gtT (β̃) −
ĝT (β̃)][gtT (β̃) − ĝT (β̃)]0/T as ĝT (β̃)

p→ 0. Furthermore, from Assumption 3.1(d), by

Theorem 2.1, w.p.a.1 Ω̂T (β̃) is p.d..

Consider a GMM criterion based on the smoothed random vectors gtT (β), (t =

1, ..., T ), defined in (2.4), with Ω̂T (β̃)
−1 as efficient metric, that is, Q̂T (β) ≡ ĝT (β)0Ω̂T (β̃)−1ĝT (β).

The GMM estimator β̂ is then defined as

β̂ = argmin
β∈B

Q̂T (β). (3.1)

The consistency of β̂ for β0 follows.

Theorem 3.1 (Consistency of β̂.) If Assumptions 2.1-2.4 and 3.1 are satisfied, then

β̂
p→ β0.

Asymptotic normality requires additional regularity conditions. LetG ≡ E[∂g(zt, β0)/∂β
0].

Assumption 3.2 (a) β0 ∈ int(B); (b) rk(G) = p.

Let Σ ≡ (G0Ω−1G)−1.

Theorem 3.2 (Asymptotic Normality of β̂.) If Assumptions 2.1-2.4 and 3.1-3.2 are

satisfied, then

T 1/2(β̂ − β0)
d→ N(0,Σ), (T/S2

T )Q̂T (β̂)/(k1)
2 d→ χ2

m−p.

The GMM estimator β̂ (3.1) shares the standard properties of efficient GMM estima-

tors in the class of GMM estimators which minimise the quadratic form GMM criterion

Q̂W (β) = ĝ(β)0Wnĝ(β), Wn = W + op(1), W p.d.. Moreover, it is asymptotically first or-

der equivalent to the efficient GMM estimator that minimises Q̂W (β) withWn = Ω̂(β̃)
−1,

where Ω̂(β̃) is defined in (2.3). The optimised criterion function statistic is likewise

[10]



first order asymptotically equivalent to the usual Hansen (1982) test statistic for over-

identifying moment restrictions.

To estimate Σ consistently, consistent estimators of G and Ω are required. The former

matrix may be estimated consistently by ĜT (β̂)/(STk1), where ĜT (β) ≡ ∂ĝT (β)/∂β
0,

which is an immediate by-product from the first order conditions defining β̂, and the

latter matrix by Ω̂T (β̃) (2.5) considered in section 2 or as stated above.

Although not pursued in this paper, a continuous updating GMM estimator for β0

which will share the asymptotic properties of β̂ given in Theorems 3.1 and 3.2 may be

defined using the criterion ĝT (β)
0Ω̂T (β)−ĝT (β), where Ω̂T (β)− is a generalized inverse for

Ω̂T (β). The optimised criterion (T/S
2
T )ĝT (β̂CUE)

0Ω̂T (β̂CUE)−ĝT (β̂CUE)/(k1)
2 d→ χ2

m−p.

An asymptotically equivalent statistic may be computed as ((k2)/S
2
T (k1)

2) times the

(uncentred) explained sum of squares or (k2T )/(STk1)
2 times the (uncentred) R2 from

a least squares regression of 1 on gtT (β̂CUE), (t = 1, ..., T ). The factors kj may be

replaced by
PT−1
t=1−T k

³
t
ST

´j
/ST , j = 1, 2. See Smith (2001) for further consideration of

the continuous updating estimator β̂CUE for β0 which is a special case of the generalized

empirical likelihood class of estimators considered there.

Test statistics for overidentifying moment restrictions and parametric restrictions on

β0 may be constructed in a similar fashion to those proposed in Newey (1985) and Newey

and West (1987b) respectively. See also Smith (2001) for related test statistics.

4 Summary and Conclusions

A new class of HAC covariance matrix estimators is proposed. The point of departure

for these estimators is that rather than smoothing estimated sample autocovariances the

random vectors themselves are smoothed using kernel function weights. Consistency of

the class is shown. A corresponding GMM criterion based on the smoothed random vec-

tors is also defined. The resultant GMM estimator is first order asymptotically equivalent

to the efficient GMM estimator [Hansen (1982)] and thus shares the same large sample

properties. The normalised GMM criterion function is also asymptotically equivalent to

[11]



the standard GMM criterion function statistic for over-identifying moment restrictions.

An analysis of the higher order properties of this class of HAC covariance matrix

estimators similar to that in Andrews (1991) for the standard class would seem apposite

in order to detail the optimal choice of kernel and bandwidth and to describe automatic

bandwidth estimators. It also remains to examine the finite sample properties of the

various estimators and statistics suggested in this paper.

[12]



Appendix: Proofs of Results

.

Proof of Theorem 2.1: Given Lemma 2.1, as in the Proof of Theorem 1(a), Andrews

(1991, p.852), it is only necessary to prove that the difference Ω̂T (β̃) − Ω̂T (β0)
p→ 0.

Without loss of generality let {g(zt, β0)}∞t=1 be a scalar process.

Using a mean value expansion of Ω̂T (β̃) about β0

Ω̂T (β̃)− Ω̂T (β0) = 2

 TX
t=1

t−1X
r=t−T

k
µ
r

ST

¶
gt−r(β̄)

t−1X
s=t−T

k
µ
s

ST

¶
∂gt−s(β̄)/∂β0/T


×
 T−1X
t=1−T

k
µ
t

ST

¶2
−1

(β̃ − β0)

= 2
T−1X
s=1−T

min[T,T−s]X
r=max[1,1−s]

gr+s(β̄)∂gr(β̄)/∂β
0/T (A.1)

×
 T−rX
t=1−r

k
µ
t− s
ST

¶
k
µ
t

ST

¶
/

T−1X
t=1−T

k
µ
t

ST

¶2
 (β̃ − β0),

where β̄ is on the line segment joining β̃ and β0. Similarly to Andrews (1991, eq. (A.10),

p.852), by Cauchy-Schwartz, w.p.a.1,

sup
|s|≥1

°°°°°°
min[T,T−s]X
r=max[1,1−s]

gr+s(β̄)∂gr(β̄)/∂β
0/T

°°°°°° ≤
Ã

TX
r=1

sup
β∈N

gr(β)
2/T

!1/2 Ã TX
r=1

sup
β∈N

k∂gr(β)/∂β0k2
/T

!1/2

= Op(1), (A.2)

using Assumptions 2.2 and 2.4(b). Therefore, from eqs. (A.1) and (A.2),

√
T

ST

¯̄̄
Ω̂T (β̃)− Ω̂T (β0)

¯̄̄
≤ Op(1)

¯̄̄̄
¯̄ T−1X
s=1−T

T−rX
t=1−r

k
µ
t− s
ST

¶
k
µ
t

ST

¶
/S2

T

¯̄̄̄
¯̄ (A.3)

×
√
T
°°°β̃ − β0

°°° /
 T−1X
t=1−T

k
µ
t

ST

¶2

/ST

 .
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Now

1

S2
T

¯̄̄̄
¯̄ T−1X
s=1−T

T−rX
t=1−r

k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄¯̄ ≤ 1

ST

T−1X
s=1−T

1

ST

T−1X
t=1−T

¯̄̄̄
k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄
(A.4)

=
1

ST

T−1X
t=1−T

 1

ST

T−1X
s=1−T

¯̄̄̄
k
µ
t− s
ST

¶¯̄̄̄ ¯̄̄̄k µ t

ST

¶¯̄̄̄
.

Let kT (a) = k((s− 1)/ST ), (s− 1)/ST ≤ a < s/ST , if s ≤ 0, k(s/ST ), (s− 1)/ST < a ≤
s/ST , if s > 0. Using the change of variables t = [ST b] and s = [STa], where [·] denotes
the integer part of ·,

1

ST

T−1X
t=1−T

¯̄̄̄
k
µ
t− s
ST

¶¯̄̄̄
≤ lim

T→∞
1

ST

T−1X
t=1−T

¯̄̄̄
k
µ
t− s
ST

¶¯̄̄̄

= lim
T→∞

Z (T−1)/ST

(1−T )/ST

|kT (b− a)| db+ lim
T→∞

1

ST
|k(0)|

≤ lim
T→∞

Z (T−1)/ST

(1−T )/ST

k̄(b− a)db+ o(1)

=
Z ∞

−∞
k̄(b)db+ o(1)

uniformly s. Hence, from eq. (A.4), by Assumption 2.3(c),

1

S2
T

T−1X
s=1−T

T−1X
t=1−T

¯̄̄̄
k
µ
t− s
ST

¶
k
µ
t

ST

¶¯̄̄̄
≤

µZ ∞

−∞
k̄(a)da+ o(1)

¶2

(A.5)

= O(1).

Similarly, using the change of variable s = [STa], by the dominated convergence theorem,

using Assumption 2.3(c),

lim
T→∞

T−1X
s=1−T

k
µ
s

ST

¶2

/ST = lim
T→∞

Z (T−1)/ST

(1−T )/ST

kT (a)
2da+

1

ST
k(0)2 (A.6)

=
Z ∞

−∞
k(a)2da+ o(1) > 0.

Therefore, substituting eqs. (A.5) and (A.6) into eq. (A.3), by Assumption 2.4(a),

√
T

ST

¯̄̄
Ω̂T (β̃)− Ω̂T (β0)

¯̄̄
= Op(1). (A.7)

The result then follows from eq. (A.7) using Assumption 2.3(a).
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Proof of Theorem 3.1: As Ω is p.d. from Assumption 3.1(d), Ω̂T (β̃) is p.d. and

invertible w.p.a.1. Let g(β) ≡ E[g(zt,β)]. Under Assumption 2.1, {g(zt,β0)}∞t=1 is a

stationary and α-mixing sequence [White (1984, Theorem 3.49, p.47)] and, thus, ergodic

[White (1984, Proposition 3.44, p.46)]. By a uniform weak law of numbers, Smith (2001,

Lemma A.1), if Assumptions 2.1-2.3 and 3.1 hold, supβ∈B
°°°S−1

T ĝT (β)− k1g(β)
°°° = op(1)

and g(β) is continuous by the strictly stationary and ergodic version of Lemma 2.4,

p.2129, in Newey and McFadden (1994). Let Q(β) = g(β)0Ω−1g(β). Then, by Assump-

tion 3.1(a), Q(β) is uniquely minimised at β0 and is continuous in β ∈ B. Therefore, as
λmin[Ω̂T (β̃)] > 0 w.p.a.1 where λmin[Ω̂T (β̃)] is the smallest eigenvalue of Ω̂T (β̃),¯̄̄

S−2
T Q̂T (β)− (k1)

2Q(β)
¯̄̄
≤

°°°S−1
T ĝT (β)− k1g(β)

°°°2
λmin[Ω̂T (β̃)]

−1

+2 kg(β)k
°°°S−1

T ĝT (β)− k1g(β)
°°°λmin[Ω̂T (β̃)]

−1

+ kg(β)k2
°°°Ω̂T (β̃)−1 − Ω−1

°°°
= op(1)

uniformly β ∈ B. The result follows by Theorem 2.1, p.2121, in Newey and McFadden

(1994).

Proof of Theorem 3.2: As β̂
p→ β0 by Theorem 3.1, β̂ ∈ int(B) w.p.a.1. Therefore

the first order conditions ĜT (β̂)
0Ω̂T (β̃)−1ĝT (β̂) = 0 w.p.a.1, where ĜT (β) ≡ ∂ĝT (β)/∂β 0.

By the mean value theorem, ĝT (β̂) = ĝT (β0) + ĜT (β̄)(β̂ − β0) where β̄ lies on the

line segment joining β̂ and β0 and may differ from row to row. An application of

the uniform weak law of large numbers, Lemma A.1 in Smith (2001), to S−1
T ĜT (β̄)

shows that S−1
T ĜT (β̄) = k1G + op(1). Therefore, [(k1)

2Σ−1 + op(1)]T
1/2(β̂ − β0) =

−[k1G
0Ω−1 + op(1)](T

1/2/ST )ĝT (β0). Now, by a central limit theorem, Lemma A.2 in

Smith (2001), (T 1/2/ST )ĝT (β0)
d→ N(0, (k1)

2Ω) and the first conclusion follows.

As T 1/2(β̂ − β0) = −(k1)
−1ΣG0Ω−1(T 1/2/ST )ĝT (β0) + op(1), (T

1/2/ST )ĝT (β̂) = [Im −
GΣG0Ω−1](T 1/2/ST )ĝT (β0)+op(1). Therefore, (T/S

2
T )Q̂T (β̂)/(k1)

2 = (T/(STk1)
2)ĝT (β0)

0PĝT (β0)+

op(1), where P ≡ Ω−1 − Ω−1GΣG0Ω−1. The second conclusion follows from Lemma A.2

of Smith (2001), PΩP = P and rk(P ) = m− p.
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