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Abstract

The generalized method of moments estimator may be substantially biased in
finite samples, especially so when there are large numbers of unconditional moment
conditions. This paper develops a class of first order equivalent semi-parametric
efficient estimators and tests for conditional moment restrictions models based on
a local or kernel-weighted version of the Cressie-Read power divergence family of
discrepancies. This approach is similar in spirit to the empirical likelihood methods
of Kitamura, Tripathi and Ahn (2004) and Tripathi and Kitamura (2003). These
efficient local methods avoid the necessity of explicit estimation of the conditional
Jacobian and variance matrices of the conditional moment restrictions and provide
empirical conditional probabilities for the observations.
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1 Introduction

Evidence of substantial biases in finite samples of the standard generalized method of
moments (GMM) estimator, Hansen (1982), for models specified by unconditional mo-
ment restrictions is becoming increasingly prevalent, especially so when there are large
numbers of moment conditions. See, for example, the theoretical discussion in Newey and
Smith (2004), henceforth NS, and the simulation evidence in Altonji and Segal (1996),
Imbens and Spady (2001), Judge and Mittelhammer (2001), Ramalho (2001) and Newey,
Ramalho and Smith (2001). A number of alternative estimators have therefore been
suggested which are first order asymptotically equivalent to GMM, including empirical
likelihood (EL), [Owen (1988), Qin and Lawless (1994), and Imbens (1997)], the contin-
uous updating estimator (CUE), [Hansen, Heaton, and Yaron (1996)], and exponential
tilting (ET), [Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998)]. See
also Owen (2001). As demonstrated by NS, these estimators and those from the Cressie
and Read (1984) power divergence family of discrepancies share a common structure, be-
ing members of a class of generalized empirical likelihood (GEL) estimators; see Brown
and Newey (1992, 2002) and Smith (1997, 2001). Correspondingly NS show that GEL
and GMM estimators display the same first order asymptotic properties. For the uncon-
ditional context, NS also describe the higher order efficiency of bias-corrected EL. Also
see Kitamura (2001).

An important recent paper, Kitamura, Tripathi and Ahn (2004), henceforth KTA,
develops a semi-parametric efficient estimation method based on EL for models specified
by conditional moment restrictions. A principal aim of this paper is to adapt to the
conditional moment context the information theoretic methods based on the Cressie and
Read (1984) power divergence family of discrepancies discussed in Imbens, Spady and
Johnson (1998) for unconditional moment restriction models and, thereby, to describe
a class of information theoretic estimators which achieve the semi-parametric efficiency
lower bound. Tripathi and Kitamura (2003), henceforth TK, propose an EL-type statistic

for testing the validity of conditional moment restrictions. A further objective of this
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paper is to extend the analysis of TK to provide a class of alternative test statistics based
on the Cressie-Read family of discrepancy measures.

KTA employ a kernel weighted version of EL. The resultant EL criterion may be re-
garded as a form of local EL. Similar ideas have been employed elsewhere, for example, in
nonparametric regression. For an excellent exposition of these ideas and applications, see
Fan and Gijbels (1996). Like KTA for EL we define a class of estimation criteria based
on local or kernel weighting of the Cressie-Read power divergence family of discrepancies.
We term the consequent estimators local Cressie-Read minimum discrepancy (MD) esti-
mators. We show that local Cressie-Read MD estimators are asymptotically first order
equivalent to the local EL estimator proposed by KTA. Consequently local Cressie-Read
MD estimators achieve the semi-parametric efficiency lower bound; see Chamberlain
(1987). A reformulation of the first order conditions defining the local Cressie-Read MD
estimator facilitates intuition for the semi-parametric efficiency of the local Cressie-Read
MD estimator. The structure of these conditions conforms to those describing a semi-
parametric efficient GMM estimator, incorporating an estimator of the efficient matrix
of instrumental variables formed from implicit consistent estimators of the conditional
Jacobian and conditional variance matrices associated with the conditional moment re-
strictions. The class of local Cressie-Read MD estimators includes local versions of EL
as in KTA, the ET estimator and the CUE, the last of which is related to the estimator
suggested by Bonnal and Renault (2003); c¢f. NS, Theorem 2.3, for unconditional GEL.
Like TK for EL, the optimised local Cressie-Read MD criterion function suitably centred
and scaled yields an asymptotically pivotal test statistic for the validity of the conditional
moment restrictions.

Because of their one-step nature a particular advantage of efficient local methods is
the avoidance of the necessity of providing explicit nonparametric estimators for the con-
ditional Jacobian and variance matrices arising from the conditional moment restrictions
which may be inaccurately estimated unless large numbers of observations are avail-
able. See, for example, Robinson (1987) and Newey (1990, 1993) for semi-parametric

approaches based on explicit conditional Jacobian and variance matrix estimation. More-
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over, efficient local methods display an invariance to normalisation of the conditional
moment restrictions, a property absent for two-step semi-parametric efficient estimators.
In contrast to local EL and the local Cressie-Read MD methods developed here, Don-
ald, Imbens and Newey (2003) employs a sequence of unconditional moment restrictions,
obtained, for example, using spline or series approximants, in order to approximate the
efficient matrix of instrumental variables. This sequence of unconditional moment re-
strictions is then used within the standard GEL set-up discussed in NS from which a
semi-parametric efficient estimator also results. Their method has the computational
virtue of requiring estimation of a nuisance parameter vector whose dimension increases
at a slower rate than the sample size whereas the dimension of that associated with
efficient local methods increases in direct proportion. A disadvantage though is not
producing an explicit estimator for the conditional distribution of the data.

The outline of the paper is as follows. In Section 2 the conditional moment restrictions
model is described together with some other preliminaries. Section 3 details the class
of local Cressie-Read MD criteria and estimators. Local EL, ET estimators and CUE
are obtained as special cases of the local Cressie-Read MD estimator. This section also
gives some intuition for their semi-parametric efficiency. Various regularity conditions
are provided for the consistency, asymptotic normality and semi-parametric efficiency
of local Cressie-Read MD estimation in section 4. Section 5 considers test statistics
for the conditional moment restrictions based on optimised Cressie-Read MD criteria
together with moment- and Lagrange multiplier-based statistics. Asymptotic results and
associated regularity conditions for the null distribution of these statistics are presented
in section 6. Proofs are given in Appendix A with certain subsidiary results and proofs

in Appendices B and C for estimation and inference respectively.

2 The Model and Preliminaries

Let (z4,2;), (i = 1,...,n), be a random sample of observations on the s- and d-dimensional

data vectors x and z. Following KTA, x is assumed to be continuously distributed with
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Lebesgue density h(-) whereas z may be discrete, mixed or continuous.!

The conditional moment indicator vector u(z, 3) is a known g-vector of functions of
the data observation z and the p-dimensional parameter vector  which lies in a compact
parameter space B. In many contexts, the vector u(z,3) would be interpreted as a
vector of residuals from some econometric model. We assume there exists a value of the
parameter vector 3y in the interior of the parameter space B satisfying the conditional
moment restriction

Elu(z, 6o)|z] = 0 w.p.1. (2.1)

Here E[-|z] denotes expectation taken with respect to the conditional distribution of z
given x.

Efficient estimation of the parameter 3y under (2.1) is one of the principal objec-
tives of this paper. From (2.1), any measurable function of the conditioning vector x
is uncorrelated with u(z, 3y). A standard approach then to constructing a consistent
estimator for By would be to formulate a set of unconditional moment restrictions from
(2.1) by specifying a m x ¢ matrix of instrumental variables, v(z, 5) say, with m > p.

The m-vector of unconditional moment indicators is defined as

9(2,8) = v(x, B)u(z, 5) (2.2)

with the consequent unconditional moment restrictions obtained by iterated expectations

as

Elg(z,60)] = Elv(z, fo)u(z, 6)] (2.3)
= Ew[v(x760)E[u(z>ﬁO)|$H =0,

where E[-] and E,|-| denote expectation taken with respect to the joint unconditional
distribution of z and z and the marginal distribution of x respectively. Under appropri-
ate regularity conditions, see, inter alia, Newey and McFadden (1994) and NS, GMM or
GEL estimation using g(z, 5) (2.2) as the vector of moment indicators will deliver con-

sistent estimators of . In general, however, because the instrumental variables v(x, ()

!The following analysis may be straightforwardly adapted for = discrete or mixed distributed. See
KTA, section 3.
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are nonunique, neither GMM nor GEL estimators based on the unconditional moment
restrictions (2.3) will achieve the semi-parametric efficiency bound.

Let D(z) = E[ou(z,(y)/00'|z] and V(z) = Elu(z, Bo)u(z, 5o) |x] denote the condi-
tional Jacobian and conditional variance matrices arising from the conditional moment
restrictions (2.1). In a seminal paper, Chamberlain (1987) demonstrated that the semi-
parametric efficiency lower bound for any n'/?-consistent regular estimator of 3, under
(2.1) is Z! where

T = E,[D(2)'V(x) ' D(z)]. (2.4)

The matrix Z may be regarded as the semi-parametric equivalent of the classical informa-
tion matrix and is, in fact, derived from consideration of a particular classical parametric
problem. An optimal GMM or GEL estimator based on the unconditional moment re-
strictions (2.3), therefore, requires the implementation of the (infeasible) instrumental
variable matrix v,(z,3) = D(z,3)'V(x,5)"!, where D(z,3) = E[0u(z,3)/00|x] and
V(z,0) = Elu(z, B)u(z, 3)'|z].

3 Information Theoretic Estimation

A main concern of this paper, like KTA, then is the development of feasible estimators
for By which achieve the semi-parametric efficiency bound Z=! under (2.1) but which
avoid explicit estimation of the conditional Jacobian and conditional variance matrices,
D(x) and V(zx), of the moment indicator u(z, B).

The approach adopted here considers a class of information theoretic criteria based on
the Cressie-Read power divergence family of discrepancies, see Cressie and Read (1984).
Imbens, Spady and Johnson (1998) developed estimation methods and test statistics
based on the Cressie-Read family for the unconditional moment context, see (2.3) above.
Essentially, in the unconditional case, the sample is treated as arising from a discretely

distributed population with each data point i, (i = 1,...,n), treated as a single cell of a



n-cell contingency table. The Cressie-Read discrepancies are then given by

1 n
— nm) T -1 3.1
e Sl -1 (3.1
where expressions are interpreted as limits for y = —1 or v = 0. In (3.1), 7; is interpreted

as the (unconditional) probability associated with observation i, (i = 1,...,n), and, thus,
m >0, (i=1,..,n), and > m = 1. Correspondingly, the (unconditional) moment
condition (2.3) becomes > " | mu(z;, 8) = 0. For a given v, the Cressie-Read minimum
discrepancy (MD) estimator for §, minimises the criterion (3.1) with respect to m;, (i =
1,..,n), and § subject to the constraints Y ., mu(z;,3) = 0 and > m = 1. In
effect, the Cressie-Read discrepancy criterion contrasts probabilities m;, (i = 1,...,n),
which incorporate the moment restrictions > | mu(z;, 5) = 0, with their (unrestricted)
empirical distribution function counterparts 1/n, which solve the minimisation problem
in the absence of these moment restrictions.

The Cressie-Read discrepancies (3.1) are also known as Renyi’s a-class of generalized
measures of entropy in which the function [0 — 1]/v(y + 1) is a particular form of
entropy, see Renyi (1961). For suitable choices for v many familiar entropy measures
are obtained. For example, if v = 0, then the entropy takes the standard Shannon
form vlog(v), see Shannon and Weaver (1949), whereas — log v results if vy = —1. In an
interesting recent contribution Kitamura (2005) characterises a class of criteria based on a
general entropy function using an information theoretic argument which exploits Fenchel
duality, see Borwein and Lewis (1991). Kitamura’s (2005) treatment which includes the
Cressie-Read family as a special case has as its empirical counterpart Corcoran’s (1998)
formulation of a general class of MD estimators.?

To adapt the Cressie-Read critieria (3.1) to the conditional moment restrictions (2.1)
context, we employ a local version of the Cressie-Read discrepancy family (3.1) similar

in spirit to that adopted by KTA for EL and extended for GEL in Smith (2003). In

2Corcoran’s (1998) MD criterion is defined by Y., h(nm;) where h(:) is a convex function which
may also be interpretated as entropy. This general MD criterion rather than the Cressie-Read family
could be adopted in the following analysis with little alteration to the results, see fn.3 below. NS, see
also Newey and Smith (2001), compared GEL with Corcoran’s (1998) MD estimator.
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particular, we are interested in the first order large sample properties of the estimator
for By obtained from optimising the resultant local information theoretic criterion. We
term the estimator a local Cressie-Read MD estimator for (.

To describe the local Cressie-Read MD estimator, let the weights w;; = K;;/ ZZ:1 Kik,

where KC;; = K(%57), K(.) is a symmetric positive kernel function and b, a bandwidth
parameter, the properties of which are described below in Assumption 4.6 of section 4.
Note that Z?Zl w;; = 1 is automatically satisfied. We need to replace the unconditional
weights m;, (i = 1,...,n), defining the Cressie-Read criterion (3.1) by their conditional
counterparts m;;, (¢, = 1,...,n), which in a discrete setting may be interpreted as con-
ditional probabilities for cell ¢ given cell j. Correspondingly, the unrestricted empirical
distribution function weights n~! are substituted by the data-determined kernel weights
wij, (4,7 = 1,...,n). Finally, to create the local Cressie-Read discrepancy criterion, we
smooth the consequently adjusted criterion around each data point i, (i = 1, ...,n), using
the kernel weights w;;, (i,5 = 1,...,n), in a manner similar to that used in kernel re-
gression for estimation of a conditional mean based on the Nadaraya-Watson estimator.

That is, the local Cressie-Read discrepancy criterion is given from (3.1) by

7+1 ZZ l(%)Mq]. (3.2)

i=1 j=1

Let u;(8) = u(z;,0), (j = 1,...,n). Also let m; = (m,..., )", (¢ = 1,...,n), and

7= (m},...,m.)". The local Cressie-Read MD estimator /3 is then given as
R =\
— 4 —1 3.3
’ gﬂEBw’y’Hl 2; < ) 33
subject to

> miui(8) =0, iy =1,(i=1,..,n). (3.4)
j=1 =1

The Lagrangian arising from the local Cressie-Read MD criterion (3.2) corresponding to

the associated optimisation problem (3.3) and (3.4) is given by

LB, ) = ZZ [(%>m_1] (3.5)

11]1
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=N mu(8) = Y m(d my — 1),
=1 j=1 i=1 j=1

!/

where p = (1, ..., )" and A = (N}, ..., AL) collect together the scalar and g-vectors

of Lagrangian multipliers associated with the respective constraints Z?Zl mi; = 1 and
> miui(B) =0, (i=1,..,n).°

Like the local EL estimator discussed by KTA, the local Cressie-Read MD estimator
3 possesses a particular normalisation-invariance property. Let A(z,3) denote a (q,q)
matrix which is non-singular w.p.1 on B. Clearly, the conditional mean restriction (2.1)
remains unaltered by premultiplication of u(z, 5y) by A(x, (y). Likewise, the local Cressie-
Read MD estimator is invariant to such renormalisations as the additional factor A(x;, 3)
is merely absorbed into the Lagrange multiplier \;, (¢ = 1, ..., n). This property is lacking
for two-step semi-parametric efficient GMM estimators.

Similar to the unconditional moment condition setting examined by Imbens, Spady
and Johnson (1998), see also NS and Smith (1997, 2001) for GEL, suitable choices of
the parameter 7 yield more familiar forms of the local MD criterion (3.2). The local or
smoothed empirical likelihood (EL) criterion — 3 3%, 3% | wj; log(mij/wi;) considered by
KTA is a special case when v = —1, cf. Imbens (1997) and Qin and Lawless (1994),
and a local exponential tilting (ET) criterion Y ", > i log(; /wi;) obtains if v = 0,
cf. Imbens, Spady and Johnson (1998) and Kitamura and Stutzer (1997). Similarly to
the unconditional context, in comparison to EL, ET substitutes the weight ;; for the
unrestricted weight w;;. See Imbens, Spady and Johnson (1998, section 2.2, pp.336-338)
for a more detailed discussion.

Like NS (Theorem 2.1, p.223), which demonstrates an analogous result for uncondi-

3The Lagrangean based on Corcoran’s (1998) general class of discrepancies, see fn.2 above, when
adapted for the conditional moment context is given from (3.5) by

n n T
ﬁ(ﬁvﬂ-auv)‘) = ZZw”h(w;>

i=1 j=1

n n

- Z)‘; Zﬂijuj(ﬁ) - ZM(Z Mij — 1).
=1 =t 1 =1

i=



tional moment restrictions, a local Cressie-Read MD criterion (3.2) similar to that for
the continuous updating estimator (CUE), Hansen, Heaton and Yaron (1996), arises in
the quadratic case when y = 1, see also Bonnal and Renault (2003). Let m(z;, 5) =
> i1 wijug(B) and Vi(z, 3) = > i1 wijui(B)ui(B)', the Nadaraya-Watson estimators of
Elu;(B)|z;] and Elu;(8)u;(0)|z;] respectively. The local CUE is constructed as

BCUE = arg %1611131 Z m(%, ﬁ)/[‘?(%‘, 5) - m(%’, 6)m<xi; 5)]717%(901‘, 5)- (3-6)
i=1

Theorem 3.1 Ify =1 or the local Cressie Read MD criterion (3.2) is quadratic, then
B = Bevs.

In contradistinction to the local CUE BCU g which simultaneously minimizes the ob-
jective function over [ in both m(x;, 5) and V(mz, B), a local GMM estimator is given
by* .

Banvm = arg Iggigzlm(xi, BV (x4, B) (s, B), (3.7)
where (3 denotes an initial consistent estimator for Gy; see, for example, Newey (1990,

1993).5

3.1 Implied Probabilities

As in the unconditional context, see NS, p.223, empirical conditional probabilities for the
observations may be defined for each member of the Cressie-Read class.
Let v # 0. For fixed (3, the first order conditions for the solution 7;;(3) from (3.5)

are

1<EEQ)K4MQ—XMWWW%=O (3.8)

T\ Wi
where 1;(3) and A\;(8) denote the Lagrange multiplier estimators associated with the
respective constraints ) 7, 7;;(3) = 1 and Y7, #;;(B)u;(B) = 0, (i = 1,...,n). Solving

4A local GMM estimator paralleling (3.6) based on a centred conditional variance matrix estimator

is obtained from the minimisation over 8 € B of Y1, (z;, B)' [V (x4, B) — (i, B)(x;, B)] 1z, B).

5An alternative local CUE more in the spirit of local GMM would mini-
mize Y ., m(a:i,ﬂ)'f/(a;i,ﬂ)_lm(a:i,ﬂ). In contrast to the unconditional moment case, see NS, fn.1,
the resultant CUE does not coincide with BCU E-

[9]



gives
7i5(8) = wis [y (:(8) + Xi(B3) s (B)]'". (3.9)
The local MD first order condition for fi;(8) is Y 7, 7i;(8) = 1, from which by (3.9)
S wiy((8) + A(B)ur(B)]YT =1, (i = 1,...,n). The empirical local MD condi-
tional probabilities are then given by
#i(8) = wi; (2 (B) + j\i({?)’uj(ﬁ))l/” 7
> ket Wik (R (B) + Ai(B) ux(B))
If v = 0, the first order condition is log(7;(3)/wy) + 1 — fs(B) — \i(8)u;(3) = 0
from which 7;;(6) = exp(fii(3) + X\i(8)u;(3))/e, cf. (3.8) and (3.9). Thus, 7;;(8) =
exp (8 u3(8)/ Sy exp(s(B)ur(8) cf. (3.10).

Let ;; = 7;;(0), (4,7 = 1, ...,n), denote the solutions to the MD optimization problem
(3.3), (34) and fi; = (B), and A\; = N(B), (i = 1,...,n), the Lagrange multiplier

(i,j=1,...,n). (3.10)

estimators along with the corresponding local Cressie-Read MD estimator B. Also let

A

i = wy(8), (= 1,.m).
If v # 0, the empirical conditional probabilities then are defined from (3.9) and (3.10)
by
fy = wyly(is+ X)) (3.11)
wij ({1 + Ajl;)
Sy Wi (i + M)

where ,lALZ Satisﬁes ZZ:I wij {7(,&2 + j\gﬂk)]% = 1. If Y = 07 ﬁz’j = wij exp(;\;ﬂj)/ ZZ:I Wik

2=

exp(Nig), (j =1,...,n).

The empirical conditional probabilities 7;; sum to one over j = 1,...,n, and are
positive by construction. They also satisfy the sample moment condition ) . | @;;u; = 0
when the first order conditions for fi; and ; hold. For unconditional moment restrictions
the (unconditional) probabilities are 7; = exp(Ng;)/ Sor_, exp(Ngx) if v = 0 or (1 +
5\’@;)%/22:1(1 + X’Qk)% otherwise, (i = 1,...,n), see NS, equation (2.4), where §; =
9(zi, ﬂA) from (2.2) and ﬂA denotes an unconditional GMM or GEL estimator. In contrast,
the empirical conditional probabilities 7;; employ the differential data-determined kernel

weights w;j, (j =1, ...,n), rather than equal empirical distribution function weights n~".

[10]



For EL, 7t;; = w;; /(1 + Nidi;), cf. Owen (1988), for ET, 7y; = wy; exp(Niii;)/ Sor, wik
exp(Niy,), of. Kitamura and Stutzer (1997), and for CUE, #t;; = w;; (14 X, (4, — (1, 5)),
cf. Back and Brown (1993), see Bonnal and Renault (2003). See also Brown and Newey
(1992, 2002) and Smith (1997).

3.2 First Order Conditions

A re-interpretation of the first order conditions determining the local Cressie-Read MD
estimator provides some intuition for why the semi-parametric efficiency lower bound
7! is achieved by £3.

Let U;(3) = 0u;(8)/0F', (j =1, ...,n), and D(z;,3) = > =1 wizU;(B) the Nadaraya-
Watson estimator of E[U;(5)|z;].

Consider the first order conditions for a semi-parametric efficient GMM estimator

BGMM for [y obtained from the GMM minimisation problem (3.7); that is,

ZD iUmﬁGMM) (-Tz,B)ilm(xiaBGMM) =0. (3.12)
An analogous expression to (3.12) can also be provided for any local Cressie-Read MD

estimator B, a result which mirrors NS, Theorem 2.3, for the unconditional moment

restrictions case.
Let kij = wijlexp(Niy) — 1]/ iy if v = 0 and wi;[(f1; + Njit) V7 = (f1:)/7)/ Xy (f1:) /7
otherwise. Also let U; = U;(8), (j =1, ...,n).

Theorem 3.2 The local Cressie-Read MD first order conditions for 3 imply

> D> w40 kaﬁf’ “Hn(ay, B) =0, (3.13)

i=1 j=1

where l%ij = 7, for local EL and lz;ij = w;;/fu; for local CUE.

A comparison of the first order conditions determining the semi-parametric efficient
GMM estimator, (3.12), and those for local Cressie-Read MD, (3.13), is instructive. Sim-

ilarly to m;; in (3.11), l;‘ij may also be interpreted as an empirical conditional probability.

[11]



Lemma B.1 of Appendix B shows that 5\;12] 2.0 and, hence, vii; 2 1if v # 1, as i
satisfies Y p_, wi;[v(i + X;ﬁk)]% — 1. Thus, kij/w; = 1. Therefore, the implicit es-
timators for the conditional Jacobian and conditional variance matrices are consistent,
ie. >0, #:;U; 2 D(z;) and > i1 l%ijﬁjﬁ;- 2 V(z;). By comparing the local GMM
and local Cressie-Read MD first order conditions, (3.12) and (3.13), it is clear that,
asymptotically, local Cressie-Read MD estimators implicitly employ the semi-parametric

1 and thereby achieve

efficient matrix of instrumental variables v.(z, 5y) = D(z)'V (z)~
the semi-parametric efficiency lower bound Z 1.

It is also interesting to note that local CUE uses the Nadaraya-Watson kernel regres-
sion estimator » 7, w;;u;4; for the conditional variance matrix V'(z;) with differential
data-determined weights over ¢ = 1,...,n, that is, the first order conditions for local
CUE are ) ;" [y ), ;UL V (i, B) (s, B) = 0, where fi; = 1 — Min(zg, 3). In
contrast, local EL employs the same implied probabilities 7t;; = w;;/(1 4+ Nidi;) for the
estimation of both V(z;) and the conditional Jacobian matrix D(x;) which parallels the
unconditional case; see NS, Theorem 2.3. The two-step semi-parametric efficient GMM

estimator BGMM described in (3.7) utilises Nadaraya-Watson regression estimators for

both conditional Jacobian and variance matrices, see (3.12).5

3.3 Duality

For each local MD member we may describe a dual estimator which is similar in spirit to
the local GEL estimator considered in Smith (2003). This result mirrors the duality of
members of the GEL class for Cressie-Read MD estimators with unconditional moment

restrictions given in NS, Theorem 2.2.

®Bonnal and Renault (2003) give an alternative expression for the local Cressie-Read MD
first order conditions (3.13). Multiplying (3.8) by #;;(8)u;(f) and summing over j = 1,..,n,
=3 wili (8) Jwig) g (8) = [0 i (B)u; (B)u;i (8)1Xi(8) = 0. Substitution for A;(5) into (A.2)
yields

n

n n n & y+1
~ o ~ A Af71—1 ij ~
> D w U D wigtga] Ty wi iy =0,
; : Wi 5
j=1 Jj=1

i=1 j=1

which involves the implicit estimators Y7, tij U; and >y gty for the conditional Jacobian and
variance matrices D(z;) and V (z;) but m(x;, 5) = Z?Zl w;;U; is replaced by the re-weighted expression

> (g /wig ) wigiy.

[12]



Let”

Bi(BopiNi) = — (ﬁzwijh(ui + Ny (B)] (3.14)
—[ps — ﬁ]) if v # —1,0,
= - (Z wiz log(pi + Ny (8)) — pi + 1) if y=-1,

= — <Zwij exp(p; + Njuj(8))/e — pi — 1/e ) if y=0.

j=1
Theorem 3.3 Ifu(z,3) is continuously differentiable in 3, then the first order conditions
to the saddle point problem

n

] Pi(B, i, A 3.15
gggizz;jfg (8, s M) /m (3.15)

and to local Cressie-Read MD, (3.3) and (5.4), coincide at the local Cressie-Read MD
estimator (3, #t; = wijexp(fi; + Nij)/e if v = 0 and wi;[y(fi; + Na;)]Y? if v # 0,
(i,j=1,...n), i and N;, (i =1, ).

The dual reformulation offered in (3.14) and (3.15) of the local Cressie-Read optimisation
problem is particularly useful in the analysis of the asymptotic properties of the local
Cressie-Read MD estimator B given in Appendix A.8

Smith (2003) proposes a different form of dual local GEL criterion

SN wileNas (8)) — p(0)] /. (3.16)

i=1 j=1

"The criterion (3.14) employs the Nadaraya-Watson estimator Y7, wij[y(p; + )\;uj(ﬂ))]%l of the
o :

conditional expectation of [y(u; + )\;ul(ﬂ))]ﬁr given x;, i.e. E[[y(u; + )\Quz(ﬂ))]%lul], (i=1,..,n).
Hence, the resultant criterion obtained by averaging (3.14) over i = 1,...,n, utilises a re-scaled and
re-centred estimator of the average conditional expectation Y ., E[[y(w; + Nu;(8))] ™ |@i]/n.

8The first order conditioris for p; and \; are Z}l:l frz-j = 1 and 22:1 ity = O; Therefore, if
v # —1,0, @iy = wig[y (@ + M)/ S0 wig[y(fi + Ny )|V Ty = =1, Ay + Ai(Tijiig) = wi
from which fi; = 1. Therefore, 7;; = w;; /(1 + Nja;). If v = 0, then exp(fi;) Z;'l:1 w;j exp(Aja;) =1 from
which 7;; = exp(Njiij)/ S p_y wir exp(Niiy,).

[13]



to that in (3.14) and (3.15) which has a similar structure to the unconditional case given
in NS and Smith (1997, 2001).° For given 3, the local Cressie-Read MD first order con-
dition for X;(() is identical to that from (3.16) when p(v) takes the Cressie-Read form
p(v) = —(1 +~yv)0*FV/7/(y 4+ 1); see (A.1) in Appendix A. However, in contradistinc-
tion to the unconditional moment restrictions case described in NS, Theorem 2.2, the
first order condition determining the local Cressie-Read MD estimator 3 differs from
that for the local GEL estimator from (3.16). Let pi(v) = dp(v)/dv. The first or-
der condition for local GEL is > 7", > %, p1(Ai(8)u;(3)U;(B) Mi(B) = 0 and is similar
in structure to that for local Cressie-Read MD 77" >°% #(B)VU;(BYM(B) = 0, see
(A.2) in Appendix A. In general, however, for given v, Cressie-Read p1(\i(3)u;(5))
and ﬁij(ﬁ), see section 3.1, are proportional but depend on i, (¢ = 1,...,n). Thus,
the first order conditions for (¢ will differ. For local Cressie-Read MD, the implied
probabilities are 3;(8) = wyexp(h(8)u;(8))/ Tiy exp(h(8)u;(8)) if 7 = 0 and
wi (1(B8) + M(B)ui (BN ) Sohey (1:(B) + Ni(B)ui(B)MY if 4 # 0. 1f p(-) takes the
Cressie-Read form —(1 + 7))/ /(y + 1), py(M(B);(8)) = wyy exp(A(Byu;(8)) if
v = 0 and w1 + X (3)u;(8)]V7 if v # 0. Local GEL and local Cressie-Read MD
employ different self-weighting schemes over observations ¢ = 1,...,n. It is only when

4 = —1, that is, for local EL, when #;;(8) = w;;/(1 + Ai(8)'u;(8)), that local GEL and

local Cressie-Read MD estimators coincide; cf. KTA, section 2.

4 Asymptotic Theory for Estimation

This section gives consistency and asymptotic normality results for the local Cressie-
Read MD estimator B Firstly, however, we provide some regularity conditions for the
large sample analysis. Our assumptions by and large follow KTA, Assumptions 3.1-3.7.
However, we assume bounded support for the conditioning vector z. This assumption is
primarily made for analytical simplicity. It avoids the necessity of the trimming device

employed in KTA and Smith (2003) and enables a rather less technically complex devel-

9The criterion (3.16) employs a Nadaraya-Watson estimator of the centred average conditional ex-
pectation >, Elp(ui + Nui(8))|z:]/n — p(0).

[14]



opment. The reader is referred to KTA for the modifications entailed by trimming and

for a fuller discussion of these assumptions.!°

Assumption 4.1 (i) {z;, 2} is a random sample on S x R?; (ii) z is continuously
distributed with Lebesgue density h(-) whereas the distribution of z is continous, discrete

or mized; (iii) u(z,8) : R x B — RY is a known function.

Assumption 4.2 (i) 5y € int(B) is such that E[u(z,3)|z] = 0; (ii) for each B # (o
there exists a set Xz C S such that P{z € Xz} > 0 and Elu(z, §)|z] # 0 for all x € Xp;

(iii) B C R? is compact; (iv) E[supscp ||u(z, B)|™] < oo for some m > 8.

Assumptions 4.2 (i) and (ii) are the conditional identification condition given in KTA,

Assumption 3.1. Together they crucially ensure that E[||E[u(z, 8)|z]||*] = 0 if and only
if 5= fo.

Assumption 4.3 The kernel K(z) = [[1_, k(z®), z = (aW, ..., 2)), where k : R —
R, is a continuously differentiable p.d.f. with support [—1,1], symmetric about 0 and

bounded away from 0 on [—a,a] for some a € (0,1).

Assumption 4.4 (i) S is a proper compact subset of R® such that 0 < inf,csh(z) <
SUP,cgss h(z) < 00, h(x) is twice continuously differentiable on S, sup,cs ||0h(z)/0z| <
00 and sup,eg ||0°h(x)/0x0x'|| < oo; (ii) u(z, B) is continuous on B w.p.1 and Elsupgep
[0u(z, B)/08|]] < oo; (iii) ||O*[E[u)(z, B)|z]h(x)]/0xd || is uniformly bounded on B x
RE, (i=1,...,q).

Assumption 4.5 There exists a non-empty neighbourhood By of By such that (i) D(z, 3)
and V(x, () are continuous on By w.p.1; (ii) inf(¢ . gjesixrsxn, &'V (2, 6)§ > 0 and
SUP(¢ o g)esaxrexBo & V (@, B)§ > 0; (iii) supgeg, |0u@(2,8)/089)| < c(2) and supgsep,
|02u (2, 8)/08WOBW | < d(z) w.p.1 for some functions c(z) and d(z) such that Ec(z)"] <
OE[D') (z)h(x)]/0z| < oo and
SUD (3, 5)eR* x By |02E[D (z)h(x)]/020x'|| < 00; (V) Supgers ||[OE[V @ (z)h(z)]/0z| <
00 and SUP(, persx s, || 2LV (2)h(z)] 0z’

oo for some n > 4 and Eld(z)] < co; (iv) Sup,cgs

| < o0, (i,j =1,....q).

0Elements of vectors and matrices are denoted by superscripts (i) and (ij) respectively.

[15]



Assumption 4.6 Let b, | 0 and 7 € (0,1/2). Then n'=2"=2/™p?* 1 oo and e

Q.

As noted by KTA, the parameter 7 is required for the uniform convergence result for
kernel estimators given in Ai (1997, Lemma B.1, p.955) which is central to the proofs of
many of the subsidiary results presented in KTA, Appendix B, and used here. Because
of the compact support Assumption 4.4 (i), the additional rate assumptions in KTA,
Assumption 3.7, arising from trimming and a mild moment existence assumption on the
distribution of = are obviated.

These conditions lead to a consistency result for the local Cressie-Read MD estimator
3.

Theorem 4.1 Let Assumptions 4.1-4.6 be satisfied. Then ﬁ 2 By.

Asymptotic normality of the local Cressie-Read MD estimator I requires that the
Lagrange multiplier parameters \; be restricted to a set which shrinks more slowly than

the parametric rate n='/2.

Theorem 4.2 If Assumptions 4.1-4.6 are satisfied and the Lagrange multiplier parame-
ters \i, (i =1,...,n), are each constrained to lie in the set A, = {\: [|\|| < Cn=Y™} for
some C > 0, then n'/2(3 — o) > N(0,Z77).

Theorem 4.2 emphasises that all local Cressie-Read MD estimators /3 are first order
equivalent and achieve the semi-parametric efficiency lower bound Z~! confirming the

intuition of section 3.2.

5 Information Theoretic Inference

This section is concerned with tests for the validity of the conditional moment restrictions
arising from (2.1). TK suggests the use of the optimised local EL criterion as a test

statistic. In particular, TK examine a local EL test statistic for the null hypothesis
Ho : P{E[u(z, fo)|z] = 0} = 1 (5.1)

[16]



against the alternative that Hy of (5.1) is false. Our concern here is with the efficacy of

the optimised scaled local Cressie-Read discrepancy criterion (3.2)

R 1 n n ﬁ-ij y+1
CR(B) = 2(7+1>;I($i65*);wij[(ﬁ> —1] (5.2)

ij
1

— 2(7 -y ;I(ﬂci €5,) ;wi]‘([’}/(ﬂi + X;uj(g))]’j—l ~ 1),

where I(-) denotes the indicator function. From their respective first order conditions,

see (A.1), for a given estimator B of By, [ = ﬂz(ﬁA) and \; = 5\1(3) are the respective
Lagrange multiplier estimators obtained from the adding-up constraint Z?Zl ﬁw(ﬁ) =1
and the conditional moment contraint » 7, 75 (B)ui(B) =0, (i = 1,...,n), where 7;;(5)
is given in (3.9), (i,7 = 1,...,n). As in TK, we only require that the estimator B be
n'/2-consistent for fy. Particular choices of 3 are efficient (or otherwise) GMM or GEL
estimators based on unconditional moment restrictions (2.3) or local Cressie-Read MD
estimators as described in earlier sections. The set S, is a compact subset in the support
S of the conditioning variable . An advantage of the fixed trimming device I(z; € S,)

is that the test statistic may be employed over regions of the sample space of x which

are believed to be of particular empirical relevance and, thus, importance.

6 Asymptotic Theory for Inference

We provide an additional regularity condition adapted from TK, Assumption 3.5, which

A

is required for the following limiting distribution theory of the test statistic CR(/3) under
the null hypothesis Hy of (5.1).

Assumption 6.1 (i) D(z) is continuous on S w.p.1; (ii) h(z) and V(z) are twice con-
tinuously differentiable on S w.p.1; (iii) inf¢zyesixs, &'V (x,8)§ > 0; (iv) h(z) and

Elsupgeg [|[u(z, B) ™ |z]h(x) are uniformly bounded on S.

Let I; = I(x; € S,). Lemma C.1 in Appendix C demonstrates that we may re-express

the local Cressie-Read MD criterion as

logn 1

CR(B) = T+ oy )]+ 0p( =7 (6.3)

11
2
n2-mbs
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logn

+Op[(=7)%%)] + O

n3bs n1*4/77)7

where T}, = > Iim(ﬂci,B)’V(mi,ﬁ)’lm(xi,ﬁ). The leading term 7}, is a form of local
CUE statistic and is identical to that given in TK, (4.1). As detailed in TK, section 4,
the statistic Tn may be decomposed as Tn = 22:1 Tnk where

ZI ) 2%5) ),T},lei Z wiyu; (B)'V (@i, 6) " uy(5),

per Kan)* =1 jig=1

A1 (B .
ZI Z z V(m’trzﬂ) uj(ﬂ)wZ],TnA:Tn,&

i=1 ji,j=1 Zk:l IC’Lk

n5 - ZI Z Z wz]u] xuﬂ) 1uk(3)wzk

i=1  j#i,j=1k#j#i,k=1

Define R(K f[ L1 w)?du, K*(v) = f[—l,l]s K(u)K(v—u)du and K** —f[ 22]3 u)?du.

Now, under our regularlty conditions, from TK, Lemmata A.2-A.4, under H,,

. 1 A 1 logn 1
T = O,(—).T, @R (C)vol(Sy) + Op(4 [~ +bi)+0p(m>]

) p 2s n72 = _5
nb? b3

A logn 1 1 1
Tz = 1064/~ ) ool mimmi 100 [ 5) + Onl(4 [ —57)

and from TK, Lemma A.5, from a CLT due to de Jong (1987),

b7, 5 % N(0,02),

where 0 = 2¢K*vol(S.) and vol(S,) = [, dx is the Lebesgue measure of ..

Now b8 1,5 = ¢9R(K)vol(S.)+o0,(1) and thus b/ *T,.2 is explosive asymptotically under
H,. We therefore need to centre CR(B) by subtracting Tn,g to obtain an asymptotically
pivotal statistic. As noted in TK, section 4, the asymptotic behaviour of Tn,g does not
alter under local alternatives to Hy.

The following theorem is then immediate from the above discussion and Lemma C.1

of Appendix C.

Theorem 6.1 Let Assumptions 4.1, 4.2 (i) and () withm > 6, 4.3, 4.5 (iii) withn > 6
and E[d(2)?] < oo and Assumption 6.1 be satisfied. Then, if HﬁA — Bol| = Op(n~Y/?), S, is

[18]



a compact subset of S, b, =n"° for0 < § < min[l(l—%), =], and \; € Ay, (i=1,...,n),

s 3s

b 2[CR(B) — Ta) /o -5 N(0,1) under Hy of (5.1).

A test with given asymptotic size is obtained by comparing the statistic bf/ 2[CR(B) —

Tnz]/ o to appropriate critical values from the standard normal distribution.
Alternative asymptotically equivalent statistics under Hy to bs/> [CR(B) —T),5] /0 are

the moment-based statistic b5/ *[T,, — Tpo]/o and from (C.9) the Lagrange multiplier

statistic 62/2[2?:1 LNV (25, 3)A; — Tpa]/o. A potential disadvantage of both of these

statistics is their increased dependence on the conditional variance estimator V(ml, B)

which may lead to poorer small sample properties than a test based on the statistic

b/ [CR(f3) — T},2]/o in which CR() is self-studentized.

[19]



Appendix A: Proofs of Results

Throughout these Appendices, C will denote a generic positive constant that may be different
in different uses, and CS, J and T the Cauchy-Schwarz, Jensen and triangle inequalities respec-
tively. Also, with probability approaching one will be abbreviated as w.p.a.1, UWL will denote
a uniform weak law of large numbers such as Lemma 2.4 of Newey and McFadden (1994), and

CLT will refer to the Lindeberg-Lévy central limit theorem.
For ease of reference, we collect together some notation used in the text and these Appen-
dices. Let m(xs, 8) = 351 wiju(B), m(z) = 1z, bo), (%5) = Y wiUj(8), D(z) =
Dia. fo). V(@i 8) = Y wigus(Bus(8) and V(x) = V(w, fo). Also, let uo = us(fho),
il;

jO = (ﬂo) Mz’O = ﬂz(ﬁo) and 5\1'0 = Xl(ﬂo), (Z = 1,...,n). Finally, ({L‘l,ﬂ) = [ ( )|
I(8) = Ez[D(x, B)'[V (2, B) — m(z, B)m(x, B)'| "' D(z, 8)] and T = I ().
Let ¢, = ,/12%.

Proof of Theorem 3.1: For given 3, the first order conditions determining j\z(ﬂ) are
> wi(B)ui(8) =0,(i = 1,....n). (A1)
j=1

whereas those for the local Cressie-Read MD estimator B are

ZZWU U;(3) Ai(B) = 0. (A.2)

i=1 j=1

When v = 1, Y0 wir(fi(8) + Xz(ﬁ)’uk(ﬂ) =1, (i = 1,...,n). Therefore, ;(5) = 1 —
Ai(B)' (s, B) and, from eq. (3.10),

735 (8) = wis[1 + Mi(8) (ui (B) — lxs, B))], (1,4 = 1,...,n). (A.3)

Xi(B) = —[V (i, B) — mulxi, B)n(zs, B) ] (s, B). (A4)

3
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Proof of Theorem 3.2: Let v # 0. By eq. (A.1) and the definition of l%ij,

n n
0 = Zﬁ'ijﬂj = Z(ﬁ'ij — wij )ty + m(xq, B)
j=1 j=1
n i+ N )Y — ()Y . A
Sy ((u N = ) s e,
j=1 )‘iuj(ﬂi) al
j=1

Solving

=
j=1 Ail
n
= Y kil + m(ai, B)
j=1

and the conclusion then follows as before. Note that for local EL l%ij = w; j[_( i + /A\;ﬁj)*l +
(ﬂz)_l]/j\;fw(ﬂz)—l = wij(ﬂi + j\gf&j)—l = 7 and for local CUE l;:,-j = wzy[(ﬂz + 5\;@]) .
(f)]/ N (i) = wij [ fvi. @

Proof of Theorem 3.3: The first order conditions for local Cressie-Read MD are given in
egs. (A.1) and (A.2) together with the adding-up constraint » 7, 7;; = 1, (i = 1,...,n). The
implied probabilities 7;;, (i,j = 1,...,n), are defined in eq. (3.9).

Let v # —1,0. Differentiating (3.14) with respect to p; and \; for fixed (§ yields the
adding-up constraint > 7, wi;[y(fi(3) + Ai(8)'uj(8))]"/7 =1 =0 and the conditional moment
restriction 37 4 wij[y(f(8) + Xi(8)ui (B ui(8) = 0, (i = 1,...,n). Differentiating with
respect to 3, Z?:l Wij [V(ﬂz(ﬁ) + )‘Z(ﬁ)/u](ﬁ))]l/’ij(ﬁ)/)‘l(ﬁ) =0, (Z =1, 7”)

If v = —1, the derivatives with respect to u; and ); for fixed 3 are respectively 2?21 wij (f1:(B)+
Ai(B)uj(8))F =1 =0 and 377 wij((8) + Xi(8)'ui(8))tui(8) = 0, (i = 1,...,n). Define
#i3(8) = wij (2(B) + Xi(8)'u;(8)) . Hence, #;5(8)1i(8) + Ai(8)' 745 (8)u; (8) = wij. Summing
over j = 1,...,n, fi;(3) = 1 and, thus, 7;;(3) = wi;(1 + Xi(8)'u;(3))~L. Differentiating with
respect to 3 yields Z?:l ﬁZJ(B)UJ(B)’S\l(B) =0,(t=1,...,n).

If v = 0, the derivatives with respect to u; and \; for fixed § are Z?:l wij exp(fi(B) +

Xi(ﬁ)’uj(ﬁ))/e — 1 =0 and > 7%, wijexp(iu(B) + Xi(ﬁ)’uj(ﬂ))uj(ﬁ)/e = 0 respectively. Let

1 (8) = wij exp(1i(8)+Ai(8)'uj(8)). Differentiating with respect to 3 yields > i1 Tij (B)U;(B)

(08)=0,(i=1,..n).
The result of the theorem then follows. B

7
A
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Proof of Theorem 4.1: Let C, = {z € R% : supgep [|u(z, B)]] < On'/™) and un;(8) =
Lju;(B), where I = 1(zj € Cy). Define Xi(8) = —Elgi(8)|x:]/ (1 + || E[gi(5)|i]||). Then,

ZsupP Bouis Xi)/n = Qn(B) (A.5)
= 1”
"X ( oD 2 8) 1m0 g (BT
_ 1
) - 1)]) fn

where [i;(3) solves E?:l wij [y (i (B) + n_l/mxi(ﬁ)’unj(ﬁ))]% = 1. Note that n=/™X\;(8) € A,
defined in Theorem 4.2.

Now
(7a(B) +n A8 uns(B)) T = ((B) T + ’YTH(ﬂi(ﬁ))%n_l/m;\i(ﬁ)'uj(ﬁ) + Tnij (t)
for some ¢ € (0,1) and
@) = L) R )y (5)1 1) (A.6)
+n1/mx-<ﬁ>'unj<ﬂ>ﬂT“<m<ﬁ> 0 YN (8) g (3)) T — %“(m(ﬁ))ﬂ

_ PR 1
From Lemma B.1 supgep,—1/my,en,. 1<j<n ‘(ﬂz(ﬁ) +tn YN (B) uni(B))7 — (i(B))7 0.
Also maxi<j<n(1 —I;) = op(1) from KTA, Lemma D.2. As fi;(3) solves > 0 wi;[v(1:i(8) +

n_l/'m;\i(ﬂ)’unj(ﬂ))]% = 1, a similar expansion yields
U= > wil8)7 + 57 (al8) + X (8) g (8)) 7 0 N(B) g (B)]
j=1

= (Y(B)7 + (1 (B) + 0p(1))]7 (1 + 0p (1)) ™ Xi(B) (s, B)
= ((B)7 + (V(8))7 L 0p(nHm)

uniformly i and 3 € B as maxi<i<n Supgeg ||1(xi, B) — Elui(8)|z:]|| = 0p(1), cf. KTA, Proof of
Lemma B.8. Therefore, as vii;(3) = 1+ Op(n~Y/™),

vai(B) = [1 — n V™ N(B) 1w, B) + op(n V™) (A7)

uniformly ¢ and g € B.
Hence, from egs. (A.6) and (A.7),

1
5
1
5

NS wiTas()/n S 0p(1) Y M(B)1ilxi, B)/n+ 0p(1) Y Xa(B) ri(ai, B) /m

=1 j=1 i=1 i—1
—op(1) Z Xi(B)' (i, B)(1 = 1;)/n
=1
= op(1) S N(B) (i, B)/m
=1



uniformly g € B. Thus,

IN

E E wl]r’nlj

=1 j=1

§jsupnnzxu 8| /n

=1 peB
= 0p(1)O0p(1) = 0p(1)

as m(z;, B) 2 Elui(8)|z;] uniformly i and 3 € B from above. Substituting into eq. (A.5),

™ sup
BeB

= E:(:7+1 > w073 B 77 (4 D(E(8) T N8 ws(9))]
i=1 =
— |l - ! n 4 o,(n" Y™
79) 7(wl)])/ +opn ™) (A8

uniformly 3 € B. Now, from (A.7)
1

(V(B) T =1 = (v + )™ 2 (8) (s, B) + op(n~/™) (A.9)

uniformly ¢ and 5 € B. Therefore, substituting (A.9) into (A.8),
n™Qn (3 Zn VmXi(B) (s, B)/n + 0p(1).

From KTA, egs. (A.4), (A.5) and Lemma B.8,

5up ‘Qn Qn(ﬁ)‘ = Op(l)? (AlO)

BeB

see KTA, Proof of Theorem 3.1, where

n

nmQu(B) = = > Xi(B) Elui(B)|ai] /n. (A11)

i=1
Thus, as in KTA, eq. (A.6), from egs. (A.5) and (A.10),

" inf Z sup Pi(8, i, Ai)/n > nl/ mf Q(B) + op(1). (A.12)
BEB ] i\

From the definition of \;(8), (i = 1,...,n), and (A.11), a UWL gives

n!/"Qu(8) = E[|E[ui(8)lai]|* /(1 + | E[ui(8)|ai]|])] + 0p(1),

uniformly § € B; see KTA, eq. (A.7). The function E[||E[w;(3)|zi]||* /(1 + || E[us(8)|zi]|))] =
Ell(z; € Xp) | E[us(8)|z]||? /(1 + || E[us(8)|x4]])] is continuous in B, has a unique zero By and
is strictly positive for all 5 # (o by Assumptions 4.2 (i) and (ii).

Now
n

n
0.<n!/™> " sup Bi(B, i, Ai)/n < '™ " sup Pi(Bo, i, Mi) /7, (A.13)
=1 Hishi i=1 iy A

A.4]



+1

as S0 BB, %, 0)/n = 0. By concavity, evaluating [y(; + Nu; (ﬁ))]jv_ at yu; = 1 and \; = 0,

(s + Ny (D)) < —1— ’Y—jl (i + Ny (3)) —1].
Hence,

n

n!/™ " sup Py(Bo, pis i) /n = 0™ P(Bo, i(Bo), Ai(Bo)) /n (A.14)
=1

i=1 My

=1

= 1/mz ( CESY Z Y (p13(Bo) + (o) (Bo))] T

1
—[pi(Bo) — W]) /n

=™ " Ni(Bo)
i=1

= 0" op(cn)]?

= OP(1)7

by Assumption 4.6, eq. (B.3) of Lemma B.2 and TK, Lemma C.1, c¢f. KTA, Lemma B.3.
Therefore, combining (A.13) and (A.14),

IN

n
nl/stu}\) Pi(B, i, Ai) /m = op(1). (A.15)
j=1 MirNi
By T and (A.12)

0

IN

Bl=X(B) Blus(8)aill 53 (A.16)
sup |n'"Qu(8) — El=Xi(8) Blus(B)lall| + /™ Qu(B)

BeB

nl/m Z sup p’L(Bv i, /\Z)/n

i=1 HisAi

IN

IN

+ 0p(1)

asnt/mS0 SUp,, \; Pi(B, i, M) /n > nt™Qn (8) —_i—op(l) uniformly § € B from egs. (A.5) and
(A.10). Hence, from egs. (A.15) and (A.16), E[—)\Z(ﬁ)’E[ul(ﬁﬂle|ﬁ:ﬁ = 0p(1). Therefore,
must lie in any neighbourhood of 3y w.p.a.1, i.c. 8% Bo, as E[—Xi(8) E[ui(3)|z]] is continuous
and has a unique zero Gy. B

Proof of Theorem 4.2: We consider the first order condition determining the local
Cressie-Read MD estimator 3; viz. n=1 Y " | APi(3, 1i(3), Xi(3))/08 = 0. By a Taylor expan-
sion about Gy,

i ﬁ*)’j\i(ﬁ*))nlﬂ
0600

n=1/2 Z OB ﬁo, Mzo, \io) - Z d%P;(6*, G — o)

[A.5]



for some 3* on the line segment joining 3 and By which may differ row by row. From Lemma
B.2 and eq. (A.2),

- AP;(Bo, fiios \i LA R . 1
UQE: ﬁouo MZZ”U%4+n V2NN " wily (o + Nigwjo)) T Ujor, (A.17)

i=1 j=1

where

A= 31> wyly o + Nougo)l UV ()~ in(a) /. (A18)

i=1 j=1

(1). Moreover, by

1 NS
From Lemma B.1, SUPBeB,N; EAR,1<j<n ‘[V(ﬂio + /\Quj(ﬁ))]W — (vf1i0)™
eq. (B.5), vitio = 1 + 0p(1) uniformly i. Therefore, w.p.a.1,

n n
. 1
n 2NN S wily (o + Nguo)| 7 Ujgri| - < Op(n'/?) ) max il ZZwm c(z)/

i=1 j=1 i=1 j=1
— opuifHim)
= op(1) (A.19)
by Assumption 4.6, uniformly ¢ and § € By .
Let
. n o n N .
A=A+ 1D wii([(io + Ngujo)] ™ = (viiio))Ujol'V (i) Yrin(a) /. (A.20)
i=1 j=1
from (A.17), where
n n o . L
A=D1 wi (i) Usol V(i) V(i) /. (A.21)
i=1 j=1

Now,

>~ wig([y (o + Moo — (i) Wi < Op(1) (A.22)
x ]2 wig supus (5) | (=)

uniformly 7 and 8 € By. Moreover, as maxj<j<p,

V(xz)_l“ = Op(1), cf. KTA, Lemma B.7 and

TK, Lemma C.2 (ii), and maxi<;<n
4.2 and 4.5 (iii), from (A.19)-(A.21),

> i—1 wigsupgep [lui (B)] c(zj)H = O,(1) by Assumptions

n1/2HA—AH < 0,(n'?) max |[in(zs)] Z‘ ol /n] (A.23)

1<i<n

= Op(nl/QC?z) = Op(l)a

[A.6]



from egs. (B.3), (B.5) and by TK, Lemma C.1. Therefore, substituting (A.18) and (A.22) into
(A.16), nl/? > i1 AP;(Bo, fiio, Mio) /0B = n'/?A + 0,(1). The result follows from Lemma B.3,

the continuity of Z() on By from Assumption 4.5 (i) and n'/2A LA N(0,7) from CLT by KTA,
1
Lemma B.2, as (vfi0)” = 1+ 0p(1) uniformly i. H

Appendix B: Auxiliary Results for Estimation

The following Lemma is used extensively in the Proofs of Theorems 4.1, 4.2 and the various
Lemmata given below.

Lemma B.1 Suppose Assumption 4.2 is satisfied. Then for any ¢ with 1/m < { < 1/2 and
Ap={\: A £COn=¢,C > 0}, supgepoa,en,1<j<n [N (B)] 2 0.

Proof. By Assumption 4.2 and KTA, Lemma D.2, maxi<;<n Supges ||u;(8)]| = op(nt/™); also
see Owen (1990, Lemma 3). It therefore follows that

sup sup max |Au; < Cn~¢ max sup |ju; 2 o.
sup sup max [Xeug(9)] < On™* max supus(9)]

Therefore, the result follows. B

The next Lemma parallels KTA, Lemma B.1, which provides a similar result for local EL.

Lemma B.2 Let Assumptions 4.1-4.5 be satisfied and \; € Ay, (i = 1,...,n). Also let 52— |

n174/mb%

0 and b, | 0. Then o = —V(wi)*lm(:pi) + 1, where maxi<i<y ||7i|| = op(nl/mci).
Proof. From eq. (A.1)
"~ . 1
0 = > wijly(fio + Nowjo)] ™ ujo (B.1)
j=1

1 1 g
= (yfuo) T(xs) + (Vo) ™V (2:) Nio + r1a(t),

for some ¢ € (0,1), where
n ~ 1 1 ~
rai(t) = > wii([y(jio + tNjgujo)] 7~ = (vitio) ™ Hujoupio.
j=1

From Lemma B.1 SUPBEB ;€A 1<j<n

(ks + N (D)7 = ()™ B 0. Thus, ris(t) =

~

0p(1)V (2;)Aip uniformly i and j and

lra@I < 0p(1) max Jluo ‘m(mi)';\io (B.2)
SJsn
< op(n™) (i) || Ai
= op(nl/m)[Op(Cn)]‘j\iO

[A.7]



where the second inequality follows from CS and max;<;<p ||ujol| = 0p(n*/™) by KTA, Lemma
D.2; and the equality by TK, Lemma C.1, from Assumption 4.4 (i).

Let &0 = Aio/ ) Aio

. Then, multiplying eq. (A.1) by \; yields

0 = ||Xo

n
- 1A
Z wij [y (frio + Nigwjo)] ™ Eowjo
j=1

1

= (Vitio)”

~

Aio

~

Aio i (14 0p(1))€lV (i)

~ . N l*l
Gom(xs) + (Yfrio) ™

V(zi) — V(2;)|| = Oplen) + Op(b2), cf. TK, Lemma C.2 (i),
= Op(1). Hence, fgoff(a:i)fig is bounded below w.p.a.1 by Assumption 4.5

uniformly 7 and j. As maxi<i<p

V(i)
(ii). Solving

maxlgign

Aio

‘ ~

uniformly 7 by TK, Lemma C.1. An expansion of 2?21 wi [y (fLio + j\goujo)]% =1 yields

/(vitio) = —Egrin(a)/[(1+ 0p(1))E}oV ()i (B.3)
= Op(cn)

n
1 1.1, ~ 1_ 94
o= > wil(yuo)™ + 7 Mo + tNgug0) 7 Ngujol (B.4)
j=1

7 (o + 0p(1))7 " Ngin(:)
(vitio) 7 (1 + 0y (1)) Ngrn(x:)
1+ (1 + op(D)]||Aio]| /(i) o)

uniformly i. Therefore, from egs. (B.3), (B.4) and TK, Lemma C.1,

= (Yitio)
(Yftio)
(Yftio)

R Nl
+ o+

viio = 1/[1+ (1+Op(1))[‘ Nio|| / (viio)Nforin(a:)]” (B.5)
= 1+ Op(CZ)
uniformly 4.
Therefore, from egs. (B.2), (B.3) and (B.5)
lr1(8)]| = op(nt/™c) (B.6)

uniformly 4.
By Assumption 4.5 (ii), from egs. (B.1), (B.5) and (B.6), as maxi<i<n,
cf. TK, Lemma C.2 (ii),

V()Y = 0,1),

~

Ao = (i) ") + V(@) ()

—V €T; -1
—V(xi)_lm(l'i) + 7.

Lemmata B.3-B.8 given below mirror KTA, Lemmas C.1-C.6. Our proofs follow closely

those in KTA.
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Lemma B.3 Let Assumptions 4.2-4.6 hold and \; € Ay, (i =1,...,n). Then

sup
BeBo

op(1)-

1282 (8, 2:(8), Xi(B)) /0805 — I(/o’)‘

Proof. As Y wi(j1s(8) + Mi(B)u;(8))7 = 1 and Y7 wis(f(8) + Ai(8)u; ()7 ui (B) = 0,
(i=1,...,n), for all g € B from (A.2),

ZaP M MO S S iy (1400) + MO ws BB A . (BT

=1 j=1

Therefore, n =1 3" O2P;(8, i (3), \i(8)) /0808 = T1(3) + To(B) + Ts(3) where

T(p) = _Zzwijh(ﬂi(ﬁ)+;\i(ﬁ),uj(ﬁ))]%71Uj(ﬁ)lj\z‘(ﬂ)a[ﬂi(ﬁ)+/\() i(B)]1/08]/n,

B(9) = =33 wyl(i(®) + M(8)uy (D) U5 (8Y0M(8) /05 .
Ty(8) = —Zzwmm(m+xi<ﬂ>'uj<ﬁ>>ﬁ[zﬂ’“<m u(8) /8395 /n.
i=1 j=1 k=1

The desired result follows from Lemmata B.4-B.6 given below. B

Lemma B.4 If Assumptions 4.2-4.6 are satisfied and \; € Ay, (i = 1,...,n), then supgeg,
[T (B = 0p(1).

Proof. As alu(3)-+ M(3)u;(8))/08 = 0js(9)/05 + M(BYUy(5) + 9,(9)05:(5) /08, T3(3) =
T1,4(8) + T1p(8) + T1,.(B), where

Tra(B) = =33 wily(@(B) + (8w (8)]7 " U;(8) N (B)Mi(B)U;(8) /m,

i=1 j=1

Tip(B) = -3 wyly(@(B) + Ai(8)w; (8)]> U (8) Mi(8)07i (8) /98 I,
i=1 j=1

Tie(B) = =33 wigly(@a(B) + M(8)us(B)]> U5 (8) Mi(B)u; () 0Xi(8) /98 /.
i=1 j=1

A similar expansion to that leading to eq. (B.5) results in

1= [y (B)]7 (1 + (1 + 0p (1) Au(B) (s, B)/ [its (B)])-

Now, m(z;, f) = op(nl/m) uniformly i and 8 € By by KTA, Lemma D.5. Hence, as ;\Z(ﬁ) € Ay,
() =14 op(1) uniformly ¢ and 5 € By by Lemma B.1.
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By Lemma B.1, eq. (B.5), and Assumption 4.5 (iii),

sup TP < 0p<1)zsgg) v (5) +0p(1)!%12wz'j0(2j)2/n

= op(1)

as Y5 wijc(zj)? = Op(1) uniformly 7 by KTA, Lemma D.4. Also,

BeBo

sup [T16(B)l < 0p(1) ) sup [|0(8)/08'|| D wije(z)/n
i=1 PEBo j=1

— op(l)ZSélg |0a:(3) /08| /n

uniformly 7 and 8 € By since ) 7, wijc(zj) = Op(1). Similarly,

sup T < o) sup |oA:(5) (@)l /n
BEBoy 1 B€Bo
= Op(l)X;Eélpo oXi(B)
since 327y wiye(z) s (8)| < (S wige(2g))' (o wi g (D)F)/2 = Op(1) wniformly i

and 3 € By by CS and J. Now, as > "y wij[y(f:(8) + Ai(B) u (5))]7 =127 Wij[’y(/l'L(,B) +
X,(ﬁ)'uj(ﬁ))]%_la[ﬂ,(ﬁ) + Xi(8)u i(8)]/08 = 0. Therefore, from Lemma B.1, [yi;(3)]> 71
o (B) /00 = [’y,uz(ﬁ)]_fl P lwma[)\ (8)'u;(8)]/08 + 0p(1) uniformly i and 3 € By. From
Lemma B.7 below, supgep, > imy H()S\i(ﬁ)/@ﬁ’H /n = Op(1) and, thus, likewise supgep, > iy
101:(8)/08'|| /n = Op(1). Hence, supgeg, [|T1,6(8)[l < 0p(1) and supgep, [|T1,(B)|| < 0p(1). W

Lemma B.5 If Assumptions 4.2-4.6 are satisfied and \; € Ay, (i = 1,...,n), then supgep,
1T2(8) = Z(B)I| = op(1).

Proof. Using Lemma B.7 below, by a similar argument to that above KTA, eq. (C.3),

as SUPGep A, ehn,1<j<n ‘[V(ﬂz’(ﬂ) +Xi(8)u; (8))]7 = [viti(B)]7 | = 0p(1) from Lemma B.1 and
vii(B) =14 op(1) uniformly ¢ and § € By,

i=1 j=1

2=

[U;(8)0Xi(8) /05 /n

= (14 0p(1) Y _[D(ws, B) + 0p(1)]'ONi(8) /08" /n,
i=1
uniformly 3 € By. Again using Lemma B.7,
n1 sup
BEBy

D(xs, B)'0M:(8)/08' =S D(ws, B) [V (i, B) — m(wi, Bym (s, 8)] " D(as, 5)” = 0p(1).
i=1

i=1

[A.10]



Therefore, similarly to below KTA, eq. (C.3),

DO wiily (1 (8) + Ai(8) 1y ()]

i=1 j=1

[U;(8)0Xi(8) /05 /n

2=

Z x’u x’“ﬁ) _m<xi7/B)m(m%ﬂ)l]ilD(mhﬂ)/n+0p(1)7
uniformly 8 € By, cf. KTA, eq. (C.4). The result follows by UWL. B

Lemma B.6 If Assumptions 4.8, 4.5 and \; € Ay, (i = 1,...,n) are satisfied, then supgep, | T3(8)| =
op(1).

Proof. By Assumption 4.5(iii) and Lemma B.1, from KTA, Lemma D.4,

Zwa (B ZA(’“ u(83)/0808)

i=1 j=1

B sup
BeBo

Lemma B.7 If Assumptions 4.2-4.6 are satisfied and \; € Ay, (i = 1,...,n), then, for each i
and B € By,

0Xi(B)/08 = —[V(xi, B) — m(xs, Bym(ws, B)) ' D(wi, B) + Mai(B)D (s, 3)
+Ms;(B) Ele(2)|zi] + Ms,:(8) Z wije(2;) + Mai(B),
=1

where maxi<i<n SUPgep, ||Mr,i(B)| = 0p(1), k= 1,...,4.

Proof. Differentiating (A.2) with respect to 3, we have
]Z:wm (Y ((8) + MalB)ws (3]s ()01 (B) + Aa(3)'; (3)] /05"
= - 2_; wily(@i(8) + Ai(8)'u;(8)))7 U (8). (B.8)
From the Proofjof Lemma B.4, as y;(3) = 1 + 0,(1),
Ofui () /08" = —Zwm (8)]/05" + 0p(1)

= —m(xz, BY0X:(8)/08 = \i(B)' D(x, 8) + 0p(1)
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uniformly ¢ and 3 € By. Hence,

> wisly(@i(8) + 53w (BN uy(9)9i(5)/05 = —(1+ op(1))in(xi, B) x
j=1

[z, B) 0N (8) /0B + Ai(B) D(s, B) + 0p(1)]

uniformly ¢ and 5 € By. Therefore, the left hand side of eq. (B.8) becomes
1+ 0p(1 Zwu u;(8 — 1, Byin(xs, B) 107 (8) /98 (B.9)
1+Op szg uj Uj(ﬁ) _D($27B)]+Op(1)

uniformly ¢ and 3 € By.
By Lemma B.1, from Assumption 4.5 (ii) and KTA, Lemma B.6,

V(wi, 8) = Vi, B)|| = 0p(1);

max sup
1<i<n BeBy

Similarly,

max sup [|[m(zi, B) — m(zi, B)|| = op(1).
1<z<nﬂ€lgo

Thus, from Assumption 4.5 (ii),

~1
(Z wiju; (B)u; (B)" — m(xs, B)i(wi, ﬁ)']) = [V(i, 8) — m(xi, B)m(zi, B)']7" + Rui(9),
j=1

(B.10)
where maxi<;<n Supgeg, || 1,:(8)|| = 0p(1); cf. AKTA, eq. (C.6).
By Lemma B.1, Assumptions 4.5 (iii) and A;(5) € Ay, from KTA, Lemma D.2,
> wsus N TB)| < g @[3 Zwu ()
‘]:
= 0p(1) sz‘jc(zj),
j=1
uniformly i and 3 € By. Likewise, Hz;;l wijui () (B) D (i, 5)” < maxi<j<n u;(8) S\i(ﬁ)H
> j—1 wige(zj) = op(1) 34 wije(zj). Therefore, for maxi<i<n supgeg, [|[Ra:(8)| = 0p(1),
> wiju(3)Ai(B) [U(8) — D(xs, 8)) = Rag(B wa o)), (B.11)
=1

cf. KTA, eq. (C.8).
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Finally, by Lemma B.1, v/1;(8) = 1 + 0p(1) uniformly i and 8 € By and KTA, Lemma B.5,
an argument like that for KTA, eq. (C.7), for the right hand side of eq. (B.8) yields

Z wiy(7s(8) + \i(B) ug (D) U3(8) = Dl(ws, B) + Elelzs)|wi] Roa(B) + Ra (), (B.12)

where maxi <;<n SUpges, | Rr,i(8)| = op(1), (k = 2,3).
The desired result obtains from firstly substituting egs. (B.10), (B.11) into eq. (B.9), then
the subsequent result and eq. (B.12) into eq. (B.8) and finally solving for dX;(5)/05. A

Lemma B.8 Let Assumptions 4.4, 4.5 and \; € Ay, (i = 1,...,n), hold. Then

sup
BeBoy

n! Z; OP;(8, 1i(5), ;\i(ﬁ))/%H = op(1)-

Proof. From eq. (B.7), Assumption 4.5(ii) and \; € A, (i =1,...,n),

sup
BeBo

n1261%(@%(5)75\@'(@)/%“ < 0p(1) ) wije(z)
i1 i=1

= o0p(1).

Appendix C: Auxiliary Results for Inference

Let uxj = supgep |u(zj, B)|I, Ii = l(z; € Si) and Ly = {1 <i <n:x; € Si}.
The following Lemma parallels TK, Lemma A.1, which provides a similar result for the
local EL statistic.

Lemma C.1 Let Assumptions 4.1, 4.2 (i) and (iv) with m > 6, 4.8, 4.5 (iii) with n > 6
and E[d(2)?] < oo and Assumption 6.1 be satisfied. Also let \; € Ay, (i = 1,...,n). Then, if
bp=n"% for0<s<i(1-2),

CR(B) = Tn+op(n'™/™c}) +0p(1/n'=2™)
+0p(ney) + Op(1/n'=4/1),

where T, = Sy zm(mué) ‘7(33@73) (mZ,B)

Proof. From eq. (A.1)
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for some ¢ € (0,1), where

i = Zwm (i + tNa)] T = (yf) )it i
1
From Lemma B.1 supgep e, i<j<n |[Y(i + A (8)]7 (’Wz ’ — 0. Thus, 71; =
op(1) >0y wijﬁjﬂp\i uniformly ¢ and j and
<
< op(1) max [l || N (s, 3) (C.2)
< op(nt/™) (s, B)

where the second inequality follows from CS and KTA, Lemma D.2. Now, from Assumption
4.5 (iii), w.p.a.1

L (i, B)| < max e | + |3 - 50”21023 (2)
1
= Op(CnH'Op(m)

uniformly <. Hence,

(C.3)

L 4l < op (/™) fmae (e + |8 = o D wigee)L
j=1

. Then,

n
A - 1.
Ai § wig[y(fis + Njij)]7 &Gl
=1

2 . A~

(14 0p(1)EV (x5, B)&;

1 ~
= (vi)7 || Ai

Sim(as, B) + ()7 |

uniformly 7 and j. W.p.a.l f{f/(azz, B)& is bounded below from KTA, Lemma B.6, by Assump-
tion 4.5(ii). Hence, solving ‘E\l‘ (i) = —Em(zi, B)/[(1 + 0,(1))EV (1, B)&]. Therefore, by
KTA, Lemma D.5, and TK, Lemma C.1,

I;

(i) = [max [oin()| + |8 = fo]| D wigelz)] (C.4)
* ]:1
= O @) _1
= Oplen) + p(nl/Q_l/n),
uniformly 7 and j. An expansion of Y 7 wi;[y(jti + /A\;ﬂj)]% =1 yields

(vaa)€imlzi, )] (C.5)

1= (vus) 7 [1 + (1 + 0p(1))]]
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uniformly i where, from (C.4), the 0,(1) term is Op(c2)+0,(1/n'=2/7). From eq. (C.4), solving,

L(yvi) = L[l = (1+0p(1))[L (v@)éirin(wi, B)) (C.6)

= Li+op(1)

uniformly i. Therefore, substituting eq. (C.6) into eq. (C.4),

LA = fmax Gl + |3 = o] Y wiselz) (C.7)
* ]:1
= O @) !
= Op(en) + (W)
Thus, from eq. (C.3), by J,
. 2 &
Ll = op(n®/™)[(max i) )2 + |6 = || D wie(z)?) (C3)
_ Op( 1/m 2) +o ( —1+1/m+2/n) _ Op(l)
uniformly ¢ € I, cf. TK, eq. (A.7). From eq. (C.6), as max;ey, V x,, H = 1) by TK,
Lemma C.2(ii), eq. (C.1) becomes
LA = =LV (i, B) " 'i(wi, B) + Lifa (C.9)
with the asymptotic properties of the remainder term I; |72 ;|| identical to those of I; ||71 ;|| given
n (C.8).
Now,

+1 y+1

(s + X1 = (i) ™+ (3 + 1) (i)

2=

N 1 N .
(Nitty) + 5 (v + 1) (vee) 7 (Nt )2 + g

~ 3 ~ I3
Nl < Ai|| (usj)®. Therefore, from eq. (C.9), w.p.a.1

A'ggc‘

where |f37ij| < C

LY wyly(+ Nag) " = L) ™ + (v + D)) LN, B) (C.10)
j=1

1 ol ek t
+5 0+ DL(va)] HLA)V (i, B)YLh) + LY wigis g
j=1

~

As Li(viig) = L1 — (14 0,(1)LXNoan(z4, 3)], from eq. (C.9), w.p.a.1

y+1

Li(vi) > =T = (14 0p(1)(y + DliXisiu(wi, B) + Lifa,

< 12
Ii)\;m(xi,ﬂ)‘ . Note that, from (C.4), the 0,(1) term is O, (c2)+O0,(1/n*=2/),
LXi(ai, B)| < 6| [Griai, B)| = Op(e2)+0p(1/m1=2/m)

From below eq. (C.2) and eq. (C.7),
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uniformly 7. Hence, by CS and J,

n . .12
Z L [P LA, ﬂ))
i=1

IN

>
i=1
< Oynch) + Op(1/n /)

Therefore, substituting into eq. (C.10), from eq. (C.9),

n

2t (leij[w<ﬂi+i;aj>1#1) = %(w1>;<Iixi>'v<xi,3><w

n n
1D wigha g+ Oplnes) + Op(1/nt 1)
i=1 j=1
1 S ¥ MN—1,4 2 ~ /
= SO+ D) DTV (@i, ) (i, B) + Tirzy)
XV(I‘Z', B) —11V($Z, B)_lﬁ’l,(:ﬁi, B) + Iif2,i)
Y LY wijrs i + Op(net) + Op(1/nt=4m).
> i Iifé,iv(wiaﬁ)fQ,i

= Op(nc2). Therefore,

Similarly to TK, eq. (A.11) and below, ‘

n n ~
and ‘Zi:l Li D51 wijPs i

= 0y (/M) op(1/n!2/m)

ALY UNEE 1 i
ZIi (Z wigy(fi + /\éaj)]jw_ - 1) = 5(7 + )T, + 0p(n1T2™ed) 4 0,(1/n12/™)
i=1 j=1

+0p(ncy) + Op(1/n'=4/1).

[A.16]



References

Ai, C. (1997): “A Semiparametric Maximum Likelihood Estimator”, Econometrica, 65,
933-964.

Altonji, J. and L.M. Segal (1996): “Small Sample Bias in GMM Estimation of Covari-
ance Structures,” Journal of Economic and Business Statistics, 14, 353-366.

Back, K., and D. Brown (1993): “Implied Probabilities in GMM Estimators,” Econo-
metrica, 61, 971-976.

Bonnal, H., and E. Renault (2003): “On the Efficient Use of the Informational Content of
Estimating Equations: Implied Probabilities and Maximum FEuclidean Likelihood,”
working paper, Département de Sciences Economiques, Université de Montréal.

Borwein, J.M., and A.S. Lewis (1991): “Duality Relations for Entropy-Like Minimisa-
tion Problems”, SIAM Journal of Control and Optimisation, 29, 325-338.

Brown, B.W. and W.K. Newey (1992): “Bootstrapping for GMM”, working paper,
Department of Economics, M.I.T.

Brown, B.W. and W.K. Newey (2002): “Generalized Method of Moments, Efficient
Bootstrapping, and Improved Inference,” Journal of Economic and Business Statis-
tics, 20, 507-517.

Chamberlain, G. (1987): “Asymptotic Efficiency in Estimation with Conditional Mo-
ment Restrictions,” Journal of Econometrics, 34, 305-334.

Corcoran, S.A. (1998): “Bartlett Adjustment of Empirical Discrepancy Statistics,”
Biometrika, 85, 967-972.

Cressie, N., and T. Read (1984): “Multinomial Goodness-of-Fit Tests”, Journal of the
Royal Statistical Society Series B, 46, 440-464.

de Jong, P. (1987): “A Central Limit Theorem for Generalized Quadratic Forms”,
Probability Theory and Related Fields, 75, 261-277.

Donald, S.G., G.W. Imbens, and W.K. Newey (2003): “Empirical Likelihood Esti-
mation and Consistent Tests with Conditional Moment Restrictions,” Journal of
Econometrics, 117, 55-93.

Fan, J., and I. Gijbels (1996): Local Polynomial Modelling and Its Applications. Chap-
man Hall: London.

R.1]



Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments
Estimators”, Econometrica, 50, 1029-1054.

Hansen, L.P., J. Heaton and A. Yaron (1996): “Finite-Sample Properties of Some Al-
ternative GMM Estimators,” Journal of Business and FEconomic Statistics, 14,
262-280.

Horowitz, J.L. (1998): ”Bootstrap Methods for Covariance Structures,” Journal of Hu-
man Resources, 33, 38-61.

Imbens, G.W. (1997): “One-Step Estimators for Over-Identified Generalized Method of
Moments Models,” Review of Economic Studies, 64, 359-383.

Imbens, G.W., R.H. Spady and P. Johnson (1998): “Information Theoretic Approaches
to Inference in Moment Condition Models,” Econometrica, 66, 333-357.

Imbens, G.W. and R.H. Spady (2001): “The Performance of Empirical Likelihood and
Its Generalizations,” paper presented at 2001 NSF-Berkeley Econometrics Sympo-
sium on “Identification and Inference for Econometric Models”.

Judge, G. and R. Mittelhammer (2001): ”Empirical Evidence Concerning the Finite
Sample Performance of EL-Type Structural Equation Estimators,” paper presented
at NSF-Berkeley Symposium on “Identification and Inference for Econometric Mod-
els”.

Kitamura, Y. (2001): “Asymptotic Optimality of Empirical Likelihood for Testing Mo-
ment Restriction,” Fconometrica, 69, 1661-1672.

Kitamura, Y. (2005): “Empirical Likelihood Methods in Econometrics: Theory and
Practice.” Invited paper presented at the Econometric Society World Congress,
U.C.L., London.

Kitamura, Y., and M. Stutzer (1997): “An Information-Theoretic Alternative to Gen-
eralized Method of Moments Estimation,” FEconometrica, 65, 861-874.

Kitamura, Y., G. Tripathi, and H. Ahn (2004): “Empirical Likelihood-Based Inference
in Conditional Moment Restriction Models.” Forthcoming Econometrica.

Newey, W.K. (1990): “Efficient Instrumental Variables Estimation of Nonlinear Mod-
els,” Econometrica, 58, 809-837.

Newey, W.K. (1993): “Efficient Estimation of Models with Conditional Moment Re-
strictions,” in Handbook of Statistics, Vol. 11, Maddala, G.S., C.R. Rao and H.
Vinod (eds.), Amsterdam: North Holland.

Newey, W.K. and D. McFadden (1994): “Large Sample Estimation and Hypothesis
Testing,” in Engle, R. and D. McFadden, eds., Handbook of Econometrics, Vol. 4,
New York: North Holland.

R.2]



Newey, W.K., J.J.S. Ramalho, and R.J. Smith (2001): “Asymptotic Bias for GMM
and GEL Estimators with Estimated Nuisance Parameters.” Forthcoming in Iden-

tification and Inference in Econometric Models: FEssays in Honor of Thomas J.
Rothenberg, eds. D.W.K. Andrews and J.H. Stock. Cambridge University Press:
Cambridge.

Newey, W.K., and R.J. Smith (2001): “Asymptotic Bias and Equivalence of GMM and
GEL Estimators.” Working Paper No. 01/517, University of Bristol.

Newey, W.K., and R.J. Smith (2004): “Higher Order Properties of GMM and General-
ized Empirical Likelihood Estimators,” Econometrica, 72, 219-255.

Owen, A. (1988): “Empirical Likelihood Ratio Confidence Intervals for a Single Func-
tional,” Biometrika, 75, 237-249.

Owen, A. (1990): “Empirical Likelihood Ratio Confidence Regions,” Annals of Statis-
tics, 18, 90-120.

Owen, A. (2001): Empirical Likelihood. New York: Chapman and Hall.

Qin, J., and Lawless, J. (1994): “Empirical Likelihood and General Estimating Equa-
tions,” Annals of Statistics, 22, 300-325.

Ramalho, J.J.S. (2001): Alternative Estimation Methods and Specification Tests for
Moment Condition Models, unpublished Ph.D. thesis, Department of Economics,
University of Bristol.

Rényi, A. (1961): “On Measures of Entropy and Estimation”, Proceedings of the Fourth
Berkeley Symposiium on Mathematical Statistics and Probability, Vol. 1, 547-561.

Robinson, P.M. (1987): “Asymptotically Efficient Estimation in the Presence of Het-
eroskedasticity of Unknown Form,” Econometrica, 55, 875-891.

Shannon, C.E.,; and W. Weaver (1949): The Mathematical Theory of Communication.
Urbana: University of Illinois Press.

Smith, R. J. (1997): “Alternative Semi-Parametric Likelihood Approaches to General-
ized Method of Moments Estimation,” Economic Journal, 107, 503-519.

Smith, R. J. (2001): “GEL Methods for Moment Condition Models”, working paper,
University of Bristol. Revised version CWP 19/04, cemmap, I.F.S. and U.C.L.
http://cemmap.ifs.org.uk /wps/cwp0419.pdf

Smith, R. J. (2003): “Local GEL Estimation with Conditional Moment Restrictions”,
working paper, Department of Economics, University of Warwick.

Tripathi, G., and Y. Kitamura (2003): “Testing Conditional Moment Restrictions”,
Annals of Statistics, 31, 2059-2095.

R.3]




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


