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Abstract

Motivated by several interesting features of the highway mowing auction data from Texas

Department of Transportation (TDoT), we propose a two-stage procurement auction model with

endogenous entry and uncertain number of actual bidders. Our entry and bidding models pro-

vide several interesting implications. For the �rst time, we show that even within an independent

private value paradigm, as the number of potential bidders increases, bidders�equilibrium bid-

ding behavior may become less aggressive because the �entry e¤ect�is always positive and may

dominate the negative �competition e¤ect.�We also show that it is possible that the relation-

ship between the expected winning bid and the number of potential bidders is non-monotone

decreasing as well. We then develop an empirical model of entry and bidding controlling for

unobserved auction heterogeneity to analyze the data. The structural estimates are used to

quantify the �entry e¤ect�and the �competition e¤ect�with regard to the individual bids and

the procurement cost, as well as the savings for the government with regard to the procurement

cost when the entry cost is reduced.
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1 Introduction

In this paper, motivated by several interesting features of the highway mowing auction data we

collected from Texas Department of Transportation (TDoT), we propose a two-stage procurement

auction model with endogenous entry and uncertain number of actual bidders. We then develop a

fully structural econometric framework that is derived from our game-theoretic model of entry and

bidding, and that also allows for controlling for unobserved auction heterogeneity. We develop a

semiparametric Bayesian method to estimate the underlying structural elements, namely, the entry

cost distribution, the bidders� private cost distribution, and the distribution of the unobserved

heterogeneity, and apply it to conduct a detailed structural analysis of the procurement auction

data from TDoT.

Our theoretical model of entry and bidding is motivated by the strong evidence of entry behavior

in the data set: on average only about 28.05% of the potential bidders (those who request for

o¢ cial bidding proposals) actually submit their bids. Endogenous entry because of the participation

cost such as the cost involved in acquiring information and preparing for bidding as well as the

opportunity cost in bidding (and winning) in one auction has been documented in recent empirical

work (Bajari and Hortaçsu (2003) for eBay auctions, and Athey, Levin and Seira (2004) for timber

auctions). Theoretical models of entry, on the other hand, have been developed since 1980s with

Samuelson (1985) and McAfee and McMillan (1987a) studying pure strategies of entry, and Levin

and Smith (1994), Harstad (1990), Kjerstad and Vagstad (2000), as well as McAfee, Quan and

Vincent (2002) studying mixed strategies. As in Levin and Smith (1994), we assume that potential

bidders adopt a symmetric mixed strategy. Our model, on the other hand, di¤ers from Levin and

Smith (1994) in that while Levin and Smith (1994) assume that actual bidders know the number of

actual bidders at the time of bidding, we relax this assumption.1 We derive some interesting model

implications, most of which are empirically testable. For the �rst time, we show that even within the

IPV paradigm, as the number of potential bidders increases, bidders�equilibrium bidding behavior

can become less aggressive. Thus, increasing competition may not be always desirable for the

government, meaning that our result, while somewhat counter-intuitive and surprising because of

the pure IPV paradigm under consideration, can have important policy implications. This result can

also be used to test empirically whether entry is an important part of the decision making process.

Notably, the relationship between bids and number of potential bidders has been an important

1 In contrast to the previous work that assumes (exogenously) varying number of actual bidders and studies rev-

enue and welfare implications (McAfee and McMIllian (1987b), Matthew (1987), Harstad, Kagel and Levin (1990),

Levin and Ozdenoren (2004)), the uncertain number of actual bidders in our model is endogenous as a result of the

endogenous entry.
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issue pursued in the theoretical and empirical literature, but has been limited to the framework

in which there is no entry. In this framework, it has been shown that while in the IPV paradigm

the relationship is monotone, it may not be in a CV model because of the interaction between the

�competition e¤ect�and �winner�s curse e¤ect�(Bulow and Klemperer (2002)), and in an a¢ liated

private value model due to the opposite �competition e¤ect� and �a¢ liation e¤ect� (Pinkse and

Tan (2004)). Our result is driven by the interaction of two opposite e¤ects: the �competition e¤ect�

and �entry e¤ect.�While the �competition e¤ect� is always negative as usual, the �entry e¤ect�

is always positive. This positive �entry e¤ect� suggests to a winning bidder that he may have

overestimated the intensity of entry.

Another interesting question is whether the �entry e¤ect�and the �competition e¤ect�remain

the same sign respectively for the expected winning bid (i.e. procurement cost) as in the individual

bid case. To this end, we provide a su¢ cient condition for the �entry e¤ect� to be positive and

for the �competition e¤ect� to be negative for the expected procurement cost. The condition is

general and met by most of the distributions that are commonly used in modeling private cost.

As a result, we show that it is possible for the procurement cost to be non-monotone decreasing

in the number of potential bidders, as this can be the case when the �entry e¤ect� is positive and

�competition e¤ect�is negative and the former dominates the latter.2 We also show that under the

same su¢ cient condition the procurement cost decreases with the entry cost.

To analyze the data we have collected and also to provide a general framework within which

entry and bidding are jointly modeled, we develop a fully structural model jointly modeling entry

and bidding based on the theoretical model we propose. Our structural approach takes into account

of controlling for unobserved auction heterogeneity, which is necessary as in procurement auctions,

2 In studying high-bid auctions with entry assuming that actual bidders know the number of actual bidders at

the time of bidding, Levin and Smith (1994) show that under the optimal mechanism for the auctioneer where the

auctioneer�s expected revenue is maximized, and hence the optimal entry is induced, the expected revenue (same

as the expected winning bid) becomes less aggressive with increasing number of potential bidders when the number

of potential bidders grows beyond some cut-o¤ point. Our result, on the other hand, does not require the optimal

mechanism for the auctioneer, and provides su¢ cient conditions under which the expected winning bid may become

less aggressive with the number of potential bidders. Thus our result on the relationship between the procurement

cost and the number of potential bidders complements Levin and Smith�s result, while our result on the relationship

between the individual bids and the number of potential bidders is the �rst established in the literature, to the best

of our knowledge.
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bidders have access to the information about the auctioned projects, some of which may not show

up in the data.3 From an econometric viewpoint, failing to control for the unobserved auction

heterogeneity in empirical research could severely bias the estimates for the structural parameters,

and hence yield misleading policy conclusions and recommendations, as shown in Krasnokutskaya

(2002).

It is worth noting that joint modeling of entry and bidding is on one hand a modeling issue and

on the other hand challenging from the perspective of econometric implementation, while controlling

for unobserved auction heterogeneity is mainly an important econometric issue. This paper aims

to provide a uni�ed framework to address these two issues in structural inference of auctions. We

achieve this objective by parameterizing the bidders�private cost distribution and the entry cost

distribution, leaving the distribution of the unobserved heterogeneity term unspeci�ed, and adopt-

ing the recently developed semiparametric Bayesian method to estimate the underlying structural

elements. The semiparametric Bayesian method using a Dirichlet process prior is introduced by Lo

(1984) and Ferguson (1983), with its recent development stimulated by the advances in the Markov

chain Monte Carlo (MCMC) method (e.g. Escobar (1994), Escobar and West (1995)). While this

method has been recently adopted by econometricians in addressing various issues (Hirano (2002)

for estimation of linear autoregressive panel data models, Chib and Hamilton (2002) for analy-

sis of longitudinal data treatment e¤ect models, Hasegawa and Kozumi (2003) for estimation of

Lorenz curves, and Gri¢ n and Steel (2004) for inference of stochastic frontier models), our paper

demonstrates its considerable advantage in making complicated structural models tractable.4

Jointly estimating fully structural models of entry and bidding has been a challenging problem

because of the complexity involved with the joint models of entry and bidding, as well as the presence

of latent variables. We are able to circumvent the di¢ culties by using the data augmentation

techniques that enable us to develop a full Monte Carlo Markov chain to estimate the parameters

in the structural model and the distribution of the unobserved heterogeneity. This contributes to

the literature of structural analysis of auction data, as to the best of our knowledge, our paper is

3For example, in our data set we do not observe the information on road conditions that may a¤ect bidders�

decision.
4Bajari (1997) �rst uses parametric Bayesian methods to estimate asymmetric auction models. Subsequent work

by Bajari and his coauthors also uses parametric Bayesian methods to estimate auction models. Also, Sareen (1999)

compares the IPV and the CV paradigms using posterior odds comparison.
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the �rst one that estimates a fully structural model for entry and bidding, while controlling for

unobserved auction heterogeneity.5

We use our structural approach to analyze the TDoT data. Our results indicate that there is

a signi�cant e¤ect from the unobserved heterogeneity. We �nd that the entry cost is a signi�cant

part in the bidders�decision making process and hence a theoretical model or empirical analysis

that ignores the entry e¤ect may lead to poor policy recommendations.6

After obtaining the structural elements of the model, we then conduct counterfactual analysis

by quantifying the e¤ects of number of potential bidders on the individual bid as well as on the

procurement cost. We �nd that the �entry e¤ect�is positive and �competition e¤ect�is negative.

Moreover, the positive �entry e¤ect� actually dominates the negative �competition e¤ect� in our

data and hence policies that encourage more potential bidders might cause the government�s pro-

curement costs to increase. We also quantify the savings for the government with regard to the

procurement cost when the entry cost is reduced.

The empirical analysis of the procurement auctions conducted in this paper contributes to the

growing literature on empirical analyses of procurement auctions using structural approach. For

example, see Bajari and Ye (2002) for detecting collusion, Hong and Shum (2002) for assessing the

winner�s curse, Jofre-Bonet and Pesendorfer (2003) for capacity constraint in dynamic procurement

auctions, and Krasnokutskaya (2002) for the e¤ect of unobserved auction heterogeneity in asym-

metric �rst-price IPV auctions.7 Most of the work, while studying di¤erent aspects of procurement

5Bajari and Hortaçsu (2003) as well as Athey, Levin and Seira (2004) are important developments in taking into

account bidders�participation when using the structural approach to analyze auction data, both using a reduced form

speci�cation for modeling entry while estimating a structural bidding model. Li (2005) derives moment conditions

implied by the entry and bidding model in Levin and Smith (1994) when reserve prices are binding, which can be

used for estimation and testing. He also suggests to use a �exible reduced form speci�cation for the entry probability.

On the other hand, Haile, Hong and Shum (2002) develop tests for common values in �rst-price auctions allowing for

entry and unobserved auction heterogeneity.
6As in Athey, Levin and Seira (2004) and Bajari and Hortaçsu (2003), we are able to recover the entry cost in

dollar terms using the equilibrium conditions and structural estimates. As a result, although in a di¤erent information

environment with a di¤erent game structure, the structural approach in entry and bidding of auctions allows one to

recover �rms�pro�t functions in a similar spirit to the pioneering work by Bresnahan and Reiss (1990) and Berry

(1992) who study entry in monopoly/oligopoly markets.
7Another strand is to use reduced-form tests to test collusion in procurement auctions. Porter and Zona (1993)

represent this line of research.
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auctions, however, has assumed exogenous participation. Our empirical analysis, on the other hand,

is based on a fully structural model for entry and bidding, and quanti�es the e¤ect of entry in the

bidders�decision process, as well as the role of the unobserved auction heterogeneity. In particular,

the structural approach adopted here enables us to assess the �entry e¤ect�and the �competition

e¤ect,� as well as to quantify the relationship between the procurement cost and the entry cost,

and hence can be useful for making policy recommendations.

This paper is organized as follows. Section 2 presents the data set that will be analyzed to moti-

vate the problem, and to discuss the relevance of the theoretical model later developed. Section 3 is

devoted to proposing a mixed strategy entry model along with a bidding model, and deriving some

model implications from the joint entry and bidding model. Section 4 carries out several reduced-

form empirical tests of the theoretical model using our data. Section 5 develops the structural

framework for joint modeling of entry and bidding from the theoretical model proposed in Section

3 and proposes the semiparametric Bayesian Markov chain Monte Carlo (MCMC) estimation algo-

rithm to estimate the structural model. Estimation results are presented in Section 6. Section 7

carries out counterfactual analyses to quantify the �entry e¤ect�and the �competition e¤ect�on

the individual bid and the procurement cost as well as the savings for the government when the

entry cost is reduced. Section 8 concludes. The technical proofs and algorithms are included in the

Appendix.

2 Data

The data used in this study is from the highway construction and maintenance procurement auctions

held by the Texas Department of Transportation (TDoT) between January 2001 and December 2003.

We focus on a particular type of highway maintenance job, which is called �mowing highway right-

of-way.�We select this type of auctions for two reasons. First, this type of job is the single most

frequently held auction in the sample period we study. Second, this type of auctions is relatively

simple compared with other big construction projects. These highway mowing projects usually

involve a main task, which is called �type-II full width mowing,�with several additional tasks such

as strip mowing, spot mowing, litter pickup and disposal, sign installation and so on.

The TDoT advertises projects 3 to 6 weeks prior to the letting date. Advertisement usually
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includes a short description of the project including the location, the completion time, the engineer�s

estimate and the estimated quantity for each task involved. In order to become an eligible bidder

for a certain project, the contractor must �rst become a quali�ed bidder, which is based on the

contractor�s �nancial statement and is reviewed on a yearly basis.8 TDoT maintains a master list

for these quali�ed bidders, which lists all the quali�ed bidders in any sub-industry of the highway

construction and maintenance industry in Texas. Second, those quali�ed contractors interested in

the project must obtain a detailed project plan and the o¢ cial bidding proposal from the TDoT

no later than 21 days prior to the letting date. TDoT maintains a bidders�list of those contractors

who have requested the o¢ cial bidding proposal for the project. We observe from the data that

for a certain project, only (and usually all of) those contractors in the mowing sub-industry who

are located in the same county as where the job is or nearby counties would request the o¢ cial

bidding proposals. Therefore, we treat the bidders on the bidders�list for a certain project rather

than the bidders on the master list as the potential bidders. Bids have to be submitted before the

bid opening time in a sealed envelope.

The information �ow of the auction mechanism is as follows. First, after a project advertisement

is posted, bidders learn the auction speci�cs. During 21 days prior to the bid submission deadline,

bidders learn how many potential bidders have already requested the o¢ cial bidding proposal. Then

they prepare and submit bids by the bid opening time without the knowledge of the number of actual

bidders. Finally, all the bids and actual bidders�identities are revealed after the bid opening.

The data set consists of 553 projects, with a total of 1606 bids. The information we observe from

the data includes the letting date, the location (district, county, and highway), the tasks involved,

the quantity of each task, the identity of all the planholders (potential bidders on the list of bidders),

the identity of all the bidders who actually submit their bids (actual bidders), the actual bidding

amount, the completion time, the amount of guaranty money, and whether it is a state or local

maintenance job.

Table 1 gives the summary statistics of the data and several other quantities of interest. First,

it is worth noting that the entry behavior is present in our data set. For the auctions in our data

set, on average, an auction has about 11 potential bidders, but the number of actual bidders is only

8For certain types of small projects like the mowing job studied in this paper, a contractor does not need to submit

the �nancial statement to become quali�ed. Instead, they submit a bidder questionnaire to become quali�ed.
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about 2.90. That only 28.05% of the potential bidders actually submit their bids later is a strong

evidence of bidders�entry behavior. While requesting a bidding proposal is free, preparing for a bid

is not. The entry behavior indicates that bidders rationally take the entry cost into account and

decides whether to enter into the �nal bidding process.

The mean of the engineer�s estimate for these auctions is $165,348.90, which is very close to

the mean of the bids, that is, $165,382.20. This shows that the engineer�s estimate is the key

determinant of bidders�bids. On average, these projects last for about four months. Naturally,

longer duration of the project will increase bidders�bids for the project. The size of the main task,

that is, the �type-II full width mowing,�is 7,302.94 acreage on average, with an average of 1,987.64

acreage of other mowing jobs. If bidders have di¤erent costs for completing the two di¤erent kinds

of jobs, then di¤erent composition of the jobs will lead bidders to submit di¤erent bids even though

the total acreage of the mowing jobs are similar. The mean number of tasks in one mowing job

is 2.01. Around 11% of the jobs are auctioned by the state agency and 23% of the jobs are on an

interstate highway. We distinguish the state job from the local job because we expect that the two

agencies may have di¤erent requirements for bids preparation and hence the entry cost may di¤er

and hence the bidders change their bids accordingly. Also, a job on an interstate highway may cause

bidders to bid more since it is both hard to transport equipment to an interstate highway and to

complete the job on an interstate highway due to the high volume of the tra¢ c.

Although the TDoT states in the bidding rules that it will reject the contract if �the lowest

bid is higher than the Department�s estimate and re-advertising the project for bids may result

in lower bids,� in reality (at least in the auctions in our data), we do not see that this rule is

enforced. In our data set, we observe 704 bids higher than the Department�s estimate, which

account for about 43.86% of the entire sample. For 120 projects the winning bid is higher than the

Department�s estimate. These facts suggest that this rule has been ignored by bidders when making

their decisions as it has never been implemented. The assumption of no binding public reserve price

is justi�ed in this environment. In e¤ect, the auctions in our study can be considered as �rst

(low)-price sealed-bid auctions without binding public reserve prices with the project awarded to

the bidder with the lowest bid.

Lastly, there are about 13 auctions in our data having only one actual bidder. This accounts

for about 2.35% of the entire sample. Our entry and bidding model will allow for the presence of
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only one actual bidder, as can be seen later.

3 Game-Theoretic Framework for Entry and Bidding

In this section, we propose a new game-theoretic model of entry and bidding in procurement auctions

and derive its equilibrium properties.

3.1 The Underlying Structure

The government lets a single and indivisible contract to N �rm contractors who request the o¢ cial

bidding proposals and become potential bidders. While our model and econometric method can be

readily adopted to the case where government announces a reserve price before the auction and the

reserve price is e¤ectively binding, we will focus on auctions without reserve prices to be consistent

with the data under study. Each potential bidder is risk-neutral with a disutility equal to his private

cost c. Each potential bidder must incur an entry cost k such as project evaluation, bid preparation

and acquiring information to learn his private cost for completing the job and hence how to bid for

the project. Thus, the auction is modeled as a two-stage game.

At the �rst stage, knowing the number of potential bidders N , each potential bidder learns the

speci�cations of the project and the entry cost, calculates their expected pro�t from entering the

auction conditioning on his winning, and then decides whether or not to participate in the auction

and actually submit a bid. Moreover, all potential bidders do not draw their private costs until

after they decide to enter the auction.

After the �rst entry stage, the n �rm contractors who decide to enter the auction learn their own

costs of completing the job. The cost of completing the contract c to a contractor is drawn from a

distribution F (�) with support [c; c]. F (�) is twice continuously di¤erentiable and has a density f(�)

that is strictly positive on the support. In the independent private value paradigm, when forming

his bid, each actual bidder knows his private cost c, but does not know others�private costs. On

the other hand, each bidder knows that all private costs are independently drawn from F (�), which

is a common knowledge to all bidders. As a result, all bidders are identical a priori and the game

is symmetric.9

9The assumption that bidders are symmetric can be justi�ed as follows. First, in our data, the winning rate is

roughly the same across all bidders. Second, bidders for the mowing jobs are usually individual contractors or 2 or

8



Finally, since we assume that there is no any binding reserve price, as consistent with the TDoT

data, and at the same time, we do observe some auctions with only one actual bidder, it is important

to take these two aspects into account to rationalize bidders�behaviors. In �rst (high)-price sealed-

bid auctions without (binding) reserve prices, there is a unique �nite Bayesian-Nash equilibrium

bidding strategy with uncertain number of actual bidders. It is not the case, however, for the �rst

(low)-price sealed-bid auctions as considered here. This is because for any rational bidder, if he

knows that there is no any binding reserve price, and there is a non-zero probability for him to

be the single actual bidder, no matter how small this probability is, his optimal strategy is always

to bid in�nity. Such a striking di¤erence between high-bid and low-bid auctions, while important,

has not been noticed in the literature. Therefore, to rationalize bidders� behaviors so that we

can preserve a �nite strictly increasing Bayesian-Nash equilibrium bidding strategy in our case, we

assume that each potential bidder has a common belief that if he turns out to be the only actual

bidder in the auction, he has to compete with the government who will draw its private cost from

the same distribution F (�) and form its bid. Otherwise, if he turns out to be one of at least two

actual bidders, he just competes with the other actual bidder(s). As a result, it is a common belief

for each potential bidder that at each auction, if he decides to enter, he will face at least one another

actual bidder, either the government if he is the only actual real bidder or another real bidder if

there are at least two actual real bidders.10

3.2 First-Stage: Mixed Strategy Entry

Denote E�(b; cjq�) as the payo¤ for the actual bidder who optimally bids b using a Bayesian-Nash

equilibrium strategy given his own cost c, the unique equilibrium entry probability q� and the belief

that there must be at least two bidders (including himself) in the auction, as well as conditioning

3-person small �rms and hence the di¤erence between bidders are small in terms of e¢ ciency, capacity and other

production factors.
10This assumption can be justi�ed because the government does know the number of actual bidders, and also

because we do observe auctions with only one actual bidder whose bid is �nite. Without introducing a role played

by the government, in the absence of a binding reserve price, these �nite bids from single actual bidders cannot be

rationalized. In e¤ect, our assumption that the government competes with the single actual bidder is equivalent to

introducing a random reserve price from the government when there is a single actual bidder. On the other hand, our

assumption is not restrictive as it limits the government�s role only to the auctions with a single actual bidder.
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on that he is the winner. The ex ante expected payo¤ for a potential bidder without knowing c isZ c

c
E�(b; cjq�)f(c)dc (1)

From a game-theoretic viewpoint, a rational bidder will participate in the auction only when

the ex ante expected payo¤ exceeds the corresponding entry cost. Otherwise, remaining outside

of the auction is an optimal strategy. In the game-theoretic literature, a mixed strategy model is

used based on the assumption that each player adopts a probability distribution for his actions. In

our context, the action here refers to the potential bidders�decision on whether or not to enter the

auction. Extending Levin and Smith (1994)�s symmetric mixed strategy entry model for high-bid

auctions, we assume that there is a unique probability q� such that all the potential bidders have

the same probability q� to enter the auction. q� is determined from the equilibrium where the ex

ante expected payo¤ is equal to the entry cost k as given in the following equation11Z c

c
E�(b; cjq�)f(c)dc = k: (2)

3.3 Second-Stage: Bidding

Following the entry stage using the mixed strategy described above, each actual bidder learns his

private cost c for completing the job. Di¤erent from Levin and Smith (1994), we assume that each

actual bidder does not know the number of actual bidders at the time of bidding. Taking into

account this uncertainty is more relevant to the real applications. Moreover, as in the entry stage,

an actual bidder (say bidder i) calculates his bid with the belief that there will be at least two actual

bidders in the auction. As a result, his expected pro�t by bidding bi conditioning on his private

cost ci and winning the auction is

11There may be other asymmetric pure-strategy equilibria of this two-stage entry and bidding model. We focus on

the symmetric mixed-strategy equilibrium for two reasons. First, in our data, in the same region, the participation

rate across all the potential bidders is roughly the same and the set of actual bidders changes from auction to auction,

indicating that bidders might use the same entry probability to make the entry decision. Second, in our data, for a

given set of projects with the same number of potential bidders and roughly the same engineer�s estimate, there is

still big variation in the number of actual bidders. For example, there are 12 auctions with 11 number of potential

bidders and with an engineer�s estimate between $90,000 and $110,000. The number of actual bidders varies from 2

to 6. This is evidence consistent with the random realization of the binomial process, which is consistent with the

mixed-strategy equilibrium.
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E�(bi; cijq�) =

NX
j=2

PB(n = jjn � 2)(bi � ci) Pr(bt � bi;8t 6= i)

= (bi � ci)
NX
j=2

PB(n = jjn � 2)Pr(ct � ��1(bijq�);8t 6= i)

= (bi � ci)
NX
j=2

PB(n = jjn � 2)[1� F (��1(bijq�))]j�1; (3)

where �(�jq�) is the strictly increasing equilibrium bidding strategy given the entry probability q�,

and

PB(n = jjn � 2) =
�
N�1
j�1

�
(q�)j�1(1� q�)N�j

1� (1� q�)N�1 (4)

is the probability that there will be j actual bidders in the auction from the actual bidder�s point

of view.

Here we make the assumption that bidders have the belief that there will be at least two bidders

(including himself) in the auction as discussed in Section 3.1, which is di¤erent from Levin and

Smith (1994).

The Bayesian-Nash equilibrium of this model can be characterized by the following �rst-order

condition

@f�(cjq�)
PN
j=2 PB(n = jjn � 2)[1� F (c)]j�1g

@c

= �c
NX
j=2

PB(n = jjn � 2)(j � 1)[1� F (c)]j�2f(c): (5)

The unique solution to (5) subject to the boundary condition �(c) = c is given as follows

�(cjq�) = c+
PN
j=2[PB(n = jjn � 2)

R c
c (1� F (x))

j�1dx]PN
j=2[PB(n = jjn � 2)(1� F (c))j�1]

: (6)

As a result, the equation determining the mixed strategy probability q� (2) can be rewritten as

Z c

c

NX
j=2

[PB(n = jjn � 2)
Z c

c
(1� F (x))j�1dx]f(c)dc = k: (7)
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3.4 Model Implications

Our entry model for low-bid procurement auctions is similar in spirit to the one for high-bid auctions

in Levin and Smith (1994) in that both use mixed strategies to model entry with the di¤erence that

ours assumes that bidders make the decision with the belief of having at least two entrants while

Levin and Smith (1994) does not. Our bidding model is di¤erent from Levin and Smith (1994)

because we relax the assumption made in Levin and Smith (1994) that the actual bidders know

the number of actual bidders at the time of bidding. As a result, our resulting entry model is

quite di¤erent from Levin and Smith (1994) because the entry equation (2) is closely associated

with the expected payo¤ of the bidder, which in turn is related to the Bayesian-Nash equilibrium

bidding strategy given by (6) from the bidding model. Given such a signi�cant di¤erence, it would

be interesting to study the implications from our equilibrium model for entry and bidding, and

use them to test whether the entry and bidding behaviors found in our data are consistent with

our model. To this end, we will study several comparative statics, most of which are empirically

testable.

The �rst interesting relationship is the one between the entry probability q� and the entry cost

k.

Proposition 1 In our model, @q
�

@k < 0: That is, as the entry cost increases, holding everything else

�xed, the bidders�equilibrium entry probability decreases.

The negative relationship between k and q� is intuitive since as the entry cost increases, bidders

require higher expected payo¤ to be compensated for entering into the auction. Therefore, the

probability that a bidder can gain from the auction decreases, resulting in less probability of their

entering into the auction. Levin and Smith (1994) demonstrate the same relationship in their model.

Before we turn to the relationship between the equilibrium bids b and the number of potential

bidders N , we �rst take a look at the relationship between the entry probability q� and the number

of potential bidders N . This is the key intermediate step in how the number of potential bidders

a¤ects bidders� equilibrium bids. From equation (6) for the equilibrium bidding strategy, it is

obvious that when the number of potential bidders increases, it a¤ects the equilibrium bids through

two channels. First, it a¤ects the bidding directly. The second e¤ect is through the equilibrium

entry probability q�. When the number of potential bidders changes, q� changes because they both

12



appear on the left-hand side of equation (2) for entry while the entry cost on the right hand side

of the equation is �xed. Despite the complexity of our entry model, we are able to show that the

relationship between q� and N is negative while keeping everything else constant without imposing

any conditions.12 Note that proving the relationships @q�=@N < 0 and later @b=@N < 0 is non-

standard and a bit technically involved because of the appearance of N on the upper bound of the

sum of probabilities, which prevents us from directly taking derivatives.

Proposition 2 In our model, @q
�

@N < 0: That is, as the number of potential bidders increases, holding

everything else �xed, the bidders�equilibrium entry probability decreases.

The intuition behind this relationship is as follows. q� is determined by the entry equation (7).

On the right hand side, the entry cost k does not change. Therefore, the left-hand side, which is

the expected gain for a bidder who enters this auction, also remains the same. In other words, the

number of actual bidders the auction can support does not change. As a result, when the number

of potential bidders increases, bidders lower their equilibrium entry probability.

Now we turn to the relationship of one of our main interests, that is, the relationship between the

equilibrium bid b and the number of potential bidders N . This is an important issue, as previously

in the literature with the assumption that the number of actual bidders is known to the actual

bidders when they submit bids, the equilibrium bid in low-bid auctions within the IPV paradigm

is shown to be monotone decreasing in the number of actual bidders, or in the number of potential

bidders. This result has been considered as an important property of IPV model that is often used

in empirical research to validate the model. Our model, however, is di¤erent because we assume that

the actual bidders do not know the number of actual bidders when submitting bids. We investigate

the relationship between bid and N analytically. This relationship, if established, can shed light on

studying other auction data. In particular, the predicted relationship between bid and N from our

model, which is di¤erent from the one with bidders knowing the number of actual bidders, can be

used to form a basis for testing whether bidders know the number of actual bidders when submitting

bids.
12Levin and Smith (1994) give a su¢ cient condition under which the relationship between the induced entry prob-

abilty from the optimal auction mechnism and N is negative while everything else is kept constant. Our result gives

such a relationship for any entry probability (not necessarily induced by the optimal auction mechanism) without

imposing su¢ cient conditions.
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Proposition 3 In our model, the relationship between b and N may not be monotone decreasing.

Roughly speaking, this proposition is obtained by rewriting the equilibrium bidding strategy

equation (6) as b = h(N; q�); and taking the total di¤erentiation of b with respect to N

db

dN
=
@b

@N
+
@b

@q�
� @q

�

@N
:

This equation illustrates that the number of potential bidders, N , a¤ects the equilibrium bids in

two channels. The �rst channel is the usual �competition e¤ect,� as represented by @b
@N , which is

negative as proved by Lemma 3 in the appendix. This is because as the number of potential bidders

increases, if the bidders� equilibrium entry probability is �xed, bidders become more aggressive.

The intuition behind this is that when there are more potential bidders but the bidders still use the

same equilibrium entry probability to decide whether or not to enter into the auction, the expected

number of actual bidders increases. Therefore, actual bidders face more competition and they bid

more aggressively. The second channel, which we call the �entry e¤ect,�directs the e¤ects of N on

b through the entry stage. As the number of potential bidders increases, holding everything else

constant, the bidders�equilibrium entry probability decreases, as shown in Proposition 2. On the

other hand, as the entry probability decreases, holding everything else constant, the equilibrium

bidding strategy increases. This is proved in Lemma 4 in Appendix. This result is intuitive as when

the number of potential bidders is �xed but the bidders�equilibrium entry probability decreases, the

expected number of actual bidders decreases. Therefore, actual bidders face less competition and

they bid less aggressively. The resulting entry e¤ect is thus positive. In the end, the relationship

between b and N depends on the relative magnitudes of the �entry e¤ect� and the �competition

e¤ect.�

We now illustrate the non-monotone decreasing relationship between b and N by a concrete

example. We choose the private cost distribution to be the uniform(0; 1) and k = 0:2. The

equilibrium bidding strategies for cases N = 8 and N = 3 are computed and plotted in Figure (1).

Note that when the private production cost c is greater than 0.09, the bidding line for N = 8 lies

above the one for N = 3. Hence the equilibrium bids are not monotone decreasing in N . Also,

consistent with Proposition 2, when N = 8, the equilibrium entry probability is 0.26 and it increases

to 0.89 when N = 3.

An interesting question is whether Proposition 3 holds also for the relationship between the
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expected winning bid (procurement cost) and the number of potential bidders. While we are able

to show that for an individual bid, the �entry e¤ect�is always positive and the �competition e¤ect�

is always negative, assessing the signs of the �entry e¤ect� and the �competition e¤ect� is much

more involved in the case of the procurement cost. Nevertheless, we are able to provide su¢ cient

conditions for the �entry e¤ect�to be positive and for the �competition e¤ect�to be negative with

regard to the procurement cost, which are given in the following proposition.

Proposition 4 Denote the expected winning bid (procurement cost) by W . If c + F (c)=f(c) is

increasing in c, then

(i) the competition e¤ect @W@N < 0;

(ii) @W
@q� < 0. As a result, the entry e¤ect

@W
@q� �

@q�

@N > 0.

(iii) the relationship between W and N may not be monotone decreasing.

Note that the su¢ cient condition given here for the competition e¤ect to be negative and for the

entry e¤ect to be positive is general as it is satis�ed by uniform, exponential, lognormal, logistic,

and Weibull (with a shape parameter � 1). Thus for most of the distributions of non-negative

valued random variables that are widely used in empirical analysis of auctions, the entry e¤ect is

positive and the competition e¤ect is negative. Thus, it is possible that the relationship between

the procurement cost and the number of potential bidders is non-monotone decreasing.

As expressed in Lemma 5 in Appendix, the expected winning bid W is a function of q�, N ,

and F (�). A direct consequence of Propsition 1 and (ii) in Proposition 4 is that under the same

condition as in Proposition 4, as the entry cost decreases, the procurement cost decreases as well.

This result is given in the following proposition.

Proposition 5 When c+ F (c)=f(c) is increasing in c, @W@k > 0.

Propositions 4 and 5 have important policy implications. They establish the relationships be-

tween the expected procurement cost and the number of potential bidders as well as the entry cost,

respectively. Since at the equilibrium, the social welfare is equal to the government�s private cost

minus the expected procurement cost because the expected payo¤ for a bidder is zero, Proposition

4 implies that it is possible that the social welfare can be worse o¤ as the potential competition

becomes more intense, while Proposition 5 indicates that in general the social welfare improves with

the entry cost reduced.
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4 Reduced-Form Empirical Tests of the Model

4.1 The Relationship between q� and N

First, we use our procurement auction data to test whether there is a negative relationship be-

tween the equilibrium entry probability q� and the number of potential bidders N , as predicted in

Proposition 2.

While q� is a conceptually de�ned random variable which is unobserved in our data, we can

use the information on the number of actual bidders and the number of potential bidders to infer

the relationship between q� and N . Since n, the number of actual bidders, is a count variable, we

assume that the number of actual bidders satis�es the following conditional mean condition

E(njx;N) = exp(x� +� logN) = N� exp(x�) (8)

as in a Poisson regression model or generalized count regression models. Under this conditional

mean assumption, using the Poisson quasi-MLE approach one can consistently estimate � as well

as �. Since (8) implies

E
� n
N
jx;N

�
= N��1 exp(x�); (9)

if the estimated � is less than 1, then as N increases, n
N , which is a good proxy for q

�, tends to

decrease.

We include the logarithm of the engineer�s estimate, logarithm of the number of working days,

logarithm of the acreage of the type-II full width mowing, logarithm of the acreage of other types

of mowing jobs, the number of items in the job, whether the job is a state job and whether it is

a highway job as the set of explanatory variables x in the poisson regression model. Estimation

results for the parameter � are reported in Table 2.

First, we note that the coe¢ cient on the number of potential bidders is signi�cant with a value

of 0.4011, which is strictly less than 1. This result can be viewed as a support of the inverse

relationship between q� and N . As the number of potential bidders increases, the equilibrium entry

probability decreases.

Second, since the theoretical model also predicts that the equilibrium entry probability is de-

creasing in the entry cost k as given in Proposition 1, those explanatory variables that are likely to

a¤ect the entry cost may also be signi�cant in the regression. For example, the number of items in
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the job has a signi�cant negative e¤ect on the number of actual bidders. This may be due to the fact

that more items a job has, more e¤ort a bidder needs to put into the evaluation and preparation of

the bids and hence the entry cost increases. It should be noted, however, because we do not directly

observe the entry cost k in the data, we cannot conduct a direct test of Proposition 1 about the

relationship between q� and k.

4.2 The Relationship between b and N

Second, we empirically examine the relationship between the equilibrium bids and the number

of potential bidders. We use log(bids) as our dependent variable and the same set of exogenous

variables as used in the regression in the last subsection.

We run two regressions. The �rst one is to pool all the bids together and use the standard

linear OLS regression. The OLS regression method is easy to implement but does not address

two important features of the auction data. First, we have 553 auctions with a total of 1606 bids.

Most of the auctions have more than one bid. This data structure is more like an unbalanced

panel data than a cross-section. Second, the OLS method does not control for the unobserved

auction heterogeneity that is observed by bidders when making their decisions but unobserved by

the econometrician. In view of these, besides the OLS, we estimate a random-e¤ects panel data

model.

The results from the two regressions are reported in Table 3 and Table 4. When we do not control

for the unobserved heterogeneity, the OLS regression model �ts the model well, with an adjusted R2

to be 0.9324, indicating that we include in the regression the most important exogenous variables. In

this regression, the number of potential bidders does not have a signi�cant e¤ect on bids at the 5%

level with a t�statistic value of -1.80. We then estimate a random e¤ects panel data model in order

to control for the unobserved auction heterogeneity. The results are reported in Table 4 indicating

that the number of potential bidders is even less signi�cant than in the OLS estimation with a

t-value of -1.14. Furthermore, the results from Table 4 support the existence of the unobserved

auction heterogeneity as the error variance from the unobserved heterogeneity accounts for 36% of

the total error variance. The statistical insigni�cance of N in explaining b can be viewed consistent

with the implication from our model as given in Proposition 3. At the same time, it calls for a

further structural analysis if one wants to quantify the �entry e¤ect�and the �competition e¤ect.�
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4.3 The Relationship between Winning Bid and N

Finally, we empirically examine the relationship between the winning bid and the number of po-

tential bidders. We use log(winning bid) as our dependent variable and the same set of exogenous

variables as used in the last two subsections.

The result from the OLS regression is reported in Table 5. In this regression, again, the number

of potential bidders does not have a statistically signi�cant e¤ect on the winning bid. Furthermore,

as we learn from the last subsection, ignoring the unobserved heterogeneity as in the OLS regression

tends to over estimate the signi�cance of this parameter. Therefore, this result can also be regarded

as consistent with the implication from our model as given in Proposition 4. Again, it calls for a

further structural analysis if one wants to quantify the �entry e¤ect�and the �competition e¤ect�

of the number of potential bidders on the winning bid.

5 (Joint) Structural Inference of the Entry and Bidding Equilib-

rium Models

In this section, we derive structural models for entry and bidding from the game-theoretic models

proposed in the last section. We then propose to use the semiparametric Bayesian method to

jointly estimate the structural model with the data from TDoT. The semiparametric Bayesian

method enables us to jointly estimate the entry and bidding model with the unobserved auction

heterogeneity being controlled for.

5.1 Structural Econometric Framework

For the structural model we consider with entry and without unobserved auction heterogeneity, it

can be shown that the private value distribution and the entry cost distribution are nonparametri-

cally identi�ed from observed bids and number of actual bidders.13 However, once the unobserved

heterogeneity is controlled for, the nonparametric identi�ability breaks down. We propose to adopt

the semiparametric approach. Speci�cally, let F`(�) denote the distribution of private costs for the
13For nonparametric inference of auction models, see Guerre, Perrigne and Vuong (2000), Li, Perrigne and Vuong

(2000, 2002), Athey and Haile (2002), Haile, Hong and Shum (2002), Hendricks, Pinkse and Porter (2003) among

others that are thoroughly surveyed in Athey and Haile (2004).
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`-th auction, ` = 1; : : : ; L, where L is the number of auctions. Assume that F` = F (�jx`; u`; �),

where x` is a vector of variables that represents the observed auction heterogeneity, and u` is a

variable representing the unobserved auction heterogeneity, both a¤ecting bidders�costs, and � is

an unknown parameter vector in B � IRm1 . u is assumed to be independent of x. Let f(�jx`; u`; �)

denote the corresponding density for bidders�private costs. Let N` denote the number of potential

bidders and n` denote the number of actual bidders at the `-th auction. An econometric issue

arising from modeling entry is that the entry cost k` at each auction is not observed. To resolve

this, we assume that k`, ` = 1; : : : ; L, are randomly drawn from a distribution H(�jx`; u`; �) with a

density h(�jx`; u`; �), where � is an unknown parameter vector in � � IRm2 .

5.2 Speci�cation and Solving the Equilibrium Models

In principle, one could adopt the semiparametric maximum likelihood estimation (e.g. Gallant and

Nychka (1987)) to estimate �, � and the distribution of u`. This method, however, is extremely

di¢ cult to implement in practice because of the complexity of the structural auction models under

consideration, particularly, because of the parameter dependent support problem associated with

the structural auction models.14 In view of this, we propose to use the recently developed semipara-

metric Bayesian estimation method to estimate the entry and bidding models jointly. This approach

o¤ers several considerable advantages. First, with data augmentation, the Bayesian Markov Chain

Monte Carlo (MCMC) estimation method is e¢ cient and relatively straightforward to implement.

Second, the MCMC gives us the �nite-sample properties of the resulting estimates. Third, in-

corporating a nonparametric unobserved heterogeneity component makes the speci�cation of the

model more �exible and hence the results more robust. Fourth, because of the parameter-dependent

support arising from structural auction models, classical likelihood based inference becomes non-

standard and computationally intensive as well. The Bayes estimator, on the other hand, is e¢ cient

according to the local asymptotic minmax criterion for standard loss functions such as squared error

loss as Chernozhukov and Hong (2004) as well as Hirano and Porter (2003) have shown, besides its

computational advantage thanks to the MCMC algorithm.

14Even for standard structural auction models without entry and unobserved heterogeneity, classical likelihood based

fully parametric inference becomes non-standard and computationally intensive because of the parameter-dependent

support problem. See, e.g. Donald and Paarsch (1993, 1996), Chernozhukov and Hong (2001), Hirano and Porter

(2003).
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In this paper, we parameterize the density of contractors�private costs for completing the project

as follows

f(cjx; u) = 1

exp(�+ x� + u)
exp[� 1

exp(�+ x� + u)
c]; (10)

for c 2 (0;1). The inclusion of the constant term � allows the normalization of u such that

E[u] = 0. As a result, the equilibrium bidding strategy given in (6) becomes15:

�(c) = c+

PN
j=2 PB(n = jjn � 2) exp[�

j�1
exp(�1)

c] exp(�1)j�1PN
j=2 PB(n = jjn � 2) exp[�

j�1
exp(�1)

c]
(11)

where �1 = �+ x� + u. We further specify the entry cost density as follows:

h(kjx; u) = 1

exp(
 + x� + u)
exp[� 1

exp(
 + x� + u)
k]; (12)

for k 2 (0;1).

Note that while we employ the exponential distributions for specifying the conditional distri-

butions of the private cost and entry cost given both observed and unobserved heterogeneities x

and u, we leave the distribution of the unobserved heterogeneity u unspeci�ed and will use the

data to reveal the distribution of u.16 Therefore, our speci�cation and the resulting approach are

semiparametric in nature, and are expected to yield more robust results than a fully parametric

speci�cation. Of course, these speci�cations help achieve identi�cation of the structural parameters

and the distribution of the unobserved auction heterogeneity from a classical viewpoint.

For the entry equilibrium, under these speci�cations for conditional densities of private costs

15See the derivation in Appendix.
16The literature on parametric estimation of auction models has usually used extreme value distributions such as

Weibull and exponential to specify private values distributions. See, e.g., Paarsch (1992, 1997), Donald and Paarsch

(1993, 1996), Haile (2001), Athey, Levin and Seira (2004). The speci�cation of the exponential distributions for the

conditional distributions of the private cost and the entry cost given both observed and unobserved heterogeneities

is not as restrictive as it seems. This is because while this speci�cation imposes that the conditional variance of the

private cost (or the entry cost) given the observed and unobserved heterogeneities is the square of the conditional

mean, this relationship no longer holds after the unobserved heterogeneity is integrated out. The same approach

has been widely used in microeconometrics such as in modeling counts or durations while controlling for unobserved

heterogeneity. Furthermore, in our setup, the distribution of the unobserved auction heterogeneity is unspeci�ed,

making our approach more robust. For modeling unobserved heterogeneity in micro data, see Heckman (2001) for an

insightful discussion.
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and entry costs, entry equilibrium equation (7) can be written as17

NX
j=2

8>>>>>>><>>>>>>>:

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1

exp(�1)

j(j � 1)

9>>>>>>>=>>>>>>>;
= k: (13)

Note that the term

NX
j=2

8>>>>>>><>>>>>>>:

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1

1

j(j � 1)

9>>>>>>>=>>>>>>>;
(14)

is a function of q� only given N and it goes to its maximum value 0.5 as q� ! 0. Therefore, the

entry cost equation implies that for this model, the entry costs in the observed auctions must satisfy

the following restriction k � 0:5 exp(�1), which has to be taken into account in estimation.

5.3 Semiparametric Bayesian Joint Estimation of Entry and Bidding

Our objective is to estimate the entry and bidding models jointly using both the observed numbers

of actual bidders and bids. Joint estimation of the entry and bidding models is intractable if not

impossible using the classical likelihood or moment based methods because of the complexity of the

two models and the presence of latent variables in both models. The Bayesian method, on the other

hand, provides a computationally feasible alternative because of the use of the data augmentation

and MCMC techniques. To make use of the semiparametric Bayesian estimation and the MCMC

algorithm, we �rst make some transformations. Let enew = � + u represent the (unnormalized)

unobserved heterogeneity term. Then �1 = x� + enew. With the private cost distribution speci�ed

above and equation (11) we can obtain the following implied distributions for the equilibrium bids:

f(bj�1) =
1

exp(�1)
exp[� 1

exp(�1)
�(b)]j@�(b)

@b
j; (15)

for b 2 [
PN
j=2 PB(n = jjn � 2)

exp(�1)
j�1 =

PN
j=2 PB(n = jjn � 2);1), where �(b) is the inverse bidding

function, and

@�(b)
@b =

hPN
j=2 PB(n=jjn�2) exp(�

j�1
exp(�1)

�(b))
i2hPN

j=2 PB(n=jjn�2) exp(�
j�1

exp(�1)
�(b)) 1

j�1

ihPN
j=2 PB(n=jjn�2) exp(�

j�1
exp(�1)

�(b))(j�1)
i : (16)

17See the derivation in Appendix.
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Note that the lower support of b expressed here clearly indicates its dependence on the structural

parameters, which violates the regularity conditions of the classical maximum likelihood estimation

(Donald and Paarsch (1993, 1996), Chernozhukov and Hong (2004), Hirano and Porter (2003)). Also

note that although equation (11) gives a complicated relationship between b and c, this relationship is

monotone increasing. Moreover, it is computationally tractable to compute both �(b) and @�(b)=@b,

and hence to evaluate (15). Also, de�ne

�2 = �1 � x�� � 
�

where �� = � � �; 
� = �� 
. we can rewrite (12) as

h(kj�1; ��; 
�) =
1

exp(�1 � x�� � 
�)
exp[� 1

exp(�1 � x�� � 
�)
k]; (17)

for k 2 (0;1).

In this mixed-strategy entry model, using (13) and (17), because of the one-to-one (inverse)

relationship between q� and k as discussed previously, the density for q� implied by the density of

k is

p(q�j�1; ��; 
�)

= h(kj�1; ��; 
�)� j
@k

@q�
j � 1I(k � 0:5 exp(�1)); (18)

where 1I(�) is an indicator function and

@k
@q� =

PN
j=2

8<:
0@ N � 1

j � 1

1A exp(�1)
j(j�1)

24 (j�1)(q�)j�2(1�q�)N�j
1�(1�q�)N�1 + (N�j)(q�)j�1(1�q�)N�j�1

1�(1�q�)N�1

� (N�1)(q�)j�1(1�q�)2N�j�2
(1�(1�q�)N�1)2

359=; : (19)

Since the distributions of u and thus of enew = �1�x� are left unspeci�ed, we use a nonparamet-

ric method to approximate it. Speci�cally, we use an in�nite mixture of normals to approximate the

unknown distributions. This is justi�ed because Ferguson (1983) notes that any probability density

function can be approximated arbitrarily closely in the L1 norm by a countable mixture of normal

densities.

f(�) =
1X
j=1

pj�(�jdj ; �2j ), (20)

where pj � 0,
1X
j=1

pj = 1 and �(�jdj ; �2j ) denotes the probability density function for a normal

distribution with mean dj and variance �2j . Note that this is a di¤erent speci�cation from the �nite
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mixture of normals as used in Geweke and Keane (2001) since we do not have a prior number of

components in the mixture of normals. Instead, we will use the Dirichlet process prior to carry

out the Bayesian nonparametric density estimation and update the number of components in the

in�nite mixture of normals and the mean and variance for each component.

We use the data augmentation approach (Tanner and Wong (1987)) and include unobservables

�1;` and q
�
` in the algorithm drawing them at each iteration and for all observations. Our semipara-

metric Bayesian estimation consists of two main parts. At each iteration, in the �rst part, using

the augmented latent variables �1;` and q
�
` and the current value of parameters, we can recover

the unobserved heterogeneity terms through the relationship enew;` = �1;` � x`�. After recovering

the unobserved heterogeneity terms, we can use a Bayesian approach explained in detail in the

appendix to estimate their densities with a Dirichlet process prior for the unknown densities. We

update the number of components (denoted by mc, say) in approximating mixture of normals and

the mean and variance of the normal denoted by d` and �2` respectively for each `. This approach

was introduced by Lo (1984) and Ferguson (1983), with later work by Escobar (1994), Escobar and

West (1995), and West, Müller, and Escobar (1994) discussing its computational issues.

In the second part of each iteration, we update the model parameters and values for the latent

variables. Denote � = (��; 
�). We will use the following prior distributions: � � N(�0; B
�1
0 ),

� � N(�0; D�10 ), where �0, B
�1
0 , �0, D�10 are known parameters. N(�0; B

�1
0 ) denotes a multivariate

normal distribution with mean vector �0 and covariance matrix B
�1
0 . Denote � = (�; �) and

x�` = (1; x`). Then the joint posterior density of the parameters and unobservables �1;` and q
�
`

given the data and the distribution of the unobserved heterogeneity terms is

�(�;
�
�1;`; q

�
`

	L
`=1

jb; n;
�
d`; �

2
`

	L
`=1
)

/ prior(�)�
LY
`=1

p(b1`; : : : ; bn``j�1;`; q�` )� p(n`jn` � 2; q�` )� p(q�` j�1;`;�)

�p(�1;`jd`; �2`)
nỲ
i=1

1I

24bi` � NX̀
j=2

PB(n` = jjn` � 2)
exp(�1;`)

(j � 1)

35
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/ prior(�)

�
LY
`=1

f 1

exp(n`�1;`)

(
� 1

exp(�1;`)

nX̀
i=1

�(bi`)

)
nỲ
i=1

j@�(bi`)
@bi`

j

�
nỲ
i=1

1I

24bi` � NX
j=2

PB(n` = jjn` � 2)
exp(�1;`)

(j � 1)

35

�

0@ N`

n`

1A (q�` )n`(1� q�` )N`�n`
1� (1� q�` )N` �N`q�` (1� q�` )N`�1

� 1

exp(�` � x�`�)
exp(� 1

exp(�1;` � x�`�)
k`)

�j@k`
@q�`

j � 1(k` � 0:5 exp(�1;`))

� 1q
2��2`

exp[�0:5��2` (�1;` � x`� � d`)
2] (21)

where18

k` =

NX̀
j=2

8>>>>>>><>>>>>>>:

0@ N` � 1

j � 1

1A (q�` )j�1(1� q�` )N`�j
1� (1� q�` )N`�1

exp(�1;`)

j(j � 1)

9>>>>>>>=>>>>>>>;
: (22)

We construct our Markov chain blocking the parameters and the latent variables as (�1;`; q
�
` ),

�, � and (d`; �2` ;mc) with the full conditional distributions: [�1;`, q
�
` j�; �

�; 
�d`; �
2
` ]; [�j�1;`; d`; �2` ],

[�j�1;`; q�` ], [d`; �2` ;mcj�1;`; �].The following steps summarize our algorithm.19

Sampling (�1;`; q�` ). Since the evaluation of the likelihood involves computing the inverse bidding

function �(bi`) at each iteration and for each bid, it is quite time consuming. In order to save

computational time, we propose to block (�1;`; q
�
` ) together rather than update them individually.

Note also that the posterior density for (�1;`; q
�
` ) does not have a form that can facilitate a direct

random draw from it. To overcome the associated computational problem, we propose to utilize the

18Note that here we modify the conditional distribution of the number of actual bidders to be a trucated binomial

distribution from below at 2. This is because we concentrate on the subsample of auctions with at least two actual

bidders in the structural estimation. This subset consists of 97.5% of the data; by the assumption of our model the

government does not play any role in these auctions.
19See the Appendix for details.
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Metropolis-Hasting (MH) algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953),

Hastings (1970)) to draw from the density.

Sampling �. Draw � given �1;`; d`, �2` and it�s prior, which is a normal distribution with variance

� =
�
B0 +

PL
`=1 �

�2
` x

0
`x`

��1
and mean � = �

�
B0�0 +

PL
`=1 �

�2
` x

0
`(�1;` � d`)

�
:

Sampling � = (��; 
�). The full conditional density for � = (��; 
�) is

�[�j�1;`; q�` ] = exp
�
� (�� �0)0D0 (�� �0) =2

�
�

LY
`=1

1

exp(�1;` � x�`�)
exp(� 1

exp(�1;` � x�`�)
k`) (23)

This posterior density does not allow one to make direct random draws. Again, we utilize the MH

algorithm.

Updating d`; �2` and mc. Get enew;` = �1;` � x`� and update d`, �2` , and mc using the non-

parametric Bayesian estimation method as outlined in the appendix.

These steps constitute one MCMC iteration. In the end, we will be able to obtain the posterior

densities for �, �, and 
 � �, as well as the nonparametric density for enew.20

6 Results

In this section, we present the estimation results for the structural elements of the joint bidding and

entry model. Since the mowing jobs are relatively simple, our data provide us enough information to

control for the observed auction heterogeneity. We choose x = flog(Estimate), log(Day), log(Full),

log(Other), Items, State, Interstateg. See the summary statistics and variable de�nitions in Table 1.

We center priors for parameters � � N(07; 10I7), � � N(08; 10I8) to re�ect weak prior information

on these parameters. 07 denotes a vector of length 7 for 0�s and I7 is the 7-dimensional identity

matrix. In the nonparametric component, we set �0 = 0, �0 = 4, N0 = 5, R0 = 10 and d1 = d2 = 2

since there is no information on the unobserved heterogeneity. Finally, the tuning parameters are

chosen to be h = 0:5, v = 15 and � = 1 to obtain reasonable acceptance rates in the MH steps

within the Gibbs Sampler.

We run the MCMC for 15,000 iterations, with an initial 5,000 burn-in period. Figure (2) and

Figure (3) provide the time series plots, the histograms and the autocorregrams for the sample

20Since enew = �+ u with E[u] = 0, we can also recover � from the estimated E[enew], and thus 
.
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draws. This MCMC sample size design appears to be adequate since the autocorrelations in the

�gures indicate that our sample mixes relatively well. With the current setting of tuning parameters,

the average acceptance rates are 12.12% for sampling (�1;`; q
�
` ) and 34.03% for sampling �. The

computation time for this algorithm is about 12.64 seconds per draw on average on a Pentium@ 4

2.40 GHz processor. More than half of the computation time is from calculating the inverse bidding

function. This computational burden is bearable considering the complexity of the estimation

problem we try to solve.

6.1 Parameter Estimates

We summarize the estimation results from the semiparametric Bayesian algorithm in Table 6. Note

that in the private value distribution, only the variable log(Estimate) has a large positive e¤ect on

the mean of bidders�private cost for completing the job. The estimated coe¢ cient is 0.9425, which

indicates that the engineer�s estimate is a good estimate for the costs of completing the job and

bidders use this information to determine their own private costs for a contract. 1 unit increase in

the log(Estimate) will increase the mean of bidders�private cost by 1.57 times.

Regarding the entry cost distribution, we also have interesting results. First, again, the log(Estimate)

turns out to have a large positive e¤ect on the entry cost. This is reasonable since contracts with

higher values usually involve more tasks and hence more cost estimation work and more paper work

for preparing the bids. Second, the estimate for the variable Items is 0.1817. This tells us that when

the auction has one more item, the entry cost is going to increase for about 19.93%. Also, a state

job will increase the entry cost for about 23.53%. This may be due to the fact that the state and

local jobs have di¤erent requirements for preparing for the bids. Also, the number of working days

in the job and whether the job is on an interstate highway appear to have small positive e¤ects on

the entry cost. Other variables seem to have no signi�cant e¤ects.

Furthermore, we use the structural estimates to �nd the entry cost in relation to the private cost

by simulating the entry cost and the private cost from the corresponding estimated distributions for

each auction. The average ratio between the entry cost and the private cost is about 13.8%, meaning

that the entry cost accounts for about 13.8% of the private cost. This �nding indicates that the

entry cost is a signi�cant part of bidders�decision making process and hence a theoretical model or

an empirical analysis that ignore the entry e¤ect may lead to misleading policy recommendations.
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We have also used the structural estimates to simulate the winner�s payo¤de�ned as the winning

bid less the sum of the private cost and the entry cost, as well as the winner�s information rent

de�ned as the ratio bewteen the winner�s payo¤ and the winning bid. It turns out that the average

winner�s payo¤ is $40,020 and the average information rent is 0.26.

6.2 Density Estimate for the Unobserved Heterogeneity

In the Bayesian framework, an informative way to draw implications from the unknown densities

of the error term enew;` is to study its predictive distribution since it summarizes the information

on the data. Parallel to equation (A.18), conditional on (�1; :::; �n); for the new unit ` = L+ 1; we

have

�L+1j(�1; :::; �L) �
�

� + L
P0 +

1

� + L

mcX
j=1

nj�(�j); (24)

where nj is the number of �i�s taking the value �j . Thus, the distribution of enew;`+1 conditional

on the data can be rewritten as

q(enew;L+1j�1; :::; �L) =
�

� + L
qt(enew;L+1j�0; (1 + �0)R0=n0; n0) (25)

+
1

� + L

mcX
j=1

nj�(enew;L+1j�j).

Thus the predictive distribution for the error term enew;L+1 can be obtained as

q(enew;L+1jdata) =
Z
q(enew;L+1j�1; :::; �L)�(�1; :::; �Ljdata)d(�1; :::; �L): (26)

Since the Gibbs sampler provides draws for �`�s, we can use the Monte Carlo method to integrate

out �`�s to estimate q(enew;L+1jdata) as

bq(enew;L+1jdata) = 1

M

MX
i=1

q(enew;L+1j�(i)1 ; :::; �
(i)
L ); (27)

where (�(i)1 ; :::; �
(i)
L ) is a simulated sample of (�1; :::; �L).

Figure (4) plots the estimated predictive density for the unobserved term enew. This indicates

that there exists substantial unobserved heterogeneity in both the private value and entry cost

distributions. The mode of the density is around -0.3. Furthermore, notice that the estimated

density is asymmetric and slightly left skewed. This is an evidence of the nonnormality of the
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unobserved heterogeneity, which demonstrates the need for the nonparametric modelling of this

density.21

6.3 Model Fit

To assess the �t of our model, we simulate auctions in our data set using the structural estimates we

obtain from the semiparametric Bayesian estimation. For each auction ` in the data, we simulate an

entry cost k from the exponential density with mean exp(�2;`), where �2;` is the posterior mean of

the draws of �2;` during the MCMC iterations. The drawn k must satisfy the restriction required by

the model, that is, k � 0:5 exp(�1;`). We then use this entry cost, together with exp(�1;`), which is

the posterior mean of the draws of exp(�1;`) during the MCMC iterations and other auction speci�c

covariates to calculate the equilibrium entry probability for this auction. We then simulate the

number of the actual bidders n using the equilibrium entry probability and the number of potential

bidders for this auction. Then, we simulate n private costs from the exponential distribution with the

mean of exp(�1;`). Finally, we calculate the equilibrium bids using the equilibrium bidding functions

and determine the procurement cost for this auction. We repeat this procedure for 500 times to

obtain a simulated mean of the procurement cost for this auction. We perform this analysis for all

the auctions in our data and compare the simulated procurement costs with the actual procurement

costs in our data.

Figure (5) presents this comparison. The upper panel displays the histogram for the actual

procurement costs in our data while the lower panel displays the histogram for the means of the

simulated procurement costs. As one can see, the two histograms are very similar to each other,

indicating that our model �ts the data very well.

21Though the estimated predictive density in Figure (4) looks like a normal density, it is actually a mixture of t

and normal densities as can be seen from equation (27) and hence is nonnormal.
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7 Counterfactual Analysis

7.1 Quantifying the �Competition E¤ect� and the �Entry E¤ect� of Number

of Potential Bidders N on b

One interesting theoretical relationship we obtain from Section 3 is that in our model, the relation-

ship between the number of potential bidders, N , and the individual bid, b, may not be monotone

decreasing. This is due to the two e¤ects of N on b. One is the �competition e¤ect�and the other

is the �entry e¤ect.� As given in Proposition 3, the �competition e¤ect� is always negative and

the �entry e¤ect�is always positive. As a result, as the number of potential bidders increases, the

equilibrium bid is increasing as well, provided that the positive �entry e¤ect�dominates the nega-

tive �competition e¤ect.� If this is the case, policies that encourage more potential bidders might

actually increase the equilibrium bid. One advantage of the structural approach is that it enables

us to use the structural estimates to conduct a counterfactual analysis to quantify the �competition

e¤ect�and the �entry e¤ect�of N on b separately.

To quantify the �competition e¤ect�and the �entry e¤ect,�we run a counterfactual experiment

for a representative auction. We pick the 123th auction in our dataset. This auction has 11

potential bidders, which is the mean value for the number of potential bidders in our dataset.

Also, the engineer�s estimate for this auction is $170,060, which is very close to the mean value of

engineer�s estimate $165,348.90. We use the last 1,000 iterations of our MCMC algorithm for this

counterfactual experiment. At each iteration, with the simulated values of �1;123 and k123, where the

subscript 123 denotes the 123th auction, we can recover a unique q�123 for this auction for each value

of N . To quantify the �competition e¤ect,�we set the private cost c at exp(�1;123), where �1;123 is

the posterior mean of the draws of �1;123 during the MCMC iterations across all the iterations and

then calculate the equilibrium bid using the equilibrium bidding function. We vary the number of

potential bidders from 3 to 26, which are the minimum and the maximum observed values in the

data. Note that as we vary the number of potential bidders from N to N +1, the q�123 is �xed. For

each value of the potential bidders N , we report the change in the equilibrium bid from N to N +1

as the �competition e¤ect.�

On the other hand, quantifying the �entry e¤ect�directly is di¢ cult, but quantifying the �total

e¤ect�from N to b is relatively straightforward. After we get the �total e¤ect,�the �entry e¤ect�
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can be easily computed as the di¤erence between the �total e¤ect� and the �competition e¤ect.�

To calculate the �total e¤ect,� we use almost the same simulation setup as in quantifying the

�competition e¤ect.�The only di¤erence here is that as we vary the number of potential bidders

from N to N+1, we obtain a new q�123 instead of using the �xed q
�
123. For each value of the potential

bidders N , we report the change in the equilibrium bid from this simulation as the �total e¤ect.�

We plot the simulated mean of the �competition e¤ect,�the �entry e¤ect�and the �total e¤ect�

and their corresponding con�dence bands from the counterfactual experiment in Figure (6). The

x�axis denotes the number of potential bidders N and the y�axis represents the change in the

equilibrium bid from increasing the number of potential bidders from N to N + 1. Figure (6)

reveals several interesting results. First, an obvious feature of the plot is that when the number of

potential bidders increases, the �competition e¤ect�is always negative. This is consistent with the

theory since as the number of potential bidders increases and the equilibrium entry probability is

�xed, then bidders would anticipate more actual bidders and bid more aggressively. Second, the

�entry e¤ect�is always positive, which is also consistent with what our model implies. This shows

that the entry behavior in these auctions actually make the bidders to bid less aggressively, all

else being equal. Third, the simulated mean of �total e¤ect� from N on b is positive for N � 7.

This demonstrates that in our simulation setup, on average, the positive �entry e¤ect� weakly

dominates the negative �competition e¤ect� for a wide range of the number of potential bidders.

In more detail, when N = 7, the simulated mean of the equilibrium bid for this representative

auction is $146,431.45. But the simulated mean of the equilibrium bid becomes $149,704.62 (or

1.83% increase) when N = 12 and $154,328.57 (or 5.39% increase) when N = 26. This �nding is

interesting since in the usual IPV auction model without entry, bidders will bid more aggressively

when facing a larger number of potential bidders. In our case, however, when the endogenous entry

matters and the bidders do not know the number of actual bidders when they submit bids, the bids

actually become less aggressive.

7.2 Quantifying the �Competition E¤ect� and the �Entry E¤ect� of Number

of Potential Bidders N on Procurement Costs

Another interesting theoretical relationship we obtain from Section 3 is that in our model, the

relationship between the number of potential bidders, N , and the procurement cost, W , may not
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be monotone decreasing. Again, this is due to the two e¤ects of N on W . One is the �competition

e¤ect�and the other is the �entry e¤ect.�As given in Proposition 4, the �competition e¤ect�can

be negative and the �entry e¤ect�can be positive. If this is indeed the case, then as the number of

potential bidders increases, the government�s procurement cost is increasing as well, provided that

the positive �entry e¤ect�dominates the negative �competition e¤ect.�This means that policies that

encourage more potential bidders might actually increase the government�s procurement costs. We

now use the structural estimates to conduct a counterfactual analysis to quantify the �competition

e¤ect�and the �entry e¤ect�of N on the procurement costs separately.

To quantify the �competition e¤ect� and the �entry e¤ect,� we again run a counterfactual

experiment for the same representative auction. As in the previous subsection, we use the last 1,000

iterations of our MCMC algorithm for this counterfactual experiment. At each iteration, with the

simulated values of �1;123 and k123, we can recover a unique q
�
123 for this auction for each value of

N . To quantify the �competition e¤ect,�we compute the expected winning bid using its formula

derived in Lemma 5 in Appendix. We vary the number of potential bidders from 3 to 26. Note that

as we vary the number of potential bidders from N to N + 1, the q�123 is �xed. For each value of

the potential bidders N , we report the change in the expected winning bid from N to N +1 as the

�competition e¤ect.�

On the other hand, since quantifying the �entry e¤ect�directly is di¢ cult, we again �rst quantify

the �total e¤ect�from N to the procurement cost, which is relatively straightforward. After we get

the �total e¤ect,� the �entry e¤ect� can be easily computed as the di¤erence between the �total

e¤ect�and the �competition e¤ect.�To calculate the �total e¤ect,�we use almost the same setup

as in quantifying the �competition e¤ect.�The only di¤erence here is that as we vary the number

of potential bidders from N to N +1, we obtain a new q�123 instead of using the �xed q
�
123. For each

value of the potential bidders N , we report the change in the expected winning bid as the �total

e¤ect.�

We plot the simulated mean of the �competition e¤ect,�the �entry e¤ect�and the �total e¤ect�

and their corresponding con�dence bands from the simulation in Figure (7). The x�axis denotes

the number of potential bidders N and the y�axis represents the change in the expected winning

bid (procurement cost) from increasing the number of potential bidders from N to N+1. Figure (7)

reveals several interesting results. First, an obvious feature of the plot is that when the number of
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potential bidders increases, the �competition e¤ect�is always negative. Second, the �entry e¤ect�is

always positive. Third, the positive �entry e¤ect�signi�cantly dominates the negative �competition

e¤ect,�leading to a positive �total e¤ect�for a wide range of the number of potential bidders. This

implies that the relationship between N and W is not monotone decreasing, which is consistent

with our theoretical result. We also �nd from the experiment that the expected winning bid hits

its lowest point when N = 3, which is $112,390.01 for this representative auction. But the expected

winning bid becomes $152,666.15 (or 35.84% increase) when N = 12 and $152,165.71 (or 35.39%

increase) when N = 26. This interesting �nding indicates that with the endogenous entry and

uncertain number of actual bidders, the procurement cost can actually become less aggressive, as

the number of potential bidders increases. Thus, in this kind of auction environment, policies that

encourage more potential bidders may not be desirable, especially when the existing number of

potential bidders is small, as evidenced from our analysis.

7.3 Quantifying the Savings on Procurement Costs by Reducing the Entry Cost

From the estimation results, we �nd strong evidence that part of the bids are used to recover bidders�

entry cost. Therefore, it is interesting to quantify the savings on the government�s procurement

costs by reducing bidders�entry cost. This has important policy implications since if the savings

is substantial, then the government can improve social welfare by designing mechanisms to reduce

the entry cost.

To quantify the savings, we again run a counterfactual experiment for the same representative

auction. We �rst set the entry cost k at exp(�2;123), where �2;123 is the posterior mean of the draws

of �2;123 during the MCMC iterations across all the iterations and u1;123 set at similarly de�ned

�1;123. This allows us to recover a unique q
�
123 for this auction and thus compute the expected

winning bid using its formula derived in Lemma 5 in Appendix. We then re-do the analysis by

setting the entry cost k at 20%, 50% and 80% of its original level, that is, at 0:2 � exp(�2;123),

0:5 � exp(�2;123) and 0:8 � exp(�2;123) respectively. This di¤erence between the two settings can

be regarded as the savings on procurement costs by reducing the entry cost. Our results show

that by reducing the entry cost to half of its original level, the government can save approximately

28.18% of the procurement cost for this particular auction. The savings are 44.49% and 7.19% of

the procurement cost if the entry cost is reduced to be 20% and 80% of its original level respectively.
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8 Conclusion

In this paper, we propose a two-stage procurement auction model with endogenous entry and

uncertain number of actual bidders. Our model yields several interesting implications, which are

supported by the data we analyze. Most importantly, for the �rst time, we show that even within the

IPV paradigm, as the number of potential bidders increases, bidders�equilibrium bidding behavior

can become less aggressive. We also show that this can be the case for the procurement cost as well.

Thus, increasing potential competition may not necessarily bene�t the auctioneer. Whether this is

the case is an empirical question that can be answered through a rigorous structural analysis, as

evidenced from our paper.

In order to answer this question, among others that may be of interest to the auctioneer or/and

policy makers, we develop a fully structural model for entry and bidding based on the game-theoretic

model of entry and bidding with uncertain number of actual bidders proposed in this paper. To

circumvent the complexity associated with our structural model for entry and bidding and the

need for controlling for the unobserved auction heterogeneity, we propose a new semiparametric

Bayesian estimation algorithm to estimate the structural elements of the model. With our structural

approach, we are able to signify the e¤ect from the unobserved auction heterogeneity and quantify

the �entry e¤ect�and the �competition e¤ect.�Therefore, our paper contributes to the literature

by providing a uni�ed framework to study procurement auctions with entry and unobserved auction

heterogeneity, and sheds light on empirical analyses of other auctions.
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Appendix I: Proofs

1. Proof of Proposition 1 Using the equilibrium bidding strategy (6), the entry equation (2)

can be rewritten asZ c

c

NX
j=2

[PB(n = jjn � 2)
Z c

c
(1� F (x))j�1dx]f(c)dc = k: (A.1)

Denote
R c
c

R c
c (1� F (x))

j�1dx]f(c)dc = E�j , we have the following equation:

NX
j=2

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1 E�j � k = 0: (A.2)

The di¤erential of (A.2) with respect to q� and k can be written as

NX
j=2

0@ N � 1

j � 1

1A (j � 1)(q�)j�2(1� q�)N�j
1� (1� q�)N�1 E�jdq

�

_
NX
j=2

0@ N � 1

j � 1

1A (N � j)(q�)j�1(1� q�)N�j�1

1� (1� q�)N�1 E�jdq
�

�
NX
j=2

0@ N � 1

j � 1

1A (N � 1)(q�)j�1(1� q�)N�j(1� q�)N�2

[1� (1� q�)N�1]2
E�jdq

�

= dk;

which can be further simpli�ed as

NX
j=2

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
[1� (1� q�)N�1] q�(1� q�)�

(j � 1)(1� q�)� (N � j)q� � q
�(N � 1)(1� q�)N�1
1� (1� q�)N�1

�
E�jdq

�

= dk
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Now, change the variable using l = j � 1, we get the following:

1

q�(1� q�)

N�1X
l=1

0@ N � 1

l

1A (q�)l(1� q�)N�1�l
[1� (1� q�)N�1]

�
l � (N � 1)q�

1� (1� q�)N�1

�
E�l+1dq

� = dk

Note, here

N�1X
l=1

0@ N � 1

l

1A (q�)l(1� q�)N�1�l
[1� (1� q�)N�1]

�
l � (N � 1)q�

1� (1� q�)N�1

�
E�l+1 = Cov(l; E�l+1)

since

0BB@ N � 1

l

1CCA(q�)l(1�q�)N�1�l
[1�(1�q�)N�1] is PB(ljl � 1) and E(ljl � 1) = (N�1)q�

1�(1�q�)N�1 from Lemma 1

below. Therefore,
dq�

dk
=

q�(1� q�)
Cov(l; E�l+1)

< 0 if Cov(l; E�l+1) < 0:

From the de�nition for E�j above, we can easily see that Cov(l; E�l+1) < 0. This completes

the proof.

2. Lemma 1

E(ljl � 1) = (N � 1)q�
1� (1� q�)N�1

Proof

E(ljl � 1) =

N�1X
l=1

0@ N � 1

l

1A (q�)l(1� q�)N�1�l
[1� (1� q�)N�1] l

= (N � 1)q�
N�1X
l=1

0@ N � 2

l � 1

1A (q�)l�1(1� q�)N�2�(l�1)
[1� (1� q�)N�1]
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=
(N � 1)q�

[1� (1� q�)N�1]

N�1X
l=1

0@ N � 2

l � 1

1A (q�)l�1(1� q�)N�2�(l�1)
=

(N � 1)q�
[1� (1� q�)N�1]

N�2X
m=0

0@ N � 2

m

1A (q�)m(1� q�)N�2�m
=

(N � 1)q�
[1� (1� q�)N�1] (q

� + 1� q�)N�2

=
(N � 1)q�

[1� (1� q�)N�1] :

3. Proof of Proposition 2 Rewrite the entry equation (2) or (A.1) as k = g(N; q�), then by

total di¤erentiation of k with respect to N , we get dk
dN = @k

@N +
@k
@q�

@q�

@N . Set
dk
dN = 0 since both

k and N are exogenous, it gives
@q�

@N
= � @k

@N
� @q

�

@k
:

Since @q�

@k < 0 from the last proposition, @q
�

@N has the same sign as @k
@N . With

@k
@N < 0 proved

by Lemma 2 below, this completes the proof.

4. Lemma 2 @k
@N < 0:

Proof By de�nition of equation (A.1),Z c

c

NX
j=2

[PB(n = jjN � n � 2)
Z c

c
(1� F (x))j�1dx]f(c)dc = kN ; (A.3)

where kN denotes the equilibrium entry cost with N potential bidders and entry probability

q�. Similarly,Z c

c

N+1X
j=2

[PB(n = jjN + 1 � n � 2)
Z c

c
(1� F (x))j�1dx]f(c)dc = kN+1: (A.4)

Since

1 =

NX
j=2

PB(n = jjN � n � 2) =
NX
j=2

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1

=

N+1X
j=2

0@ N

j � 1

1A (q�)j�1(1� q�)N+1�j
1� (1� q�)N =

N+1X
j=2

PB(n = jjN + 1 � n � 2);
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,

(q�)N

1� (1� q�)N =
NX
j=2

266666664

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1 �

0@ N

j � 1

1A (q�)j�1(1� q�)N+1�j
1� (1� q�)N

377777775
:

(A.5)

Using equations (A.3) and (A.4),

kN � kN+1 =

Z c

c

NX
j=2

266666664

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1

Z c

c
(1� F (x))j�1dx

377777775
f(c)dc

�
Z c

c

N+1X
j=2

266666664

0@ N

j � 1

1A (q�)j�1(1� q�)N+1�j
1� (1� q�)N

Z c

c
(1� F (x))j�1dx

377777775
f(c)dc

=

Z c

c

NX
j=2

266666664

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1

Z c

c
(1� F (x))j�1dx

377777775
f(c)dc

�
Z c

c

NX
j=2

266666664

0@ N

j � 1

1A (q�)j�1(1� q�)N+1�j
1� (1� q�)N

Z c

c
(1� F (x))j�1dx

377777775
f(c)dc

�
Z c

c

(q�)N

1� (1� q�)N
Z c

c
(1� F (x))Ndxf(c)dc (using equation (A.5))

=

Z c

c

NX
j=2

�
Aj

Z c

c
(1� F (x))j�1dx

�
f(c)dc�

Z c

c

NX
j=2

�
Aj

Z c

c
(1� F (x))Ndx

�
f(c)dc

=

Z c

c

NX
j=2

�
Aj �

Z c

c

�
(1� F (x))j�1 � (1� F (x))N

�
dx

�
f(c)dc;
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where

Aj =

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j
1� (1� q�)N�1 �

0@ N

j � 1

1A (q�)j�1(1� q�)N+1�j
1� (1� q�)N :

If for all j = 1; 2; :::; N , Aj > 0, then kN �kN+1 > 0 and hence @k
@N < 0 as desired. Otherwise,

note that

Aj =

0@ N � 1

j � 1

1A (q�)j�1(1� q�)N�j " 1

1� (1� q�)N�1 �
N

N�j+1
1
1�q � (1� q)N�1

#
:

As j increases,
N

N�j+1
1

1�q�(1�q)N�1
increases. Thus, there exists a j0 such that for j < j0, Aj > 0

and for j � j0, Aj < 0. Therefore,

kN � kN+1 �
Z c

c

j0�1X
j=2

�
Aj �

Z c

c

�
(1� F (x))j0�1 � (1� F (x))N

�
dx

�
f(c)dc

+

Z c

c

NX
j=j0

�
Aj �

Z c

c

�
(1� F (x))j0�1 � (1� F (x))N

�
dx

�
f(c)dc

�
Z c

c

NX
j=2

�
Aj �

Z c

c

�
(1� F (x))j0�1 � (1� F (x))N

�
dx

�
f(c)dc

=

Z c

c

(q�)N

1� (1� q�)N
Z c

c

�
(1� F (x))j0�1 � (1� F (x))N

�
dxf(c)dc > 0;

where we use the relationship (q�)N

1�(1�q�)N =
PN
j=2Aj from equation (A.5). This completes the

proof.

5. Proof of Proposition 3 Rewrite the equilibrium bidding strategy equation (6) as b =

h(N; q�); the total di¤erentiation of b with respect to N is

db

dN
=
@b

@N
+
@b

@q�
� @q

�

@N
:

This equation illustrates that the number of potential bidders, N , a¤ects the equilibrium bids

in two channels. The �rst channel is the usual �competition e¤ect,� as represented by @b
@N ,

which is negative as proved by Lemma 3 below. The second channel, which we call the �entry

e¤ect,�directs the e¤ects of N on b through the entry stage. This �entry e¤ect� is positive

since @b
@q� < 0 as proved in lemma 4 below and

@q�

@N < 0 as proved in proposition 2. Therefore,
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the sign of db
dN depends on which of the two e¤ects, the �competition e¤ect� or the �entry

e¤ect,� is large. In some cases, the �competition e¤ect�dominates the �entry e¤ect�and in

other cases, it is vice versa. Hence, there is no monotone decreasing relationship between b

and N .

6. Lemma 3 @b
@N < 0.

Proof From the equilibrium bidding strategy, we have

bN = c+

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j

R c
c (1� F (x))

j�1dxPN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (c))j�1

= c+

Z c

c

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (x))j�1PN

j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (c))j�1

dx:

Then if PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (x))j�1PN

j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (c))j�1

decreases with N , then bN decreases with N and the proof is done. Denote 1�F (x) = a and

1� F (c) = d. Note that x takes values on (c, c), which implies a < d. Then,

bN � bN�1 =

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (x))j�1PN

j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�j(1� F (c))j�1

�
PN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�j(1� F (x))j�1PN+1

j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�j(1� F (c))j�1

=

PN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�jdj�1

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�jaj�1PN

j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�jdj�1

PN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�jdj�1

�
�
PN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�jaj�1

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�jdj�1PN

j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�jdj�1

PN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�jdj�1

:

Therefore, the sign of bN � bN�1 is determined byPN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�jdj�1

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�jaj�1

�
PN+1
j=2

�
N
j�1
�
(q�)j�1(1� q�)N+1�jaj�1

PN
j=2

�
N�1
j�1

�
(q�)j�1(1� q�)N�jdj�1

: (A.6)
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We now show that this term is greater than 0. The �rst term is

N+1X
j=2

�
N

j � 1

�
(q�)j�1(1� q�)N+1�jdj�1

NX
j=2

�
N � 1
j � 1

�
(q�)j�1(1� q�)N�jaj�1

=

��
N

1

�
q�(1� q�)N�1d+

�
N

2

�
(q�)2 (1� q�)N�2d2 + :::+

�
N

N

�
(q�)N dN

�
�
��
N � 1
1

�
q�(1� q�)N�2a+

�
N � 1
2

�
(q�)2 (1� q�)N�3a2 + :::+

�
N � 1
N � 1

�
(q�)N�1 aN�1

�

=

24 �N1 ��N�11 � (q�)2 (1� q�)2N�3ad+ �N1 ��N�12 � (q�)3 (1� q�)2N�4a2d+
:::+

�
N
1

��
N�1
N�1

�
(q�)N (1� q�)N�1aN�1d

35
+

24 �N2 ��N�11 � (q�)3 (1� q�)2N�4ad2 + �N2 ��N�12 � (q�)4 (1� q�)2N�5a2d2+
:::+

�
N
2

��
N�1
N�1

�
(q�)N+1 (1� q�)N�2aN�1d2

35
+::::

+

24 �NN��N�11 � (q�)N+1 (1� q�)N�2adN + �NN��N�12 � (q�)N+2 (1� q�)N�3a2dN+
:::+

�
N
N

��
N�1
N�1

�
(q�)2N�1 aN�1dN

35 : (A.7)

Note that after the expansion, equation (A.7) has N(N � 1) terms. It has N rows and each

row has N � 1 columns. Similarly, the second term can be expanded as

N+1X
j=2

�
N

j � 1

�
(q�)j�1(1� q�)N+1�jaj�1

NX
j=2

�
N � 1
j � 1

�
(q�)j�1(1� q�)N�jdj�1

=

��
N

1

�
q�(1� q�)N�1a+

�
N

2

�
(q�)2 (1� q�)N�2a2 + :::+

�
N

N

�
(q�)N aN

�
�
��
N � 1
1

�
q�(1� q�)N�2d+

�
N � 1
2

�
(q�)2 (1� q�)N�3d2 + :::+

�
N � 1
N � 1

�
(q�)N�1 dN�1

�

=

24 �N1 ��N�11 � (q�)2 (1� q�)2N�3ad+ �N1 ��N�12 � (q�)3 (1� q�)2N�4ad2+
:::+

�
N
1

��
N�1
1�1

�
(q�)N (1� q�)N�1adN�1

35

+

24 �N2 ��N�11 � (q�)3 (1� q�)2N�4a2d+ �N2 ��N�12 � (q�)4 (1� q�)2N�5a2d2+
:::+

�
N
2

��
N�1
N�1

�
(q�)N+1 (1� q�)N�2a2dN�1

35
+::::

+

24 �NN��N�11 � (q�)N+1 (1� q�)N�2aNd+ �NN��N�12 � (q�)N+2 (1� q�)N�3aNd2+
:::+

�
N
N

��
N�1
N�1

�
(q�)2N�1 aNdN�1

35 :(A.8)
Again after expansion, equation (A.8) has N(N � 1) terms. It has N rows and each row has

N � 1 columns. Now, we have two expressions (A.7) and (A.8), each of which has N(N � 1)
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terms. Those terms are best indexed by the powers of a and d. In the �rst expression, we

have terms with powers like

ad; ad2; :::; adN ;

a2d; a2d2; :::a2dN ;

:::::

aN�1d; aN�1d2; :::aN�1dN ;

while in the second expression, we have terms like

ad; ad2; :::; adN�1;

a2d; a2d2; :::a2dN�1;

:::::

aNd; aNd2; :::aNdN�1:

Furthermore, notice that a term with power aidj in expression (A.7) has the coe¢ cient as�
N

j

��
N � 1
i

�
(q�)i+j (1� q�)2N�1�(i+j);

while a term has power aidj in expression (A.8) has the coe¢ cient as�
N

i

��
N � 1
j

�
(q�)i+j (1� q�)2N�1�(i+j):

Therefore, when we subtract the second expression from the �rst expression in equation (A.6),

those terms with power indices i = j cancel with each other. For a generic i and j with

i � N � 1, j � N � 1 and without loss of generality, i < j, we can combine the four terms�
N

j

��
N � 1
i

�
(q�)i+j (1� q�)2N�1�(i+j)aidj +

�
N

i

��
N � 1
j

�
(q�)i+j (1� q�)2N�1�(i+j)ajdi

�
�
N

i

��
N � 1
j

�
(q�)i+j (1� q�)2N�1�(i+j)aidj �

�
N

j

��
N � 1
i

�
(q�)i+j (1� q�)2N�1�(i+j)ajdi

=

��
N

j

��
N � 1
i

�
�
�
N

i

��
N � 1
j

��
(q�)i+j (1� q�)2N�1�(i+j)aidj

+

��
N

i

��
N � 1
j

�
�
�
N

j

��
N � 1
i

��
(q�)i+j (1� q�)2N�1�(i+j)ajdi

=

��
N

j

��
N � 1
i

�
�
�
N

i

��
N � 1
j

��
(q�)i+j (1� q�)2N�1�(i+j)

�
aidj � ajdi

�
:
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Since i < j,

aidj � ajdi = aidi
�
dj�i � aj�i

�
> 0 since a < d:

Also, �
N

j

��
N � 1
i

�
�
�
N

i

��
N � 1
j

�
=

N !

(N � j)!j!
(N � 1)!

(N � 1� i)!i! �
N !

(N � i)!i!
(N � 1)!

(N � 1� j)!j!

=
N !(N � 1)!

j!i!

�
1

(N � j)!(N � 1� i)! �
1

(N � i)!(N � 1� j)!

�
> 0 since i < j:

Therefore, the combination of the above four terms will yield a value greater than 0. Now,

the rest are the terms with powers

adN ; a2dN :::aN�1dN :

in expression (A.7) and terms with powers

aNd; aNd2; :::aNdN�1:

in expression (A.8). Then each pair, for example,�
N

N

��
N � 1
1

�
(q�)N+1 (1� q�)N�2adN �

�
N

N

��
N � 1
1

�
(q�)N+1 (1� q�)N�2aNd

=

�
N

N

��
N � 1
1

�
(q�)N+1 (1� q�)N�2ad(dN�1 � aN�1) > 0 since a < d:

Thus, we make a combination of the 2N(N � 1) terms in such a way that each resulting term

is positive. This completes the proof.

7. Lemma 4 @b
@q� < 0.

Proof From the equilibrium bidding strategy, we have

bN = c+

PN
j=2 PB(n = jjN � n � 2)

R c
c (1� F (x))

j�1dxPN
j=2 PB(n = jjN � n � 2)(1� F (c))j�1

:

Then

@b
@q� /

PN
j=2

@PB(n=jjN�n�2)
@q�

R c
c (1� F (x))

j�1dx
PN
j=2 PB(n = jjN � n � 2)(1� F (c))j�1

�
PN
j=2 PB(n = jjN � n � 2)

R c
c (1� F (x))

j�1dx
PN
j=2

@PB(n=jjN�n�2)
@q� (1� F (c))j�1:
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After expansion, @b
@q� becomes a sum of (N � 1)(N � 2)=2 terms. Each term can be expressed

by

@PB(n=jjN�n�2)
@q�

R c
c (1� F (x))

j�1dxPB(n = kjN � n � 2)(1� F (c))k�1

�PB(n = kjN � n � 2)
R c
c (1� F (x))

k�1dx@PB(n=jjN�n�2)@q� (1� F (c))j�1

+@PB(n=kjN�n�2)
@q�

R c
c (1� F (x))

k�1dxPB(n = jjN � n � 2)(1� F (c))j�1

�PB(n = jjN � n � 2)
R c
c (1� F (x))

j�1dx@PB(n=kjN�n�2)@q� (1� F (c))k�1

(A.9)

for 2 � j < k � N . Therefore, if each term of (A.9) is negative, then the proof @b
@q� < 0 is

done. Simplifying it, we getR c
c (1� F (x))

j�1dx(1� F (c))k�1

�
h
@PB(n=jjN�n�2)

@q� PB(n = kjN � n � 2)� @PB(n=kjN�n�2)
@q� PB(n = jjN � n � 2)

i
+
R c
c (1� F (x))

k�1dx(1� F (c))j�1

�
h
@PB(n=kjN�n�2)

@q� PB(n = jjN � n � 2)� @PB(n=jjN�n�2)
@q� PB(n = kjN � n � 2)

i
=
h
@PB(n=jjN�n�2)

@q� PB(n = kjN � n � 2)� @PB(n=kjN�n�2)
@q� PB(n = jjN � n � 2)

i
�
hR c
c (1� F (x))

j�1dx(1� F (c))k�1 �
R c
c (1� F (x))

k�1dx(1� F (c))j�1
i
:

(A.10)

Here, hR c
c (1� F (x))

j�1dx(1� F (c))k�1 �
R c
c (1� F (x))

k�1dx(1� F (c))j�1
i

=
hR c
c (1� F (x))

j�1(1� F (c))k�1dx�
R c
c (1� F (x))

k�1(1� F (c))j�1dx
i

=
R c
c (1� F (x))

j�1(1� F (c))j�1
�
(1� F (c))k�j � (1� F (x))k�j

�
dx > 0

Also, since

PB(n = kjN � n � 2) =
�
N�1
k�1

�
(q�)k�1(1� q�)N�k=

�
1� (1� q�)N

�
= (N�1)!

(N�k)!(k�1)!
(q�)k�1(1�q�)N�k

1�(1�q�)N

= (N�1)!(N�j)(N�j�1):::(N�k)
(N�j)!(j�1)!(k�1)(k�2):::(j)

(q�)j�1(1�q�)N�j(q�)k�j(1�q�)j�k
1�(1�q�)N

= (N�j)(N�j�1):::(N�k)
(k�1)(k�2):::(j) PB(n = jjN � n � 2)(q�)k�j(1� q�)j�k:

we have,
@PB(n=kjN�n�2)

@q�

= @PB(n=jjN�n�2)
@q�

(N�j)(N�j�1):::(N�k)
(k�1)(k�2):::(j) (q�)k�j(1� q�)j�k

+ (N�j)(N�j�1):::(N�k)
(k�1)(k�2):::(j) PB(n = jjN � n � 2)

�
�
(k � j)(q�)k�j�1(1� q�)j�k + (k � j)(q�)k�j(1� q�)j�k�1

�
:
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Thus,h
@PB(n=jjN�n�2)

@q� PB(n = kjN � n � 2)� @PB(n=kjN�n�2)
@q� PB(n = jjN � n � 2)

i
= @PB(n=jjN�n�2)

@q� PB(n = jjN � n � 2) (N�j)(N�j�1):::(N�k)(k�1)(k�2):::(j) (q�)k�j(1� q�)j�k

�PB(n = jjN � n � 2)@PB(n=jjN�n�2)@q�
(N�j)(N�j�1):::(N�k)

(k�1)(k�2):::(j) (q�)k�j(1� q�)j�k

�PB(n = jjN � n � 2) (N�j)(N�j�1):::(N�k)(k�1)(k�2):::(j) PB(n = jjN � n � 2)

�
�
(k � j)(q�)k�j�1(1� q�)j�k + (k � j)(q�)k�j(1� q�)j�k�1

�
= � [PB(n = jjN � n � 2)]2 (N�j)(N�j�1):::(N�k)(k�1)(k�2):::(j) (k � j)(q�)k�j�1(1� q�)j�k�1 [(1� q�) + q�]

= � [PB(n = jjN � n � 2)]2 (N�j)(N�j�1):::(N�k)(k�1)(k�2):::(j) (k � j)(q�)k�j�1(1� q�)j�k�1 < 0:

Therefore, (A.10) is negative and this completes the proof.

8. Proof of Proposition 4 As proved by lemma 5 below, the expected winning bid (procure-

ment cost) from the government�s point of view can be written as

W (q�; N) =
PN
v=2

�
N
v

� (q�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1E

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i

=
PN
v=2 PG(n = vjn � 2; q�)E

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i

=
PN
v=2 PG(n = vjn � 2; q�)

R c
c

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i
f(c)dc

(A.11)

where PG(n = vjn � 2; q�) =
�
N
v

� (q�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1 is the probability that there will be

j actual bidders from the government�s point of view.

N a¤ects W in two channels:
dW

dN
=
@W

@N
+
@W

@q�
@q�

@N
:

We �rst examine the entry e¤ect, that is, @W@q�
@q�

@N . Since
@q�

@N < 0 is proved by Proposition 2,

if @W@q� < 0, then the entry e¤ect is positive as desired.

Denote the term in equation (A.11)
R c
c

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i
f(c)dc = Ev.

Note that

@PG(n=vjn�2;q�)
@q� /

�
vq�v�1(1� q�)N�v � (N � v)q�v(1� q�)N�v�1

�
�[1� (1� q�)N �Nq�(1� q�)N�1]�N(N � 1)q�v+1(1� q�)2N�v�2

/ [v(1� q�)� (N � v)q�] � [1� (1� q�)N �Nq�(1� q�)N�1]

�N(N � 1)q�2(1� q�)N�1

= (v �Nq�) � [1� (1� q�)N �Nq�(1� q�)N�1]�N(N � 1)q�2(1� q�)N�1:
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Therefore, @PG(n=vjn�2;q
�)

@q� < 0 if v < N(N�1)q�2(1�q�)N�1
1�(1�q�)N�Nq�(1�q�)N�1 + Nq

� and @PG(n=vjn�2;q�)
@q� � 0

otherwise. Thus, without loss of generality, there exists an integer N > Q > 2 such that for

2 � v � Q, PG(n = vjn � 2; q�) decreases in q� and for v > Q, PG(n = vjn � 2; q�) increases

in q�.

Now, suppose q� increases from q�1 to q
�
2 with 0 < q

�
1 < q

�
2 < 1, the changes in W (q

�; N) can

be written as

W (q�2; N)�W (q�1; N) =
PN
v=2 PG(n = vjn � 2; q�2)Ev �

PN
v=2 PG(n = vjn � 2; q�1)Ev

= [PG(n = 2jn � 2; q�2)� PG(n = 2jn � 2; q�1)]E2PQ
v=3 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]Ev

+ [PG(n = Q+ 1jn � 2; q�2)� PG(n = Q+ 1jn � 2; q�1)]EQ+1
+
PN
v=Q+2 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]Ev

� [PG(n = 2jn � 2; q�2)� PG(n = 2jn � 2; q�1)]E2
+
PQ
v=3 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]EQ+1

+ [PG(n = Q+ 1jn � 2; q�2)� PG(n = Q+ 1jn � 2; q�1)]EQ+1
+
PN
v=Q+2 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]EQ+1

= [PG(n = 2jn � 2; q�2)� PG(n = 2jn � 2; q�1)]E2
+
PN
v=3 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]EQ+1

� [PG(n = 2jn � 2; q�2)� PG(n = 2jn � 2; q�1)]E2
+
PN
v=3 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]E2

= E2
PN
v=2 [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)] = 0:

The �rst inequality follows from the facts that Ev is decreasing in v as proved in Lemma 6 below

and PG(n = vjn � 2; q�2)�PG(n = vjn � 2; q�1) < 0 for v � Q and [PG(n = vjn � 2; q�2)� PG(n = vjn � 2; q�1)]

� 0 for v > Q. The second inequality follows from the additional fact that
PN
v=3 PG(n = vjn �

2; q�2)� PG(n = vjn � 2; q�1) > 0. This is because
PN
v=2 PG(n = vjn � 2; q�2) =

PN
v=2 PG(n =

vjn � 2; q�1) = 1 and PG(n = 2jn � 2; q�2)�PG(n = 2jn � 2; q�1) < 0. This proves that @W@q� < 0

and hence the entry e¤ect @W@q�
@q�

@N > 0. This completes proof of (ii).

We now turn to the competition e¤ect, that is, @W@N . Since

1 =
PN
v=2 PG(n = vjN � n � 2; q�) =

PN
v=2

�
N
v

� (q�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1

=
PN+1
v=2

�
N+1
v

� (q�)v(1�q�)N+1�v
1�(1�q�)N+1�(N+1)q�(1�q�)N =

PN+1
v=2 PG(n = vjN + 1 � n � 2; q�)

;
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therefore

q�N+1

1�(1�q�)N+1�(N+1)q�(1�q�)N =
PN
v=2

�
(Nv )(q

�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1 �

(N+1v )(q
�)v(1�q�)N+1�v

1�(1�q�)N+1�(N+1)q�(1�q�)N

�
=
PN
v=2Bv

(A.12)

where Bv =
(Nv )(q

�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1 �

(N+1v )(q
�)v(1�q�)N+1�v

1�(1�q�)N+1�(N+1)q�(1�q�)N . Then,

WN �WN+1 =
PN
v=2 PG(n = vjN � n � 2; q�)Ev �

PN+1
v=2 PG(n = vjN + 1 � n � 2; q�)Ev

=
PN
v=2 [PG(n = vjN � n � 2; q�)� PG(n = vjN + 1 � n � 2; q�)]Ev

� q�N+1

1�(1�q�)N+1�(N+1)q�(1�q�)NEN+1

=
PN
v=2BvEv �

PN
v=2BvEN+1 =

PN
v=2Bv(Ev � EN+1)

:

If for all v = 2; :::; N , Bv > 0, then WN �WN+1 � 0 because Ev �EN+1 � 0 from Lemma 6.

Otherwise, note that

Bv =
�
N
v

�
(q�)v (1� q�)N�v

�
1

1�(1�q�)N�Nq�(1�q�)N�1 �
N+1

N�v+1
1

1�q��(1�q�)N�(N+1)q�(1�q�)N�1

�
:

As v increases,
N+1

N�v+1
1

1�q��(1�q�)N�(N+1)q�(1�q�)N�1
increases. Thus there exists a v0 such that for

v < v0, Bv > 0 and for v � v0, Bv < 0. Thus,

WN �WN+1 �
Pv0�1
v=2 Bv(Ev0�1 � EN+1) +

PN
v0
Bv(Ev0�1 � EN+1)

�
PN
v=2Bv(Ev0�1 � EN+1) =

q�N+1

1�(1�q�)N+1�(N+1)q�(1�q�)N (Ev0�1 � EN+1) � 0

where we use
PN
v=2Bv =

q�N+1

1�(1�q�)N+1�(N+1)q�(1�q�)N from (A.12).

9. Lemma 5 W (q�; N) =
PN
v=2

�
N
v

� (q�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1E

24 v(1� F (c))v�1c

+v
R c
c (1� F (x))

v�1dx

35 :
Proof

W (q�; N) =
NX
v=2

PG(n = vjn � 2; q�)
R c
c v [1� F (c)]

v�1 f(c)�(cjN; q�)dc

=
NX
v=2

PG(n = vjn � 2; q�)
R c
c v [1� F (c)]

v�1 f(c) �
�
c+

PN
j=2 PB(n=jjn�2)

R c
c (1�F (x))

j�1dxPN
j=2 PB(n=jjn�2)(1�F (c))j�1

�
dc

=
NX
v=2

PG(n = vjn � 2; q�)
R c
c v [1� F (c)]

v�1 f(c)cdc

+
NX
v=2

PG(n = vjn � 2; q�)
R c
c v [1� F (c)]

v�1 f(c)
PN
j=2 PB(n=jjn�2)

R c
c (1�F (x))

j�1dxPN
j=2 PB(n=jjn�2)(1�F (c))j�1
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=
R c
c

NX
v=2
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R c
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NX
v=2
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�)v(1�q�)N�v

1�(1�q�)N�Nq�(1�q�)N�1 v [1� F (c)]
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PN
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NX
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(Nv )(q
�)v(1�q�)N�v

1�(1�q�)N�Nq�(1�q�)N�1 v [1� F (c)]
v�1 f(c)cdc

+ Nq�

1�(1�q�)N�Nq�(1�q�)N�1
R c
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NX
v=2

�
N�1
v�1

�
(q�)v�1 (1� q�)N�v [1� F (c)]v�1 f(c)

�
PN
j=2 PB(n=jjn�2)

R c
c (1�F (x))

j�1dx
1

1�(1�q�)N�1
PN
j=2 (

N�1
j�1 )(q�)

j�1(1�q�)N�j(1�F (c))j�1
dc

= Nq�

1�(1�q�)N�Nq�(1�q�)N�1
R c
c

NX
v=2

�
N�1
v�1

�
(q�)v�1 (1� q�)N�v [1� F (c)]v�1 f(c)cdc

+
Nq�(1�(1�q�)N�1)

1�(1�q�)N�Nq�(1�q�)N�1
R c
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PN
j=2 PB(n = jjn � 2)
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j�1dxdc
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1�(1�q�)N�Nq�(1�q�)N�1
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NX
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(N�1v�1)(q
�)v�1(1�q�)N�v

(1�(1�q�)N�1) [1� F (c)]v�1 f(c)cdc

+
Nq�(1�(1�q�)N�1)

1�(1�q�)N�Nq�(1�q�)N�1
R c
c f(c)

PN
j=2 PB(n = jjn � 2)

R c
c (1� F (x))

j�1dxdc

=
Nq�(1�(1�q�)N�1)

1�(1�q�)N�Nq�(1�q�)N�1

24 R c
c

PN
j=2 PB(n = jjn � 2)(1� F (c))j�1f(c)cdc

+
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c f(c)

PN
j=2 PB(n = jjn � 2)

R c
c (1� F (x))

j�1dxdc

35
=

Nq�(1�(1�q�)N�1)
1�(1�q�)N�Nq�(1�q�)N�1

PN
j=2 PB(n = jjn � 2)

24 R c
c (1� F (c))

j�1f(c)cdc

+
R c
c

R c
c (1� F (x))

j�1dxf(c)dc

35
=

Nq�(1�(1�q�)N�1)
1�(1�q�)N�Nq�(1�q�)N�1

PN
j=2 PB(n = jjn � 2)E

h
(1� F (c))j�1c+

R c
c (1� F (x))

j�1dx
i

=
N(1�(1�q�)N�1)

1�(1�q�)N�Nq�(1�q�)N�1
PN
j=2 q

� (
N�1
j�1 )(q

�)j�1(1�q�)N�j

1�(1�q�)N�1 E
h
(1� F (c))j�1c+

R c
c (1� F (x))

j�1dx
i

=
N(1�(1�q�)N�1)

1�(1�q�)N�Nq�(1�q�)N�1
PN
j=2

�
N
j

� (q�)j(1�q�)N�j
1�(1�q�)N�1

j
NE

h
(1� F (c))j�1c+

R c
c (1� F (x))

j�1dx
i

=
PN
v=2

�
N
v

� (q�)v(1�q�)N�v
1�(1�q�)N�Nq�(1�q�)N�1E

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i

=
PN
v=2 PG(n = vjn � 2; q�)E

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i

=
PN
v=2 PG(n = vjn � 2; q�)

R c
c

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i
f(c)dc:

10. Lemma 6 Let Ev =
R c
c

h
v(1� F (c))v�1c+ v

R c
c (1� F (x))

v�1dx
i
f(c)dc. Then Ev is decreas-

ing in v if c+ F (c)=f(c) is increasing in c.
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Proof Integration by parts gives Ev =
R c
c v(1 � F (c))

v�1f(c)[c + F (c)=f(c)]dc. Let Gv(c) �

1�(1�F (c))v. Because Gv(c) < Gv+1(c), Gv(c) (�rst order) stochastically dominates Gv+1(c).

Noting that Ev = EGv [c + F (c)=f(c)], and invoking a standard property of stochastic domi-

nance (see e.g., Appendix B in Krishna (2002)), we have that if c+F (c)=f(c) is increasing in

c, Ev � Ev+1, that is Ev is decreasing in v.

11. Derivation of (11)

@�(c)
PN
j=2 PB(n = jjn � 2)[1� F (c)]j�1

@c

= �c
NX
j=2

PB(n = jjn � 2)(j � 1)[1� F (c)]j�2f(c)

Therefore, integration on both sides:

�(c)
NX
j=2

PB(n = jjn � 2)[1� F (c)]j�1jcc

= �
Z c

c
x

NX
j=2

PB(n = jjn � 2)(j � 1)[1� F (x)]j�2f(x)dx+ constant (28)

Assuming that f(cj�1) = 1
exp(�1)

exp(� 1
exp(�1)

c) on (0;1) and therefore 1�F (c) = exp(� 1
exp(�1)

c),

equation (A.9) becomes

��(c)
PN
j=2 PB(n = jjn � 2)[1� F (c)]j�1

= �
PN
j=2 PB(n = jjn � 2)(j � 1) �

R1
c x exp(� j�2

exp(�1)
x) 1
exp(�1)

exp(� 1
exp(�1)

x)dx+ constant

=
PN
j=2 PB(n = jjn � 2)

R1
c xd exp(� j�1

exp(�1)
x) + constant

= �
PN
j=2 PB(n = jjn � 2)c exp(�

j�1
exp(�1)

c)

�
PN
j=2

exp(�1)
j�1 PB(n = jjn � 2) exp(� j�1

exp(�1)
c) + constant

Therefore,

�(c) =

PN
j=2 PB(n=jjn�2)c exp(�

j�1
exp(�1)

c)PN
j=2 PB(n=jjn�2)[1�F (c)]j�1

+

PN
j=2 PB(n=jjn�2) exp(�

j�1
exp(�1)

c)
exp(�1)
j�1PN

j=2 PB(n=jjn�2)[1�F (c)]j�1

+ constantPN
j=2 PB(n=jjn�2)[1�F (c)]j�1

= c+

PN
j=2 PB(n=jjn�2) exp(�

j�1
exp(�1)

c)
exp(�1)
j�1PN

j=2 PB(n=jjn�2)[1�F (c)]j�1

;

with the boundary condition that limc!1(�(c)� c) = 0.
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12. Derivation of (13) The ex ante expected payo¤ for the contractor in the mixed-strategy

model is:Z 1

0
E�(b; c)f(c)dc =Z 1

0

NX
j=2

PB(n = jjn � 2) exp(� j � 1
exp(�1)

c)
exp(�1)

j � 1
1

exp(�1)
exp(� 1

exp(�1)
c)dc

=
NX
j=2

PB(n = jjn � 2)
1

j � 1

Z 1

0
exp(� j

exp(�1)
c)dc

=
NX
j=2

PB(n = jjn � 2)
1

j � 1
exp(�1)

j
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Appendix II: Details of Estimation Method

A. Bayesian Nonparametric Density Estimation

Our objective here for the nonparametric Bayesian estimation is to update the number of com-

ponents in approximating mixture of normals and the mean and variance for each component given

a set of observations enew;`. Following Escobar and West (1995), Hirano (2002) and Hasegawa and

Kozumi (2003), we choose the kernel to be

q(enew;`j�`) = q(enew;`jd`; �2` ) = �(enew;`jd`; �2` ) (A.12)

where �` = (d`; �2`), ` = 1; 2; :::L is a sample from some unknown distribution P on the space (�;�)

and � is a �-�eld of subsets of �. Conditional on P , the density for enew;` is

s(enew;`jP ) =
Z
q(enew;`j�`)dP: (A.13)

This gives us a nonparametric class of distributions. How rich this class is depends on the choice

of q and P . For Bayesian analysis, we need to specify a prior for P , which in turn implies a prior

for s(enew;`jP ). If the prior for P has unit mass at some point ��, then s(enew;`jP ) is just equal to

q(enew;`j��), which is the same as a parametric speci�cation of s. If P is assumed to have a Dirichlet

process prior as introduced by Ferguson (1973, 1974), then it gives a prior structure for any random

smooth density.

The Dirichlet process is a probability measure on the space of all distributions and can be used

as a prior distribution on the space of probability distributions. Let �P0 be a �nite non-null measure

on (�;�) where P0 is a proper base probability distribution and � is a precision parameter. Then,

a stochastic process P is a Dirichlet process if, for any given partition, A1; :::Aq of the parameter

space �, the random vector (P (A1); :::; P (Aq)) has a Dirichlet distribution with a parameter vector

(�P0(A1); :::; �P0(Aq)). We denote DP(�P0) for a Dirichlet process with base measure �P0 for the

rest of the paper.

The Dirichlet process is a probability distribution on the space of probability distributions on

(�;�) and selects a discrete distribution with probability one. The discreteness of the probability

distribution selected by the Dirichlet process seems to be unsuitable for modelling smooth densities.

However, it can be related to the in�nite normal mixture model as noted by Ferguson (1983), Lo

(1984) and further explained by Ghosal, Ghosh and Ramamoorthi (1999). This can be seen most
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clearly in the representation derived by Sethuraman (1994). Let w1, w2, ... be i.i.d. Beta(1; �)

and let p1 = w1; pj = wj
Yj�1

i=1
(1� wi), j > 1. Finally, let �1, �2, ... be i.i.d. from P0. Then if

P (d�) =
X1

j=1
pj��j (d�), then P � DP(�P0), where ��j (A) = 1 if �j 2 A and ��j (A) = 0 otherwise.

With (A.13), this implies

s(enew;`jP ) =
1X
j=1

pjq(enew;`j�j) =
1X
j=1

pj�(enew;`jdj ; �2j ) = f(�) (A.14)

This demonstrates that the in�nite countable mixture of normals is just an alternative representation

of the density for enew;` under the Dirichlet process prior. Furthermore, Escobar (1994) shows that

with the �`�s as the latent variables, integrating P over its prior distribution gives the sequence of

�`; ` = 1; :::; L as the following

�`j�1; �2; :::; �L�1 = f
= �j with probability 1

�+`�1

� P0 with probability �
�+`�1

(A.15)

where �1 � P0. As a result, �`�s or enew;`�s are partitioned into mc groups such that all enew;` in

the same group have the same �` while those in di¤erent groups di¤er. These mc distinct values �`

are a sample from P0. The degree of clustering is determined by � . Small values of � will tend to

generate a sample with all the data points located in a few clusters, whereas larger values of � will

give a more diverse sample.

Also, using the Dirichlet process prior leads to a useful set of conditional distributions. Let �j ,

j = 1; 2; :::;mc denote the mc distinct values of �` and

�(`) = (�1; :::; �`�1; �`+1; :::; �L) (A.16)

be the set of values of � for units other than `. Furthermore, let superscript (`) refer to variables

de�ned on all units other than ` and hence �(`) = (�
(`)
1 ; :::; �

(`)

m
(`)
c

) are the distinct values among

(�1; :::; �`�1; �`+1; :::; �L). Escobar (1994) shows that using the Dirichlet process prior leads to a

useful set of conditional distributions. Speci�cally,

P j�(`); P0 � DP (�P0 +
m
(`)
cX

j=1

n
(`)
j �(�

(`)
j )) (A.17)

where n(`)j is the number of �` taking the value of �
(`)
j and �(�(`)j ) represents unit point mass at
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�` = �
(`)
j . Therefore,

�`j�(`); P0 � E(P j�(`); P0) �
�

� + L� 1P0 +
1

� + L� 1

m
(`)
cX

j=1

n
(`)
j �(�

(`)
j ): (A.18)

is the prior distribution of �` conditional on �(`) and P0.

To complete the model speci�cation, we choose the base prior distribution P0 to be the conjugate

normal/inverse-gamma distribution

dP0(d`; �
2
`) / Normal(�0; �0�2` )IG(

N0
2
;
R0
2
) (A.19)

where IG(a; b) denotes the inverse-gamma distribution with parameters a and b. Finally, as in

Escobar and West (1995), � is assumed to follow a gamma distribution

� � gamma(d1; d2): (A.20)

One way of sampling �` from its posterior distribution and determines the number of components

in approximating mixture of normals mc is to apply Bayes theorem to the density given in equation

(A.18) and draw from the resulting posterior density directly. But sampling �` from its posterior

distribution in this model can be eased by introducing the con�guration vector S = fS1; :::; SLg.

That is, S` = j if and only if �` = �j . With this setting sampling �` is equivalent to sampling S and

�j , j = 1; 2; :::;mc. West, Müller and Escobar (1994) propose an e¢ cient algorithm as the following:

1. Sampling S`; ` = 1; 2:::; L from the conditional distribution

q(S` = jj�(`); P0) / f
�qt(enew;`j�0; (1 + �0)R0=n0; n0) if j = 0

n
(`)
j �(enew;`j�

(`)
j ) if j > 0

(A.21)

for j = 1; 2; :::;mc, where qt(enew;`j�; �2; �) is the density of the t-distribution with mean

�, scale factor �2 and � degrees of freedom and �(enewj�(`)j ) denotes the normal probability

density characterized by �(`)j . If S` = 0, then draw a new �` from q(�`jenew;`) / q(enew;`j�`)dP0.

2. Sampling �j ; j = 1; 2; :::;mc from the conditional distribution

q(�j j�(`); S; P0) /
Y

fenew;`: S`=jg
�(enew;`j�j)dP0

/ Normal(�1; �1�
2
j )IG(

N3
2
;
R3
2
) (A.22)
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where

�1 =

�0
X

fenew;`: S`=jg
enew;` + �0

�0nj + 1
; �1 =

�0
�0nj + 1

; N3 = N0 + nj ; (A.23)

R3 = R0+

nj

0@ 1
nj

X
fenew;`: S`=jg

enew;` � �0

1A2

�0nj + 1
+

X
fenew;`: S`=jg

0@enew;` � 1

nj

X
fenew;`: S`=jg

enew;`

1A2

(A.24)

and nj is the number of observations such that S` = j.

Finally, Escobar and West (1995) show that with a beta distributed variable � � Beta(� +1; L),

the full conditional distribution of � is given by

� � z � gamma(d1 +mc; d2 � log �) + (1� z)� gamma(d1 +mc � 1; d2 � log �) (A.25)

where z
1�z =

d1+mc�1
L(d2�log �) .

Thus, with a set of enew;`, we updated �` for each `, the number of components in the countable

in�nite mixture of normals mc and � , the precision parameter in the base measure.

B. Details of the MCMC Algorithm.

1. a Draw (�1;`; q�` ). Since the posterior for (�1;`; q
�
` ) involves the computation of the inverse

bidding function for each bid, using any tailored proposal density would be too time-

consuming. Also, the q�` can only take values between (0; 1). With these features, we

propose a simple random walk proposal density as the following:

q(�new1;` ; q
�new
` j�old1;` ; q�old` ) = ft(�

new
1;` j�old1;` ; h; v)

where ft(:j�old1;` ; h; v) is a student t distribution with mean �old1;` , variance h and degree

of freedom v. h and v are tuning parameters to obtain reasonable acceptance rates. In

practice, to draw from this proposal density, we draw q�new` from the uniform distribution

and �new1;` from ft(:j�old1;` ; h; v) independently. Also, this proposal density is symmetric in�
�old1;` ; q

�old
`

�
and

�
�new1;` ; q

�new
`

�
. When a set of new values

�
�new1;` ; q

�new
`

�
is drawn, the
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chain moves to the proposal value with probability

�
h�
�old1;` ; q

�old
`

�
;
�
�new1;` ; q

�new
`

�i
= min

(
�(�new1;` ; q

�new
` jb; n; �;�; d`; �2`)

�(�old1;` ; q
�old
` jb; n; �;�; d`; �2`)

; 1

)
:

If the candidate is not accepted then the chain does not change its value.

b Draw � = (��; 
�). Denote �old the current state of the Markov chain, b� the mode of the
full conditional density and �new the candidate for the new value of the chain. Following

Chib et al. (1998) the proposal density q (�old; �new) is selected to be multivariate

t�distribution with k degrees of freedom fT (�newjb����old � b�� ; �V ) centered at b���
�old � b��. This proposal density is symmetric in �old and �new. The covariance matrix
of the multivariate t�density is set to be V = �H�1b� , negative inverse of the Hessian of

log �[�j�1;`; q�` ] evaluated at the modal value b� and � is an adjustable constant. The

candidate �new; drawn from the proposal distribution, is accepted with probability

� [�old;�new] = min

�
�[�newj�1;`; q�` ]
�[�oldj�1;`; q�` ]

; 1

�
:

If the candidate is not accepted then the chain does not change its value. The modal

value b� is found using the Newton-Raphson method. The gradient is
g� = � (�� �0)0D0 +

LX
`=1

x�` � exp(��1;` + x�`�)k`x�`

and the Hessian is

H� = �D0 � exp(��1;` + x�`�)k`x�0` x�` :
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Table 1 Summary Statistics22

Variable Explanation Obs Mean Standard Deviation

Estimate Engineer�s estimate 553 165348.90 130782.30

Bids Bids 1606 165382.20 133721.70

Day Number of working days 553 122.72 120.07

Full Acreage of full width mowing 553 7302.94 5219.91

Other Acreage of other mowing 553 1987.64 2803.50

Items Number of items 553 2.01 0.82

State 1 if it is a state job 553 0.11 0.31

Interstate 1 if it is on an interstate highway 553 0.23 0.42

Potential Number of potential bidders 553 11.08 3.47

Actual Number of actual bidders 553 2.90 1.17

Entry Actual/Potential 553 0.28 0.12

Highbids 1 if the bid is higher than Estimate 1606 0.44 0.50

Highwinner 1 if the winning bid is higher than Estimate 553 0.22 0.41

Table 2: Quasi-MLE Poisson Regression Estimates of Number of Actual Bidders on Explanatory

Variables23

Variable Estimate Sd. Error t�statistic

log(Estimate) -0.2004 0.0472 -0.42

log(Day) 0.0543 0.0386 1.41

log(Full) 0.0127 0.0078 1.64

log(Other) 0.0230* 0.0063 3.63

Items -0.1847* 0.0324 -5.69

State -0.0581 0.0573 -1.01

Interstate -0.0305 0.0388 -0.79

log(Potential) 0.4011* 0.0454 8.84

Constant 0.2698 0.4296 0.63

Log likelihood -899.28

22The sample consists of 553 auctions with a total of 1606 bids.
23*: signi�cant at 5%.
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Table 3: OLS Estimates of Log(bids) on Explanatory Variables24

Variable Estimate Sd. Error t�statistic

log(Estimate) 1.0354* 0.0124 83.51

log(Day) -0.0301* 0.0087 -3.46

log(Full) -0.0021 0.0031 -0.67

log(Other) -0.0079* 0.0017 -4.77

Items 0.0263* 0.0094 2.80

State -0.0108 0.0182 -0.59

Interstate 0.0199 0.0111 1.80

Potential -0.0025 0.0014 -1.80

Constant -0.2514* 0.1166 -2.16

Adjusted R2 0.9324

Table 4: Random E¤ects Panel Data Estimates of Log(bids) on Explanatory Variables25

Variable Estimate Sd. Error t�statistic

log(Estimate) 1.0265* 0.0168 61.20

log(Day) -0.0269* 0.0121 -2.23

log(Full) -0.0014 0.0040 -0.35

log(Other) -0.0074* 0.0022 -3.38

Items 0.0279* 0.0119 2.34

State 0.0003 0.0240 0.01

Interstate 0.0201 0.0148 1.36

Potential -0.0021 0.0018 -1.14

Constant -0.1747 0.1568 -1.11

�2u 0.1085 �2e 0.1444

� (fraction of variance due to ui) 0.3608

24*: signi�cant at 5%.
25Model: log(bidsit)=xit� + ui + "it *: signi�cant at 5%.
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Table 5: OLS Estimates of Log(winning bid) on Explanatory Variables26

Variable Estimate Sd. Error t�statistic

log(Estimate) 1.0408* 0.0183 56.86

log(Day) -0.0303* 0.0130 -2.33

log(Full) 0.0022 0.0053 0.41

log(Other) -0.0108* 0.0030 -3.66

Items 0.0213 0.0121 1.76

State 0.0058 0.0253 0.23

Interstate 0.0235 0.0156 1.51

Potential -0.0035 0.0020 -1.75

Constant -0.4107* 0.1655 -2.48

Adjusted R2 0.9544

Table 6: Estimation Results From Semiparametric Bayesian Algorithm27

Variable Mean Standard Deviation Mean Standard Deviation

Private Cost Distribution Entry Cost Distribution

log(Estimate) 0.9425 0.0364 0.8330 0.0514

log(Day) 0.0004 0.0523 0.0336 0.0771

log(Full) -0.0084 0.0218 -0.0243 0.0306

log(Other) -0.0103 0.0121 -0.0286 0.0177

Items 0.0583 0.0526 0.1817 0.0747

State 0.0778 0.0999 0.2113 0.1385

Interstate 0.0409 0.0672 0.0716 0.0946

Di¤erence in Constants 0.1833 (Mean) 0.2357 (Stan. Dev.)

26*: signi�cant at 5%.
27Results are based on 15,000 draws following a 5,000 initial burn-in period.
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