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Abstract

In a number of semiparametric models, smoothing seems necessary in order to obtain
estimates of the parametric component which are asymptotically normal and converge at
parametric rate. However, smoothing can inflate the error in the normal approximation, so
that refined approximations are of interest, especially in sample sizes that are not enormous.
We show that a bootstrap distribution achieves a valid Edgeworth correction in case of
density-weighted averaged derivative estimates of semiparametric index models. Approaches
to bias-reduction are discussed. We also develop a higher order expansion, to show that the
bootstrap achieves a further reduction in size distortion in case of two-sided testing. The
finite sample performance of the methods is investigated by means of Monte Carlo

simulations from a Tobit model.
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1. Introduction.

Semiparametric estimates involving smoothing have become established as an
important tool in the analysis of econometric data. On the one hand, these estimates avoid
some stringent assumptions, largely unsupported by economic theory, that are entailed in a
fully parametric analysis. On the other, they typically enjoy the same convergence rate as
estimates in parametric models, being n”-consistent, where n is sample size, and satisfying
a central limit theorem which is conveniently usable in statistical inference. However, the
semiparametric parameter estimates may have finite-sample properties that are inferior to
those of estimates (such as maximum likelihood ones) of a fully specified parametric model.

Detailed evidence concerning this issue has emerged in case of density-weighted
averaged derivative estimates (ADE) of semiparametric single-index models. These had in
the first place been shown to possess the basic n”-consistency and asymptotic normality
properties referred to above by Powell, Stock and Stoker (1989) in case of independent
observations, and by Robinson (1989) in case of weakly dependent observations. Robinson
(1995) (hereafter R) established that a refinement that is classic in the case of fully
parametric statistics (such as the sample mean) may also obtain, namely a Berry-Esseen
bound of order n*, meaning that the difference between the actual distribution function of
the ADE, after centering at its probability limit and norming by n*, and its normal limit, can
be of order n* uniformly. This bound can achieve the n” rate typical for parametric
statistics, but only if the bandwidth, 4, employed in the averaged derivative estimation is
chosen to lie within a restricted window, and then subject to the use of a kernel of suitably
high order; otherwise, the normal approximation error order depends on 4 and exceeds n™”.
In particular, R found its error dominated by three additive components, one of order n'*,
one that decreases as 42 — 0 (a ‘bias’ term) and one that increases as # — 0 (a ‘variance’
term). His result was sharp, in that Nishiyama and Robinson (2000) (hereafter NRO) and
Nishiyama and Robinson (2001) (hereafter NR1) found that a valid Edgeworth approximation
to the distribution of studentized and unstudentized ADE has three, leading, correction terms

of precisely these orders of magnitude. NRO, NR1 evaluated these terms and showed how



they can be consistently estimated, in order to provide feasible, improved inference,
including more accurate confidence intervals. They also employed their Edgeworth
approximation to derive a choice of A that is optimal in the sense of minimizing the error in
the normal approximation, and thus seems more relevant in the context of statistical inference
than choices based on minimizing mean squared error.

The Edgeworth correction terms of NRO, NR1 are, however, somewhat complicated
to estimate and there is always concern that imprecision in the estimation of such terms
(which essentially involve higher moments) might frustrate the goal of improved finite-sample
properties. Moreover, Edgeworth approximations to the distribution function need not be
monotone.

The present paper shows that a bootstrap achieves the same improvement. In general,
given independent observations Z, i = I,...,n, from a population with distribution
function ¥, suppose one is interested in conducting inference on the unknown (scalar)
parameter p=p( '¥), using the (pivotal) statistic T,=7(Z,, -+, Z,; ¥) .Let 'f, bethe
empirical distribution function of Z;, -, Z,, and Z;, -, Z, a random sample (with
replacement) of size n from ¥,. The bootstrap approach (see Efron, 1979) is based on a
belief that the distribution of T, =T(Z;, -, Z,; ¥,), across replications Z, -, Z,
from ¥, , approximates that of 7,,. In particular this has been shown for the case that

T, is asymptotically standard normal in many settings, see e.g. Bickel and Freedman
(1981), Freedman (1981, 1984) and Arcones and Giné (1992, 1994). For many statistics, the
construction of a bootstrap distribution by resampling is unnecessary for the sake of
conducting first-order asymptotic inference, because the ordinary central limit theorem
for T, itself is convenient to use. However, the bootstrap is still widely used in such
circumstances, because it has the reputation for providing greater finite-sample accuracy.
Singh (1981) provided theoretical explanation for this numerical experience in case T, is
the centred and normalized sample mean: the Edgeworth expansions of 7, and 7, have
the same leading term, of order n '/2? | so their distributions differ by o (n '/?2)

Equivalently, the distribution of 7, achieves the Edgeworth correction of T,. For



extensions to other models, see e.g. Babu and Singh (1989), Hall (1986, 1991, 1992),
Qumsiyeh (1986), Bhattacharya and Qumsiyeh (1989), Strawderman and Wells (1997).
Technically closest to our present work is Helmers (1991) (see also Maesono, 1997), who
considered standard U-statistics. Our (2.1) below is a U-statistic but with a “kernel” (in the
U-statistic sense) that, unlike Helmers’, not only depends on n but whose second moment can
diverge as n—>o. Thus, while we borrow some of Helmers’ techniques, our situation is
substantially more complicated than his and requires a substantially different treatment.
The possibility of Edgeworth correction by bootstrapping for semiparametric estimates
involving smoothing was pointed out by R and by Horowitz (1997). Horowitz (1998, 2002)
was first to rigorously demonstrate an Edgeworth correction property here, in connection
with symmetric ¢ and x* tests. Horowitz (1998) considered smoothed least absolute
deviations (LAD) estimates of a median-regression model. The original LAD estimates

1/2_ consistent, but their higher-order properties are

require no smoothing in order tobe n -
difficult to analyze. The smoothed estimates have the same first-order limit distribution, and
Horowitz’s (1998) motivation for introducing smoothing was to achieve more tractable
higher-order asymptotics (though smoothing is in any case needed to form f-ratios of
unsmoothed LAD estimates). Horowitz (2002) established similar properties for smoothed
maximum score (MS) estimates, but the background to this work was rather different.
Horowitz (1992) had introduced a smoothed MS estimate on the basis of having a simpler
(normal) limit distribution and faster convergence rate than the original MS estimate of
Manski (1985).

The motivation for smoothing in ADE is more fundamental: it is essential for
consistency in a semiparametric setting and influences the first-order asymptotic distribution,
even though the rate of convergence here is parametric. In the following section we establish
a valid Edgeworth expansion of the bootstrap distribution for the ADE, indicating, by
comparison with NRO, NR1, that an Edgeworth correction property is achieved. Section 3
discusses rival methods of bias-correction. Our results show that in one-sided testing the

bootstrap approximation incurs less size distortion than the normal one. To demonstrate a



further improved outcome in two-sided testing we extend the Edgeworth expansion so as to
include extra terms. This is carried out in Section 4, but under an additional condition that
is unprimitive, in view of the greater complexity of detail. An optimal method of bandwidth
selection is also introduced there. Section 5 examines finite sample performance of the

methods via Monte Carlo simulation. Proof details are left to appendices.

2. Valid first order Edgeworth expansion
For a dx1 variate X with probability density function f(x), and a scalar variate Y,
suppose the regression function g(X) =E(Y|X) is known to have single index form
g(X) =G(pX) ,
for some differentiable function G: R—R and some unknown column vector 3, 7
denoting transposition. Suppose f and G are nonparametric functions. Given a sample

(X',Y,) , i=1,,n , of independent observations on (X", Y) , the ADE is

n-1 n

U= NG @D

=1js5+
where
XX

=K (Y,-Y) ht K= K222

U h

ij
suchthat K'(u) =(d/ du) K(u) where K: $R¢—R isadifferentiable kernel function that
integrates to 1, and A=A, is a positive bandwidth sequence.

Consider a bootstrap sample (X7, Y, i=1,,n, drawn with replacement

from (X/,Y,), i =1, -, n . Our bootstrapped ADE is

’ n-1 n
U*:<g)1 Z[]z]* ’

i=1j=+
where
* *«/ * * - +/ X
U - K (YY) R K = KRR

As in R, NRO and NR1, we focus, for simplicity, on inference on a single linear
combination of 8 =-E[g(X)f (X)]1 =-BE[G/(BX)f(X)] ,namely p =v"0 , where
v is a given dx1 vector. Bearing in mind (2.1), we thus cover the familiar problem of
testing whether a single element of 3 is zero. We estimate p by u=v"U, and write

u*=v"U*. (Note here and elsewhere changes in notation from NRO, NR1.)



The estimated variance of u is &% =v "X v , where

“(n- 1)(n 2)22{26(% “U)}{Z(U,, -0) }

] #li ] #i

Its bootstrapped version is &*2 =v"X v , where

4 Z{i(UJ-U* HZ(U ) }

T (n D (n2) A | P

We center u* at

pt=E(u’) -b" 2.2)
where

b*=htok,
for 0" =E*[2v (U -E'U"1? , E*(.) =E(. |(X],Y;), i=l, ~,n) ,

Ui*

1}

(Gj | X, Y = Zh"“K”( ’)(Y -Y)
n 5

_ 2(-1)L 1y bl g
&= 2 0; ‘zzq{[m K(x)dx} nZ{AU l)vf"()(i)}x ’

1 =1

) . ll+ +l
in which

(sl g)
-y N

0x 1 -0X d J#i
L is the order of the kernel K (see assumption (v111) below), H $¢ - is a differentiable

b

kernel function and c is a positive bandwidth. The definition of &, was discussed in NRO.

Note that in (2.2)

ENU) - Ly . 2.3)
Denoting P*(-) =P(- |(X/,Y;), i=1, - ,n), we compare the distribution

functions

1;‘(2) = P( Z <z)
and

F*(z) =P(Z"<z)
of, respectively, the centered and studentized ADE

Z =n25(u-p) (2.4)
and the centered and bias-corrected bootstrapped studentized ADE

Z* =n"2% - . (2.5)



Denote, for a function k: R¢—R , k=k(x), k'=k'(x) =(9/ dx ) k(x),
k"=k"x)=(? oxox") k(x) and k" =k"(x) =(3/dx") vec (k"(x)) .
Define & = 4E(0-0)(0-0)", where 0-=0(X,Y)=Yf'-e¢/, e=fg and g¢g=
E(Y?*|X) . The following assumptions are nearly identical to those of NRO, the only
difference worth mentioning being the stronger moment conditions on Y in our present (i) and

(vi).
(i) E(Y'®) < o .
(i) X is finite and positive definite.
(iii) The distribution of X is absolutely continuous with respect to a o-finite measure of the
form py , where py is Lebesgue measure on R¢. The measure » of (X7, Y) can be
written v=p,*py. (X, Y;) are iid observations on (X7, Y)
(iv) fis (L+2)-times differentiable, and f and its first (L+2) derivatives are bounded for
2L>d+3.
(v) gis (L+2)-times differentiable, and e and its first (L+2) derivatives are bounded.
(vi) g is twice differentiable and q’, q¢”, g’, g”, g¢", E(Y*|X)f and gf ' are
bounded.
(vi) f, gf, g'f and gf vanish on the boundaries of their convex (possibly infinite)
supports.
(viii) K(x) is even, differentiable,

[ O ) KCo) K ) e+ sup K'(x) | < .,
and if L el 40

if 0<l +-+l <L

=1
fm}f"-xé"K(X)dx =0
#0, if [+l =L, some [, 1,

(ix) M +nh?l -0 as n—o .

nh d+3
(x) limsup |Eexp [ {(it2vi(0-0)}) | < 1 for any vector v satisfying v'v=1 .

|[ ‘—>oo

(xi) H(x) iseven and (L+1)-times differentiable,

[ Hox)yde =1,
[ A8 O Gy s sup 14T IO x) | < o0

X€

6



for any non-negative integers [, ... [, satisfying 0</ j+-+[ ;<L .

2
(i) ¢ =0 and LOERL- ~0(1) as o

Theorem 1  Under assumptions (1)-(xi1), as n—> o,

sup sup |F(z) -F*(z)| =o(n2+n'h?2+nl2ht) as. (2.6)

v:viyv=l 2

In NR1 the valid Edgeworth expansion
F(z) =F*(z) +o(nV2nth 4 2nli2ply

is established, where

K 4
n i nh i 3n 7 ((22 D) s+ 3(2 D) wg)

F'(z) = ¥(z) -¢(z2)

Q2.7)

for

L d 1.
¢ - 2010 =3 {[nx,-"K(x)dx}E{(A"""“’d)va0g] :
oL! 0<l,, =1 4=<L i=1

7 el g=L

2072 [{(viK((x)dx E(sf) ,

K, =
Ky = 0 E[(r3sgg%) (vif )35 (v ) 3(va) -(va)?| |
Ky = -0 E[fs (vif ) (via ) f (VI ) (Vs /) (v7a)

s (via) (vif V) f (vig)(va)?]
in which 02=v'2v , a=a(X)=gf+0 , r=r(X)=E(Y?*X) and s =5 (X) =
Var (Y|X) =q-g?* . It follows that the bootstrap distribution function F*(z)

approximates F(z) asymptotically as well as F*(z) .

3. Discussion of Bias-Correction
The centering of u* at p* , rather than at the more obvious u (see (2.2) and (2.3))

is explained as follows. From Lemma 11 of NRO, Eu-p =htk,(1+0(1)) . The




bootstrap distribution of n'/2(u*-u) thus will approximate only the distribution of the
first term on the right of
nU2(u-p) =nY*(u-Eu) +n''?hix, +o (n'?n L) |

since though n 2k L tends to zero it may do so too slowly to prevent the second term on
the right from affecting higher-order properties. Thus we cannot rely fully on the bootstrap
to achieve the Edgeworth correction property, but bias correct "manually”. Of course this
would not be necessary were h regarded as tending to zero sufficiently fast, or if a large
enough kernel order L were chosen, indeed NRO showed how the Edgeworth approximation
simplifies for various choices of % and L.

The first possibility, "undersmoothing", was also employed by Horowitz (1998, 2002)
and Hall (1991) in a higher-order context, in semiparametric and nonparametric estimation
respectively. In our problem, undersmoothing seems acceptable only when d is small, since
the "second order variance" is of order n ~'h 42 . But even with d=2, the Monte Carlo
study of NRO found undersmoothing to significantly inflate variance, indeed for #=0.4 it
was twice that for 2=1.0, independent of L. On the other hand the same study found that
studentization can reduce variance inflation, in which case undersmoothing would be more
acceptable in hypothesis testing than in point estimation.

The other approach to bias reduction, of choosing L larger than required in
assumption (iv), also inflates the variance-related term k, , in view of the factor

f {K(x) }%dx . To get some idea of the actual effect, we performed some numerical
calculations, taking K(x) to have the product form
K(x) =l_i‘:11k(x,.), x=(Xy,...,x)7, 3.1
where k: R—R is given by

k(x) =p§_1(x)¢>(x) (3.2)




for even L, with no loss of generality, with p,(x) the polynomial

p,(x) =Y {x?¥ (3.3)
i=0
and the (; chosen to satisfy assumption (vii). Such kernels were considered in Robinson

(1988), who proposed use of higher-order kernels to achieve n!/2-

consistency of
semiparametric estimates in the context of a different model. For L=2,4,6,8,10,12 we found
that fn-f{K’(x) }2dx takes the values 0.443, 1.523, 3.075, 5.004, 7.304, 9.899,
respectively, illustrating the relative increase in imprecision with L. Earlier, NRO found in
Monte Carlo that the variance of U doubles when going from L=4 to L =10, independent of
h, when n=100. Therefore, as R pointed out, empirical researchers may not wish to use a
very high order kernel unless #n is very large indeed. Indeed even when d=3, the condition
L>2(d+2) discussed in R and NRO already requires L =12 .

This discussion rather brings us back to the original bias-correction b * in (2.2),
which serves its purpose for all 4, L covered by the Theorem, indeed b* also arose in the
empirical Edgeworth expansion justified in NRO. However, its cumbersome form and
dependence on an additional kernel and bandwidth lead us to seek an alternative, more
"direct", method of bias correction. Consider in place of the statistic Z * (2.5) featured in
the Theorem,

2*:n1/2&*‘1(u*—ﬁ*) , 3.4)
where

nt=Eu*) -b* , (3.5)
for

4+ TR+ +_1 h_d_l . AX,—X
b*=v'B", B —i{mgg;(yz‘yj)M(TL) -U}

1

in which the function M: R¢—R¢ | is

M(t) :ffK/(t +w+x) K(w) K(x) dwdx .



In Appendix C the following is proved.

Theorem 2 Under assumptions (i)-(iv), (vii), (viii) and n?h?*14?—o0 |

B*=EU—(7+0P(hL), as n—o .

Comparison with Lemma 11 of NRO indicates that therefore b *=hlx,+0,(hL)
Thus, defining
F(z) =P"(Z"=<z) (3.6)

we deduce from Theorem 2 and the proof of Theorem 1:

Theorem 3  Under assumptions (i)-(xii) and n*h*-4*2—c

sup sup |F(z) -F*(z)| = op(n‘”2+n"1h“d‘2+n1/2hL) , as n—o .

v:viv=l 2
Thus, for a narrower range of bandwidths, and a weaker mode of convergence, bias
correction by b * can also achieve an Edgeworth correction. It remains to discuss
computation of M(r). At first sight the 2d-dimensional integral is forbidding, but if a product
form of K (3.1) is used we reduce to computing 2-dimensional integrals. Then we can even

obtain a closed form expression for M(?).

Theorem 4 Let K(x) be given by (3.1)-(3.3). Then if t, denotes the i-th element of the

dx1 vector t, the j-th element of M(¢) is

d
m1(tj)£[1mz(t,‘) > (3.7

where the functions m;: R—R, i=1,2, are given in Appendix D.

4. Hypothesis Testing and Higher-Order Expansion
An important application of Theorem 1 is reduction in size distortion of tests.
Consider the null hypothesis

10



Hy: i = o, @.1)
for some given p,, and the one-sided alternative

H: > p, 4.2)
(with no need to refer also to the alternative p < p,, due to arbitrariness of v ). The
nominal size-o test based on the normal approximation, which we call the N-test, rejects
H, against H, if 20>za, where z ,=P!(1-a) and 20 is Z with p=p,. It has

size distortion

K 4
~p(z,)|n"?h 1k, - nhfmza— . (2224 D) ks +3(z 4+ 1) Ky}
+0(n‘1/2+n Sl -d-2 4, 112 Ly | 4.3)

from Theorem 3 of NRO. Now consider a test based on the bootstrap distribution. This,
called the B-test, rejects H, (4.1) against H, (4.2) if 20 >z ., where z, :1:“* (1-a).
In view of Theorem 1, this has size distortion of order only
o(nY2+pth42:p 28 L)y as. A test based on the Edgeworth expansion attains the
same size distortion, where the critical value z, above is replacing by that from a Cornish-
Fisher expansion (see NRO, pp.958); we call this the E-test.
Next consider two-sided testing. The alternative to H, (4.1) is now

H:p#p,. 4.4)
The (two-sided) N-test rejects H, (4.1) against H, (4.4) if |20 |>2 ,,. Theorem 3 of
NRO, and symmetry, implies the reduced size distortion

KyB(Z 4 2) Z oy 21t hd2io(nV2ipthd2ipnli2ply
The (two-sided) B-test rejects H, (4.1) against H, (4.4) if |20 |>z 2. Theorem 1
implies that this has size distortion o (n Y2+n1h42+p2p Ly = a5 in the one-sided
case.

The distortion (4.3) of the one-sided N-test can be minimized with respect to &, by

11



choosing % of order n ~3/{2(L+d*2} (the rate of the optimal bandwidth proposed by NRO),
implying (4.3) has minimal order n (21427 {2(L+d*D} — The size distortion reported above
for the two-sided N-test, however, is not susceptible to optimization, since the leading term
is decreasing in # and we have insufficient information about components, absorbed in the
remainder term, which increase in A. So far as the B-test is concerned, the information
provided by Theorem 1 is too vague both to determine an optimal %4 and to investigate
whether any size distortion is achieved by double-siding.
Both difficulties can be avoided by developing further the Edgeworth expansions of
Z and Z * , to provide information on the remainder terms in Theorem 3 of NRO and
Theorom 2. Unfortunately, as expected, the details become even more complicated, and the
following theorem relies on a highly unprimitive condition for validity. Introduce the
additional assumptions
@y E(Y[®) <o .

Eei'8 1y, 25 -2d-4, 3 2L, ,, -3/ 2} d
(xiii) f HM)l t |dt = o(n'+n2h 24 ph 2Ly 32p 43y
pst|<

E'e'B 1, o, -2p -2d
fl t—ldt = o(nl+n?h 24 pp ey 3243y 5
pslt <N,

where B, p, N, are defined within the proof of Theorem 5 below, which is given in
Appendix E, and B* is the bootstrap analogue of B.

Define

2

b )
nl2p Ly, - h—za-z +—2—1nh212
n

F(z) = ®(z) -¢(2)

P1(2)+ P(z) N pi(z) +41(2')+ q,(2) vq(z)hL
2 p3l2pd3 p12pda-L n 1 2y 2d+4 93

82 817
—” +Tnh Ly
pi(z)  pi(z) | p3(2)  4i(z)  4i(2)
n U2 p3l2pd3 125 d2-L n n 2} 2d+4

bl

F™'(z) = @(z) -é(z)|n''?h "8 -

+qs3(z)h L

bl

where 8,=h Lo ' (Eu-p), §,=h%"2E( W3, and the p;(z) are even polynomials

12




and the ¢, (z) are odd polynomials, defined in Appendix E; §,, 6, and the coefficients
ofthe p,(z), q;(z) areO(l)as n—c. 8;, p;/(z) and g, (z) arerespectively the
bootstrap analogues of 6,, p;(z) and g,(z) satisfying

8;-8,=0(1), pi'(z)-p;(z)=0(1), qi(z) -q;(z) =0(1), as.

Theorem 5: Under assumptions (i)°, (ii)-(x) and (xiii), as n—> o,
sup sup |F(z) -F*™(z)| =o(nt+n?h 244 +ph L+ 312 43y 4.5)

v:viv=l 2

sup sup |[F*(z) -F™*(z)| =o(nt+n2h 24 4+ph2Lapn32p43) a5 (4.6)
v:viv=l 2
We point out that ¢(z)q,(z) is of similar form to the correction term in P, (x) in
Theorem 5 of Maesono (1997).
We can deduce from Theorem 5, symmetry and Lemmas 11 and 12 of NRO, that the
size distortion of the two-sided N-test is approximately

K, ik AU L
2¢(Z %) WZ %: - 2 Z%+Q3( -Z %)h N (47)

and that of the two-sided B-test is o(n'h4?2+nh?), noting that
hi=0(n'h*4%?+nh?) . The latter bound is slightly better than both the
o(nV2+p-th42+nl2p Ly as. one for the one-sided B-test (if 4 is chosen suitably
large), and (4.7) for the two-sided N-test. On the other hand, (4.7) indicates that if we
choose

h = 4.8)

2x, Jﬁ
2.2

Kin

the size-distortion of the two-sided test is only o (n ‘A 42+nh?L) . Note that (4.8) is

larger than the optimal # of NRO (which minimizes the largest absolute error in the normal

-3/ (2L+d+2)

approximation) and has rate n but of identical order to the minimum mean

squared error bandwidth of Hirdle, et al. (1992) and Powell and Stoker (1996). Desirably,
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(4.8) does not depend on «. As in NRO, we can estimate the scale factor in (4.8) by inserting

consistent estimates of k; and x, .

5. Monte Carlo study

We compare normal, (empirical) Edgeworth and bootstrap approximations for the
Tobit model used in the Monte Carlo study of NRO,

Y, = (B'X +€,) I(BX, +¢,20) 5.1)
where d=2, X.=(X,;, X,;)", (X,€;)~NO0,I;), B=(1,1)7. Given the normal
assumption on €, , the maximum likelihood estimate of 8 comes to mind, but whereas
Amemiya (1973) provided first order asymptotic theory for it, we know of no higher-order
theory, let alone higher-order justification of the bootstrap (though doubtless these can be
achieved).

From (5.1), g(x)=B"x{1-®(-B"x)}+¢d(-Bx), 17:7,3/ (8m) . As in NRO,
we employed three values of L, L=4, 8 and 10, which respectively correspond to the cases
when (d+2)/2<L<2(d+2), L=2(d+2) and L>2(d+2) (discussed in Section 4 of NRO),
with K as in (3.1)-(3.3). We considered both elements of 7] individually, but since the
results are very similar we report those for the first only, which we thus take as p .

Bootstrap distributions (BDs) are estimated as follows.

1. We generate a Tobit data set of size n based on (5.1).
2. From this, we draw a random sample of size n, with replacement, from which we

calculate U for each (h,L).

3. We repeat step 2 600 times.
4. We obtain empirical distributions, for each (4,L), of the two bias-corrected statistics

Z*(2.5), Z*(3.4) and the bias-uncorrected statistic Z~ = n /25" (u* - u)
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5. We repeat steps 1-4 100 times, and average over the 100 empirical distributions to
estimate the three BDs I;*(z) , 1;+(z) and I;‘(z) :P*(é‘ <z)

Figures 1-12 compare the estimated BDs with the empirical distribution (ED), the
Edgeworth expansion (EE) (or rather the empirical version of (2.7), with all three correction
terms, discussed by NRO, NR1), and the normal distribution (N). We exclude the theoretical
Edgeworth expansion, because the Monte Carlo study of NRO found it inferior to EE. We
used ¢=1.2h for &, as in NRO. ED and EE were produced from 600 replications for each
combination of (n,k,L), as in NRO. In the figures, ED is represented as a solid line, N as a
dotted line, BD as a dotted-and-broken line, and EE as a broken line. We employed for all
combinations of £=1.0, 0.8, 0.6, 0.4, 0.2, n=100, 400 and L=4, 8, 10, but only report
the results for A= 0.8, 0.6, 0.4, 0.2, n=100 and L=4, 8, 10. For h=1.0, none of N, EE
or BD approximates ED well. The figures for n=400 are qualitatively similar to those for
n=100, and the approximation errors are not only smaller but too small to read in some
cases.

(Figures 1-12 about here)

Figures 1-4, 5-8, 9-12 correspond to L=4, 8, 10. We show results for F *(z) asthe
BD when L=4, and for F (z) when L=8,10, in view of the discussion of Section 3.
Generally BD and EE outperform N across %, and for smaller #, EE is actually better than
BD (see Figures 4, 8, 12). The bias correction in (3.5) works rather well when L=4. With
respect to bandwidth, £=0.8 (Figure 1) is too large, none of EE, BD, N working well. For
the suppressed n=400 case, in general BD approximates ED as well as EE and better than
N.

(Figures 13-16 about here)

Figures 13-16 focus more on effects of bias correction, comparing the BD
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approximations of F*, F*, F~, ED and N. The dashed and dotted line indicates F" , the
shorter dashed line is F* , while the longer dashed line is F~. Figure 13 considers
(n,h,L)=(100,0.6,4), where the bias in Z " is expected to be relatively large, and
indeed Z * and Z * both work much better. On the other hand in Figures 14, 15 and 16
h=0.2, so small bias is expected due to undersmoothing. Clearly Z* performs worst,
whereas Z - is best for L=28,10 and it is hard to choose between Z * and Z - . For the
larger L bias corrections increase variance, and even when L=4 Z * does very poorly; in
general k, is quite sensitive to choice of ¢, and overall ZA+ appears to slightly outperform
z

We next compare hypothesis tests on p , based on the normal, Edgeworth and
bootstrap approximations to F (z) , namely the N-test, E-test and B-test introduced in the
previous section.

(Table 1 about here)

Table 1 (a) reports results for two-sided tests, with nominal size 5%, of the null
hypothesis Hy: p = p, againstthealternative H: p #p, ,forL=4,8,10, n=100,400 and
h=0.2,0.4,0.6,0.8 (with p,=-1/(8m) ,tocorrespondto B=(1,1)7, v=(1,0)",
under the normality). The empirical size of the N-test increases with £, consistent with the
fact that the first term of the size distortion in (4.5), or the only first-order correction term
remaining after double-siding, increases with 4, since k, >0 . The empirical size of the
B-test is closer to 5% than that of the N-test in 21 cases out of 24, with 2 ties, the N-test
dominating, slightly, in only the case (n,h,L)=(400,0.8,8). The poor performance of the
N-test can be explained by (2.6). Since x, >0 , small 4 yields larger dispersion, especially
around z =+1 , so the critical values of the N-test tend to be too large in absolute value,

resulting in smaller empirical size. For larger A, size distortion is due to bias. Double-siding
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should theoretically cancel the bias, but our Monte Carlo study shows that the distortion is
not negligible. The E-test tends to outperform the B-test for small 4, and vice versa, but
overall they behave similarly.

Table 1(b),(c) reports corresponding results for one-sided tests against H: p < p,
and H;: p > p, . The N-test performs very poorly in all cases, and almost always worse
than the B-test and E-test.

We also studied the ability of the bootstrap to cope with the curse of dimensionality,
considering larger values of d. We tried d=3,4, but report results only for d=4 because
those for d=3 are somehow intermediate between the ones for d=2 and d=4. The model
hereisstill (4.1), with (X, €,)~MO0,I5) , B=(1,1,1,1)7 , v=(1,0,0,0)" .We
obtained results for all combinations of #=1.0,0.8,0.6,0.4,0.2, n=100 and L=4,8,10, but
only report results for #=1.0,0.8,0.6,0.4, bearing in mind that / should increase with d.
Table 2 (a) and Table 2 (b), (c) respectively show empirical size of two-sided and one-sided
tests for 5% nominal size.

(Table 2 about here)

Comparing Tables 1 (a) and 2 (a), and Tables 1 (b), (c) and 2 (b), (c), we find in
general that increasing d clearly increases size distortion in magnitude for the N-test, but has
relatively little impact on the B-test. For example, taking L =4, the N-test has empirical size
0.3%, 2.1%, 6.3% and 13.0% for h=0.2,0.4,0.6,0.8 respectively when d=2, compared
with 0.8%,3.1%,13.2% and 38.0% for #=0.4,0.6,0.8,1.0, respectively, when d=4,
whereas the B-test has sizes 1.3%,3.0%,5.1%,6.8% whend=2,and 1.2%,4.8%,5.7%,6.0%
when d=4. Overall the B-test manifests greater resistance to the curse of dimensionality,

especially in the one-sided tests of Table 2.
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6. Conclusions

With the aim of improving normal-based inference, we have established that a
bootstrap achieves a valid Edgeworth correction for the density-weighted ADE. However,
the bootstrap does not always produce the necessary bias reduction, and methods for
incorporating it have been presented. This provides a refinement in one-sided testing. To
discuss two-sided testing we developed an Edgeworth expansion of still higher order, and
found that double-siding cancels some terms, to suggest that the bias-corrected bootstrap here
incurs even less size distortion. We have proposed a choice of bandwidth, which is optimal
in the sense of minimizing two-sided size distortion while being independent of nominal size.
In Monte Carlo study of finite sample perforrnance; the bootstrap was found to usually
improve on the normal approximation, though there is variability depending on the method
of bias-correction, if any. We also presented limited Monte Carlo evidence that the bootstrap
can suffer less from the curse of dimensionality than the normal approximation.

Our focus on the ADE of single index models was prompted by its relative simplicity,
but is extremely narrow. In more general statistics, and other semiparametric estimates,
details corresponding to those in the paper, both with respect to formal expansions and proofs
of validity, will be even more complicated, possibly prohibitively so. Actual Edgeworth
correction terms will depend on the particular model studied. However, it may be relatively
obvious to see how to construct a sensible bootstrap procedure, and reasonable to suppose
that our findings, building on those of Horowitz (1998, 2002), point to the potential for
bootstrap-based inference to again provide improvements in moderate-sized samples. Of
course, the choice of bandwidth, and bias correction, should be more or less dependent on
the underlying model and the basic statistic. Undersmoothing informally "solves" both

problems, but with respect to bias correction by b* and b* , the latter, more "direct"

18



approach, may be the more convenient to extend.

APPENDIX A: Proof of Theorem 1
The qualification "almost surely" will be omitted hereafter. Let C denote a generic,

finite, positive constant. We will make use of the following result for an unstudentized
statistic. The proof is available from the authors upon request.
Proposition ~ Assuming E|Y|3*® < o« for some § >0 and (ii)-(xii),

sup IS”ZP |[F(z) -F*(z)| =o(nM2+n1h42+pnl2p Ly a5
where |

F(z) =P(Z<z) ,Z=n'"?cYu-p) ,
and

F*(z) =P*(2'<z) , Z" =n"2"Y(u*-p"

Proof of Theorem 1:

In view of Theorem A of NR1, it suffices to show
sup |[F*(z) -F*(z) | =o(nY?+nth42+pliZply (A.1)

where we write sup for sup sup . Note that Z* =¢*¢*'Z* . Taylor’s theorem gives

v:viv=1 2€R

o'o0*1'=1+R*+R* , where

R*'=2(1-0"%"2), R*- %{1+p(a*‘2&*2—1) } 20 2 -1) 2,
for some pe [0, 1] . Define U =Y, [K(x)f (X ~hx)dx - [K(x)e (X, - hx)dx

- _ gl _
u;=viy, Vi=o"(u;, ~Eu) , u; =v'y,

s W :a‘l(u,.j -Eu) -V;-V, . Introduce the

,-,-
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abbreviations S, =V W, , T; =W +V;, N; =W +V, +V;. Also define the bootstrap-related

y 2 Ty ij i
. * * = " * * * _ * * * * * *
variates Vi’ =0" Wu;-E'u"), uy =v'Uj , W'=o""(u; -E'u”) ViVy, Sy Vil .
2 n n _1n~1 n
= T * ~
V*: i*’ :nl/z z % , A*:nl/ZhLKl , (A2)
n 2 2 i=1j

15

I/i*‘ :E*(I/j*%*ﬁ *) , I’I]/k* :E*(ugl*%*lf *,k*) , such that E*(|l 1*,' . ,l.,.*) _
E*(-|(X, Y'),j=1,...,r) , we have (cf. NRI) R'-T"+Q" +R" |

T = T1*+T2* +Ty , R"=R;+R; +R; +R{ +Rs +R¢ ,where

* * 1n *2 ~* * n-1 - o
T E* LT = = 4V,-—1+8V,~,T:( ) W’
1 (n 2)2 ( 12) n;{( ) } 3 ,Z,: Y
—ln * * * ~* ~*
o :4(;‘) E{(Vi +VOY W -V, _Vj} ,
i <j
* n_ln Ky ¥ * 1 n ) * * ~*
R - _4(2) YV LR - —( ) ) (W Vi - W)
i< 1k<m

* _ln * N* ~* * *
R34—4’1—(”) YW W EN ) )

2
. 8 o sy *2 . _4n(n-1) J[n-1\¢
- A RS = -
R; (n-z)z,z;{m E(W;:)) . R (_2)2{( )E }

! <]
(i)
* 8 }’L-—l T v * *
Ri=-u") XY Vil
n =1 k<m
n (i)
where Z denotes summation with respect to k and m for 1 <k <m=n but excluding

k<m

k=i and m=i. Because Z*=V*+W*+A* , we have Z* = ( 1+R*+R~*) (V+W*+AY)
so by a standard inequality the left side of (A.1) is bounded by

sup P*((1+T"+Q") ( VW) + A <z)-F'(z)|

P* ( |(R*+1§*) (VW™ +A%) +( T*+Q") A*| Zan) +0(a,) (A3)

for a,>0. Taking a,=max(n Y2, n'h 2 n'2pL)[logn , we bound the second

term on the right of (A.3) by

P*(“R**E*)(V*+ W+ A" | 2%) + P*(|(T*+Q)A*| > 2lo/;ZL)

<P*(|R*+R | > ) + PH(|P7"+ W + A*| =log n)

210g n
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L P (T Q) A | = (A.4)

n 2y L)
2log n )

The second term on the right of (A.4) is o (n Y2+n1h 42+nl2p Ly similarly to the
derivation of (3.14) of NR1 using Theorem 1 of NRO and the Proposition. The first term can
be handled as in (3.5)-(3.8) of NRI1, appealing to Lemmas B.15-24, and shown to
be o(nY2+n1h42+pY2p Ly The last term on the right of (A.4) is
o(nY2+p1p 42y similarly to (3.15) of NR1, by Markov’s inequality, Lemmas B.15-
18 and
A'=n'?pL{x, +o (1)} , (A.5)
which is straightforward because k;—>x; (see the proof of Theorem 2 of NRO).
Write b, =V*, by =W , b, =(T'+QY V", bs =(T*+Q") W* ,
by =by+b;s , b =b;+b; , B* =b|+b] , and define
X'(1) = [e!=dF(z)

2 4(xy+2K,) ), .
- e 2{1+{n1/2hLK1—;”2_4}(”)
Ky, 4(2K5+3Ky)
nhd+2(lt) 3n1/2

(it)ﬂ,

using (2.7). For N, =log nmin(e‘n'? nh??), where €*=(E*|2V;|?) ! <

{E*(2V{)?}*2=1 , Esseen’s smoothing lemma bounds the first term on the right of

(A.3) by
Ny, E*e it(B™+A) -x'(t) e+ O(Ml)
N {
= O+ dA) + () +o(n2+p1p42) | (A.6)
where
/ %, it (B"+A%) _a 0+ *, it (B"+A"
0 = f_j,lEe : X g = L/s|t|s%|ml*)ldt ,
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1) = XD 4 ,

am = [ 1A

for p=min (en'/2,log n), p’=min(log n,en'? nh9?) . Itremains to show that
D), D, AI) = o(nY2+nth2spli2ply, (A.7)

() is handled in (3.47) of NR1. We estimate (I). Writing 5; =56, +5, where

65 =T*V* and b, =Q* V" , we obtain, similarly to (3.18)-(3.28) of NR1,

L {A*_ CAURRLAUNAD }(l. [y - E O
ntl? n

2
¢
E'{ei!B )} —¢ 7

(it)?

4{2E*(V) +3EX (W Vi Vs
3n /2 "
where
2 2
Ak - -4 t? t P+t /
Dn:‘)({e P o (VA St e )}{h L)
2
2 r? IR
ve (| |n e Ph2E e jn 2R 20 ( P | r|;172| L)
_t? 3 2
+ (e InV2h Ly 2rzh”‘){e 2 —[ulﬁ+0(n’”2(t bt Pre “)}
n
t 2 It P+t |, 4/
x(1+ nzhd+2+ nli2 +A")

s (e |+ 2n 2L |t Prh 2y {E By + B |+ |t |(E*(B5 ) +E*|Bsbi])} L(A.9)

N T
A, =0 T + g ) : (A.10)
By Holder’s inequality and Lemmas B.5 and B.14-B.18,
—~ _d2
E'[b;"| <[EN(QHE(V'HIV2=0(n"h 7) | (A.11)

E* b | S[E T +QPE (W' H1Y2=0((n"2+n W42y (n th22)112)  (A.12)
Lemmas B.14-B.17 and Holder’s inequality give
E*(b;%) <C{T{’E*(V'}) +E"|;V'P+E* T,V 2},
<C{T{’E*(V"?) +[EX(T;YEX(V'")1 V24 [E*(T;H EX (V"4 112
=O(nt+n2p%4y | (A.13)
Holder’s inequality, (A.13) and Lemma B.5 yield
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E*|B5b5| =[E*(b; VE'(b3)1Y2=0((n V2en h42) (n 42 112) . (A.14)
We have, putting v =a‘1vT{Y-f (X)-e (X)) .,
no* E Eul] B Lt)3 E(Vl?’) s (A.15)

due to (B.2) of NRO and Lemma B.l—(d), and

E*(V])?=

E*(Wp?) =h 42 {x,+o (1)}, (A.16)

due to Lemma 12 of NRO and Lemma B.4-(a). By (A.5), (A.8), (A.16)

* i (B*+A" _ A+
O <flogn ) g <o (n e 2 en Y aT)

We evaluate (II) by partitioning the range of integration into two parts, p<|t |<N,
and N,<|t |<N, ,for N, =min (e'n'? nh4?) . Because (3.33), (3.35)-(3.43) of NRI
hold for bootstrapped statistics and bootstrap moments due to Lemmas B.1-B.4, B.6-B.13,
we obtain, using Lemma B.25-(a), (b),

it (B"+A") E*e itB’
[ |E—e_.— =[ Ee’” \a —o(n 2+ nh4?) [(A18)
p=li | <N, —

!
similarly to (3.45) and (3.46) of NR1. Therefore, by (A.18) and (A.19),

itB*
/' |1N|Ee ! |d[ :O(n—l/Z n n—lh—d—Z) , (A19)
=Ny

) = o(nY2 + nlh 42 | (A.20)

to complete the proof. l

APPENDIX B: Technical Lemmas for the Proof of Theorem 1
The proofs of Lemmas B.1-6 and B.19-25 below are contained in a separate document
which may be obtained from the authors on request. The proofs of Lemmas B.7-13 involve

identical techniques and the orders of bootstrapped moments are the same as those of the

corresponding moments, given in Lemmas 1-8 of NR1.
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LEMMA B.1:
@ E*(Vi) =0, E*(2V)%*=1, E'(W)) =0.
(b) E"(W,|1%) =E*(W;|2%) =0.
Under (i), (iii), (iv), (v), (vii), (viii) and (ix),
) E'u*-Eu =0((log n)7%) .
Under (i), (iii), (iv), (v), (vi), (vii) and (viii),
@) o2 =0%+0 ((log n)?) , o =a" +0 ((log n) %), r=l.
Under E(Y?®) <o , (iii), (iv), (v), (vi), (vii), (viii) and (ix),
© E*(Vh) =0(1) .
Under (i), (iii), (iv), (v), (vi), (vii), (viii) and (ix),

® E*(V;*) =0(1).

LEMMA B.2:
V*-V*(m) and W*-W*(m) are independent of (X{",Y)), -,

(X7, Yy conditional on (X{,Y,), ,(X;,Y,).

LEMMA B.3:  Under (i), (iii), (iv), (v), (vi), (vii), and (viii),

|E"( W Vivs) |= |[E(W, V' V) |+o (1) = |[E(W,v v,) |+o (1) =x4+0(1) =0(1) .

LEMMA B.4: Under (i), (iii), (iv), (v), (vi), (vii), and (viii),
(@) E*\Ws| = E\W, | +o (R D4y for r=1,2,3,4.
(b) E*( |WaWis ") = O(h20-Dd2ry for r=1,2.
LEMMA B.5:  Under (i), (iii), (iv), (v), (vi), (vii), (viii) and (ix),
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E*|W*(m) WO((#) f) ,

_ 3
in particular E*|W*|* =E*|W*(n-1) |? =O((n‘1h -2y 2) :

LEMMA B.6: Under (i)’, (iii), (iv), (v), (vi), (vii) and (viii),

E*\ViW,|" = E* VoW |" = O(h D47y for r=2,3,4 .

LEMMA B.7: Under (i), (iii), (iv), (v), (vi), (vii) and (viii),

E*|Vi|" = 0O(1) for 1=<r=<6 .

LEMMA B.8: Under (i), (iii), (iv), (v), (vi) and (viii),
(@ E*|Wi| = O(h"@D) for 1<r <3,

) E*|W| = O(h U4y for 1<r <6 .

LEMMA B.9: Under (i), (iii), (iv), (v), (vi), (vii) and (viil), for
di=(4v*-1) + 8V},
(@ E*|d\Vy]" =0(1) for 1=<r=<3 ,

(d) E*|d{Vi|" = 0(1) for 1sr=<2 .

LEMMA B.10: Under (i), (iii), (iv), (v), (vi), (vil) and (viii),
(@ E*MLVVE| = O(h U Ddry for 1<r<3,i=1,2,

®)  EBGVI) = BV = O(h~UDd7y for 1<r<2 .

LEMMA B.11: Under (i), (iii), (iv), (v), (vi), (vii) and (viii), for

e,f:4{(V,-*+Vj*>W,~*—V,-*—V,~*+ - W}




@@ E*lenpVs| = O(h U Da2y for 1<r=<3 ,

(b) E*le l*le*‘r = E*|€ 1*21/2*|r = O(h~(r—1)d—2r) for 1<r=<2 .

LEMMA B.12: Under (i), (iii), (iv), (v), (vi), (vil) and (viii),
(@ E*|d;Ws|" = O(h D4y for 1<r=<3,

) E*|d W = E*|dsWs|" = OCh D47y for 1<r<2 .

LEMMA B.13: Under (i), (iii), (iv), (v), (vi), (vii) and (viii),
@@ E|\WoW,|" = O(h (?r43r) for 1 <r<3,
(b) E*|\WLWs|" = O(h20 D3y for 1<r<3,i=1,2 ,

) E*|WW|” = O(h 2043y for 1<r<6 .

LEMMA B.14: Under (i), (iii), (iv), (v), (vi), (vii) and (viii),

E* |V

"=0(1) for 2 <r<4 .

LEMMA B.15: Under (1), (v), (vi), (vii) and (viii)

IT{|" = O(n"h 742y for r<4 .

LEMMA B.16: Under (i), (iii), (iv), (v), (vi), (vil) and (viii),

E* TSI = O(n'?) for r=2,3,4 .

LEMMA B.17: Under (i), (iii), (iv), (v), (vi) and (viii),

ENT:Y =0(n"hUDd2y for r=2 3,4 .
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LEMMA B.18: Under (i), (iii), (iv), (v), (vi), (vii) and (viii),

E'(Q'%) =0(n?h™?)

LEMMA B.19: Under (i), (iii), (iv), (v), (vi), (vil) and (viii),

E'(Ri*) - O0(n?)

LEMMA B.20: Under (i), (iii), (iv), (v), (vi) and (viii),

E*(R%) =0(n3h%

LEMMA B.21: Under (i), (iii), (iv), (v), (vi) and (viil),

E*(R3%) = O(n™h734%

LEMMA B.22: Under (i), (iv), (v), (vi) and (viii),

E*(R4*2) _ 0(}’1_31’1 -2(d+2))

LEMMA B.23: Under (i), (iii), (iv), (v), (vi), (vii) and (viii),

E*(Rs?®) = O(n™h2d2)

LEMMA B.24: Under (i), (iii), (iv), (v), (vi), (vii) and (viii),

E"(R*) = 0(n?h4?)

LEMMA B.25: Under (i), (i1), (iii), (iv), (v), (vii), (viii), (ix) and (x),
@) for pslt |<en 2, y(0) | <exp (-1m)

(b) for e'n'?2<|t |[<n'%log n , there exists ne(0, 1) such that, for large
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2itn 72V

n, |Y'(t)|<1-m , where y(t)=E*[w(1)] , wi(t)=e

APPENDIX C: Proof of Theorem 2
Because K(-u)=K(u) and K’(-u)=-K’(u), b * has a U statistic form with kernel

Y, -Y, -
P; _ hd+1)ff{ XX +U-V) —K’( ’)}K(u)K(v)dudv .

Putting P, = E(P; |X;, Y,) —E(Pz) and Q, =P, -P, —P]. -E(P,) ,

b_+:%;’:;P:‘+( ) E ZQ +E(Pp) -

1=1j=i+1
It suffices to show the following:

EP,, -(EU-0) =o(h®Y) (C.1)

n _1n~1 n L

(2> 2_21 Q =o,(hY) . (C.3)
=1 =1+

We first show (C.1). Change of variables and integration by parts give
E(Py, |X,,Y) = %fffK(z)K(u)K(v) f (X,-h(z-uw)) - f (X,-hz) }dudv dz
- %fffK(z)K(u)K(v) {e (X;-h(z-uw))-e(X,-hz) }dudvdz . (C.4)
Using (v) and (viii) and assuming without loss of generality that L is even, Taylor expansion
around £=0 gives
fffK(z)K(u)K(v) e (X,-hz)dzdudv :fK(z) e (X,-hz) dz

L —
e (X)) BT Y Y Rey(X) ro(hh)
*0sly,..., I 4<L
11+...+ld=L

_ d |
where K| :f‘lillx,-l’K(x)dx , g1(x) AU l")g (x) fora generic function g. Similar
calculation gives

[[[K(z)e (X~ h(z -u+v))dz K(w) K(v) dudy

—e’(X)+& XY Ke(X) cotht)
o<l,...} <L
LA
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Therefore the last integral on the right of (C.4) is

L _
2 Y-y Key(X) vo(hh (€5)
0=l ..., 1 4<L
I+ ..+l =L
Likewise the first integral on the right of (C.4) is
2 L —
2 Yy Rfi(X) o (k) (.6)
©0s=ly,..., I 4<L
L+ o+l =L
Because

EU—§=E[Y1fK(z) f (X-hz)-f (X)) Vdz - [K(z) {e (X;-hz) -e (X)) }dz

YhE — hl — L
Bl 3 Kf(X) - Y Ke(X)1ro(hh)
o 0sly,..., I, <L c0=ly,..., l4<L
Iy4 .+l 4=L Dy o+l =L

we obtain E(P,,) - (EU-8) =E[E(P,|X,,Y))]1 -(EU-8) =o(h1) by ().
Manipulation similar to that in the proof of Lemmas 2 and 7 of NRO yields
Var ( i P,) =O(nh 2Ly using (C.4)- (C.6), (i), (iv) and (v), which justifies (C.2). To
prove (C.3), noting we can show E( Q122) =0(h *?) similarly to Lemma 4 of R, we have

Var (h E(QR) o 1
or 3] IZ”Z;IQ bty ) 0D

APPENDIX D: Formulae for m, m, and proof of Theorem 3

Writing [=L/2-1, we have

m(t) = SLLY3) EZZihc (g (2R 1(20)1(2))1

\/3- =01:= 0]
m(t) -¢<t¢/§m Eozozchccwu, (2h)1(20)1(25)!,
1=0j

where

Ei:2Ci+17Ci> i:09~°'al*1,

E[:7C1,
() - Y UDEUB 3"
& hyshyhy =2hsl h1!.h2!h3!
v DD v (YD1 8 (-1/3)7
ilgzzi Lyliy! j1+j§;3=2j J 112l 5!
hatigtj s

xXhI+leh2+il+j2 ’
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where each primed sum is over all non-negative values of the subscript indices subject to the

stated equality, and

X =1, j =0,

0, j odd,
/2

{I(] -2i +1), jeven,

Thus, many of the summands in T hi (t), o (t) will be zero. Note that, for i=0,...,/,

{; isthe (i+1)-th element of the vector Vv, where v is the first column of the ([+1)
X (I+1) identity matrix and V is the (/+1)x(/+1) Hankel matrix with (i,j)-th element

X2i +2j -4

To establish (3.7), with these m, , note from (3.1) that K (x) has j-th element
k/(x;) Ty i k(x;) , where k'(x)=(d/dx)k(x) . Thus M() has j-th element
ml(tj) Hfizl,i 2 (t;), where
frzl(t):fk ¢ +wex) k(w) k(x) dwdx |, m2(z):fk(t swex) k(w) k(x) dwdx .
It remains to show that 7, =m,, i =1, 2, under (3.2), (3.3). We do this only for i=1, the
proof for i=2 being essentially identical. Change of variables gives
() = [q,(w)p,(x)py (wx 1) (W) $(x) (w-x 1 ) dwdlx ,
where
q,(x)=k'(x)]¢(x) =’i% Eix 2t
Using the identity
w2+x 24 (w-x -1 ) 2=(VZw-x[ V2 -j [ V2) 2+ (V3] 2+z [ /6) *+2 ¥/ 3,
a change of variables gives
M) - S fq, ﬁ+£+§“”(\r PP D)
"¢(W) ¢(x)dwdx .

The proof is completed by applying the multinomial theorem to the summands of p,

and ¢, and noting that x; is the j-th moment of a standard normal variate.
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APPENDIX E: Details and proof of Theorem 5
We have
pi(z) = -%{(22 241)8,+3(22+1)8,}, p,(z) =84(2%-13)/ 3,
ps(z) =-8,8,(z2+1), q(z) =Ez+E,(2°-32) +E4(z ’-10z 3+15z),
q,(z) :33( 1923/ 6-32/2), q5(z)=-6,{4(85+28,)z+(854/ 3+45,) (z 3-3z2) },
where
§,=E(V?), 8,=E(W,V\V;), 85=ha2E{M3(Vi+V)y) }, 86=h**E(W, W, W),
8,-E{W,V\V,(Vi#Vy) ), 83=ECH, W3 V) V3) s 89=E(V1),
E =64 (8,+28,)2+1-168,-168; ,
8

gzz%‘.(33+234)(233+334) +%—837-838—%39 , B3 5(28;438,)% .

Proof of Theorem 5

Consider (4.5). Write

n

nllza—l(u_ﬁ) _ l Vt +n1/2(;21)-1
=1

n- n

1
1241 m
Vni i=1j;1ui/j enton(Bu i)

Vv + w + A .

Letting S =4Var (U,), s 2=072v"Sv , Taylor’s theorem gives

-3 -5
o =5 1- ST(U‘Z‘U2 -5 2)+ —3S8 (0252 -5 2)2
‘%{S 2+0(0_25'2—S 2) }_7/2(0'_26'2—.8‘ 2) 3

s 1+R+R+R'
for some 8 [0,1] . Put V, = E(V,W [i) , W, =E(W, W, |j k) , and let
R=T+Q+R, T-T,+T,+T, , 0-0,+Q, , R-R+R,+R,+R,*R; ,
where the 7,, Q., R, are defined as in NR1 (noting that S? shouldbe s % intheir T, ).
Writing Z = (s ‘1+§+§+R) (V+WAA) , a standard inequality gives

sup |1;7(z) -F™(z)| <sup |PB SZ)~F+*(Z)|+P( |2—B| Zan)+0(a"),(E.1)

31



where B=b,+bs+b,+b,+b,+bs+s '(A+T\A) , for
b,=sW ,by=sW, b,=(T+Q+RV , by = (T+Q) W,

by=(Ty+T5+ Q) A | b= > {(T+Q) *W+T(T2Q) W+( T+Q) RV}

N W

and a,>0. Taking a,=max(n ', n2h 24* nh*, n>h -3y [ logn , wecanshow
that the second term on the right of (E.1) is o (n '+n 2h 24-44 ph s p 3/ 2p <273)
similarly to (3.4)-(3.16) and Lemmas 9-19 of NR1 and Lemma 6 of R.

Putting x**(t) = fei '2dF**(z) , Esseen’s smoothing lemma gives, for

N, =log nmin (nn, n?h 244, n320 42 | 9>0,

N itB _ 4+
sup PB<z)-F*"(z)] sf_N0|Ee tX (t) dt + O(N")

P EeitB_X+(l) EeitB
Sffplﬁ—t——wt +fps|f151\{,| ;1

ﬂt,l -1 -2, -2d-4
+fv\zpl S ldt v o (nThrnTh )
= (1) +([I ) +(III ) +0(n’1+n‘2h—2d—4)‘

for p=min (log n,en'?), some €>0. (III) 1is easily shown to be
o(n',n2h 24 ph?, n32p43) | while (II) has the same order by (xiii).
Since s 'A and 7T, are nonstochastic, putting B, =B -b, -s 'A(1+T)) ,
E(ei’B) _ eits'l(A+AT,) E<eiz(b2+32)) ’ (E.2)
where, dueto s '=1+0O(h 1) |,
et AT L L AL+ T) + (”#)ZAZ vO(Jt PA3+ ]t |[(A+T)hRY) . (E3)
Writing

E(ett(b2+32)) _ E(eltbz) +l-tE(eltb2B2) ‘ (l;) E(elthBzz)

. 3 . . A
+ (lé) E(ettsz;) + (122)4E(e”b2324) +O( |t |5E|le5) , (E.4)

we examine each of the right hand side terms. Note that the largest order term in B, is
by, and Elb;|* =O((n'h %252y | by similar manipulation to equation (14) of R.
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In the sequel, we say A=B when
A=B+O({y(t)}"™ |t ["(nlen 2h 24ap 312 43y

for some integers k and m free of n, and y(¢)=Ew;(t/s) . We have
E(e''"B)) =E{e''"*(by+b,+b5+b,+by) }

with

' . 2 : 3

E(e " by) =(y(0) 12 2EDEOR, 1) + HELEW Vv, (v
\/ﬁ n

E(eit b252) z{Y(t)}n_3 _mTtE(sz) 8(lt) E(I/I)E(Wz)

3/2

—%{E(VE’MZE(%VIVZ)} 2LE 4BV -3+ 4BOH V() )
; 2
L”;)— (E(V}) 2E(W, V1) )

L2116 (B(VD) 2B,V 1,) VBV +4ECVY) -+ BV V(Y 47y) ]

WLWLVLVs) - 8(”) ————E(W,W,V,V3)

16ltE(
n

. H 3
. 16}; SN AAAVRANEREON T UAAACAAY

t)3 4+8(it
n (IZn) (31/2) E{W2(V+V2)}

E(eit b253) z{Y(l)}n_3 8(lt) E( W2)E(VI{2V1V2)

3/2

M{E(VI)QE( W, V.\V,) YE(W,V,V,)

4” —— [E{W,V\V,(V+V)) } +4E(WL WLV, V) ] - E(W, W, W)

ndl

SOV ) SSER (V) ) |
E(e it b2b4) ~—{y(£) }*24(it) __{E( V13) +2E(WL,V\V,) }
Jn

Ece " Pbs) =3 v(e) )| AU (EOwE) 120 LEVE s 281

L 164it ;(it)S} {E(V}) 2E(W,V,V}) }2
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16E(WE) 14¢it)2
. ;“’-) ! (jﬁ‘) (E(V3) 2E(W,V,V,) )

The third expectation on the right of (E.4) is
E(e''"B}) ~E{e''*(bytby+by+b+bs) 2} =E{e''"*(b5+b]+2b3b,) }
with

41t
n 32

E(e it b2b32) z{ Y([ ) }n3[ %E( sz) + E{ WZZ( V1+I/2) }

. 2 H 4
R A A A SRRSO AAS }2} ,

E(e " "62) z{v(t)}”“‘[ HI2GON () )2

. 2 . 4 . 2 ~
+16{2+5(1tn) +(it) }{E([/13)+2E(]/I{2V1V2)}2+%E(4V12—S 2,8V/,) 2

8{3“’);2(”) LECWE) (E(VY) 22E(H, VV)}}

4{2(it)+(it)? }E(WZ)E(W Vivy)

3/2

E(e " "byb,) ={y(1)}"3 -

_ 4_{L<nt_t)2_} {E(W,VVy(Vy+V,) +4E(W, WLV, V5) )

NI

6 BUO SO ) gy, (B 2BV, )
3/2E( WZH{:’)VI{:&) } :

The fourth expectation on the right of (E.4) is

E(e ""B}) =E{e ''"(by+b,+b,+b+bs) *} =Efe 'P(b3+3b26,) } |

with

E(e" "3 z{y(t)}’”{ 3/2E(W2W3 23)+8(”) E(Wz)E(WzVV)]
E(e'""b}bs) z{y(t)}"“’{ —Z‘ii—fl{E( W) }?
8+8(—”‘)E(W2){E(Vl)+2E(WVV)}}

3/2

The fifth expectation on the right of (E.4) is
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E(e'*"B}) =E{e ' "%2(b,+b,+b4+b,+b3)*} ~E(e ''"b3)
~(y(0) 1" BORD )2
As in, e.g. Bickel et.al. (1986)

(y(1) )k =e T 1+L})3E<VE)

3yn
(3016 E(VY) -3} +64 (i 1) S(E(V?) )]
vo( J%e 124y (E.5)

for |t | <en'/? . Combining the above results gives eventually
E(e itB) -x*(t) +o(e —12/2|t |m(n-1+n—2h 2d-4 | ph 2L 4 312 —d—2))
10 (e t2%4 It |n ~1) n 0( |If |5(n —lh —d—2) 5/2) ,

where

(2 ; 2
(1) e T 1 r(t) _ (it) 32+it81n”2hL

\/}7 nhd+2
sy(0) | (BUPARG)48 (i)} 4
n n 2 2d+4 2
o
ST LI Lo LD b LILEVWAR

n3/2hd+3 n1/2

i3 8 (it)?
ro(t)=-4(it)(65+28,) -(it) (§S3+484), ro(t) ={-4(it) + 3 166 ,
s (8) =(it)2E +(it)* e+ (i) , s,(2) =(it)r(t)

and thus

itB ++
0= fpl E(e'! )t—X (£) ldt =0 (n ' +n 2h 24 anh 2Lap 312 43
P
This proves (4.5). The proof of (4.6) proceeds by developing an analogous higher-order
expansion for F*(z) , conditional on the sample, the algebraic calculations being identical

to those above; see also Hall (1992, pp.88, 89, Section 5.2). L
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Table 1. Empirical size (%) of tests for Hy: p=p, with nominal size 5%, d=2, n=100

L{n|h| @ H: ji=g (b) Hy: i< g © H: > g
B-test | E-test | N-test | B-test | E-test | N-test | B-test | E-test | N-test

02| 1.3 3.3 0.3 2.5 4.5 0.0 1.7 2.0 0.3

100 1 04| 3.0 5.3 2.1 3.7 5.2 0.3 3.8 3.0 1.8
0.6 | 5.1 6.6 6.3 3.8 7.5 0.3 5.7 5.2 6.0
0.8 | 6.8 8.8 [13.0 3.3 6.3 0.2 7.3 8.1 |12.8

4 021 1.6 3.3 0.3 3.8 4.5 0.0 2.3 3.5 0.3
400 | 04| 51 6.3 3.5 5.3 8.0 0.3 4.7 4.8 3.2
0.6 | 4.8 6.5 7.8 4.1 6.5 0.0 5.6 5.0 7.8
0.8 | 8.8 9.1 |333 1.5 4.1 0.0 |12.8 |10.1 |333

021 13 3.5 0.3 2.3 4.6 0.0 1.2 3.3 0.3

100 | 04 2.0 3.5 0.7 2.5 5.0 0.0 1.9 2.5 0.7
0.6 | 3.2 4.6 1.6 2.7 6.5 0.2 3.3 4.7 0.1

0.8 4.7 6.5 4.0 4.3 7.0 0.5 4.1 4.8 3.5

8 021 1.0 3.1 0.3 2.0 3.6 0.0 1.2 3.5 0.3
400 | 04| 23 5.0 1.7 3.3 5.3 0.3 3.2 4.0 1.3
0.6 | 4.8 5.7 3.5 4.0 5.2 0.7 4.3 4.8 2.8

0.8 6.0 6.3 5.7 4.2 4.6 1.2 5.7 5.6 4.5
02| 0.0 2.0 0.0 0.0 3.2 0.0 0.5 3.5 0.0
100 | 04| 23 4.5 0.7 3.5 6.3 0.0 3.2 3.5 0.7
06| 3.5 6.8 2.0 4.2 7.7 0.0 4.0 4.0 2.0

0.8 4.8 6.8 2.8 5.3 7.5 0.5 3.7 4.0 2.3

10 0.2 ] 3.0 4.5 0.2 1.7 7.0 0.0 2.8 3.8 0.2
400 | 0-4 3.6 4.2 1.5 4.2 6.0 1.0 2.7 3.7 0.5
0.6 [ 5.8 5.5 4.0 6.1 5.3 1.5 3.1 4.3 2.5

0.8 4.5 5.2 4.5 5.3 5.6 1.0 5.2 5.0 3.5
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Table 2. Empirical size (%) of tests of Hy: w =p, with nominal size 5%, d=4, n=100

L| h |@ H:p#p, [(®) H:p<py |©) H: p>p,

B-test | N-test | B-test | N-test | B-test | N-test

0.4 1.2 0.8 2.4 0.0 1.6 0.2
4 | 06 4.8 3.1 5.0 0.0 4.2 3.1
0.8 5.7 13.2 3.7 0.1 6.2 12.8
1.0 6.0 38.0 2.1 0.0 7.0 38.8
0.4 0.0 0.0 0.1 0.0 0.2 0.3
g | 0.6 1.3 0.3 3.0 0.1 2.0 0.8
0.8 3.0 1.4 3.4 0.0 2.5 1.3

1.0 4.3 3.1 3.7 0.1 4.5 3.0
0.4 0.1 0.6 1.7 0.0 1.5 0.6
10| 0.6 2.3 0.8 3.8 0.0 2.3 0.8
0.8 3.1 2.1 4.5 0.1 5.0 2.0

1.0 4.8 5.0 5.1 0.1 6.1 4.8
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