A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Mizrach, Bruce # **Working Paper** When did the options market in Enron lose its' smirk? Working Paper, No. 2002-24 # **Provided in Cooperation with:** Department of Economics, Rutgers University Suggested Citation: Mizrach, Bruce (2002): When did the options market in Enron lose its' smirk?, Working Paper, No. 2002-24, Rutgers University, Department of Economics, New Brunswick, NJ This Version is available at: https://hdl.handle.net/10419/79191 ## Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. ## Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # The Enron Bankruptcy: When did the options market in Enron lose it's smirk? **Bruce Mizrach** © Springer Science + Business Media, LLC 2006 **Abstract** The Enron Corporation went from a \$65 billion dollar market capitalization to bankruptcy in just 16 months. Using statistical techniques for extracting the implied probability distributions built into option prices, I examine the market's expectation of Enron's risk of collapse. I find that the options market remained far too optimistic about the stock until just weeks before their bankruptcy filing. **Keywords** Volatility smile · Options · Enron · Bankruptcy ## JEL Classification G13 · G14 The Enron Corporation was widely praised by Wall Street analysts even after the bear market began in early 2000. In August of 2000, its' share price peaked at \$90. With a market capitalization of \$65 billion, it was the seventh largest publicly traded company in the U.S. By August 2001 though, a series of questions about the company's financial statements emerged following the resignation of their CEO. Four months later, the company was in bankruptcy. Enron's collapse was due to excessive debt, disguised from the public through off balance sheet entities. Wall Street buy side analysts were either deceived or dishonest. Many maintained strong buy ratings until Enron was delisted. Credit market analysts use balance sheet variables to predict bankruptcy. This classic approach dates back to Altman (1968). A dynamic hazard function approach is considered in Shumway (2001). The three major credit rating agencies, however, ¹ did not warn investors until mid-October 2001. Enron's bonds maintained an investment B. Mizrach (⋈) Department of Economics, Rutgers University, 75 Hamilton Street, New Brunswick, NJ 08901. I thank Oded Palmon and an anonymous referee for helpful comments. ¹ Fitch, Moody's and Standard and Poor's. grade rating until four days before their bankruptcy filing.² Was everyone caught off guard by the unraveling of Enron's complex financial structure? This paper examines whether the options market did a better job in anticipating financial distress at Enron. Our approach is to use the implied probability distributions built into option prices to answer this question. Farmen, Westgaard, and van der Wijst (2004) and Charitou and Trigeorgis (2004) are two papers looking specifically at bankruptcy using options. These papers, however, do not look at departures from the Black-Scholes model whose assumptions we reject. There are two general approaches to obtaining probabilistic information from options. The first group of methods generalize the stochastic processes in the Black-Scholes model which assume no discontinuous changes in the stock price and constant volatility. Merton (1976) and Bates (1991) have made an important extension by allowing for jumps. The stochastic volatility literature, with contributions from Wiggins (1987), Hull and White (1987), Stein and Stein (1991) and Heston (1993), allows for volatility to change over time. The GARCH model also allows for time dependent volatility and has been applied in this context by Duan (1995). A related literature, with papers by Dumas, Fleming and Whaley (1998) and Das and Sundaram (1999), has looked at deterministic variations in volatility with the level of the stock price or with time.³ This paper utilizes a second approach that looks directly at the probability distribution. I parameterize the underlying as a mixture of log normals as in Ritchey (1990) and Melick and Thomas (1997). Alternative parameterizations include binomial trees, as in Rubinstein (1994) and Jackwerth and Rubinstein (1996), trinomial trees, developed by Derman, Kani, and Chriss (1996), polynomial expansions, as in Longstaff (1995) and Rubinstein (1998), and the finite difference methods used in Andersen and Brotherton-Ratcliffe (1998). Nonparametric approaches, using kernel density estimation, have been proposed by Ait-Sahalia and Lo (1998). The use of option implied probability densities for assessing market risks is now widespread. Bates (1991, 2000) tries to predict stock market crashes. Melick and Thomas (1997) look for large anticipated movements in crude oil prices. Haas, Mittnik and Mizrach (2005) find some evidence of an early warning in the two ERM exchange rate crises. The mixture of log normals density is quite promising in explaining the departures from the Black-Scholes model observed in Enron options. I determine the daily probability of the firm's equity falling below the market value of its' debt. My results suggest this belief came quite late in the Enron collapse. The options market placed greater weight on the stock returning to record highs until the public reports of Enron's accounting irregularities came to light. The smart money in the options market appears to have been fooled as much as unwitting retail investors or the more sophisticated stock and credit market analysts. The paper begins with the implied density information contained within options. This enables options to be priced under very general assumptions. The mixture of ³ In the literature, these deterministic volatility functions are often called *local volatility*. They appeal to practitioners because they often fit better the observed market prices. ² Edward Wyatt, "Credit Agencies Waited Months to Voice Doubt About Enron," New York Times, February 8, 2002. log normals model is discussed in Section 2. Section 3 discusses facts about Enron. Section 4 looks at data and estimation. Section 5 formally compares option implied densities. Section 6 concludes. ## 1 Implied probability densities #### 1.1 Motivation Departures from the Black-Scholes distributional assumptions may account for the observed variation of implied volatility with the strike price. Because this variation generally has a parabolic shape, it is often called the volatility "smile." The smile is often present on only one part of the distribution giving rise to a "smirk." A small sampling of the literature indicates that these effects are present across a wide variety of markets and instruments. Haas, Mittnik, and Mizrach (2005) find a smile in European exchange rate options. Bates (1991) found negative skewness in U.S. stock index options consistent with a crash-risk premium. Tompkins (2001) found similar results for the Japanese, German and British markets stock index options. Tompkins also finds variation in implied volatilities across strikes in British, German, Japanese and U.S. bond futures options as well. ### 1.2 How volatility varies with the strike In the Black-Scholes case, volatility does not vary with the striking price. As I have noted in the prior section, this assumption seems violated in practice. I make the first attempt at characterizing the relationship between the moneyness of the call price and the volatility. Let $f(S_T)$ denote the terminal risk neutral probability that S = x at time T, and let $F(S_T)$ denote the cumulative probability . A European call option at time t, expiring at T, with striking price K, is priced $$C(K,\tau) = e^{-r\tau} \int_{K}^{\infty} (S_T - K) f(S_T) dS_T, \tag{1}$$ where $\tau = T - t$, and r is the annualized interest rate. In the case where f(.) is the normal density and volatility σ is constant with respect to K, this yields the Black-Scholes formula, $$BS(S_t, K, \tau, r, \sigma) = S_t N(d_1) - K e^{-r\tau} N(d_2),$$ $$d_1 = \frac{\ln(S_t/K) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}$$ $$d_2 = d_1 - \sigma\sqrt{\tau},$$ (2) where N(.) is the cumulative normal distribution. Since the risk neutral distribution is unobservable, a large empirical and theoretical literature has devised ways to extract the implied distribution from options prices. Breeden and Litzenberger (1978) provided a road map for a variety of approaches by showing the link the change in the option price with respect to moneyness. The first derivative is a function of the cumulative distribution, $$\partial C/\partial K|_{K=S_T} = -\exp^{-r\tau}(1 - F(S_T)). \tag{3}$$ The second derivative then extracts the density, $$\partial^2 C/\partial K^2|_{K=S_T} = \exp^{-r\tau} f(S_T). \tag{4}$$ The principal problem in estimating f is that we don't observe a continuous function of option prices and strikes. Early attempts in the literature like Shimko (1993) interpolated between option prices. Later attempts turned to either specifying a density family for f or a more general stochastic process for the spot price. This paper follows Ritchey (1990) and Melick and Thomas (1997) by specifying f as a mixture of log normal distributions. Dupire (1994) clarifies the isomorphism between the approaches that specify the density and those that specify price process. He shows that for driftless diffusions, there is a unique stochastic process corresponding to a given implied probability density. ## 2 A mixture of log normals specification I first parameterize the data generating mechanism for the stock price as a mixture of log normals. I then simulate from the distribution in the three baseline examples to illustrate the range of possible volatility smiles. #### 2.1 The data generating mechanism I assume that the stock price process is a draw from a mixture of three log normal distributions, $N(\mu_i, \sigma_i)$, i = 1, 2, 3 with $\mu_3 \ge \mu_2 \ge \mu_1$. Three additional parameters p_1 , p_2 and p_3 define the probabilities of drawing from each log normal. To nest the Black-Scholes, I restrict the central log normal to have the same mean as the risk free rate, $\mu_2 = r$. Risk neutral pricing then implies restrictions on either the other means or the probabilities. I chose to let μ_1 , p_1 and p_3 vary, which implies $$\mu_3 = \mu_1 p_1 / p_3,\tag{5}$$ and $$p_2 = 1 - p_1 - p_3. (6)$$ For estimation purposes, this leaves me six free parameters $\Theta = (m_1, s_1, s_2, m_3, s_3, \pi_1, \pi_3)$. I take exponentials of all the parameters because they are constrained to be positive. The left hand mixture is given by $$N(\mu_1, \sigma_1) = N(r - \exp(m_1), 100 \times \exp(s_1)). \tag{7}$$ The only free parameter of the middle lognormal is the standard deviation, $$N(\mu_2, \sigma_2) = N(r, 100 \times \exp(s_2)).$$ (8) I parameterize the probabilities using the logistic function to bound them on [0, 1], $$p_1 = \exp(\pi_1)/(1 + \exp(\pi_1)),$$ (9) $$p_3 = \exp(\pi_3)/(1 + \exp(\pi_3)).$$ (10) The probability specification implies the following mean restrictions on the third log normal, $$N(\mu_3, \sigma_3) = N\left((r - \exp(m_1)) \times \frac{\exp(\pi_1)/(1 + \exp(\pi_1))}{\exp(\pi_3)/(1 + \exp(\pi_3))}, 100 \times \exp(s_3) \right). \tag{11}$$ In the baseline simulations, I show that this data generating mechanism can match a wide range of shapes for the volatility smile. ## 2.2 Baseline examples In all the following examples, I look at a set of 41 European calls with equally spaced strikes from 20 to 60 around a spot price of 40. I assume a risk free rate of 4% and no dividends. All three examples have a weighted average volatility of between 37 and 38%. The model nests the Black-Scholes by making the transition probabilities zero by setting $\pi_1 = \pi_3 = -\infty$, or making all the means and standard deviations equal, $m_1 = 0$, and $s_1 = s_2 = s_3$. Either parameterization gives the flat Black-Scholes profile with respect to the strike. A smile can be generated by a fat-tailed distribution. I set the standard deviations of the middle and right tail mixtures quite high, and $\sigma_2 = 49.5\%$ and $\sigma_3 = 50.2\%$ per annum, with $s_2 = -3.0$ and $s_3 = -0.69$. I then lower the left tail standard deviation to $\sigma_1 = 23.3\%$, $s_1 = -1.46$. I assume you draw more frequently from the less volatile tail, $p_1 = 45.3\%$, $\pi_1 = -0.19$ than the right, $p_3 = 32.6\%$, $\pi_3 = -0.73$. The lower tail and upper tail have means $\mu_1 = 2.87\%$ and $\mu_3 = 5.56\%$, by setting $m_1 = 0.12$. The smirks require risks of sizable jumps. I generate the right smirk by assuming a large a large jump in the right tail, $\mu_3 = 7.95\%$ and a smaller jump down, $\mu_1 = 1.90\%$, with $m_1 = 0.74$. The probability that the stock price will move down is just slightly higher, $p_1 = 43.2\%$, and $p_3 = 23.1\%$, setting $\pi_1 = -0.27$ and $\pi_3 = -1.21$. The standard deviations here increase as you move left to right, $\sigma_1 = 32.2$, $\sigma_2 = 39.3$, $\sigma_3 = 22.31$, with $s_1 = -1.13$, $s_2 = -0.93$, and $s_3 = -0.79$. The left smirk is generated with a larger jump down than up, $\mu_1 = 1.85\%$, $\mu_1 = 6.73\%$, with $m_1 = 0.76$. The jump probabilities are approximately equal, $p_1 = 44.9\%$, and $p_3 = 35.3\%$, with $\pi_1 = -0.20$ and $\pi_3 = -0.60$. The standard deviations here are smaller in the upper mixture. $\sigma_1 = 37.6\%$, $\sigma_2 = 55.9\%$, and $\sigma_3 = 26.0\%$. The corresponding model parameters are $s_1 = -0.99$, $s_2 = -0.58$, and $s_3 = -1.35$. All three examples are charted in Figure 1. Fig. 1 Implied volatility surfaces for alternative parameterizations Table 1 Moments of volatility surfaces *Notes*. These are averages across 100 replications of each parameterization of the model. | | Skewness | Kurtosis | | | |-------------|----------|----------|--|--| | Log Normal | 0.54 | 3.46 | | | | Left Smirk | 0.73 | 5.15 | | | | Smile | 0.82 | 5.29 | | | | Right Smirk | 0.62 | 3.91 | | | I consider next the probability distributions implicit in these volatility patterns. I graph the probability distributions of spot price outcomes 90 days into the future in Figure 2. The left (right) smirk has a higher (lower) mean and longer right (left) tail. These distributions are more leptokurtic and positively skewed than a lognormal distribution with the same average volatility. Fig. 2 Implied probability densities for alternative models Later, I will see if these volatility surfaces change in response to the time line of events in the Enron case. ## 3 The Enron bankruptcy The Enron case is the second largest bankruptcy in U.S. history.⁴ It involved the meltdown of the seventh largest corporation in the U.S. in a matter of a few months. It is a case of fraud, greed, and regulatory failure. This section reviews the key events in the history of the company. ⁴ WorldCom, Inc., which filed for bankruptcy in July 2002, is the largest. **Table 2** Reported revenues and profits at Enron (mn\$): 1995–2000 | Year | Revenue | Profit | |------|------------|----------| | 1995 | 9,189.00 | 519.69 | | 1996 | 13,289.00 | 584.00 | | 1997 | 20,273.00 | 105.00 | | 1998 | 31,260.00 | 703.00 | | 1999 | 40,112.00 | 1,024.00 | | 2000 | 100,789.00 | 979.00 | Notes. Source: Compustat ## 3.1 Rapid rise Enron was founded in 1985 from the merger of two natural gas companies, Houston Natural Gas Omaha based InterNorth. In 1989, it began a global trading business in natural gas that grew rapidly once government price regulations were lifted in the 1990s. It first traded electricity in North America in June of 1994 and expanded into Europe in 1995. Enron also pioneered the market in weather derivatives, trading its first products in August of 1997. Eventually they would expand their trading business into a wide array of products ranging from pulp and paper to broadband telecommunications. In 1985, the company had revenues of \$10.25 billion, and a net income of \$125 million. By the year 2000, the company exceeded \$100 billion in revenue and nearly \$1 billion in net profits, with the energy trading business⁵ responsible for 72%. Nearly all of this growth, as can be seen in Table 2, took place after 1995. CFO magazine praised the company for its rapid transformation "from a heavily regulated domestic natural-gas pipeline business to a fully integrated global energy company with thriving activities in natural gas, electricity, infrastructure development, marketing and trading, energy financing, and risk management." They cited the pioneering efforts of chief financial officer Jeffrey Fastow's "unique financing techniques" and awarded him the CFO of the Year award in 1999. On February 6, 2001, Fortune named the company the "most innovative in the U.S." for the sixth consecutive year. Fortune's award was based on a survey of 10,000 executives, directors, and analysts. The company was also a favorite of Wall Street analysts, and they helped propel Enron shares to an all-time high of \$90.75 on August 23, 2000, well after the Nasdaq bubble had burst. Salomon Smith Barney's report of January 22, 2001 was typical of Wall Street's admiration for this company at the top. The placed a price target of \$100 on the company based on "\$60 in implied value for Enron's energy merchant platform and \$40 for bandwidth trading and other extensions of their risk merchant franchise." They projected that bandwidth trading, a business which lost \$32 million on only 232 transactions in the fourth quarter of 2000, would "within 5 years, exceed . . . the entire value of energy marketing . . . " Like many other firms on Wall Street, they also praised the company for disposing of nearly all of its physical assets. ⁵ In the annual report, this is called the Wholesale Energy Division. ⁶ CFO Magazine, October 1, 1999. ⁷ Fortune, February 6, 2001. ## 3.2 The beginning of the end Hoping perhaps to go out at the peak or avoid a storm he could see forming, Kenneth Lay, CEO since 1986, stepped down and was replaced by president and chief operating officer Jeffrey Skilling on December 12, 2000. Skilling's eight month tenure was to be marked by a series of negative news. Enron was criticized for profiteering during the California energy crisis that begin in the summer of 2000 and extended into 2001. Enron's remaining physical assets began to report disappointing results. On December 15, 2000, Enron agreed to buy back shares of a failing water subsidiary, Azurix Inc., that it had spun off months earlier. A deal with Blockbuster Inc. to deliver movies via the Internet also collapsed in April of 2001. Dabhol Power Co., a wholly owned subsidiary of the company, lost its contract with the Indian government at the end of May. An Enron spin-off, New Power Co. fell dramatically in August 2001. The stock price slid steadily during Skilling's tenure. It fell from \$83.13 per share at the end of 2000 to \$44.07 per share on June 25, 2001. This 47% decline exceeded the 7.7% decline in the S&P500 over the same period. Skilling began to face criticism from the public its role in the California crisis and even from a handful of Wall Street analysts over the company's leverage. The stock had a short lived rally at the end of June into July on the basis of strong reported second quarter results. In mid-July though, the stock price continued slowly downward, declining 28.7% from July 16 to August 13, 2001 compared to a 6.2% decline in the S&P 500. The next day, Skilling shocked the market by resigning as CEO, and Kenneth Lay returned to the position. The stock price fell another 12.7%, reaching \$36.85 on August 16th but then stabilized in that region for the rest of the month. As Enron's troubles began to emerge, analysts stayed with the company. As late as September 2001, 15 of the 16 covering analysts on Enron had either buy or strong buy ratings on the stock. To show confidence in the company, Lay exercised options on 68,000 shares at prices of \$20.78 to \$21.56 on August 20–21, 2001. Lay, however, disposed of some the shares shortly afterwards to repay a loan. It is unclear if Lay realized how much trouble the company was in. On August 15, 2001, finance executive Sherron Watkins sent an anonymous letter to Lay warning that the company "will implode in a wave of accounting scandals." She met him face to face on Aug. 22, 2001. Enron's accounting firm, Arthur Andersen, appears to have been complicit in this fraud. On October 12, 2001, David Duncan, the chief auditor for Andersen's Enron account, organized a two-week document destruction effort to discard many records, according to auditor Arthur Andersen. On October 23, 2001, Andersen began to shred Enron documents. In its' earnings releases the company slowly began to reveal the extent of their problems. Enron reported its first quarterly loss in over four years on October 16, 2001, after taking charges of \$1 billion on poorly performing businesses. Enron acknowledged, on October 22, 2001, a Securities and Exchange Commission (SEC) investigation. On November 8, 2001, Enron admitted overstated earnings dating back to 1997 by almost \$600 million. Until late November, it appeared that Enron would be bought by a much smaller rival, Dynegy, despite The SEC was investigating the private partnerships created by CFO Andrew Fastow that were at the core of the Enron fraud. Dynegy backed out of its deal with Enron on November 28, 2001 after Enron's credit rating fell below investment grade. ## 3.3 Chapter 11 Without a buyer in sight and bankruptcy unavoidable, Enron shares plunged below \$1 on November 28 amid the heaviest single-day trading volume ever for a NYSE or Nasdaq-listed stock. On December 2, 2001, Enron filed for Chapter 11 bankruptcy. On December 12, 2001, Congressional hearings began on Enron's collapse. On January 17, 2002, Enron decided to fire Andersen, blaming the auditor for destroying Enron documents. The entire Arthur Andersen firm was fined in October 2002 which forced it to close down. The first indictments for Enron activity came on August 2002 when Michael Koppers, who worked with Fastow on the partnership deals, pleaded guilty to charges. Now, more than five years after the bankruptcy, the legacy of Enron still reverberates on Wall Street. The case has brought about important reforms in corporate governance and accounting oversight. Former CEOs Lay and Skilling were convicted of multiple criminal charges in May 2006. I now turn to the questions of whether the options market provided any indication that such a collapse was in the offing. #### 4 Data and estimation #### 4.1 Sample I have American style options for all strikes and expirations for the period July 16 to November 15, 2001. I filter the data in the following fashion: (1) volume of more than 5 contracts; (2) more than 5 days to expiration; and (3) implied volatility no more than twice the volatility of an at the money call. These filters leave me with more than 1,500 daily observations of a range of strikes and maturities. Table 3 shows that the stock price was still at almost \$50 per share at the start of the sample period and fell under \$10 at the end. The strikes range from 50% above and below the spot price at the beginning of the sample to more than four times the spot in November. Puts and calls were traded at roughly the same ratios until the last four weeks of the sample. #### 4.2 Estimation There are two key issues in fitting the model to this data. The first is handling the early exercise provision of the American options. The second is choosing the metric for estimation. | | | Stock | | Strikes | | Maturity | | # of: | | |-------------|-------------|-------|-------|---------|-----|----------|-----|-------|------| | Start | End | Low | High | Min | Max | Min | Max | Calls | Puts | | 16-Jul-2001 | 27-Jul-2001 | 43.24 | 49.85 | 35 | 90 | 21 | 186 | 84 | 72 | | 30-Jul-2001 | 10-Aug-2001 | 42.78 | 45.73 | 35 | 90 | 7 | 172 | 88 | 64 | | 13-Aug-2001 | 24-Aug-2001 | 36.25 | 42.93 | 30 | 85 | 28 | 241 | 104 | 85 | | 27-Aug-2001 | 07-Sep-2001 | 30.49 | 38.16 | 22.5 | 90 | 14 | 235 | 112 | 77 | | 17-Sep-2001 | 21-Sep-2001 | 26.41 | 30.67 | 22.5 | 85 | 28 | 214 | 72 | 65 | | 24-Sep-2001 | 05-Oct-2001 | 25.15 | 33.49 | 22.5 | 100 | 14 | 207 | 154 | 130 | | 08-Oct-2001 | 19-Oct-2001 | 26.05 | 36.79 | 22.5 | 90 | 7 | 193 | 140 | 117 | | 22-Oct-2001 | 02-Nov-2001 | 11.16 | 20.65 | 22.5 | 90 | 16 | 179 | 163 | 63 | | 05-Nov-2001 | 16-Nov-2001 | 8.41 | 11.3 | 22.5 | 50 | 38 | 168 | 70 | 11 | Table 3 Characteristics of Enron options sample Notes. Source: Daily closes from TBSP, Inc. ### 4.2.1 Early exercise Enron paid an annual dividend of \$0.50 per share of common stock from⁸ October 13, 1998 through the end of my sample period. The company only suspended dividend payments on December 11, 2001. Nonetheless, the dividend makes early exercise a possibility on American calls as well as puts. Because the dividend was constant at \$0.50 per share over the sample, I assumed a continuous dividend yield based on the current spot price. Melick and Thomas (1997) use arbitrage bounds for determining the range of possible American options prices. They note that the bounds are remarkably close for reasonable discount factors. Bates (2000) notes that the proportional markup is between $[1, e^{r\tau}]$ which is very small for options of 6 months or less. I chose to approximate the value of the early exercise feature using the Bjerksund and Streslund (1993) analytical approximation. Hoffman (2000) shows that the Bjerksund-Streslund algorithm is as accurate as the Barone-Adesi and Whaley (1987) quadratic approximation and computationally much more efficient. I also found it more stable in my estimation as well. Very similar results were obtained using a mixture of binomial trees and simply ignoring the early exercise provision. ## 4.2.2 Metric $f(S_T)$ is the object I am trying to estimate, and I have assumed that it is a mixture of log normals. It might be tempting to proceed by matching the moments of the density to time series data on the stock price. This approach is not suitable because $f(S_T)$ is the risk neutral density and is not directly observable. The only sample "moments" I observe are the option prices. Let $\{c(\tau_i, K_i), \ldots, c(\tau_{n_1}, K_{n_1}), p(\tau_{n_1+1}, K_{n_1+1}), \ldots, p(\tau_n, K_n)\} \equiv \{d_{i,t}\}_{i=1}^n$ denote the *n* dimensional sample of data at time *t* on the American calls *c* and puts *p* struck at K_i and expiring in τ_i years. Denote the pricing estimates from the model as $\{d_{i,t}(\theta)\}_{i=1}^n$. ⁸ The dividend was increased from \$0.45 to \$0.50 a share on that date. ⁹ Grundy (1991) does note that the risk neutral distribution does imply bounds for the true one. In matching model to data, Christofferson and Jacobs (2001) emphasize that the choice of loss function is important. Bakshi, Cao and Chen (1997), for example, match the model to data using the squared pricing errors. While using the percentage pricing errors minimizes the impact of deeply in the money options, this can contribute to estimation problems for low-priced options. I obtained the best fit on deeply in and out of the money options using the implied Bjerksund and Streslund volatility, $$\sigma_{i,t} = BJST^{-1}(d_{i,t}, S_t, r).$$ (12) Let the estimated volatility be denoted $$\sigma_{i,t}(\theta) = BJST^{-1}(d_{i,t}(\theta), S_t, r). \tag{13}$$ I then minimize, in estimation, $$\min_{\theta} \sum_{i=1}^{n} (\sigma_{i,t}(\theta) - \sigma_{i,t})^2 \tag{14}$$ for each day in my sample. As Christoffersen and Jacobs note, this is just a weighted least squares problem that, with the monotonicity of the option price in θ satisfies the standard regularity conditions in White (1981). #### 5 Results I estimate the six parameter model day-by-day for the 77 day sample. I report R^2 and other summary statistics in Table 4. The overall fit is quite good with an average goodness of fit of 38%. 30 of the 77 days are higher than 50%. I next want to test whether the data are strong enough to reject the Black-Scholes. #### 5.1 Tests of the adequacy of Black-Scholes I would like a formal test of whether the model's mixture parameters are providing much additional explanatory power. In the standard case, I could construct a likelihood ratio test of the model, restricting all the parameters but the Black-Scholes volatility s_2 to zero. The problem with that approach in the mixture case is that under the Black-Scholes alternative, the parameters in the two tail log normals are nuisance parameters, giving the likelihood ratio statistic, as Hansen (1997) notes, a non-standard distribution. Computing proper p-values requires numerical techniques. I report sup LR tests and p-values from 1,000 bootstrap replications in the second and third columns of Table 4. On 39 days, I can reject the Black-Scholes at the 99% level and on 44 days at the 95% level. Most of the rejections occur after September 1. On 30 of the 45 days in September through November, the model rejects the Black-Scholes at the 99% level. Table 4.1 Summary statistics R^2 Date $\sup LR$ p-value for lognormal options mixture model 16-Jul-2001 0.036 0.308 0.896 17-Jul-2001 0.040 0.053 0.984 18-Jul-2001 0.182 2.370 0.506 19-Jul-2001 0.008 0.017 0.996 20-Jul-2001 0.004 0.000 0.000 23-Jul-2001 0.009 0.023 0.988 25-Jul-2001 0.439 15.103 0.014 26-Jul-2001 0.195 4.346 0.202 27-Jul-2001 0.660 24.576 0.002 30-Jul-2001 0.015 0.194 0.930 31-Jul-2001 0.285 0.001 0.994 01-Aug-2001 0.354 7.648 0.144 02-Aug-2001 0.006 0.018 0.990 03-Aug-2001 0.019 0.186 0.938 06-Aug-2001 0.264 6.451 0.134 07-Aug-2001 0.891 130.487 0.000 09-Aug-2001 0.668 26.100 0.004 10-Aug-2001 0.555 16.397 0.008 13-Aug-2001 0.006 0.003 0.998 14-Aug-2001 0.005 0.000 0.990 15-Aug-2001 0.308 10.652 0.036 16-Aug-2001 0.149 3.308 0.294 17-Aug-2001 0.003 0.000 0.868 20-Aug-2001 0.073 0.530 1.550 21-Aug-2001 0.003 0.000 0.802 *Notes.* The R^2 is the goodness of 22-Aug-2001 0.001 0.003 0.998 fit for a single day's estimation 23-Aug-2001 24-Aug-2001 27-Aug-2001 28-Aug-2001 29-Aug-2001 04-Sep-2001 05-Sep-2001 06-Sep-2001 07-Sep-2001 17-Sep-2001 18-Sep-2001 of the model. The $\sup LR$ stat is against the alternative that all the parameters but the Black-Scholes standard deviation s_2 are zero. The p-values are from 1,000 bootstrap replications of the test as described in Hansen (1997). The market was closed from September 11 to September 16, 2001 due to the terror attacks in New York and Washington, D.C. # 5.2 Implied probabilities of an Enron bankruptcy Farmen et al. (2004) adapt the Black-Scholes model for bankruptcy prediction by identifying an implicit strike price at which bond holders would be indifferent between exercising a call and liquidating the assets of the firm. I computed this "bankruptcy strike" K_B to be \$8.62 based on the \$6.434 billion dollars of debt in current liabilities and the 746, 105 shares outstanding at the beginning of my sample period. 10 ¹⁰ The debt in current liabilities is from Compustat, and the shares outstanding and market prices are from CRSP. The conclusions are robust to a wide range of strike prices for the stock. 21.674 0.000 0.000 0.900 73.339 0.062 21.635 41.535 28.139 22.007 23.494 0.004 0.722 0.072 0.696 0.000 0.878 0.002 0.000 0.000 0.000 0.000 0.547 0.002 0.001 0.032 0.770 0.938 0.471 0.550 0.540 0.478 0.475 **Table 4.2** Summary statistics for lognormal options mixture model | Date | R^2 | $\sup LR$ | <i>p</i> -value | |-------------|-------|-----------|-----------------| | 19-Sep-2001 | 0.532 | 25.560 | 0.000 | | 20-Sep-2001 | 0.595 | 43.989 | 0.000 | | 21-Sep-2001 | 0.559 | 30.362 | 0.000 | | 24-Sep-2001 | 0.494 | 27.157 | 0.000 | | 25-Sep-2001 | 0.441 | 17.322 | 0.010 | | 26-Sep-2001 | 0.522 | 43.949 | 0.000 | | 27-Sep-2001 | 0.477 | 18.654 | 0.002 | | 28-Sep-2001 | 0.478 | 51.441 | 0.000 | | 01-Oct-2001 | 0.505 | 30.215 | 0.000 | | 02-Oct-2001 | 0.540 | 25.821 | 0.000 | | 03-Oct-2001 | 0.675 | 49.619 | 0.000 | | 04-Oct-2001 | 0.560 | 36.762 | 0.000 | | 05-Oct-2001 | 0.089 | 2.154 | 0.422 | | 08-Oct-2001 | 0.501 | 25.060 | 0.000 | | 09-Oct-2001 | 0.601 | 34.638 | 0.000 | | 10-Oct-2001 | 0.592 | 46.330 | 0.000 | | 11-Oct-2001 | 0.621 | 56.699 | 0.000 | | 12-Oct-2001 | 0.536 | 28.297 | 0.000 | | 15-Oct-2001 | 0.420 | 16.644 | 0.000 | | 16-Oct-2001 | 0.704 | 42.793 | 0.002 | | 17-Oct-2001 | 0.325 | 7.217 | 0.122 | | 18-Oct-2001 | 0.235 | 7.059 | 0.084 | | 19-Oct-2001 | 0.319 | 10.718 | 0.028 | | 22-Oct-2001 | 0.289 | 8.940 | 0.046 | | 23-Oct-2001 | 0.513 | 40.396 | 0.000 | | 24-Oct-2001 | 0.422 | 29.236 | 0.000 | | 25-Oct-2001 | 0.576 | 44.895 | 0.000 | | 26-Oct-2001 | 0.518 | 29.434 | 0.000 | | 29-Oct-2001 | 0.498 | 16.880 | 0.010 | | 30-Oct-2001 | 0.172 | 4.784 | 0.188 | | 31-Oct-2001 | 0.185 | 4.321 | 0.176 | | 01-Nov-2001 | 0.295 | 3.750 | 0.426 | | 02-Nov-2001 | 0.676 | 27.044 | 0.000 | | 05-Nov-2001 | 0.346 | 5.816 | 0.048 | | 06-Nov-2001 | 0.521 | 16.297 | 0.010 | | 07-Nov-2001 | 0.229 | 2.972 | 0.196 | | 09-Nov-2001 | 0.459 | 4.588 | 0.216 | | 13-Nov-2001 | 0.479 | 25.995 | 0.420 | | 14-Nov-2001 | 0.839 | 3.044 | 0.000 | | 15-Nov-2001 | 0.604 | 2.846 | 0.238 | | | | | | Notes. The R^2 is the goodness of fit for a single day's estimation of the model. The sup LR stat is against the alternative that all the parameters but the Black-Scholes standard deviation s_2 are zero. The p-values are from 1,000 bootstrap replications of the test as described in Hansen (1997). I then compute the probability of a decline in the stock price to the bankruptcy strike in a 3-month interval. To provide a reference for comparison, I express this as a ratio of the implied probability of returning to a record high of \$90.76. This helps to focus attention on the tail behavior of the model. Investors were more optimistic of a return to Enron's stock price of August 2000 than to a bankruptcy filing until late October 2001. The ratio of a move down to the bankruptcy strike relative to reaching record highs remained below one until October 23, 2001. It is tempting to try to match up that date with events in the Enron chronology. Fig. 3 Probability ratio of bankruptcy to record high¹¹ On that day, Arthur Andersen began shredding important documents relating to the case. The options market apparently remained quite optimistic until very late in the process. #### 5.3 Hypothesis tests on the implied densities To conduct a proper statistical comparison, I adapt the framework of Christoffersen (1998). I will examine three hypotheses: (1) are the model probabilities fat-tailed relative to the benchmark forecast; (2) are the model probabilities asymmetric; (3) does the model imply a higher risk of a crash overall. In each of the three cases, I construct the test of the null hypothesis from a sequence of Bernoulli trials, $$I_t^{\alpha_L} = \begin{cases} 1, & \Pr[S_T < K_B] > \alpha_L \\ 0 & \Pr[S_T < K_B] < \alpha_L \end{cases}, \tag{15}$$ where $$\alpha_L = F[(K_B - \mu)/\sigma],$$ with $$\mu = \ln(S_t) + \tau \times (r - q) - \sigma^2/2,$$ ¹¹ The figure graphs the relative probability of the stock price moving down to the bankruptcy strike of \$8.62 versus moving back up to a record high of \$90.76. where F[.] is the cumulative normal distribution, and σ is the standard deviation of the at-the-money call. Define symmetrically $$I_t^{\alpha_U} = \begin{cases} 1, & \text{Pr}\left[S_T > S_t \times (S_t/K_B)\right] > \alpha_U \\ 0 & \text{Pr}\left[S_T > S_t \times (S_t/K_B)\right] < \alpha_U \end{cases}, \tag{16}$$ where $$\alpha_U = 1 - F[(S_t \times (S_t/K_B) - \mu)/\sigma].$$ Under what Christoffersen calls unconditional coverage, I test $$H_1: E\left[I_t^{\alpha_L} \times I_t^{\alpha_U}\right] = 0.25,\tag{17}$$ using the likelihood ratio $$LR_1 = 0.75^{n_0} 0.25^{n_1} / [(1 - \hat{\pi}_1)^{n_0} \hat{\pi}_1^{n_1}.$$ (18) Under H_1 , the likelihood ratio is distributed $\chi^2(1)$. The second hypothesis is whether the implied probability of reaching the bankruptcy strike is greater than a similar size jump up. Define the Bernoulli random variable, $$I_t^{\alpha_{LU}} = \begin{cases} 1, & \Pr[S_T < K_B] > \Pr[S_T > S_t \times (S_t/K_B)] \\ 0 & \Pr[S_T < K_B] < \Pr[S_T > S_t \times (S_t/K_B)] \end{cases}.$$ (19) I then test $$H_2: E[I_t^{\alpha_{LU}}] = 0.5.$$ (20) The third hypothesis tests whether the lower tail probabilities are, on average, in the direction of greater crash risk, $$H_3: E\left[I_t^{\alpha_L}\right] = 0.5. \tag{21}$$ Both H_2 and H_3 can be tested using the likelihood ratio (18) with a probability of 0.5. #### 5.4 Likelihood ratio tests The implied distributions are fat tailed compared to the lognormal benchmark. For H_1 , $n_0 = 46$, $n_1 = 34$, and $\hat{\pi}_1 = 0.44$. The likelihood ratio statistic is 12.74 which enables us to reject the null at the 99% level. The power comes throughout the sample. In November though, only half observations are fat-tailed compared to the lognormal. For 73 of 79 observations, the probability of reaching the bankruptcy strike exceeds the probability of an equally sized move up. The likelihood ratio statistic for H_2 is 65.82, which overwhelmingly rejects the null. | Table 5 Likelihood ratio tests of the implied probability | | H_1 | H_2 | <i>H</i> ₃ | |------------------------------------------------------------------|---------------|-------|-------|-----------------------| | intervals | $\hat{\pi}_1$ | 0.41 | 0.92 | 0.54 | | | n1 | 34 | 72 | 45 | | | n0 | 44 | 6 | 33 | | | LR Stat | 12.74 | 65.83 | 1.85 | | Notes. The null hypotheses are given in (17), (20) and (21). | p-value | 0.000 | 0.000 | 0.173 | The asymmetry of the Enron option distribution should not imply that the options market fully understood the risks. For H_3 : $n_0 = 33$, $n_1 = 45$, and $\hat{\pi}_1 = 0.58$. This is very close to the purely random sequence implied under the null. The likelihood ratio statistic is only 1.8535 which cannot reject the null at even the 10% level. The market information in the deeply out of the money (in the money) puts (calls) was apparently less reliable than the at the money volatility. #### 6 Conclusion Options can provide a great deal of insight to economists because they incorporate information about the entire probability distribution of future events. This paper has utilized the mixture of log normals to help draw inferences from the implied volatility surface. The Enron case was certainly an epochal event on Wall Street. The options market as a whole priced in a great deal of risk. Nonetheless, once the stock had fallen substantially, the probability of a complete collapse into bankruptcy may not have been fully anticipated. Whether the excessive optimism of analysts or the overconfidence of dip buyers may have played a role is beyond the scope of this paper though. Policy makers may find these tools and inference worthwhile in a variety of contexts. Their subjective weights between type I and type II errors should not only be tested ex-post but incorporated directly in the estimation. Both Skouras (2001) and Christoffersen and Jacobs (2001) have made progress along these lines. Loss aversion on the part of investors and traders may give them similar preferences. In future work, I hope to examine whether the large bankruptcies that followed Enron like Worldcom and United Airlines were better anticipated by the derivatives market. #### References Ait-Sahalia Y, Lo A (1998) Nonparametric estimation of state-price densities implicit in financial asset prices. Journal of Finance 53:499–547 Altman, E (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23:589–609 Andersen L, Brotherton-Ratcliffe R (1998) The equity option volatility smile: an implicit finite difference approach. The Journal of Computational Finance 1:5–32 Bakshi C, Cao C, Chen Z (1997) Empirical performance of alternative option pricing models. Journal of Finance 52:2003–2049 Barone-Adesi G, Whaley RE (1987) Efficient analytic approximation of american option values. Journal of Finance 42:301–320 Bates D (1991) The crash of '87: Was it expected? The evidence from options markets. Journal of Finance 46:1009–1044 Bates D (2000) Post-'87 crash fears in the S&P 500 futures options market. Journal of Econometrics 94:181–238 Bjerksund P, Stensland G. Closed-form approximation of American options. Scandinavian Journal of Management 9:87–99 Breeden D, Litzenberger R (1978) State contingent prices implicit in option prices. Journal of Business 51:621–651 Charitou A, Trigeorgis L (2004) Explaining bankruptcy using option theory. Working Paper, University of Cyprus Christoffersen P (1998) Evaluating interval forecasts International Economic Review 39:841-862 Christoffersen P, Jacobs K (2001) The importance of the loss function in option pricing. CIRANO Working Paper 2001-45 Das SR, Sundaram RK (1999) Of smiles and smirks: A term-structure perspective. Journal of Financial and Quantitative Analysis 34:211–239 Derman E, Kani I (1994) Riding on the smile. Risk 7:32–39 Derman E, Kani I, Chriss N (1996) Implied trinomial trees of the volatility smile. Journal of Derivatives 3:7–22 Duan JC (1995) The GARCH option pricing model. Mathematical Finance 5:13-32 Dumas B, Fleming J, Whaley R (1998) Implied volatility functions: Empirical tests. Journal of Finance 53:2059–2106 Dupire B (1994) Pricing with a smile. Risk 7:18–20 Farmen TES, Westgaard S, van der Wijst N (2004), An empirical test of option based default probabilities using payment behaviour and auditor notes. Working Paper, Norwegian University of Science and Technology Grundy BD (1991) Option prices and the underlying asset's return distribution. Journal of Finance 46:1045–1069 Haas M, Mittnik S, Mizrach B (2006) Assessing central bank credibility during the ERM crises: Comparing option and spot market-based forecasts. Journal of Financial Stability 2:28–54. Hansen B (1997) Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics 2:1-14 Heston S (1993) A closed form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6:327–343 Hoffman C (2000) Valuation of American options. Oxford University Ph.D. Thesis Hull J, White A (1987) The pricing of options on assets with stochastic volatility. Journal of Finance 42:281-300 Jackwerth C, Rubinstein M (1996) Recovering probability distributions from option prices. Journal of Finance 51:1611–1631 Longstaff F (1995) Option pricing and the martingale restriction. Review of Financial Studies 8:1091–1124 Melick WR, Thomas CP. Recovering an asset's implied PDF from option prices: An application to crude oil during the gulf crisis. Journal of Financial and Quantitative Analysis 32:91–115 Merton R (1976) Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3:124–144 Ritchey R (1990) Call option valuation for discrete normal mixtures. Journal of Financial Research 13:285–295 Rubinstein M (1994) Implied binomial trees. Journal of Finance 69:771-818 Rubinstein M (1998) Edgeworth binomial trees. Journal of Derivatives 5:20–27 Shimko D (1993) Bounds of probability. Risk 6:33-37 Shumway T (2001) Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74:101–124 Skouras S (2001) Decisionmetrics: A decision-based approach to econometric modelling, Santa Fe Institute Working Paper No. 01-10-64. Journal of Econometrics, forthcoming Stein EM, Stein JC (1991) Stock price distributions with stochastic volatility: An analytic approach. Review of Financial Studies 4:727–752 Tompkins RG (2001) Implied volatility surfaces: Uncovering regularities for options on financial futures. European Journal of Finance 7:198–230 White H (1981) Consequences and detection of misspecifed nonlinear regression models. Journal of the American Statistical Association 76:419–433 Wiggins JB (1987) Option values under stochastic volatility: Theory and empirical estimates. Journal of Financial Economics 19:351–372