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The paper analyzes the intensity of choice in an agent based

financial optimization problem. Mean-variance optimizing agents

choose among mutual funds of similar styles but varying

performance. We specify a model for the allocation of new funds,

switching between funds, and withdrawals and obtain statisti-

cally significant estimates of the intensity of choice parameter.

This estimate is also given economic interpretation through the

underperformance of funds that use an active style. We find that

agents with relative risk aversion of 2 will move 1% of their funds

from active to passive for an extra 34 basis points of return.

& 2008 Published by Elsevier B.V.
1. Introduction

Economists continue to explore alternatives to the representative agent paradigm. The
interactions of dynamic heterogeneous populations provide explanations for economic behavior
that is often difficult to explain using traditional models. The body of literature exploring
heterogeneous agents model has grown to be quite extensive. Heterogeneity among agents has
been used to model business cycles, financial market phenomena such as bubbles, excess volatility
and clustering of returns, currency crises, and the flow of capital into and out of developing countries.

In the agent-based modeling approach, each individual in a population has a simulated
interaction in an economic or financial setting. Evolution in strategy is typically governed by an
adaptation mechanism such as a genetic algorithm. The approach offers an opportunity to observe
the evolution of behavior in response to a changing non-equilibrium environment. The Santa Fe
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artificial stock market of Arthur et al. (1997) and LeBaron et al. (1999) is an example.
The computational intensity of agent-based modeling can lead to limits on the size and
complexity of the simulated environment. Further, since analysis is typically purely computational,
interpreting simulation outcomes can be tricky due to the general lack of a formal model to impose
structure.

An alternative strategy has been to sort individual agents into a small number of groups whose
behavior is similar. Agents select which group to associate with for the period. Dynamics arise as the
population gravitates between groups, typically in response to relative fitness that is itself dependent
on the population. The resulting evaluation allows a combination of analytical and computational
tools.

Discrete choice dynamics (DCD), introduced by Brock and Hommes (1997), models the evolution
in population choice in the adaptive rational equilibrium dynamic (ARED). The framework is now a
common tool for modeling the evolutionary process of a dynamic population. The DCD applies most
naturally when a large population of individual agents choose among a small number of available
discrete options. The heterogeneity of the population manifests as the population distributes among
the choice set. The controlling parameter of the DCD model is the ‘intensity of choice’ (IOC). The
parameter determines the strength with which the population responds to perceived superiority of
one of the choices. The value of the IOC parameter determines the nature of the population dynamics
and thus the evolution of the model as a whole.

The DCD is utilized by Brock and LeBaron (1996) to match the correlation structure of stock
return volatility and trading volume. Brock and Hommes (1998) is the first to explore how different
values of the IOC parameter impact the dynamics of a financial market. The discrete choice faced by
the traders is between alternative types of information to use as input in that period’s portfolio
decision process. Traders select between a costly rational price predictor and a free linear adaptive
belief function (a trend chasing strategy). Increasing the IOC parameter increases the extremes to
which the population shifts between the two information sources, causing complex dynamics that
range from a stable unique fixed point, bifurcations, and limit cycles, to eventually produce chaotic
behavior.

Extensions include Gaunersdorfer (2000) who allows agents to employ risk adjusted performance
measures. In de Fontnouvelle (2000), traders are uncertain of the endogenously determined
advantage of acquiring private information in a Grossman and Stiglitz (1980) type model. The traders
choose between a costly rational forecast or naive adaptive model. Chiarella and He (2002) allows
agents to be heterogenous in their tolerance for risk and in their estimates of conditional variance for
the different trading strategies. Goldbaum (2003) allows the traders to choose between fundamental
analysis and the use of a simple technical trading rule. DeGrauwe and Grimaldi (2006) employ a
similar model in a foreign exchange market. Economic applications of the DCD include Chiarella and
Khomin (1999) and Brock and de Fontnouvelle (2000). In both, agents select between a small number
of methods to forecast inflation.

In all of the considered models, the IOC determines, as in the Brock and Hommes (1998), whether
a model possesses a stable fixed point, cycles, or produces chaotic behavior. In application, the IOC
parameter is set at the discretion of the modeler. Often it is a control parameter examined over a
range of values to explore the dynamic behavior that a particular model is able to achieve.

To date, there have been only a small number of empirical estimates of the IOC. In each case the
estimate of the IOC is not the objective, but a component of characterizing market behavior using a
dynamic population model. Branch (2004) models inflation forecasts in which agents select between
three strategies requiring varying degrees of effort or sophistication. He uses survey data in which
households report an estimate of the inflation rate. The researcher does not directly observe which
model is being employed by the individual, but the proportion of the market using each option in
each period is inferred from the reported forecasts. The value of the IOC is determined by the
population’s responsiveness to recent performance measures of the prediction strategies. Similarly,
Boswijk, Hommes, and Manzan (BHM, 2007) estimate the IOC as part of a model in which traders
form predictions using either mean reverting or trend following beliefs for prices. Again, the actual
choice by individual traders in the market is unobserved, but population proportions are inferred
from the behavior of prices. The data used for the estimation is the same S&P 500 dividend and price
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series used by Shiller (1989) updated to extend to 2003. BHM’s estimate of the IOC; however, is
insignificantly different from zero.1

This paper contributes to the existing literature on the DCD by estimating the IOC and by putting
an economic value on the implied resistance to change. We place the IOC into a utility maximizing
framework so that the IOC can be measured in a standard economic context. An added advantage of
the portfolio choice setting is that we can also easily transform utility differences into dollar returns
to further assess their reasonableness.

The finance literature has struggled to explain the dispersion of fund choices and even the
dispersion within fund categories. Elton et al. (2004) conclude that because arbitrage is difficult,
dominated products can prosper in the mutual fund industry. They claim that dispersion among
commodity products like index funds is evidence of investor irrationality though. Hortac-su and
Syverson (2004) find that investors value heterogeneity but only a small portion of the return
differences can be attributed to search costs. Our paper shows that the heterogenous agent
framework may provide an alternative explanation.

Section 2 defines the IOC. Section 3 describes the mutual fund allocation decision. Section 4
discusses data and parameters used to estimate the IOC. Section 5 describes the estimation of the
model and reports the results of the analysis. Section 6 concludes.
2. Intensity of choice

The foundation for the ARED system is the randomized discrete choice framework of Manski and
McFadden (1981). Consider an environment in which agents make a single selection from a set of K

discrete options. The agents estimate the relative benefits of each choice. In discrete choice studies,
not all agents necessarily choose the option the model indicates to be the best choice for the
individual. McFadden (1981) attributes the deviation in behavior to either unmodeled idiosyncratic
components of the agents’ utility function Ui or to a component of randomness in individual
preferences. Either explanation introduces a degree of randomness so that the individual agent’s
ranking of the options may differ from the modeler’s. Each agent can be thought of as having a
private estimate of the value of each of the options.

Consider a K ¼ 2 model in which agents are homogeneous in their modeled component of
individual preferences. In the discrete choice model of Manski and McFadden (1981) agent i has
utility value for each option k, Ui;k, k ¼ 0, 1 that is captured by the random realization of

Ui;k ¼ Uk þ sei;k. (1)

The idiosyncratic component sei;k is i.i.d. with an extreme value distribution for ei;k

Eðei;kÞ ¼ 0,Vðei;kÞ ¼ 1. The resulting probability individual i selects option 1 is

Prðxi ¼ 1Þ ¼
erU1

erU1 þ erU0
. (2)

The randomness in agent i’s selection arises from idiosyncratic perception of the value of each option.
The IOC parameter, r, in (2) is an inverse function of s in (1). The lower is s, and thus the greater is

r, the greater is the proportion of agents that adopt the superior option. At the extreme, the model
fully captures individual choice of a uniform population, in which case Prðxi ¼ kÞ ¼ 1 for Uk4U�k, and
Prðxi ¼ kÞ ¼ 1

2 if U1 ¼ U0. This result is produced in (2) by r�!1. The greater s, the weaker is the
model at predicting an agent’s choice. At this extreme, as s�!1, the model has no predictive ability
and the probability associated with each choice is 1

2. This is evident in (2) with r ¼ 0.
In a large population of N agents, the law of large numbers ensures that for the proportion of the

population selecting option k, lk�!Prðxi ¼ kÞ as N�!1. The discrete choice framework ensures that
the majority choice corresponds with the model’s ranking of the two options. The heterogeneity of
1 With the IOC parameter at zero, BHM’s heterogeneous agent DCD model reduces to a linear model without strategy

switching. Using a bootstrap F-test, BHM were able to strongly reject linearity in favor of the nonlinear heterogeneous agent

DCD model.
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the population captured by 0pro1 ensures that there is a tail of the population that selects the
model’s indicated lower ranked option. A larger r represents a smaller s producing a tighter
population distribution around the modeler’s U1 � U0 and thus a smaller tail of the population
whose beliefs are in conflict with the model.

Brock and Hommes (1997) characterize the failure of the full population to embrace the higher
ranked option as a manifestation of bounded rationality. The heterogeneous agent explanation of
Manski and McFadden allows the possibility that for each agent i, Ui;1 and Ui;0 differ from U1 and U0

respectfully, allowing that agents are in fact behaving rationally given their idiosyncratic information
or preferences.

In a dynamic system in which U1;t � U0;t ¼ f ðltÞ and lt is set based on relative fitness consistent
with (2), the existence and stability of a fixed point depends on r. Setting r ¼ 0 ensures a fixed point
with lt ¼

1
2. As r increases, the system can become unstable, producing multiple equilibria or chaos. A

large number of papers explore the range of dynamics produced by r in different market
environment.

We seek to clarify the interpretation of r by embedding choice dynamics into a portfolio
optimization problem. The next section describes the allocation problem and institutional
environment.
3. Mutual fund allocation decision

In making portfolio allocation decisions, investors seek to maximize their expected utility. Mutual
funds have historically been the vehicle for achieving diversification at relatively low cost. Among
funds, there is a related choice to make between active and passive investment strategies. With
actively managed funds, investors hire managers to increase their returns within a given risk
tolerance.

Recent literature has amply documented the underperformance of active mutual fund managers.2

Beginning with the Vanguard funds in 1976, a growing pool of money has been managed passively,
with portfolio weights tied to an index. By far the most popular of these is the Standard and Poor’s
500 index (S&P 500 index), an index of large capitalization stocks, that represents approximately 85%
of the total U.S. market capitalization. Mostly due to their lower expenses, these passive funds have
on average produced higher returns than their actively managed counterparts.

We model the dynamics of the wealth allocated to active, xA;t , and passive assets, xP;t . As a new
entrant into the investor’s choice set, not only will passive funds attract a portion of the new funds,
which we refer to as funds from cash, zC!P, but some investors will look to transfer funds out of
active funds into passive funds, zA!P. The corresponding flows for the active assets are zC!A and zP!A.
Some funds will also leave the sector, with zP!C the passive outflow, and zA!C the active outflow. The
inflow of wealth into both the active and passive funds represents both the distribution of new
wealth and the redistribution of existing wealth from other asset types.

The transition equation for active assets consists of the organic return, ð1þ rA;tÞ, the flows
switched from passive funds, new flows from other sectors, less funds switched to passive assets and
out of the sector,

xA;tþ1 ¼ ð1þ rA;tÞxA;t þ ðzP!A;t þ zC!A;tÞ � ðzA!P;t þ zA!C;tÞ. (3)

The corresponding expression for passive flow is

xP;tþ1 ¼ ð1þ rP;tÞxP;t þ ðzA!P;t þ zC!P;tÞ � ðzP!A;t þ zP!C;tÞ. (4)

The portfolio allocation decision of the investors is reflected in the proportion of cash flowing into
passive funds,

lt ¼
zC!P;t

zC!P;t þ zC!A;t
. (5)
2 The most comprehensive reference remains the study by Carhart (1997).
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Table 1
Annual flows for Vanguard Index 500 fund

Share transactions ($mn) 1995 2003

(1) Proceeds from sales of shares 5,153.18 13,026.69

(2) Cost of shares redeemed 1,682.11 10,323.65

The table reports fund inflows and outflows in millions of dollars from the SEC certified shareholder form N-CSR for the

Vanguard S&P 500 index fund (VFINX).

D. Goldbaum, B. Mizrach / Journal of Economic Dynamics & Control 32 (2008) 3866–38763870
The denominator, zC!P þ zC!A, represents the flow of wealth into the asset universe being
considered. This ratio of gross inflows constrains the population proportions to be in the [0,1]
interval. With a homogeneous population of mean-variance optimizers, all investors would allocate
their cash to superior performing passively managed assets. The fact that actual flows do not reflect
such one sided investing is a reflection of heterogeneity or bounded rationality in the population. The
relative inflows, and thus lt , should be a reflection of UP;t � UA;t and of the IOC parameter, r.

The parameter lt as defined in (5) reflects the discrete choice faced by investors of distributing
new investment funds between two competing portfolios. We utilize cash inflows in our estimation
because these funds face fewer impediments to reallocation. Fees and tax considerations are two of
the most important barriers to adjustment that may keep a fully rational investor from her
unconstrained optimum. It would be inappropriate to attribute deviations from the optimum due to
these frictions to heterogeneity of beliefs, heterogeneous information, or bounded rationality, the
traditional interpretations associated with finite IOC parameters.

Additionally, gross inflows, rather than net flows, are examined because relative inflow offers a
pure reflection of investor preferences. Perceptions of performance, not size, determined how new
funds are allocated by informed investors. Both size and performance determine the relative outflow
of funds.3

The modeled binary decision is within a homogeneous asset class of large capitalization stocks.
The targeted choice between similar active and passive funds, and the implicit IOC revealed in the
investors’ decisions, will be largely unaffected by the investors’ other portfolio allocation decisions.

Unfortunately, zC!P and zC!A are not directly observed. We only observe total inflows and total
outflows for each type of fund. We include, in Table 1, Vanguard’s Index 500 Securities and Exchange
Commission (SEC) filing for illustration.

In 1995, there were net purchases of $5.15 billion in the Vanguard Index 500 fund. This was a
combination of new cash allocations zC!P;t and funds transferred from active funds, zA!P;t . In the
same year, there were outflows to cash, zP!C;t , and transfers into active assets, zP!A;t of $1.68 billion.
These numbers grow quite dramatically through the sample, peaking at $31.6 billion of inflows in
1999 and $28.0 billion in outflows in 2000. By the end of our sample in 2003, we return to a steadier
inflow of $13.0 billion and outflow of $10.3 billion.

Let y1;t represent total inflow into active funds, y1;t ¼ ðzP!A;tþ zC!A;tÞ, and let y2;t represent total
outflow from active, y2;t ¼ ðzA!P;t þ zA!C;tÞ. Denote y3;t ¼ ðzA!P;t þ zC!P;tÞ and y4;t ¼ ðzP!A;t þ zP!C;tÞ

as the corresponding entries for passive funds. Net inflows to the active sector, y1;t � y2;t , are negative
from 2000 to 2003. Net inflows to the active sector, y3;t � y4;t , are negative from 2000 to 2002. We
now parameterize each of these allocation decisions.

Extracting zC!P and zC!A from the observed y1 through y4 data series requires a pair of
identifying assumptions. We chose a model with outflows in fixed proportion, zA!P ¼ w1zA!C and
zP!A ¼ w2zP!C, because it produced non-negative cash inflows over the widest range of parameters.4
3 For example, if two similarly performing funds each attract 50% of the new funds and both lose 10% of their assets for

liquidity reasons, but Fund A is twice as large as Fund B, then 66% of the withdrawn wealth will have come from Fund A with

only 33% coming from Fund B. Net inflows incorrectly leave the impression that Fund B is more popular than Fund A.
4 We considered many other identifying assumptions and found two additional models consistent with our requirement

that all fund flows be positive: (1) Fixed relative outflows: zP!C ¼ m1zA!C and zP!A ¼ m2zA!P and (2) Outflows as a
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This assumption implies the following dynamical system for active and passive inflows and
outflows,

y1;t

y2;t

y3;t

y4;t

2
66664

3
77775
¼

1 0 0 w2

0 0 ð1þw1Þ 0

0 1 w1 0

0 0 0 ð1þw2Þ

2
66664

3
77775

zC!A;t

zC!P;t

zA!C;t

zP!C;t

2
66664

3
77775

. (6)

Our strategy is to first obtain estimates of the parameters w1;w2 and r from the observables.
Imposing the constraints, an inversion of (6) yields,

zC!A;t

zC!P;t

zA!C;t

zP!C;t

zA!P;t

zP!A;t

2
6666666664

3
7777777775

¼

1 0 0
�w2

1þw2

0
�w1

1þw1
1 0

0
1

1þw1
0 0

0 0 0
1

1þw2

0
w1

1þw1
0 0

0 0 0
w2

1þw2

2
66666666666666666664

3
77777777777777777775

y1;t

y2;t

y3;t

y4;t

2
66664

3
77775

. (7)

We report on data collection and estimation of the dynamic model in the next section.
4. Data

4.1. Fund universe

To estimate the IOC, it is desirable that the subjects be potentially heterogeneous in their
estimation of relative performance between fund types, but homogeneous with regards to their
preference for returns and risk. To this end, we look at a group of active and passive mutual funds
that track closely the S&P 500 index. Morningstar groups these funds as an equity style called ‘Large
Cap Blend.’ Two hundred and nine funds in the Morningstar Principia database have 10-year track
records from 1994 to 2003. We have data on assets under management for all but 10 of the funds,
and two funds merged, leaving a final sample of 198. The group is diverse, including load and no-load
funds. There are 161 active funds, ranging in asset size from Fidelity Magellan (FMAGX) with $68.0
billion to Black Rock Select Equity (PCESX) with only $1.9 million. Among the 37 passive funds are the
Vanguard S&P 500 index (VFINX) with $71.9 billion under management and the Black Rock Index
Equity (PNESX) with $70:8 million.

Many passive assets are also now invested in exchanged traded funds. The largest is the Standard
and Poor’s depository receipts, SPY. This fund increases from a $565 million market capitalization at
the end of 1994 to $44 billion by the end of 2003.

The underperformance of the actively managed funds is evident in our sample. No group of fund
managers seems to display a consistent track record of stock picking, and the additional costs from
trading, higher expenses and loads lead them to trail most index funds. In our 10-year sample, this is
true with an average 10-year load adjusted performance of 9.70% versus 10.49% for the index funds.
Over the 10 years, choosing the active funds will lead to a nearly 30% cumulative underperformance,
or $2,997 on a $10,000 investment.
(footnote continued)

proportion of fund size: zP!C;t=xP;t ¼ m1zA!C;t=xA;t , zP!A;t=xP;t ¼ m2zA!P;t=xA;t . Once we impose constraints on the m’s to

maintain positive fund flows, the implied z flows are quite similar across all the models. Both IOC estimates are significant at

the 1% level and within one standard error of the estimates in Table 2.
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Fig. 1. Ratio of net inflows to passive funds. The figure graphs the proportion of net fund inflows going into passive versus

active funds. It tracks the growing appeal of passive assets during our sample period from 1995 to 2003.
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The index funds display a surprising degree of heterogeneity,5 with mean 10-year returns ranging
from 11.13% for the Vanguard Institutional Index (VINIX) to MainStay Equity Index A (MSCEX) at
10.12%. The Vanguard S&P 500 Index has a mean 10-year return of 10.99%.

Even though the S&P 500 index, the benchmark for all the funds in this group, is a passive index, it
has been quite volatile, especially in the last three bear market years. The index funds have a
standard deviation of 21.39% versus only 19.44% for the active funds. Using the average 3-month
Treasury bill rate over the sample of 4.10%, the passive funds have a higher Sharpe ratio, 0.3197
versus 0.2880 for the active funds. For VFINX, the Sharpe ratio is 0.3212.
4.2. Net and gross flows

Based on the higher Sharpe ratio, many risk averse investors would prefer to hold the passive
funds. In this class of funds though, the ratio of passively indexed to actively managed money is less
than 1–5 at the beginning of our sample in 1994. With the passage of time, the higher returns and
greater inflows raise the ratio.

Relative net inflows rise from 39% in 1994 to 99% in 2003 (Fig. 1). By the end of the sample, assets
in the active funds have risen to $297.4 billion from $110.4 billion, but the index funds have risen
from $21.0 billion to $222.1 billion. Over the 10-year period, the passive funds attract more than 90%
of the net inflows. Our decision framework will try to explain this preference through the growing
utility dominance of the passive funds and the IOC.

As previously mentioned, we do not have sector wide data on gross inflows and outflows and
must obtain this data at the individual fund level. We obtained SEC filings6 for the five largest funds
in the active and passive categories.7 Based on 2003 assets, our four active funds represent 17.8% of
5 See Elton et al. (2004).
6 The data are from Form N-CSRS and N-30D, the Certified Shareholder Reports, which can be downloaded from the SEC

website.
7 We omitted Fidelity Magellan from our flow estimates for the active category. Although it was the largest fund in the

group, it had a highly erratic pattern of flows not reflective of the sector. The four active funds are in order of 2003 assets:

Fidelity Growth and Income; Fidelity Dividend Growth; Davis NY Venture A; Legg Mason Value. The five passive funds are:

Vanguard S&P 500 Index; Standard and Poor’s Depository Receipts, Vanguard Institutional Index; Vanguard Total Stock

Market; Fidelity Spartan US Equity Index. We estimated (10) including Magellan, and this raised the estimated IOC to 2.504 at

g ¼ 2:
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total assets, and our five passive funds capture 83.37% of the total. We extrapolate the flows to the
rest of the sector based on the relative size of the funds to form estimates of ðy1; y2Þ and ðy3; y4Þ for
the entire sample.
5. Specification and estimation

5.1. Preferences

We let lt vary with the utility differences and the IOC parameter r;

ltðrÞ ¼ ðtanhðrðUP;t � UA;tÞ=2Þ þ 1Þ=2. (8)

We assumed constant relative risk aversion (CRRA) preferences,

U ¼W1�g=ð1� gÞ

varying g from log utility, g ¼ 1, to g ¼ 4. We then take a second order Taylor expansions around
expected wealth, so that means and variances are sufficient statistics,

U � UðE½W �Þ � U00ðE½W �ÞV ½W �,

where E½W � is expected wealth, V ½W � is the variance of wealth.8 We use rolling, capitalization-
weighted sample means and variances up to time t in our estimates.
5.2. Estimation

We find the values of w1;w2 and r to minimize the mean squared error in the equation, derived
from (5),

zC!P;t � ltðrÞðzC!P;t þ zC!A;tÞ ¼ 0, (9)

where ltðrÞ is as defined in (8). Using (7), we then estimate using nonlinear least squares

y3 ¼ c1y2 � ltðrÞc1y2 þ ltðrÞðy1 þ y3Þ � ltðrÞc2y4, (10)

where c1 ¼ w1=ð1þw1Þ and c2 ¼ w2=ð1þw2Þ. The fixed parameters to be estimated9

are c1;c2, r, and a constant term c. Estimates for the three levels of risk aversion are reported
in Table 2.

The IOC estimates using heteroscedasticity and autocorrelation consistent (HAC) standard errors
are all statistically significant at the 1% level even with just nine years of data. They range from 0.91
for the log to 6.53 at g ¼ 4:

Switching between active and passive funds is well captured by the model. The finding of c1 ¼ 1:0
indicates that essentially 100% of the funds flowing from active funds to cash are then re-invested in
the passive funds, while almost none of the funds exiting the passive funds, c2 ¼ 0:002, are
transferred to active assets.

The model explains between 77% and 80% of fund flows. The best fit is from the case g ¼ 2, with
the fitted and actual data for passive fund inflows graphed in Fig. 2.

While the passive funds are receiving nearly all net fund inflows, the active funds still hold a
larger stock of assets. A forecast, using a constant and time trend, predicts that passive assets will not
overtake active assets until 2041. Extrapolating from the average return differences and average
10-year inflows, the ARED estimates show a much earlier dominance. By 2021, a full 20 years earlier,
the passive funds will hold more than 50% of assets in this mutual fund class.
8 Gaunersdorfer (2000) also uses risk adjusted performance as a fitness measure.
9 We imposed the constraints w1X0 and 0pw2p0:96 which are required to keep fund flows positive. These constraints

were not binding in the estimation.
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Fig. 2. Total fund inflows for passive funds y3;t: CRRA g ¼ 2. The figure plots data and fitted values for estimates from (10) of

total fund inflows, in millions of dollars, into passive funds.

Table 2
Intensity of choice in the dynamic model

Model r c1 c2 c R
2 DEl½W �

g ¼ 1 0.9095 1.0000 0.0025 2,878.10 0.7899 0.2561%

(3.28) (3.42) (0.00) (579.87)

g ¼ 2 1.9308 1.0000 0.0025 2,887.75 0.8010 0.3385%

(10.36) (2.90) (0.00) (10.68)

g ¼ 4 6.5308 1.0000 0.0014 2,648.93 0.7672 0.8302%

(51.78) (12.79) (0.00) (17.95)

We vary, across the three estimates, the risk aversion parameter g from 1 to 4. r is the estimate of the intensity of choice. c1

and c2 are the outflow proportions into passive and active assets. c is a constant term. t-ratios are in parentheses. DEl½W � is the

change in expected return required to achieve a 1% increase in inflows to the passive funds.
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5.3. Comparative statics

We report results on the comparative statics of the model. We measure the change in expected
return DEl½W � required to attract all inflows to the passive funds beyond the current 90%. With log
utility, 25.61 basis points are required to increase flows by 1%. As the representative investor
becomes more risk averse, it becomes harder to induce additional inflows because the active funds
have a lower variance; 33.85 basis points are required in our best fit case with g ¼ 2. At g ¼ 4, it rises
to 83.02 basis points.

To put these estimates in dollar terms, we assume an initial wealth of $10,000. For an investor
with assets at that level, an extra $65.86 per year in the log case would attract 1% more inflows. In the
most risk averse case, $218.56 would be needed to attract 1% more inflows.
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To assess the reasonableness of these estimates, we compare them to a variety of fund metrics.
The estimates are close to the 100.56 basis point cross-sectional performance dispersion of the
passive funds. The estimates also seem reasonable compared to the 160 basis points transactions
costs10 on the average equity mutual fund.
6. Conclusion

The literature on heterogenous agents has been adding useful insights to many areas of
economics. A key step forward to wider application, we believe, is to better understand the IOC
parameter. This seems true for papers that calibrate or estimate models involving DCD.

We have used agent based modeling and DCD to understand investor choices among mutual
funds. At the beginning of our 10 year sample, actively managed funds dominate the landscape, with
more than five dollars of assets for every 1 in the passive funds. Over time though, the actively
managed funds under-perform on both an absolute and risk adjusted basis. Consistent with our
framework, the passive funds attract a growing share of net inflows each year. The DCD model
explains upto 80% of the variation in fund flows.

Our principal contribution has been to estimate a statistically significant estimate of the IOC
parameter. While this is a free parameter in estimation, it has an economic interpretation in the
context of our decision problem. Furthermore, by choosing a financial optimization problem, we get
estimates that can be measured in dollars rather than utility units. While the intensity parameter
varies with the degree of risk aversion, the range of dollar costs is quite reasonable. In our leading
case, with relative risk aversion of g ¼ 2, a change of 34 basis points in returns can increase fund
inflows by 1%. These estimates are in line with performance and fund fee variation among the
choices currently available to investors.

We speculate that embedding DCD in a utility maximizing framework may provide dividends in
other areas of economics and finance.
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