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Abstract

One of the more common methods used to model international real business cy-

cles is through the use of a dynamic stochastic general equilibrium (DSGE) model.

Guo and Sturzenegger (1998) argue that an increasing returns to scale production

technology can improve the performance of such a model. They also argue that if

increasing returns are strong enough, then sunspot equilibria are possible.In this

paper, we formally test the increasing returns to scale assumption and find that

a model with a constant returns to scale technology has a superior out-of-sample

prediction performance over a model with an increasing returns to scale production

technology. Moreover, this result is robust to the degree of returns to scale and to

the persistence and variance of the shocks in the model.

J.E.L. Classification E32, C11, C52

Keywords: International Real Business Cycles, Increasing Returns to Scale, Model Com-
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1 Introduction

One of the more common methods used to model international real business cycles is

through the use of a dynamic stochastic general equilibrium (DSGE) model1. Following

from the work of Kydland and Prescott (1982), the parameters of a DGSE model are

calibrated using values that reflect the modeler’s prior beliefs. Once calibrated, the model

is evaluated using simulation experiments (Kydland and Prescott 1996). A common

practice in the literature is to evaluate a model by how well the artificial data generated

from the calibrated model can match certain stylized facts. In the case of international

real business cycle (IRBC) models, one of the most important stylized facts is that

output is more highly correlated across countries than consumption. In fact, the standard

IRBC model with constant returns to scale, perfect competition and complete markets

has exactly the opposite result. This has been called the consumption-output anomaly.

There have been many attempts to modify the standard IRBC model to eliminate the

consumption-output anomaly. Models that incorporate incomplete markets, increasing

returns, household production, or a combination of these features have been used to

explain the consumption-output anomaly.

Previous studies have focused on the ability of an alternative model to adequately match

the consumption-output stylized fact to determine if one model is ”better” than a com-

peting model. This method of model evaluation and comparison, while common, is not

without criticism2. In particular, determining a model’s performance by its ability to

mimic a small number of features in the data has been criticized for not comparing, or

evaluating, models over the full dimension of the data. Likelihood methods do not suffer

from this criticism. Therefore, the object of this paper is to use likelihood methods to

formally compare a number of competing IRBC models across the full dimension of the

1See Backus, Kehoe and Kydland (1992), Canova and Ubide (1998), and Devereux, Gregory and
Smith (1991) for example.

2See Canova and Ortega (1995) for a good discussion of the methods used in evaluating DSGE models.
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data.

Nearly all DSGE models cannot be simulated as they are written. This is the certainly

the case for the models compared in this paper. It is necessary for certain aspects of the

DSGE model to be approximated in order for it to be simulated. The approximation

also allows the model to be written in state-space form. This (approximate) state-space

form of the model is used to construct a likelihood function for the model in question.

Principle components are used to solve the dimensionality problem and construct the

likelihood function.3 Markov chain Monte Carlo (MCMC) methods are then used to

formally compare two or more non-nested DSGE models. One of the benefits of using

MCMC methods to compare models is that the models can then be formally compared

across sub-samples of the data as well as across the whole data set. Also, it is possible

to incorporate the practice of calibration into the framework through the description of

appropriate prior distributions for the structural parameters of the model. It is then

possible to not only compare different models, but also to formally compare a particular

calibration experiment, such as matching specific moments of the data, with moments

generated using a more standard likelihood estimation technique.

This paper uses likelihood methods to compare an IRBC model that has increasing re-

turns to scale to a benchmark IRBC model with constant returns to scale production

technology. The comparison is performed for the calibrated case, that is, where the pa-

rameters are chosen to be specific values, and in several cases where the prior distribution

is relaxed on the parameters of, first, the equation governing the motion of the stochas-

tic terms of the model, and second, the parameter determining the level of increasing

returns. We have two major findings. First, the increasing returns assumption is over-

whelmingly rejected in favor of a model with constant returns to scale, in the sense that

the increasing returns to scale model has a worse out-of-sample prediction performance

3The dimensionality problem arises from the property that the number of stochastic components
present in a model is less than the model’s dimension. See Kim and Pagan (1995) for a more thorough
discussion of the dimensionality issue.
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than the constant returns to scale model. Second, allowing for prior uncertainty greatly

improves the prediction performance of the models. The rest of the paper is as follows:

Section 2 discusses the models that will be compared, Section 3 describes the method

used in this paper, Section 4 describes the data and the various prior specifications used,

Section 5 describes the results, and Section 6 concludes.

2 Increasing returns and International Real Business

Cycles

Since the work of Baxter and King (1991), a number of authors have incorporated in-

creasing returns to scale production technologies in DSGE models in an attempt to better

explain the observed data. Examples of this can be found in Farmer (1993), Farmer and

Guo (1994), and, in the IRBC context, Guo and Sturzenegger (1998). In these papers,

the authors conclude that a model with increasing returns to scale technologies can better

match selected moments of the observed data. These authors also claim that if increasing

returns are strong enough, sunspot equilibria, where shocks are not real, are possible.

The aim of this paper is to examine whether there is evidence for increasing returns to

scale and if so whether the increasing returns to scale are large enough to permit sunspot

equilibria.

The models we describe in this section are similar to those used in Guo and Sturzenegger

(1998). Their basic model uses a Dixit-Stiglitz-type production. In each country, the

final consumption good, Y , is produced from a continuum of intermediate inputs, Y (i)

with i ∈ [0, 1]. The production function for the perfectly competitive final goods sector

is
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Y =

(
∫ 1

0

Y (i)λdi

)

1

λ

. (1)

The intermediate goods are all produced by the same technology represented by the

production function

Y (i) = ZK(i)αL(i)β, (2)

so that aggregate output is

Yt = ZtK
α
t L

β
t , (3)

where the parameter Zt is an aggregate technology shock with unit mean. Its law of

motion is governed by

Zt+1 = ΩZt + ηt+1, (4)

where

ηt ∼ N(I−Ω,Vη).

Preferences are represented by

U =
∞
∑

t=0

ρt
∑

zt∈Ht

π(zt)

{

C1−θt (zt)

1− θ
−
L
1−γ
t (zt)

1− γ

}

, (5)

where zt is a particular realization of the state of nature, π(zt) is the probability of that

state occurring, and all possible histories for the realization are given by Ht. Assuming

complete markets, the representative household’s budget constraint is
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∞
∑

t=0

∑

zt∈Ht

qt{Ct +Kt+1 − (1− δ)Kt + p
1
tΘ

1
t+1 + p

2
tΘ

2
t+1

−rtKt − wtLt − (p
1
t − d1t )Θ

1
t − (p

2
t − d2t )Θ

2
t} = 0.

(6)

The variable Θi
t represents the shares of equity holdings to a firm in country i at time t.

Similarly, dit represents dividends and p
i
t represents the share price.

Typically in IRBC models, only investment is mobile across countries, however, Guo and

Sturzenegger (1998) also allow capital to be mobile. Hence the world resource constraint

is

Kt+1 = Y1t + Y2t + (1− δ)Kt − C1t − C2t (7)

where Kt = K1t +K2t is the world capital stock.

Guo and Sturzenegger (1998) show how this model can be reduced to a system of non-

linear dynamic equations. Using the methods described in Farmer (1993), this set of

non-linear equations can linearized into the following system:
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Ẑ1t
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, (8)

where Z0 and K0 are given and X̂t is the proportional deviation of variable X from its

steady state. This system, (8), forms the basis of the models that we will compare in this

paper. Note that this model assumes a symmetric equilibrium, C1t = C2t, and complete

markets.

For most of the structural parameters, the restrictions placed on them are the same in
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both the constant returns to scale and the increasing returns to scale versions of the

model. The parameter γ is the negative inverse of the labor supply elasticity. Values are

restricted to γ ≤ 0. The parameter ρ is the discount factor and is restricted to 0 < ρ < 1.

The rate of depreciation of the capital stock must have, 0 < δ < 1. Finally, θ represents

the intertemporal elasticity of substitution for consumption. This elasticity is restricted

to be positive and θ 6= 1.

The values of the remaining structural parameters determine whether the model has

constant or increasing returns to scale. The parameters α and β represent the capital

and labor elasticities in production. The parameter λ ∈ (0, 1] represents the degree of

monopoly power held by the monopolistically competitive intermediate goods producers.

The factor shares in total output can then be defined as a = λα and b = λβ for capital

and labor respectively. Note that if λ = 1, the various intermediate inputs are all perfect

substitutes. In that case, the intermediate goods producers do not have any monopoly

power, and behave as perfectly competitive firms. The constant returns to scale version

of the model uses λ = 1. The factor shares are then simply a = α and b = β. Then with

α+ β = 1, the model has constant returns to scale. To incorporate increasing returns to

scale into the model requires α + β > 1 and λ < 1.

3 Model Comparison and Construction of Likelihood

Function

The model comparison methods used in this paper are based on the methods described in

Landon-Lane((1998) and (2002)). In particular, the linearized state-space approximation

to the model described in Section 2 is used to construct a likelihood function which is

then used to compare the two versions of the model.
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The linear system given in (8) is used to construct the error equation of the state-space

system. As long as there is only one eigenvalue of J that has magnitude less than one,

(8) can be iterated into the future to get Ĉt as a linear function of the state vector,

ŝt = (K̂t, Ẑ1t, Ẑ2t)
′. Thus (8) can be rewritten as
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Ẑ1t+1
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; (9)

the error equation of the state-space approximation.

The data equation can be obtained by linearizing the equations that relate the observed

variables of the model to the state variables. The observed variables of the model are

output, hours worked, and savings, all for both countries, and total consumption and

total investment across both countries.4 The equation that governs output is described

in (3) while total labor hours used is described by

Lit =

[

1

b

Cθ
it

ZitK
α
it

]ω

. (10)

Total investment is given by

It = Kt+1 − δKt, (11)

and savings is defined as

SAVit = Yit − Cit. (12)

Linearizing, where necessary, and substituting out all non-state variables it is possible to

write the data equation as

D̂t = Hŝt (13)

4We use total consumption, C1t + C2t, and total investment, I1t + I2t, as we assume a symmetric
equilibrium for consumption, C1t = C2t, and we assume that investment is mobile between the two
countries.

9



where D̂t = (Ŷ1t, Ŷ2t, L̂1t, L̂2t, ˆSAV 1t, ˆSAV 2t, Ĉ1t+Ĉ2t, Î1t+ Î2t)
′, andH is a (8 x 3) matrix

of coefficients. Thus, equations (9) and (13) form the state-space approximation to the

model described in Section 2.

Here we see the dimensionality problem in stark contrast. There are eight observed

variables but only two random components of the model. A number of papers, such as

Sargent (1989), Anderson, Hansen, McGratten and Sargent (1996), and Ireland (1999),

have attempted to solve this problem by assuming that the variables of the model are

measured with error thus increasing the number of stochastic terms in the model. Other

papers, such as DeJong, Ingram andWhiteman (2000) and Landon-Lane (1998) construct

likelihoods based on a subset of the data. Both methods suffer from a non-uniqueness

problem. In the model used in this paper, six additional shocks need to be added to make

the model of full dimension. There are twenty-eight ways in which this can happen. The

same issue applies to the problem of only using two variables to calculate the likelihood

function. There are also twenty-eight different combinations of two variables that can be

used.

In order to solve the uniqueness problem, independent linear combinations of the eight

observed variables are used to construct the likelihood function. Two independent linear

combinations of the observed variables need to be found. The obvious approach is to use

the two principle components that account for the highest proportion of the observed

variance in the data.5 This allows us to uniquely determine the values of the shocks, and

hence calculate the likelihood function.

The approach is as follows: Let D̂T =
{

D̂t

}T

t=1
be the T (8 × 1) dimensioned observed

data vectors and let ψ = (ψs, ψz) be the vector of parameters of the model
6. Next, let P

be the (8 × 2) dimensioned matrix containing the two eigenvectors, normalized to have

5See Johnson and Wichern (1988) for more details on the method of principle components.
6The structural parameters of the model are represented by ψs, and ψz refers to the parameters that

characterize the law of motion for the shock vector Zt.
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length one, associated with the two highest eigenvalues of the correlation matrix7 of the

observed data, D̂T . Thus the data equation, (13), becomes

X̂t = P
′D̂t = P

′Hŝt. (14)

We then construct the likelihood function using the modified data, X̂T = {X̂t}
T
t=1.

The construction of the likelihood function uses equations (9) and (14), the modified

state-space approximation to the model described in Section 2. The basic idea is that if

the value of K̂t is known then (14) can be solved uniquely for Ẑt = (Ẑ1t, Ẑ2t)
′. Once Ẑt is

known then, from (9), using the fact that K̂t+1 is a deterministic function of the current

state, ŝt, it is possible to uniquely determine the value of K̂t+1. Thus, given the value

of K̂0, it is possible to uniquely solve for Z
T = {Zt}

T
t=1. Note that Z

T is a function of

the observed data, X̂T , the unknown parameters of the model, ψ, and the initial value

of K̂, K̂1. That is, Ẑ
T ≡ ZT (X̂T , K̂1, ψ). For the sake of brevity, however, we will use

the notation ZT rather than ZT (X̂T , K̂1, ψ) in what follows.

One consequence of the method used to construct the likelihood function is that the

initial value of the deviation of capital from its steady-state (or balanced growth path)

value is made a parameter of the model. Thus the parameter vector of the model becomes

ψ̃ = (ψ, K̂1). For t = 2, . . . , T the conditional density function of Ẑt, from (4) is

p(Ẑt|Ẑt−1, X̂
t, ψ̃) = (2π)−1|Vη|

−1exp
{

(Ẑt − ΩẐt−1)
′V−1

η (Ẑt − ΩẐt−1)
′
}

. (15)

For t = 1 we use the unconditional density

p(Ẑ1|X̂
1, ψ̃) = (2π)−1|VZ1

|−1exp
{

(Ẑ1)
′V−1

Z1
(Ẑt)

′
}

, (16)

7Note that the correlation matrix is used here instead of the covariance matrix so that the linear
combinations are not weighted towards the variable with the highest variance.
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where VZ1
solves

VZ1
− ΩVZ1

Ω′ = Vη.

Therefore the likelihood function for modelM is

p(X̂T |ψ̃,M) = p(Ẑ1|X̂
1, ψ̃,M)

T
∏

t=2

p(Ẑt|Ẑt−1, X̂
t, ψ̃,M)|Jac|, (17)

where

Jac =

(

∂(X̂1, . . . , X̂T )

∂(Ẑ1, . . . , ẐT )′

)−1

is the Jacobian of the transformation from (Ẑ1, . . . , ẐT ) to (X̂1, . . . , X̂T ). From (14) it

follows that

X̂t = P
′H.1K̂t +P

′H.23Zt, (18)

where H.i refers to the i
th column of the matrix H, so that

Jac = (P′H.,23)
−1
. (19)

3.1 Estimation and Model Comparison

For a complete discussion of estimation and model comparison the context of general

DSGE models see Landon-Lane (2002). The methods derived in that paper are used

extensively here. The basic approach is to use Bayesian model comparison methods to

formally compare competing models8, as these methods allow for the formal treatment

of model uncertainty and prior beliefs. As discussed in Sims (1996), another reason for

using Bayesian methods is that there is a fair degree of prior information used in the

DSGE literature. Models are calibrated to certain values based on the prior beliefs of the

authors. Bayesian methods are the natural way to formally incorporate prior information

8See Geweke (1995) for a good discussion on Bayesian model comparison.
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with information from the observed data in the estimation of the models.

Given the likelihood function, sometimes referred as the data density, p(X̂T |ψ̃,M) and

the prior density, p(ψ̃|M), it follows from Bayes Theorem that the posterior density,

p(ψ̃|X̂T ,M) is defined as

p(ψ̃|X̂T ,M) ∝ p(ψ̃|M)p(X̂T |ψ̃,M). (20)

The marginal likelihood, p(X̂T |M), is then defined as

p(X̂T |M) =

∫

Ψ

p(ψ̃|M)p(X̂T |ψ̃,M)dψ̃, (21)

which is interpreted as the probability of observing X̂T under modelM. Geweke (1995)

shows how the marginal likelihood can be interpreted as representing the cumulative

out-of-sample prediction performance of the model so that the Bayes factor, defined as

BFij =
p(X̂T |Mi)

p(X̂T |Mi)
, (22)

can be interpreted as the cumulative out-of-sample prediction performance of modelMi

relative to that of modelMj.

For any well defined function, g(.), Geweke (1999) shows that, under certain regularity

conditions,

M−1

M
∑

m=1

g(ψ̃(m)) −→ E(g(ψ̃)|X̂T ,Mi),

where {ψ̃(1), . . . , ψ̃(M)} is a series of random draws, using a MCMC algorithm, from

p(ψ̃|X̂T ,M). Geweke (1999) also shows how the method of Gelfand and Dey (1994) can

be modified so that {ψ̃(1), . . . , ψ̃(M)} can be used to calculate the marginal likelihood,
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p(X̂T |Mi).

Therefore, in order to perform inference on the parameters, ψ̃, and also to calculate

p(X̂T |Mi), thus allowing a formal comparison the models presented in Section 2, a

method of drawing randomly from p(ψ̃|X̂T ,M) is needed. One such algorithm is the

random walk Hastings-Metropolis MCMC algorithm described in Chib and Greenberg

(1995) and Tierney (1994). This algorithm is used to obtain the results that follow.

4 Data and Prior Specifications

Before describing the results we first describe the data and prior distributions used in

this exercise. The data we use are from the OECD9. They provide quarterly data from

the United States and an aggregate for the fifteen European Union countries. Data on

consumption, output, total hours worked, investment and savings are used to construct

the likelihood function. Data for the European Union are in terms of 1995 US dollars.

In order to have a comparable data set, a GDP deflator was used to convert the data

in current dollars from the United States into 1995 US dollars. The specific series taken

from the OECD data (codes are listed in parentheses) are as follows. For consumption,

we used the private final consumption expenditure series (USA1001S2, 021023HSA). The

gross fixed capital formation series (USA1003S2, 0210035HSA) was used for investment.

For output, we used the gross domestic product by expenditure series (USA1008S2,

0210037HSA). The OECD do not provide data on total hours worked for the European

aggregate. Therefore, German data on total hours worked is used as a proxy for European

total hours worked.

In order to use the methods described in Section 3.1, the data are converted to propor-

tional deviations from their balanced growth path. For a variable, Xt, the Hodrick and

9http://www.sourceoecd.org
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Prescott (1997) filter is used to calculate the underlying trend, X∗
t , and the deviation

from trend, Xt −X∗
t . Then, X̂t is defined as

X̂t =
Xt −X∗

t

X∗
t

. (23)

4.1 Prior Specifications

The parameter vector, ψ̃, is made up of three components; a vector of the structural

parameters of the model, ψs, a vector of the parameters that describe the law of motion

of the shocks that hit the model, ψz, and the initial value of K̂, K̂1.

The structural parameter vector, ψs is made up of the parameters of the model that do

not affect the law of motion of the shock process. That is, ψs = (γ, ρ, δ, θ, λ, a, b)
′10. The

parameters that determine the law of motion of the shock vector, Ẑt, are the (2×2) matri-

ces Ω and Vη. It is assumed that the shock vector follows a vector autoregressive process

of order one where Ω is the coefficient on the first lag of Ẑt, the eigenvalues of which de-

termine the persistence properties of the shock process, and Vη is the symmetric positive

definite variance covariance matrix of η, the independent and identically distributed in-

novations to the shock process. Therefore, ψz = (σ
2
η1
, σ2η2 , ρ(η1,η2), vec(Ω)

′)′, where ρ(η1,η2)

is the correlation between η1 and η2 and vec(Ω) is the column-wise vectorization of Ω.

The comparison exercise involves the comparison of two variants of the model described

in Section 2. One version of the model is for the case where the production technology

exhibits constant returns to scale (CRS version) and the other version is where the

aggregate production technology exhibits increasing returns to scale (IRS version). There

are three separate comparisons made. The first comparison involves comparing the CRS

model with the IRS model at the calibrated values of the parameters used in Guo and

Sturzenegger (1998). The second comparison compares the two versions allowing for the

10The parameters α and β are determined by α = a/λ and β = b/λ.
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parameters of the shock process to vary, while the third comparison involves allowing the

degree of increasing returns to scale to vary with ψz. That is, in the first two comparisons,

the values of ψs are fixed at their calibrated values, while in the third comparison, only

λ is allowed to vary.

The calibrated values used in Guo and Sturzenegger (1998) are in Tables 1 and 2 below.

Table 1: Calibrated Values for ψs

Parameter CRS IRS
γ -0.25 -0.25
ρ 0.99 0.99

δ 0.025 0.025

θ 2 2

λ 1 0.77

a 0.30 0.24

b 0.70 0.70

Table 2: Calibrated Values for ψz

Parameters CRS IRS
var(η1) 0.008622 0.009232

var(η2) 0.008622 0.009232

corr(η1, η2) 0.396 0.289

Ω

[

0.940 0.058
0.058 0.940

] [

0.947 0.047
0.047 0.947

]

In all cases, the prior means for the parameters are set to the calibrated values given

above. The choice of prior variances is more troublesome. Typically, one would choose

prior variances to reflect any disagreement in the literature regarding the values of pa-

rameters. However, one of the striking aspects of the DSGE literature is the uniformity

in the values of the parameters used. Therefore it is hard to discern any prior uncertainty
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over the values of the parameters that make up the model. Therefore, prior variances are

used to represent small uncertainty in the calibration. Ninety-five percent prior coverage

intervals for the parameters are reported in Table 3 below. Note that prior coverage

intervals that are degenerate imply a point-mass prior for that parameter. For brevity,

degenerate coverage intervals are not reported.

Table 3: 95% Highest Prior Density Coverage Intervals

Comparison
Parameter I II III

γ - - -

ρ - - -

δ - - -

θ - - -

λ - - [0.6, 0.88]

a - - -

b - - -

var(η1) - [0.007802, 0.009522] [0.007802, 0.009522]

var(η2) - [0.008352, 0.01022] [0.008352, 0.01022]

corr(η1, η2) - [-0.141, 0.649] [-0.172, 0.639]

Ω -

[

[0.85, 0.98] [0.01, 0.12]
[0.01, 0.12] [0.85, 0.98]

] [

[0.86, 0.98] [0.01, 0.11]
[0.01, 0.11] [0.86, 0.98]

]

K̂1 [-0.70, 0.70] [-0.70,0.70] [-0.70,0.70]

Notes:

1. A dash, -, represents a degenerate prior distribution. That is, the ninety-five percent prior

coverage interval is just the prior mean.

2. The prior coverage intervals for Ω reported above are the unrestricted coverage intervals. The

actual prior for Ω is restricted to those Ω that have eigenvalues whose magnitude are strictly less

than one.

In order to apply the random walk Hastings-Metropolis algorithm it was convenient to

work with transformed parameters. For example, the value of σ2η1 is constrained to be

greater than zero. Therefore, the model was re-parameterized to include log(σ2η1) as a

parameter. The correlation between η1 and η2 is constrained to be in the interval [-1,1].
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Therefore, ρ(η1,η2) was re-parameterized using the modified logistic transformation

ρ̃(η1,η2) =
ρ(η1,η2) + 1

ρ(η1,η2) − 1
. (24)

All transformations that were applied were done so as to transform the parameter space

to be the real line. Given these transformations, it was convenient to define Gaussian

priors for the transformed variables. The prior coverage intervals reported in Table 3 are

obtained by inverting the transformation and calculating a highest prior density region

for the original parameter.

Finally, the prior for Ω is defined similarly except that the prior is truncated to the

region of the space for which the eigenvalues of Ω are all less than one in magnitude.

The random-walk step for Ω is therefore modified using an accept/reject step.

5 Results

As described in the previous section, three separate comparisons are carried out. The

first comparison compares the calibrated constant returns to scale(CRS) version of the

IRBC model described in Section 2 with the calibrated increasing returns to scale(IRS)

version. In this case only K̂1 is free to vary.

The second comparison involves allowing the parameters that determine the law of motion

of Z, ψz, to vary. The reason for this comparison is that in the calibration experiment

in Guo and Sturzenegger (1998), the values for ψz are chosen so that the model mimics

the underlying properties of observed output only. This is done by calculating Solow

residuals using the aggregate production function given in (3). In this comparison, the

values of the structural parameters are still fixed at their calibrated values. The reason

for allowing the parameters that make up ψz to vary is to see whether the result in the
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first comparison is robust to how the shock process is defined. Note that in the calibration

experiment, except for λ, the structural parameters are identical. However, the values of

ψz differ. Allowing the values of ψz to be chosen using likelihood methods will eliminate

any suspicion that the result in the first comparison is due to the choice of ψz rather

than the validity of the models.

Finally, the third comparison involves allowing, along with ψz, λ to be chosen freely in

the IRS version of the model. Thus, we will be able to check the robustness of the result

in the first comparison to the choice of λ, the parameter that determines the degree of

increasing returns to scale. Therefore the three comparisons are as follows:

Table 4: Summary of Comparisons

Comparison Free Parameters

I: full calibration - only K̂1 free to vary

II: (ψz, K̂1) allowed to vary for both models

III: (ψz, K̂1) allowed to vary for the CRS

model, (ψz, K̂1, λ) allowed to vary for the IRS model

In all comparisons, the approach is as follows: A random-walk Hastings-Metropolis al-

gorithm is used to make serially dependent draws from the posterior distribution of the

free parameters of both models. These draws are then used to calculate the log-marginal

likelihood using the modified method of Gelfand and Dey (1994) as suggested by Geweke

(1999). The log-marginal likelihoods are then used to calculate the log-Bayes factor which

is used to compare the two models. In all cases, the random-walk Hastings-Metropolis

algorithm is tuned so that it efficiently draws from the posterior of choice. In all cases

the numerical standard error is less than ten percent of the posterior standard error for

each parameter estimated.

The posterior means of the free parameters for each comparison can be found in Table 7

at the end of this section and the log Bayes factors can be found in Table 5 below.
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Table 5: Log Bayes Factor in favor of CRS Model over IRS Model

Comparison I II III
log BF 228.6 102.6 99.6

(0.09) (0.24) (0.64)

Note:

The numbers in the brackets reflect the numerical standard error of the log-Bayes factor estimates.

It is clear from the results that the CRS model is strongly favored in comparison to

the IRS model and this result is robust to the choice of ψz and λ. The Bayes factor in

favor of the CRS model over the IRS model is exp(228.6), exp(102.6), and exp(99.6) for

comparisons I, II and III respectively. That is, in the case of comparison III, for example,

the CRS model is exp(99.6) times more likely than the IRS model. Or, another way of

stating this result is that the out-of-sample prediction performance of the CRS model is

exp(99.6) times better than the IRS model.

When ψz is estimated we find that the estimated value of Ω is close to its calibrated value

but the variance-covariance matrix, Vη is very different. The variance of the shocks are

estimated to be smaller than their calibrated values, by a factor of about 70%, and the

correlation between the two shocks is estimated to be very close to one. In fact, we

constrain the value of ρZ1,Z2
∈ (−1, 1) so we take the fact that the estimate is very close

to one as evidence that the correlation between the two shocks is one.

Moreover, inspection of the posterior mean for the parameter λ in comparison III shows

that the data contains some information about its value. Evidence of this can be seen in

the plot of the prior and posterior distributions for λ, given in Figure 1 which clearly shows

that the posterior distribution of λ is shifted to the right and more concentrated than the

prior distribution. Thus, the estimated value of λ is larger than the value calibrated by

Guo and Sturzenegger and so the estimated value of the degree of increasing returns to

scale11 is smaller than that calibrated. Finally, Guo and Sturzenegger (1998) also show

11The degree of returns to scale is calibrated at 0.24/0.77 + 0.7/0.77 = 1.224 while the estimated
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Figure 1: Prior and Posterior Distribution for λ
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that if increasing returns to scale are large enough12 then sunspot equilibria are possible.

The evidence here, however, suggests that the increasing returns to scale, if present at

all, are not large enough to allow for sunspot equilibria.

Therefore, we find that there is very little evidence in favor of using an increasing returns

to scale technology in an IRBC model. Furthermore, there is evidence to suggest that

the level of increasing returns to scale would not be large enough to allow for sunspot

equilibria.

Finally, we are also able to compare the effect of allowing some parameters to vary.

The log-Bayes factors in favor of allowing parameters to be estimated versus using the

calibrated parameters can be found in Table 6 below.

degree of returns to scale is 0.24/0.7844 + 0.7/0.7844 = 1.20.
12They use a value of λ=0.58 to generate the necessary level of increasing returns to scale.
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Table 6: Log-Bayes Factors: Calibration vrs. Estimation

ψz free ψz and λ free
CRS 405.0 -

(0.07)
IRS 436.2 439.2

(0.12) (0.60)

It is clear from the log-Bayes factors given in Table 6 that the models using the estimated

parameters clearly out-perform, in terms of out-of-sample prediction performance, the

models using the calibrated values. Therefore allowing for prior uncertainty in some of

the parameters of the model leads to dramatic improvements in the performance of both

models.
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Table 7: Parameter Estimates: CRS Model

Parameter CRS Model IRS Model

Comparison I

K̂1 0.0117 0.0005
(0.1723) (0.1317)

Comparison II

K̂1 0.0000 -0.0061
(0.0066) (0.1101)

var(Z1) 0.00702 0.00722

(3.4× 10−6) (3.5× 10−6)

var(Z2) 0.00712 0.00722

(3.7× 10−6) (3.5× 10−6)

corr(Z1, Z2) 0.9972 0.9998

(0.0005) (4.1× 10−5)

Ω

[

0.9880 0.0078
0.0677 0.9551

] [

0.9466 0.0541
0.0411 0.9577

]

[

(0.0065) (0.0062)
(0.0185) (0.0204)

] [

(0.0220) (0.0225)
(0.0190) (0.0192)

]

Comparison III

K̂1 0.0000 -0.0158
(0.0066) (0.1282)

var(Z1) 0.00702 0.00722

(3.4× 10−6) (3.4× 10−6)

var(Z2) 0.00712 0.00722

(3.7× 10−6) (3.4× 10−6)

corr(Z1, Z2) 0.9972 0.9999

(0.0005) (2.1× 10−5)

Ω

[

0.9880 0.0078
0.0677 0.9551

] [

0.9506 0.0502
0.0365 0.9625

]

[

(0.0065) (0.0062)
(0.0185) (0.0204)

] [

(0.0181) (0.0184)
(0.0156) (0.0158)

]

λ - 0.7844
(0.1094)
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6 Conclusion

In this paper, we employed likelihood methods to compare two variants of a standard

international real business cycle model. The two variants were based on models presented

in Guo and Sturzenegger (1998), where they argued that a model with an increasing

returns to scale technology had better properties than the standard constant returns to

scale model. The aim of this paper was to formally compare these two models using the

full dimension of the data, rather than comparing the models using a limited number of

moments from the data.

The formal comparison used in this paper utilized Bayesian model comparison techniques,

in particular, Bayes factors. The main reason for using Bayes factors in comparing mod-

els, is the fact that the Bayes factor can be interpreted as the relative cumulative out-of-

sample prediction performance of one model over another. Apart from being a natural

way to compare two or more models, the Bayes factor also satisfies the likelihood crite-

ria, in that all inferences are based on information contained in the likelihood function.

However, in order to use Bayes factors, a likelihood function needs to be computed for

each model. The models compared in this paper are DSGE models that suffer from a

dimensionality problem; that is, there are fewer stochastic terms than variables modelled.

In order to overcome this problem, a linearized version is computed to represent each

model.

An algorithm is proposed to calculate the value of the likelihood function of the two

models for any values of the parameters by constructing as many independent linear

combinations of the data as there are stochastic terms. Therefore, we are able to evaluate

the likelihood function of the two models under comparison at any value of the param-

eter space. We are then able to use the random-walk Hastings-Metropolis algorithm to

estimate the free parameters of the models and to calculate the marginal likelihoods and

Bayes factors.
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There are three comparisons undertaken in this paper. The first comparison replicates

the comparison undertaken in Guo and Sturzenegger (1998) in that the values of the

parameters are set to their calibrated values and are not allowed to be freely estimated.

Then we allow the parameters that describe the law of motion of the stochastic terms to

be freely estimated in order to check the robustness of the results in the first comparison

to the persistence and variability of the two shocks in the model. Finally, we allow the

parameter that determines the degree of increasing returns to scale to be freely estimated.

We find strong evidence in favor of having a constant returns to scale technology in all

three comparisons. That is, the result that the IRBC model with constant returns to scale

technology is preferred to the IRBC model with increasing returns to scale technology is

robust to changes in the degree of increasing returns to scale and to the persistence and

variability of the stochastic components of the models. Moreover, the degree of increasing

returns to scale that is estimated is smaller than that calibrated in Guo and Sturzenegger

(1998). Hence there seems to be little evidence of the degree of increasing returns to scale

necessary for the sunspot model that Guo and Sturzenegger support. We also show that

the estimated values that govern the law of motion of the shock terms and the degree

of increasing returns strongly improve the out-of-sample prediction performance of all

models used in this paper. In conclusion, we find no evidence that increasing returns to

scale improves the performance of the model used in this paper.

It should be noted, however that these results are conditional on the models used and

the calibrated values of the structural parameters that we did not allow to be freely

estimated. Checks on the robustness of our results to the form of the model and to the

values of the structural parameters has been left for further research.
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